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J O I N T M O D E L L I N G O F L O N G I T U D I N A L D ATA A N D T I M E U N T I L P R E M AT U R E

T E R M I N AT I O N I N P S Y CH O T H E R A P Y

Abstract: Joint modelling enables the simultaneous study of longitudinal and survival processes, exploit-

ing the association between them. A particular case, adopted in the present work, is the shared random

effects model, using a linear mixed effects model to represent the longitudinal process linked to a Cox

regression model to represent the survival process. The primary purpose of this work is to briefly review

the shared random-effect model methodology, along with independent survival and longitudinal models,

and detail its implementation and evaluation, through a real data set. The focus is on the hazard of pre-

mature termination in psychotherapy, investigating the effect of two known process variables: therapeutic

alliance quality and treatment outcome. Additionally, we aim tho infer which risk factors affect both the

hazard of premature termination and these process variables. A data set of 97 clients, along with 12

variables, was collected from a university clinic, over a period of three years. These clients were assigned

to the Unified Protocol for transdiagnostic treatment of emotional disorders. The benefits of joint modelling

were highlighted through the comparison of joint models and separate survival and longitudinal methods.

Results showed that, the therapeutic alliance quality and the treatment outcome mean progression were

significantly associated with the hazard of premature termination for these clients. We conclude that inde-

pendent analysis bring up bias parameter estimates, and an assumption of association between the two

processes in a joint model of premature termination data is necessary.

Keywords: Joint modelling, premature termination in psychotherapy, therapeutic alliance, treatment

outcome
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MO D E L A Ç Ã O C O N J U N TA D E D A D O S L O N G I T U D I N A I S E T E M P O AT É A O

A B A N D O N O P R E M AT U R O D A P S I C O T E R A P I A

Resumo: A modelação conjunta permite o estudo simultâneo de processos longitudinais e de sobre-

vivência, dando conta da possível associação entre estes. Uma abordagem em particular, adotada no

presente trabalho, é a modelação conjunta com efeitos aleatórios partilhados, que utiliza o modelo linear

misto para representar o processo longintudinal vinculado ao modelo de regressão de Cox para repre-

sentar o processo de sobrevivência. O principal objetivo do presente trabalho é apresentar uma breve

revisão da literatura acerca desta metodologia, assim como dos modelos independentes longitudinal e

de sobrevivência, e detalhar a sua implementação e avaliação, através de uma aplicação a um conjunto

de dados reais. Focamo-nos no risco de abandono prematuro da psicoterapia, investigando o efeito de

duas variáveis processuais bem conhecidas: a qualidade da aliança e os resultados terapêuticos. Adi-

cionalmente, pretendemos aferir os preditores que afetam o risco de abandono prematuro e cada uma

das variáveis processuais. Consideraram-se os dados de 97 clientes, para 12 variáveis, recolhidos numa

clínica universitária, durante um período de três anos. Estes clientes participaram num ensaio clínico com

a aplicação do Protocolo Unificado para o tratamento transdiagnóstico de perturbações emocionais. As

vantagens da modelação conjunta foram comprovadas pela comparação dos modelos conjuntos aos mod-

elos individuais. Os resultados mostraram existir um efeito significativo da evolução, quer da qualidade

da aliança, quer dos resultados terapêuticos, no risco de abandono prematuro da psicoterapia. Assim se

concluiu que, análises independentes produzem estimativas dos parâmetros enviesadas, e que por isso

é necessário considerar a associação entre os dois processos através da modelação conjunta de dados

relativos ao abandono prematuro da psicoterapia.

Palavras-Chave: Abandono prematuro da psicoterapia, aliança terapêutica, modelação conjunta, resul-

tados terapêuticos
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1

I N T R O D U C T I O N

Premature Termination (PT; also called dropout), or client’s unilateral termination of services prior to

completion of a recommended course of treatment, is a widespread problem in outpatient psychotherapy

that unables the delivery of effective interventions. The most recent meta-analytic review, developed by

Swift & Greenberg (2012), found that, across 669 studies and almost 84 000 clients, the average weighted

dropout rate was approximately 20%, with higher rates among clients who were younger, had personality

or eating disorder diagnosis, and were seen by trainee clinicians.

