Using Deep Autoencoders for In-vehicle Audio
Anomaly Detection

Gabriel Coelho
ALGORITMI Centre
University of Minho
Guimaraes, Portugal
a82137@alunos.uminho.pt

Pedro José Pereira
ALGORITMI Centre
University of Minho
Guimardes, Portugal
1d6927 @alunos.uminho.pt

Eduardo C. Nunes
ALGORITMI Centre
University of Minho
Guimarées, Portugal
b12176 @algoritmi.uminho.pt

André Ferreira
Bosch Car Multimedia S.A.
Braga, Portugal

Abstract—Current developments on self-driving cars has led
to an increasing interest on the business of autonomous shared
taxicabs. While most self-driving car technologies focus on the
outside environment, there is also a need to provide in-vehicle
intelligence (e.g., detect health and safety issues related with the
current car occupants). Set within an R&D project focused on in-
vehicle cockpit intelligence, the research presented in this paper
addresses an unsupervised Acoustic Anomaly Detection (AAD)
task. Since data is nonexistent in this domain, we first design
an in-vehicle sound event data simulator that includes three
types of anomalies: arguing, breaking window and cough. Then,
we explore two main sound feature extraction methods (based
on a combination of three audio features and mel frequency
energy coefficients) and propose a novel Long Short-Term Mem-
ory Autoencoder (LSTM-AE) architecture for in-vehicle sound
anomaly detection. When considering three synthetic mixture
scenarios, competitive results were achieved by the proposed
LSTM-AE when compared with two state-of-the-art methods (a
dense Autoencoder (AE) and a two-stage clustering).

Index Terms—Anomaly Detection, Audio input representation,
Autoencoder, In-vehicle data.

I. INTRODUCTION

The recent revolution on smart mobility and autonomous
cars is producing new businesses and research opportunities,
namely in terms of self-driving shared taxicabs. Indeed, there
are recent studies addressing this topic, focusing on the car
ability to self-drive safely and the possible impacts of self-
driving vehicles on society [1]-[3]. A key change of a self-
driving shared taxicab is the absence of a designated company
driver. Under this context, it is highly relevant to monitor
what happens inside the vehicle cockpit, thus developing an
automatic computational system that is capable of processing
several in-vehicle sensors (e.g., sound, image, air particles)
in order to replace the drivers function to monitor and control
health, safety and comfort concerns. In particular, such system
should be able to detect abnormal events occurring inside the
vehicle (e.g., heart attack of a single occupant, fight between
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two passengers). Understanding these events enables Mobility
Service Providers (MSPs) to define possible actions that aim
to ensure the occupants’ safety and comfort (e.g., calling
for medical assistance). Within this context, in this paper
we consider audio data, aiming to perform an unsupervised
detection of abnormal events based on audio.

In this work, we are interested in a Sound Event Detection
(SED) [4] form that involves identification of anomalies from
normal audio signals, which is known as Acoustic Anomaly
Detection (AAD) [8]. In particular, we focus on an unsuper-
vised AAD, since labeled data is costly, requiring a manual
effort that is time consuming and prone to human errors [7].
Over the last years, several studies addressed unsupervised
AAD by means of different learning algorithms. Examples
include the One-Class SVM (OCSVM) [9], [10] and Isolation
Forest (IF) [11], [12] algorithms. A two-step clustering algo-
rithm, named IRESE, was also recently proposed for AAD
[7]. This paper focuses more on Autoencoders (AE), a deep
learning neural architecture that became a popular for AAD.
When compared with OCSVM, IF and IRESE, the AE training
is computationally faster, thus it can handle larger amounts of
training data.

An AE is composed by an encoder, a latent space and
a decoder. The training algorithm attempts to generate out-
put values that are identical to its inputs. When applied to
anomaly detection, only normal event data is used during the
AE training phase. By learning to reconstruct only normal
events, when it tries to reconstruct abnormal unseen data, AEs
produces higher reconstructing errors. By assuming a recon-
struction error threshold, such AE outputs can be interpreted
as anomalous. AE has been widely used in unsupervised AAD
tasks [[13]], [14]. Recently, this standard Deep Learning model
was used the baseline for the popular Detection and Classi-
fication of Acoustic Scenes and Events (DCASE) challenge
task 2 [[15]]. Different AE architectures have been proposed



for unsupervised AAD, such as Convolutional AE [S§]]. There
are also studies that apply AEs for AAD feature extraction,
by using its latent space output, such as proposed in [16] for
OCSVM and [12] for IF.

