DISTINCT ANTIMICROBIAL ANALYSIS TO EVALUATE MULTI-COMPONENT WOUND DRESSING PERFORMANCE

Jorge Padrão, Inês Pinheiro, Carla Silva, Alice Ribeiro, Verónica Bouça, Liliana Melro, Rui D. V. Fernandes, Ana I. Ribeiro, Helena P. Felgueiras, Andrea Zille
Wounds

Wounds may caused by:

- Trauma
- Cuts
- Surgery
- Burns
- Incisions
- Abrasions
- Lacerations
- Punctures
- Chemicals
Wound healing

Song X, Melro L, Padrão J, Ribeiro AI, He Z., Yu L, Zille A, Nonwoven materials and technologies for medical applications, *in press*
Wound dressing

Ideal wound dressing:
- Sterile
- Provide adequate gas exchange
- Maintain ideal level of moister
- Biocompatible
- Microorganism barrier
- Eliminate excess of exudate
- Enhance wound healing process
- Prevent surface necrosis
- Odour control
- Elastic
- Easily removed
Wound dressing composite

Lint

Animal grease

Honey

https://hornsby-beekeeping.com/honey/

https://www.dreamstime.com/photos-images/tallow-grease.html

https://hornsby-beekeeping.com/honey/
Antimicrobial agents

Dose dependent activity

Antimicrobial agents concentration

Microbial viability & resistance
Nanoparticles

Antimicrobial agents concentration

Microbial viability & resistance

200 nm
Nanoparticles size

- Particles may cross blood-brain barrier
- May cross into cells
- Fish eggs and larvae
- Unicellular marine algae
- Human macrophage
- Alveoli
- Copepod (type of zooplankton)

Nature
Cells uptake

Cells uptake

- 200 nm
- > 200 - 500 nm
- 1 – 5 µm
- < 25 nm

Size is not everything

Factors influencing uptake:
- Receptors
- Charge
- Hydrogen bonding potential
- Lipophilicity
- ...
Choose freedom?

a) Wound dressing

Dermis

Epidermis

Nanoparticles

b) Wound dressing

Dermis

Epidermis

Nanoparticles
Multi-component wound dressing

Alginate

Silver nanoparticles

Mordenite

https://www.chemistryworld.com/podcasts/sodium-alginate/7756.article
Multi-component wound dressing

Polyester → Dielectric barrier discharge plasma → Previous suspension

Padder
Microorganisms

Antimicrobial methods

“Contact killing”

AATCC 100-TM100

Antimicrobial methods

“Shake flask”

ASTM-E2149-01

Interface & vicinity activity
Staphylococcus aureus

a)

![Graph showing log reduction (CFU mL⁻¹) for different treatments: PES+Alginate+AgNPs, PES+Alginate+AgNPs+MOR, PES+Alginate+AgNPs+MOR. The graph compares contact killing and shake flask methods.]
Escherichia coli

b)

![Graph showing log reduction of CFU mL⁻¹ for different conditions: PES + Alginate + AgNPs, PES + Alginate + AgNPs + MOR, contact killing, and shake flask. The graph indicates a significant decrease in log reduction for contact killing compared to shake flask conditions.](image)
MS2 bacteriophage

![Graph showing log reduction of MS2 bacteriophage](chart)

- **Contact killing**
- **Shake flask**
Concluding remarks

- Antimicrobial assays may be valid to assess immobilization
- Mild antibacterial activity, nevertheless potentiated by Mordenite
- No antiviral activity was detected (problem already solved)
Acknowledgements

This work was funded by FEDER funds through the Operational Competitiveness Program—COMPETE and by National Funds through Fundação para a Ciência e Tecnologia (FCT)—under the projects PTDC/CTM-TEX/28295/2017 and UID/CTM/00264/2019. In addition, Liliana Melro, Rui D.V. Fernandes and Ana I. Ribeiro acknowledge FCT, MCTES, FSE and UE PhD grants 2020.04919.BD, SFRH/BD/145269/2019 and SFRH/BD/137668/2018, respectively.
Special issue

Advances of Antimicrobial in Bioengineering

Guest Editors
Dr. Jorge Padrão, Dr. Andrea Zille, Dr. Helena P. Felgueiras, Dr. Joana C. Antunes

Deadline
15 October 2021

mdpi.com/si/42874