Treatment dropout has been linked to various damaging consequences for clients, including poorer treat-

ment outcomes (Cahill et al., 2003; Pekarik, 1992), lower likelihood of recovery (E. Anderson & Lambert,

2001), higher dissatisfaction with the treatment received (Björk et al., 2009), and more likely to start and

stop treatment, namely psychiatric support, on multiple occasions (Carpenter et al., 1979). Additionally

to negative impact on clients, premature termination also influences service providers and mental health

agencies by way of under-usage of their time and loss of revenue, due, for instance, to the missed ap-

pointments and lengthier waiting lists (Reis & Brown, 1999). Society as a whole is burdened by premature

termination since others in need see their access to treatment denied, and dropout’s associates, like fam-

ily members and friends, are exposed to the client’s continued impairment, as well as to the demand to

persist in providing physical, emotional and even financial support (Cahill et al., 2003).

Clinicians and researchers long have sought to estimate whether and when PT is likely to occur, and

what factors predict its occurrence, in order to prevent this type of termination and promote treatment

effectiveness. And for almost as long, inconclusive and mixed findings in this area have been emerged,

in part due to the recurrent application of subotimal, or even inappropriate, analytic techniques. In fact,

psychotherapy termination data poses statistical model challenges to researchers, given their particular

features, that, when overlooked, can cause considerable bias of results (K. Anderson, 2015; Corning &

Malofeeva, 2004).
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PT is an event in time which arises during a longitudinal process occurring over a series of sessions,

and, as such, these data must be analysed longitudinally. Another feature of these data is that premature

terminators do not seem to be an homogeneous group, since clients who terminate prematurely early in

the treatment process appear to be different from those who dropout later, not only in observed outcomes

at previous time points, but also in covariates that contribute to their termination status (K. Anderson,

2015).

Mechanisms behind dropout or PT (i.e., reasons for treatment discontinuation), poses another important

methodological challenge to researchers. Despite modern longitudinal methods, as linear mixed effects

models, do not require complete data at each measure point, they are based on Missing at Random

(MAR) assumption (Little, 1995; Little & Rubin, 2019), which assumes that the probability of a dropout

depends only on those variables observed in the model (e.g., the last observed value or covariates). How-

ever, in some cases, dropout may be non-ignorable, because it is likely to depend on unobserved or latent

variables (e.g., owing to deterioration or improvement, clients could believe the treatment is either not

useful or not need, and could decide to terminate participation). In these circumstances, besides MAR

does not hold, clients that provide data (i.e., survivors) may differ from those who stop doing so (i.e., pre-

mature terminators). When this is not considered, it may lead to an overestimation of the treatment effect,

since longitudinal profiles will probably reflect more an artefact caused by selective dropout, than genuine

change over time (Wolke et al., 2009). Therefore, it is important to investigate missing mechanisms us-

ing models that consider non-ignorable dropout, that is Missing Not at Random (MNAR) models, as

those proposed under joint modelling approach, based on a joint distribution of observations and dropout

indicators.

Predictors of PT in psychotherapy, by turn, in most previous studies, have been conceptualized as static

or constant over the data collection period (Corning &Malofeeva, 2004). Reviews have focused primarily on

clients characteristics, including both demographic (e.g., age and gender) and psychological variables (e.g.,

diagnosis and readiness to change), as also on therapists characteristics (e.g., experience level, age and

gender), treatment (e.g., theoretical orientation) and setting variables (e.g., type of clinic), in order to identify

the factors that influence premature termination (Swift & Greenberg, 2015). Moreover, measurements

usually are taken once, for each participant, and the variables are cast as static predictors, even they can

or do change (e.g., symptom level) (Corning & Malofeeva, 2004). Some researchers, however, argued that

a number of potentially meaningful predictors, which vary over the course of therapy, should be analysed

and incorporated into appropriate statistical models; namely variables that capture the relational nature of

the therapeutic process (e.g., therapeutic alliance and agreement on the presenting problems) (Samstag
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et al., 1998). In terms of clinical implications, by paying attention to both static and time-variant predictors,

clinicians may be able to reduce rates of premature termination, not only by making adaptations to the

client and setting characteristics where need (e.g., particularly efforts on retention with younger clients

and those with personality or eating disorder diagnosis), but also by applying specific strategies in therapy

course (e.g., addressing motivation and clients preferences, as also repairing alliance ruptures) (Samstag

et al., 1998).