Even though several studies have targeted the unsupervised
AAD topic, most of them were applied to industrial processes
[81, [14]f], [[15]. There are few studies that addressed SED and
AAD within in-vehicle environments by using a supervised
learning approach, such as: to classify noise [17]-[19]], to
estimate vehicle speed and gear position [20] and to detect
shouts and screams in public transports [21].

Within our knowledge, there are no research studies and
public datasets related with unsupervised in-vehicle AAD. To
handle this task, in this work we propose two systems: a syn-
thetic anomalous event simulator and a real-time unsupervised
audio anomaly detection system. The former system uses real-
world audio data, recorded inside a car cockpit while driving
and that is mixed it with different normal and anomalous
events (e.g., breaking a window, someone arguing, people
talking and texting), aiming to achieve a realistic labeled audio
dataset. The latter uses the synthetic mixture sound data to
train machine learning algorithms to detect unusual events
on data without using any labels. In particular, we propose
a novel Long Short-Term Memory Autoencoder (LSTM-AE)
neural network architecture, which is compared with a deep
dense AE and the IRESE method. The learning methods are
analyzed in terms of two main feature extraction methods:
a combination of three audio features [7] and usage of mel
frequency energy coefficients [[15].

The paper is organized as follows. Section |lI| describes the
sound anomaly data simulator system and generated datasets,
the extracted audio features, the unsupervised learning AAD
methods and the evaluation procedure. Computational exper-
iments and respective results are discussed in Section [}
Finally, Section [[V|highlights the main conclusions and future
work directions.

II. MATERIALS AND METHODS
A. In-vehicle Sound Data

This research was developed within a larger R&D project
focused on general in-vehicle intelligence and that involves
the Bosch Car Multimedia S.A. (BCM) company. This paper
presents the unsupervised AAD component of such project.

With the purpose of creating rich sound anomaly datasets,
we developed a computational system written in the Python
language (making use of its numpy, soundfile and
librosa modules) that performs an audio generation task
that simulates a realistic set of events fo an in-vehicle envi-
ronment. A set of features of the computational system were
inspired on the TUT system that was created for the DCASE
2016 competition [22]. Nevertheless, our system includes
unique features related with the in-vehicle AAD task. The
developed system works as a synthesizer, using background
recordings and acoustic scenes relative to a set of predefined
anomalous behaviors (rare events). This process comprises
several phases, present in Figure [I} namely:

o Inputs: the two audio sets to be mixed (in-vehicle
background and event sounds) and a third auxiliary file
with the mixture parameters (e.g., sample rate).

« Aucxiliary Files: automatically generated when the inputs
are given and containing information related the sound
files (e.g., file paths and type of event).

« Mixture Recipe: the recipe includes several parameters
that control the type of mixture performed, such as the
time stamp when the rare event will be inserted inside
the background sound.

o Output: the final generated audio mixtures. During this
process, diverse operations are computed if needed (e.g.,
resampling, handing the clipping effect). In addition, the
tool creates metadata files related with event labels.

In order to generate the sound datasets, it was required
to collect audio files related with in-vehicle background and
rare-event sounds. The background audios were recorded by
elements from the BCM company and are related with real
audio recordings of several car driving trips. Due to privacy
and commercial issues, these collected recordings are not
made publicly available. The collected background audio
includes typical in-vehicle driving events, such as: people
eating, putting their seat belts, turn signals, vibrations, radio
and parking sensors. We defined a total of 194 audio clips
related with the “Background” normal R&D project use case.
Each clip has a duration of 60 seconds and it was randomly
sampled from the whole raw car driving audio data. The
background clips were manually labeled, allowing to identify
two subclasses: radio on - 160 clips; and radio off - 34 clips.

Regarding the rare event sounds, audio clips with a few
seconds (thus shorter than the background clips), were col-
lected from two public sources: Freesoun search engine and
Librivox?l The collected sound events are related with the
other 7 use cases from the R&D project: anomaly events -
people arguing, breaking a window, coughing; and normal
event - reading (e.g., a book), singing, talking, using a
smartphone (e.g., texting). Table [[] summarizes the retrieved
audio events: the type of Use case, if it is an anomaly (column
Anom.) and the total number of audio clips (column Clips).