Therapeutic alliance, defined as the agreement on the goals and tasks of therapy, in a context of a

positive effective bond between therapist and client, has been found as an important predictor of overall

outcome of therapy, as well as of PT (Bordin, 1979). For example, Samstag, Batchelder, Muran, Safran and

Winston (1998) verified that, when compared to a good outcome group and even a poor outcome completer

group, the dropout group rated the relationship as more problematic (i.e., the therapeutic alliance scores

were significantly worse). In the same line, Sharf, Primavera, and Diener (2010), in a meta-analysis, found

a significant relationship between the strength of the therapeutic alliance and PT; that is, weaker alliances

were associated with an increased likelihood of drooping out, across settings, theoretical orientations, and

perspectives (of both clients and therapists). According to the authors, the session-by-session monitoring

of specific alliance and interpersonal patterns is useful either to predict the overall evaluation of treatment

progress as also to inform therapists regarding specific intervention choices.

Based on the aforementioned considerations, in the present work, we adopted a longitudinal framework,

in order to properly address PT data. Recall that, in many longitudinal studies, usually different types of

outcomes are collected, such as repeated measurements of one or more response variables also called

longitudinal data (e.g., depression and anxiety severity at a set of time points), and event times, also called

survival data (e.g., time to recovery or time to dropout). Furthermore, we have implicit outcomes, like

missing data, which need to be proper handling, under penalty of lead to biased estimates. Repeated

measurement and survival data require different statistical methods, and are traditionally analyzed sepa-

rately, as we will explain in the section 3.1 and 3.2 (Diggle et al., 2008). However, when the longitudinal

outcome and the time-to-event (in our case dropout) mechanism are associated, separate analysis are not

suitable, and a joint modelling approach is required, as will be explained in section 3.3 (Asar et al., 2015).

In the present work, we compared results of different statistical models in the context of longitudinal

data, including separate analysis and joint modelling approach, where predictors of premature termination

in psychotherapy are investigated, using a real data set from a psychology university clinic in the north of

Portugal. Specifically, this work aims:
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1. to produce an exploratory study on PT in psychotherapy in a specific outpatient context, regarding

a particular period of time;

2. to explore separate statistical models for survival and longitudinal data;

3. to develop a statistical model on joint modelling of longitudinal variables progression and time to

dropout; and,

4. to compare results of different models in order to conclude on the importance of joint models.

This dissertation is organized as follows: in Chapter 2, we introduce an overview of the Unified Protocol

treatment program data, namely a description of variables, methodology and procedures employed, in

order to conduct the empirical study. A review of the literature on statistical methodology, namely survival

analysis (section 3.1) and longitudinal analysis (section 3.2), accounting for separate techniques to model

survival and repeated measures data, respectively, will be exposed in Chapter 3. Additionally, in section

3.3, we will focus on the joint modelling approach, exploiting the main methodologies applied in this field

along with a detailed description of the one employed in this particular study. Chapter 4 concerns the

presentation of the main results, from survival (section 4.2), longitudinal (section 4.3) and joint modelling

analysis (section 4.4). Finally, Chapter 5 provides a discussion of the main results and methodological

limitations along with suggestions for future works.
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2

P R E M AT U R E T E R M I N AT I O N I N P S Y CH O T H E R A P Y D ATA

To implement the empirical study, we used a real data set on Unified Protocol (UP) for transdiag-

nostic treatment of emotional disorders program collected at a psychology university clinic in the north of

Portugal, over a period of three years (from 2015 October 1 to 2018 September 30). This clinic is a public

association aimed at providing low-cost, high quality clinical services to members of community. Registry

data collection and analysis was submitted to ethical appreciation and approved by the university’s Ethics

Committee for Research in Social and Human Sciences.

2.1. PARTICIPANTS

2.1.1 Clients

During the study period, 255 referrals for individual therapy were received, but 51 (20%) of individuals

failed to attend first appointment. Of those 204 individuals that attended the first appointment, 130

(64%) continued to treatment and 74 (36%) terminated for a range of different reasons (e.g., failed to

complete assessment, just asked for evaluation, were referred to another treatment or service). At intake,

participants were invited to engage in a clinical trial to analyses the efficacy of Unified Protocol (Barlow

et al., 2011) for transdiagnostic treatment of emotional disorders. Of those 130 individuals that initiated

therapy, 33 (25%) were found to be unsuitable for UP or refused to participate (these clients were referred

or choose a more preferable treatment). This resulted in 97 subjects for analysis. Figure 1 summarizes

client enrollment and flow from 2015 October 1 to 2018 September 30.

Thus, of the 97 subjects who were assigned to UP treatment, nearly half (n = 51) completed the full

course of treatment, as schedule by the treatment manual, or terminated at an earlier stage that was

mutually agreed upon between the therapist and client (in cases where the client had reached the thera-

peutic goals). Of remaining 46 clients, 31 dropped out (i.e., terminated unilaterally without the therapist’s
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Figure 1: Flowchart showing attrition rates from October 2015 to September 2018

approval or knowledge), 7 were referred to more adequate treatment given Axis-II comorbility detected

during treatment, 4 terminated prematurely in consequence of an arbitrary circumstance (e.g., the client

graduated and moved to another city), and 4 cases were still ongoing at the data collection end point.

To be eligible for UP, clients had to receive a principal (most interfering and severe) diagnosis of

an emotional disorder (Bullis et al., 2019), namely an anxiety disorder, depressive disorder, obsessive-

compulsive or related disorders, somatic symptom or related disorders, and trauma or stress-related disor-

ders as assessed using the Diagnostic Interview for DSM-5 Anxiety, Mood, and Obsessive-Compulsive and

Related Disorders (DIAMOND; Tolin et al., 2018); be 18 years or older; be fluent in Portuguese; agreeing to

the videotaping of sessions and the completion of research questionnaires, and provide informed consent.

The exclusion consisted of those conditions that in clinical context would have required prioritization for

immediate treatment, namely : (1) current significant suicidal risk; (2) presence of psychosis, mania, or or-

ganic mental disorder; and (3) current history of substance abuse or drug dependence, with the exception

of nicotine and caffeine.

2.1.2 Therapists

The clinic staff comprised seven therapists (n = 5 women), with an average age of 31 years (range =

23 – 35 years). The doctoral-level therapists (n = 3) provided therapy services to just over half the clients

(52%), the master’s-level therapists (n = 3) saw 45% of the clients, and the intern (n = 1) saw 3% of the

clients. Doctoral and master’s level therapists had an average clinical practice experience of 4 years (range
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= 2-8 years). Treatment was provided under the close supervision of four senior team members. All of the

therapists met weekly for group supervisions of 90 minutes.

2.1.3 Treatment

The UP program consisted of a maximum of 16-20 individual sessions of approximately one hour each.

Sessions took place weekly, although at the end of treatment, namely last two sessions, have two-week

intervals. Overall, clients received on average 12.14 sessions (SD = 6.14, range 1-20 sessions). About

50% of the clients attended less than 13 sessions and 75% less than 18 sessions.

The UP consists of five core treatment modules that were designed to target key aspects of emotional

processing and regulation of emotional experiences: a) increasing present-focused emotion awareness, b)

increasing cognitive flexibility, c) identifying and preventing patterns of emotion avoidance and maladaptive

emotion-drive behaviors (EDB’s), d) increasing awareness and tolerance of emotional-related physical sen-

sations, and e) interoceptive awareness and situation-based emotion-focused exposure. These modules

are preceded by a first one, focused on enhancing motivation and readiness for change and treatment

engagement, as well as an introductory module educating clients on the nature of emotions and providing

a treatment rationale for understanding their emotional experiences. The last module consists of reviewing

progress over treatment and figured out relapse prevention strategies.