Three datasets were created for the unsupervised AAD
experiments. The simulation tool parameters are shown in
Table[Tl] The sound mixture tool works by randomly selecting:
a background clip (with 60 s), a non background event clip
(e.g., arguing) with a much shorter duration and a ¢; temporal
insertion point (¢; € [0.0,60.0[), which defines the starting
time (e.g., {; = 15.45 s) where the non background clip is
inserted and merged into the background.

The first parameter (seed) defines the random initial seed.
The second parameter event_presence_prob sets the
probability that a particular non background event will be
selected for the mixture. The default value of 1 means that
all 7 non background events are included. The third parameter
(mixtures_per_class) sets the amount of clips randomly

Uhttps://freesound.org/
Zhttps://librivox.org/
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Fig. 1: Worflow of the developed audio simulation tool.

TABLE I: Audio Data Description.

Use case Anom. Clips Split Class  Mix3 Mix6 Mix6NR
® 6 ©

train normal 3443 3469 3521

. anomaly 757 731 679
Arguing Vo ogg TOrmal 1460 1434 1470
anomaly 340 366 330

train normal 3572 3577 3787

Breaking /64 anomaly 628 623 413
Window tost normal 1546 1541 1530
anomaly 254 259 270

train normal 3774 3807 3888

anomaly 426 393 312

Cough W normal 1671 1638 1670
anomaly 129 162 130

train normal 4200 4200 4200

Background 194 st normal 1800 1800 1800
Readin 67 train normal 4200 4200 4200
J test normal 1800 1800 1800
Sinein 47 train normal 4200 4200 4200
ging test normal 1800 1800 1800
Talkin 7 train normal 4200 4200 4200
g test normal 1800 1800 1800
Using 13 train normal 4200 4200 4200
Smartphone test normal 1800 1800 1800

selected for each event type. The value of 100 means that
the final mixture contains a total of 8 (events) x100 = 800
minutes of sound (with 100 minutes of background clips, 100
minutes of background merged with one arguing event, and so
on). Each event clip is randomly selected. When the collected
number of events is larger than mixtures_per_class
(e.g., background case), then an undersampling procedure
is applied. Similarly, when there are less event clips (e.g.,
Arguing), then an oversampling is executed. The fourth param-

eter ebrs=(s;, $m, sp) is related with the background ratio
sampling procedure. This procedure assumes that an inserted
sound clip can have (with the same probability) a lower (s;),
identical (s,,,=0) or higher signal (s;,) when compared with the
background sound strength, with s; < 0 and s;, > 0 denoting
the sound signal strength changes in dB. The goal is to mimic
different locations for the non background events, simulating
as if they were generated at a normal distance (s,,), further
away (s;) or closer (sp) to the sound microphone. As for the
fifth parameter (common_sr), it defines the final sample rate
of the generated sound mixture (in Hz).

TABLE II: Summary of the generated sound ADD dataset
parameters.

Dataset Name

Mix3 Mix6  Mix6NR
seed 50 50 50
) event_presence_prob 1 1 1
Mixture Pa- mixturfejsfperfclzss 100 100 100
rameters ) o {3,0,3} {-6,0,6} {-6,0, 6}
common_sr (Hz) 44100 44100 44100
Background radio on v v -
audios radio off v v v

The first two datasets include both types of background
sounds (with radio on and off, sampled from all 194 clips) and
are distinguished in terms of the ebrs value. Mix3 assumes
a smaller in-vehicle size (corresponding to the lower absolute
s; and s, values), while Mix6 mimics a larger vehicle interior
size (e.g., van). The third dataset (Mix6NR) only uses radio
off background clips (sampled from the 34 audio clips), thus
it should be easier for AAD when compared with Mix6.
The three datasets include total of 800 minutes (48,000 s),
which were split into training (with 70% of the clips) and
test sets (with 30% of the clips) by using a stratified random
sampling. Table [I] presents the length (in s) of train and test
sets when associated with the event type for the three datasets.
Since train and test split was based on the one minute sound



segments, and not on event duration, there is a slight difference
on duration values for each mixture. In the table, the length
associated with anomaly events (e.g., arguing) corresponds to
the background segments that include such anomaly events,
thus the sound duration is subdivided in terms of the “normal”
and “anomaly” classes, where “normal” denotes the normal
time of the changed background. It should be noted that
all three datasets are unbalanced, including a larger duration
of normal sounds, which is similar to what would occur in
real environment. The unbalanced distribution is due to two
reasons: there are more normal events than anomalous ones;
and the background segments with an anomaly have still a
larger length of “normal” background sound.