2.2. MEASURES

Along the permanence in UP program, different types of information concerning the clients and their clin-

ical condition were collected. Firstly, information about baseline characteristics of the client (e.g., sex and

age) was considered. Clients’ symptomatology level and therapeutic alliance quality were usually recorded

in each session (one per week). For this purpose, the Outcome Questionnaire, short version (OQ-

10.2) was administered at the beginning of each session in order to evaluate client’s symptomatology

through therapy, and the Working Alliance Inventory (WAI) was administered at the end of each ses-

sion in order to evaluate therapeutic alliance quality (according client’s perspective). Finally, the event that

conduced client to abandon the treatment program was checked through Termination Report Form, ther-

apist’s notes and clients’ records (e.g., e-mail). When no information was available for a given participant,

the principal researcher of this work contacted them in order to check out the dropout main motivation.

Following, we present the instruments used to gather information.
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Diagnostic Interview for Anxiety, Mood, and Obsessive-Compulsive and Related Neuropsy-

chiatric Disorders (DIAMOND; Tolin et al., 2018) is a structured interview, used, at intake, to determine

eligibility and gather demographic and clinical information about the participants. The demographic vari-

ables assessed were age, sex, relationship status, professional status, and education. The clinical variables

assessed were diagnosis, the presence of co-mobility, ans medication use at intake.

Beck Depression Inventory II- (BDI-II; Beck et al., 1996; Portuguese version by Coelho & Barros,

2002) is a 21 item self-reported scale that assesses the severity of three dimensions of depression: cog-

nitive, affective, and somatic symptoms. Each sentence is rated on a 4-point Linkert scale, ranging from

0 to 3. The total score ranges from 0 to 63, with higher values indicating more severity of depressive

symptoms. The Portuguese version of the BDI-II was used, which has shown good to excellent validity

and reliability in a large number of studies (Campos, 2011). The inventory was administered at the intake

as well as at the end of UP treatment.

Beck Anxiety Inventory - (BAI; Beck et al., 1988; Portuguese version by Quintão et al., 2013) consists

of 21 items commonly used to evaluate clinical anxiety. Each item is rated on a 4-point Linkert scale. The

possible range of total score goes from 0 to 63, with higher values indicating higher levels of anxiety. In

this study, the Portuguese version of the BAI was used, which has shown good psychometric properties,

namely adequate reliability values, with Cronbach’s alpha of .92. The inventory was administered at the

intake as well as at the end of UP treatment.

Outcome Questionnaire - (OQ-45.2; Lambert et al., 1996; Portuguese version by Machado & Fass-

nacht, 2015) consists of a self-report measure that comprises 45 items designed to evaluate therapeutic

progress and outcome in three dimensions: subjective discomfort, interpersonal functioning and social

role performance. Items are rated on a 5-point Linkert scale, ranging from 0 (never) to 4 (always). To-

tal scores, reflect the client’s symptomatology level, ranging from 0 to 180, with higher scores indicating

higher impairment. The OQ-45.2 presents substantial evidence for validity and reliability, as well good

internal consistency, with Cronbach’s alpha of .89 (Machado & Fassnacht, 2015). The Reliable Change In-

dex (RCI), calculated for the Portuguese population, was 15 points, and the cutoff was 62 points (Machado

& Fassnacht, 2015). In this study, OQ-45.2 was used at intake and at the end of UP treatment to assess

the presence of clinically significant symptomatology, as also to evaluate treatment progress. Additionally,

a shortened version of the outcome questionnaire (OQ-10.2; Lambert et al., 1998) was administrated at

the commencement of each follow-up session. The OQ-10.2 consists of 10 items that assess changes in

the clients’ symptomatic distress over short periods. It presents analogous value of internal consistency

(𝛼 = .87; Goates-Jones & Hill, 2008).
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Working Alliance Inventory - (WAI; Horvath & Greenberg, 1989) consists of a self-report measure

designed to assess therapeutic alliance’s quality between the therapist and the client. The WAI yields a

global score as well as a score for each of the three subscales: (1) agreement on tasks; (2) agreement on

goals; and (3) development of a bond. In this study, the short version of the client’s WAI form was used

following each attended session (WAI-SR; translated into Portuguese and adapted by Ramos, 2008). The

WAI-SR includes 12 items rated on a 5-point Likert scale, ranging from 1 (seldom) to 5 (always). Higher

scores in this measure reflect a better working alliance. Psychometric studies of the Portuguese WAI-SR

have shown adequate reliability values, with Cronbach’s alpha of .85 for the total scale, .72 for the task

subscale, .64 for the bond subscale and .80 for the goals subscale.