The merge of sound files is based on the sum of audio
signals. The clipping phenomenon occurs when the resulting
audio signal is amplified beyond its output capabilities. To
handle this issue, the mixture tool uses an anti-clipping factor
of 0.2 that is multiplied over the resulting audio [22]]. Then,
the 1ibrosa Python module is used to normalize the audio
[23]], using the maximum absolute value as norm, in order
to maintain it audible. After generating the sound mixtures,
all audio files were manually listened to ensure that realistic
scenarios were created. The final generated audio file includes
metadata with the file name and path, duration, starting and
ending event time stamps and its label (normal or anomaly).

B. Feature Extraction

We explore two main methods to perform the audio feature
extraction based on the [7] and [15] state-of-the-art AAD
frameworks. Both frameworks assume that the model handles
only one second of input data when attempting to detect an
anomaly. The two feature extraction methods were imple-
mented in Python by using its 1ibrosa module [23].

The first method, denoted here as MGL, is based on IRESE
framework [7] and it extracts three types of features from an
audio sample: Mel Frequency Cepstral Coefficients (MFCCs),
Gammatone Frequency Cepstral Coefficients (GFCCs) and
Linear Predictive Coding coefficients (LPCs). When applied
to one second of 44100 Hz data, the method initially computes
a total of 40 MFCC coefficients for 40 audio sample frames,
40 GFCC values for 274 audio samples and a total of 10 LPC
elements. Then, the distinct audio sample values (for MFCC
and GFCC) are aggregated by using an averaging function.
Thus, the final input vector contains a total of 90 numeric
features, as shown in Figure E}

The second method is based on the Mel Frequency Energy
Coefficient (MFEC), which is a log mel-band energy. It is
important to note that since each AAD algorithm has its own
particularities, we have defined different MFEC extraction
procedures (as shown in Figure [3). For the dense AE, the
feature extraction setup is identical to the DCASE challenge
task 2 [[15]. Firstly, the MFEC values are computed by using
a Fast Fourier Transform (FFT) with a window size of 1024.
For the one second 44100 Hz data, this produces several
23 ms frames with a 50% overlap, where 128 MFECs are
extracted for each frame. Then, a context window of size 5
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Fig. 2: The MGL feature extraction method.
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is used (with 2 previous frames, the current frame and the
next 2 frames), resulting in an input row vector with a 5x 128
= 640 values. Overall, one second produces a total of 86
input row vectors (with 86 x640= 55,040 numeric values). The
same approach was tested with the clustering IRESE method,
however due to the high dimensionality of the input data,
the computational effort was too high to be processed in a
reasonable amount of time. To solve this issue, we adopted the
averaging aggregation used by the MGL method, computing
the average row value (total of 640 inputs). Regarding the
LSTM-AE, the LSTM component requires the temporalization
of the data. Therefore, we adapted the feature extraction after
the computation of the 128 MFECs for each frame. Using
preliminary AAD experiments with the DCASE challenge task
2 data (related with detecting mechanical failures in working
machines), a time step with 8 consecutive frames (each with
128 MFECs) was defined. Then, a sliding time window is
applied to the one second sound segment, with the fixed length
size of 8x0.023 = 0.184s and an iteration jump of 1 frame
(23 ms). This results in a 3-dimensional array with N = 43
(sliding window sample iterations) x 8 (time steps) x 128
(MFECs), corresponding to a total of 44,032 input features.
It should be noted that for the dense and LSTM AEs, a large
input space is defined (with 55,040 and 44,032 inputs), which
is similar to the raw audio data (44,100 values per second).
However, in preliminary experiments (using DCASE task 2
data) we have obtained worst AAD results when adopting raw
input audio data instead of the MFEC method to feed the AEs.

C. Autoencoders

To build an AE-based AAD, the AE is trained only with
normal event data. Part of the training data (10% of the data,
randomly sampled and not used to fit the AE models) is
used as validation set. The reconstruction error computed on
this validation set is used to tune the hyperparameters and
perform an early stopping training. Then, in the inference
phase, new data is fed to the AE for reconstruction. The
reconstruction error (rs for sound sample s) is used as the
classifier decision score, with a higher value corresponding
to a higher anomaly probability. Thus, a sound sample s is
considered to be anomalous when the AE reconstruct error
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exceeds a predefined threshold value (rs > Th). The overall
representation of such system is shown in Figure []
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Fig. 4: Schematic of the Autoencoder anomaly detection
system.