Termination Form At the close of therapy, the therapists completed a termination form indicating the

length of treatment (i.e., number of therapy sessions attended) and the type of termination. To record

the type of termination, therapists chose from among five responses options: “mutual termination ”(i.e.,

both client and therapist agree on the treatment conclusion), “client decision” (i.e., client calls, e-mail

or shows for session and announces his/her decision to leave treatment), “client no-show” ,“referral to

another treatment or agency”, and “other” (i.e., termination is caused by an arbitrary event, like end of

graduation or move to another city). In order to reflect both, the logic of survival analysis and the termination

classifications found in the literature, these five options were recoded into premature termination (PT) - the

event of interest, and censored cases. In this study, we define PT based on the unilateral initiative of the

client to abandon or terminate the therapy, after at least one therapeutic session, without the therapist’

agreement or knowledge. Consequently, “client decision” and “client no-show” were recoded instances of

PT. One the other hand, when information on time to event was not available due to loss to folow-up (given

arbitrary or controlled reasons) or non-occurrence of outcome event before the close of the data collection

period, client is said to be censored. In this sense, ”mutual termination”, ”referral to another treatment

or agency” (which, at this clinic, implied the client had agreed) and ”arbitrary end” (i.e., cases whose

clinically meaningful endpoint cannot be known because the client left therapy for non-therapy-related

reasons) were recoded into censored cases. Similarly, ”ongoing cases” - cases that continue through the

close of the data collection period - were also recoded into censored cases.

To summarize, regarding survival endpoint we have two groups: PT (the event of interest) and censored

cases. Two process variables, namely therapeutic alliance quality and symptomatology level or treatment

outcome, in the present study, are the longitudinal responses. Finally, a total of ten baseline clients vari-

ables were considered as potential predictors of either hazard to premature termination (regarding survival

process) and mean progression of therapeutic alliance, as well as treatment outcome evolution (regarding
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longitudinal process). Note that, for separate survival analysis, therapeutic alliance and symptomatology

level both measured at last session observed, were tested as predictor variables. Table 1 presents a brief

description of the variables for 97 clients from the UP trial.

Table 1: Variables description

Variable Code/ Values

At intake Numeric:

Age Years

Symptomatology level (OQ-45.2) Score: 0-180; cutoff = 62; non-clinical ≤ 62

Depressive severity (BDI-II) Score: 0-63; cutoff = 13; non-clinical ≤ 13

Anxiety level (BAI) Score: 0-63; cutoff = 21; non-clinical ≤ 21

Categorical:

Sex 1 - Male; 2 - Female

Professional status 1 - Employed; 2 - Unemployed; 3 - Student

Relationship status 1 - Single; 2 - Married/ in a relationship; 3 - Divorced

Education level 1 - 9 to 12 years; 2 - University

Diagnostic area 1 - Anxiety; 2 - Mood; 3 - Others

Medication 0 - No; 1 - Yes

Follow up sessions Numeric:

Therapeutic alliance quality (WAI) Score: 0-60

Symptomatology level (OQ-10.2) Score: 0-40

Time Session: 1-20

Categorical:

Status 0 - Censored; 1 - Premature Termination (PT)
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3

S TAT I S T I C A L M E T H O D O L O G Y

3.1. SURVIVAL ANALYSIS

Survival analysis refers to a class of techniques designed to studying the occurrence of events in a

longitudinal framework. A survival outcome is the time, from a defined origin (e.g., time from diagnosis

or beginning of treatment) until an event of clinical interest (e.g., recovery, relapse or dropout). Note that

survival times 𝑇, can be either observed or censored. The latter meaning that observation of the subject in
question is terminated before the occurrence of a target event during data collection. The only information

available for these subjects is a maximum time 𝑇𝐶, up to which it is known not to have observed the

event.1

Censoring is non-informative if it is statistically independent of the event of interest (e.g., subject with-

draws from the study for reasons not related to her prognosis, such as moved to a different city). Otherwise,

we speak of informative censoring, which occurs when non-observation of the subject is due to occurrence,

or imminent occurrence, of the event of interest (e.g., subject is about to dropout and, as a result, stops

answering the questionnaires during the period of data gathering).