The computation of the Receiver Operating Characteristic
(ROC) curves requires only target test labels and decision
scores. However, in a real in-vehicle intelligence deployment
scenario, a fixed T'h value would be needed to interpret the
reconstruction values and assign class labels. In such scenario,
a validation set with both class labels (normal and anomaly
events) can be used to select the T'h value that provides the
best trade-off between specificity and sensitivity.

In the scope of this work, we explore two AEs, dense
and LSTM based, to perform AAD. The training data for
the AEs correspond to the audio recordings with only normal
events, whereas the test data contains audio with all event types
(normal and anomalies). The AEs were implemented by using
the keras Python module [24], assuming the Adam training
algorithm, with a maximum of 100 epochs, early stopping and
Mean Squared Error (MSE) loss function. The MSE measure
is also used as the reconstruction error metric.

The dense AE assumes a deep fully-connected AE ar-
chitecture that includes a stack of four layers with the
same number of hidden nodes (Lj) in both its encoder

and decoder components, training with batch normalization
and ReLU activation function (top of Figure E[) [15]. Let
(I,Lp,...;Lp, Ly, Ly, ..., Ly, I) denote the AE neural struc-
ture, where I represents the number of inputs and L, the
bottleneck layer size. The original DCASE baseline model
used L, = 128 and L, = 8 hidden nodes (defining the
latent space). However, since the model was proposed for
a different sampling rate (16,000 Hz), we performed some
preliminary experiments with our in-vehicle 44,000 Hz data,
in which we selected the lowest reconstruction validation
error when exploring distinct hidden node values (Lj €
{64,128,512,1024}). The best results were achieved for
Ly, = 512 and thus the tested dense AE uses the structure
(I1,512,512,512,512,8,512, 512,512,512, I).

Since LSTM tend to provide good results when modeling
sequential data, we propose an LSTM-AE architecture for
AAD (bottom of Figure |§[) In this AE, the encoder and
decoder components are composed of LSTM layers. Similarly
to the simpler AE, each component is composed of a stack of
four LSTM layers with L; units. There is also a bottleneck
dense layer with L; hidden nodes, where L, < Lj. This
layer is preceded by a LSTM layer with the same size (Ly),
which acts as a bridge, preparing the data for the dense
layer. Since the decoder network is designed to unfold the
encoding component, the decoder layers were stacked in the
reverse order of the encoder ones. Given that the proposed
LSTM-AE is new (and not used in the DCASE competition),
preliminary experiments were also conducted to tune both
Ly and L; values by using a grid search with power of 2
values (L, € {64,128,512} and L, € {4,8,16,32}). The
best validation error results were achieved with L; = 128 and
L, = 16 hidden units. Thus, the tested LSTM-AE assumes
the structure (7,128,128, ...,16,16,16,128,...,128,1).
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Fig. 5: Dense-AE (top) and LSTM-AE (bottom) architectures.
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D. Two-stage Clustering

For comparison purposes, we selected the recent IRESE
two-stage clustering approach [7]. The IRESE training data



contains both normal and anomaly events. Considering that
anomaly records should be different from normal ones, the
method partitions the data into two main clusters. In the
first stage, IRESE uses an online BIRCH micro-clustering
algorithm to extract relevant intermediate features from the
input data, forming a set of micro-clusters. In a second stage,
an offline Agglomerative macro-clustering (with Ward linkage
criterion) is executed, aggregating the micro-clusters into the
two main clusters. Since data labels are not used and assuming
that normal events are far more frequent than anomalies, events
belonging to the cluster with more records are considered to be
normal and the remaining ones anomalies. The overall IRESE
procedure is presented in Figure [6]

Unsupervised Anomaly Detection

Offline
Learning

Online
Learning

Feature Micro Micro
Extraction Clustering clusters

‘Anomaly’
instances)

Normal
instances

Macro
Clustering

Fig. 6: The IRESE AAD approach.

The original IRESE approach only outputs class labels,
which are assigned by selecting the macro-cluster that contains
the micro-cluster with the shortest Euclidean distance to a
given sample s. In order to compute the ROC curve [25],
a decision score is required. In this work, we define such
anomaly score (a,) as: a5 = K +min(dp s) —min(d; ), where
do,; and d ¢ denote two sets with all Euclidean distances from
sample s to the normal (0) and anomaly (1) micro-clusters
(obtained using training data). The rational is to increase the
anomaly score if the distance to the normal macro-cluster
increases or if the distance to the anomaly macro-cluster
decreases. To avoid negative as scores, the constant K is set as
the absolute value of the maximum as score when K = 0 for
all tested instances. Similarly to the AEs, a threshold is used
to assign the class labels, where an anomaly is considered true
if as > Th. If needed, the T'h explicit value can be set by
using the same procedure adopted for the AEs (Section [[I-C).
This two-stage clustering learning method was implemented
using the scikit-learn Python module [26].

E. Evaluation

To evaluate the methods we adopted the ROC curve and two
popular AAD metrics [15]: the Area Under the ROC Curve
(AUC) and the partial-AUC (pAUC). The ROC curve shows
the False Positive Rate (FPR) or one minus the specificity
(z-axis) versus the True Positive Rate (TPR) or sensitivity
(y-axis), for all possible threshold values [25]. The overall
discriminatory performance is given by the area under the
curve (AUC = fol ROCdK). The AUC metric has two
advantages [27]: firstly, quality values are not affected if
the classification data is unbalanced (which is our case);
secondly, the values have a easy human interpretation (50%
performance of a random classifier; 60% - reasonable; 70% -

good; 80% - very good; 90% - excellent; and 100% - perfect).
As for pAUC, it computes the AUC for a particular range of
interest. For the AAD task, we assume the same FPR [0, 0.1]
range used in [15]], which favors a more specific model (with
less false alarms).

As explained in Section the three audio mixture
datasets include a total of 800 audio segments, each with one
minute of an in-vehicle driving background sound, which can
contain a random merge of one normal (e.g., someone talking)
or abnormal (e.g., cough) event. These segments were split into
training (70%, 560 segments) and test (30%, 240 segments)
audio files. Given that the AAD models work on a one second
basis (Section [lI-B), each sound second corresponds to an
instance, thus all classification metrics were computed for each
second/instance, with the training sets including a maximum
of 33,600 instances (only normal instances are used to fit the
AEs, thus the training set size is smaller for such models) and
the test sets a total of 14,000 examples (with both normal and
anomaly events). All results reported in the Section were
computed using the test set values.

III. RESULTS

The experiments were executed in an Intel Xeon 1.70GHz
server. For each AAD method, the training time (in s) and
average prediction time to handle one second of sound (in
ms) were recorded. The results are presented in Table

TABLE III: Comparison of test set results for different audio
mixtures (best results per mixture in bold).

Audio Sound AAD Train Predict

Mixture Features Model Time (s) Time (ms) AUC pAUC

AE 45 1.0 70.75 57.16

MGL LSTM-AE 20 1.5 51.05 5241

. IRESE 8733 4.0 4559 47.71
Mix3

AE 4861 0.7 73.08 56.87

MFEC LSTM-AE 8243 25.7 77.27 60.29

IRESE 12365 4.1 46.12 47.71

AE 53 1.1 68.26 53.52

MGL LSTM-AE 19 0.3 52.61 51.71

. IRESE 8194 4.0 45.16 4747
Mix6

AE 3564 0.8 72.21 56.96

MFEC LSTM-AE 8015 25.7 78.27 60.81

IRESE 12292 4.1 46.35 47.50

AE 46 0.1 75.01 58.27

MGL LSTM-AE 25 0.2 58.87 53.76

Mix6NR IRESE 11641 4.0 41.24 48.11

AE 1010 6.0 77.56 57.38

MFEC LSTM-AE 8293 31.1 78.54 58.57

IRESE 23129 4.0 40.36 48.42

The IRESE baseline provided the worst computational effort
and classification results. In particular, a poor discrimination
(lower than a random classifier) was achieved. To understand
these results, we measured the original IRESE class label
assigned method over the test data and found that the method
tends to produce very low TPR values (e.g., it is 8% for Mix3).
Thus, the poor AUC results are justified by the large number



of anomaly events are included in the normal macro-cluster,
which prejudices the quality of the anomaly decision score
computation.

When analyzing the AEs, the MFEC feature extraction
requires a larger training computational effort (since it uses
much more inputs) but it consistently provides the better
AUC values when compared with MGL. Overall, the MFEC
LSTM-AE approach provides the best results (for both AUC
and pAUC metrics) for the three mixtures. In particular,
interesting AUC values (close to 80%) were achieved: 77%
for Mix3, 78% for Mix6 and 79% for Mix6NR. Indeed, the
best LSTM-AE approach outperforms the simpler AE by 4
(Mix3), 6 (Mix6) and 1 (Mix6NR) percentage points. It should
be noted that the largest training times (8,293 s for MFEC
LTSM-AE) are still shorter than the training sound file (with
33,600 s), thus the training models can be achieved in real-
time. Also importantly, the average response time is very fast,
related with a few ms and thus applicable in a real in-vehicle
setting.

To further inspect the quality of the selected model (MFEC
LSTM-AE), we have filtered the test sets of the three mixtures.
Each filtered subset includes only the one minute audio
background segments that have one of the anomaly use cases
from Table |If Arguing, Breaking Window and Cough. Thus,
the three test subsets contain a total of 30 (segments) x60
(s)= 1,800 instances. The goal is to access the LSTM-AE
model quality to correctly identify an anomaly (the positive
class) when it appears in a vehicle trip. Table shows the
respective classification performance metrics (AUC, pAUC
and also TPR) that were computed using these filtered test
sets. For all mixtures, the best classification performance was
obtained for the Arguing event, followed by the Cough and
then Breaking Window. In general, high quality metric values
were obtained, with the AUC values ranging from good (71%
- Breaking Window and Mix3) to excellent (94% - Arguing
and Mix6NR). For demonstration purposes and to compute
the TPR value, we assumed a fixed decision threshold of
Th = 0.001, which defines a strong sensitivity point in the
validation set ROC curve. Figure [/| shows the ROC curves
for the Mix6NR filtered subset (for both AE methods and
a random baseline classifier), with the LSTM-AE method
slightly outperforming the dense AE result.

TABLE IV: LSTM-AE subset test results for each anomaly
use case (best results per mixture in bold).

Mixture  Use Case AUC pAUC TPR
Arguing 92.67 83.28  92.06
Mix3 Breaking Window  72.58 57.59 49,21
Cough 84.84 71.12 80,62
Arguing 89.89 7759  86.61
Mix6 Breaking Window  71.15 53.01 54.44
Cough 85.18 71.85 69.14
Arguing 94.19 87.58 91.82
Mix6NR  Breaking Window  77.61 70.35 63.33
Cough 88.07 78.59  83.85
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Fig. 7: ROC curves for AEs and random baseline classifier.

IV. CONCLUSIONS

The advent of self-driving cars is expected to launch new
business opportunities, such as autonomous shared taxicabs.
In the absence of a company car driver, it is highly relevant
to monitor the in-vehicle environment for safety, health and
comfort issues. Set within a larger R&D project, this paper
approaches an unsupervised in-vehicle Acoustic Anomaly De-
tection (AAD) system. Since public datasets are not available,
we first designed a novel synthetic audio anomalous event
simulator for in-vehicle AAD, which was used to generate
three audio mixtures that include background trip sounds
merged with five normal (e.g., people talking) and three
anomaly events (e.g., cough). Then, we explored two sound
feature extraction methods and a proposed Long Short-Term
Memory Autoencoder (LSTM-AE) method to perform AAD.
The method was compared to two state-of-the-art ADD meth-
ods: a dense Autoencoder (AE) and a two-stage clustering
method (IRESE).

Overall, competitive results were achieved by the LSTM-
AE architecture, which required an affordable computational
effort and delivered interesting class discrimination results. In
particular, a very good/good discrimination was obtained for
the “Breaking Window” anomaly, while an excellent classifi-
cation quality was achieved when detecting the other anomaly
events (“Arguing” and “Cough”). In future work, we plan to
extend the anomalous event simulator capabilities, for instance
by considering Generative Adversarial Networks (GANs) to
synthetically generate more sound events. Moreover, we intend
to collect more real data by using human actors to mimic
the abnormal events (e.g., fake realistically a cough). Another
research direction is the adaptation of the proposed method to
work with other types of data, such as provided by particle
sensors (e.g., measuring air quality levels).
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