Next, we will present some concepts and notation to describe the distribution of time to the event of

interest.

3.1.1 Notation and Definition of Concepts

Let 𝑇 be the non-negative random variable representing the time until the event of interest and let

𝑡1, ..., 𝑡𝑛 be the random sample from 𝑇𝑖 on 𝑖 = 1, ..., 𝑛 subjects. However, for certain individuals we

1 Note that, this is right-censoring. It must be distinguished from left-censoring, where for a subset of the subjects under study, the event of interest is only

known to occur before a certain time point; and from interval-censoring, where for a subset of the subjects under study, the event of interest is only known to

occur between two certain time points. For all censoring types, we do not know the exact value of 𝑇.
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will not observe 𝑇𝑖, but rather a realization 𝑐𝑖 of a random variable 𝐶𝑖, representing the censored time.

Therefore, the observed survival data is the realization 𝑆𝑖 = 𝑚𝑖𝑛{𝑇𝑖, 𝐶𝑖}, 𝑖 = 1, ..., 𝑛 of a random

variable 𝑆, that is , the minimum between failure time and censored time.

Note that, a common assumption in survival analysis is non-informative censoring, meaning that random

variables 𝐶 and 𝑇 are independent. Therefore, if 𝑇 ≤ 𝐶, 𝑆 = 𝑇, and a failure time is observed; if

𝐶 < 𝑇, 𝑆 = 𝐶, and censoring time is observed. To distinguish failure from censored time we consider

𝛿𝑖 = 𝐼(𝑇𝑖 ≤ 𝐶𝑖), a censoring indicator that takes value 1 if the observed is the failure time and 0
otherwise.

The random variable 𝑇 of interest can be described in several ways, by different distributions. Clinical

studies often focus on estimating the survivor function - the probability of an individual surviving beyond

time 𝑡 (i.e., the probability of being event-free at time 𝑡). Formally, for the continuous case,

𝑆(𝑡) = 𝑃(𝑇 > 𝑡).

Likewise, when considering a discrete distribution of the random variable 𝑇, the discrete survivor func-
tion for individual 𝑖 at time 𝑗 is the probability that individual 𝑖 will survive beyond time 𝑗, that is,

𝑆(𝑡𝑖𝑗) = 𝑃(𝑇𝑖 > 𝑡𝑖𝑗).

Two key properties of this function are that 𝑆(0) = 1, that is, at the beginning of the study, when 𝑡 = 0,
the event has not yet occurred for any subjects; and lim𝑡→∞ 𝑆(𝑡) = 0, which means that everyone will

experience, at some moment, the event. However, in practice, the latter assumption may not be required,

given the restricted follow-up period.

Another way to describe the distribution of the time event is the hazard function - the conditional

probability that the event occurs in a given short period of time, given that it did not occur earlier. So, in

the general continuous case the hazard function, ℎ(𝑡), is defined as,

ℎ(𝑡) = lim
∆𝑡→0+

𝑃(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡|𝑇 ≥ 𝑡)
Δ𝑡 ,

where the numerator is a conditional probability. By dividing this probability by Δ𝑡, we transform it to

a rate. And, by taking the limit as the width of the interval (i.e, Δ𝑡) becomes infinitesimally small, we
are obtaining the instantaneous rate at which the event occurs at a given time. The hazard function

magnitude summarizes exactly the right answer to - whether and, if so, when events occur (i.e., the risk

of event occurrence in each period) (Willett & Singes, 1993). A basic property is that, the hazard function

in the continuous case is never negative, and can vary from zero to infinity.
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For the discrete case, the hazard function can be defined as,

ℎ(𝑡𝑖𝑗) = 𝑃(𝑇𝑖 = 𝑡𝑖𝑗|𝑇𝑖 ≥ 𝑡𝑖𝑗),

where, once again, the hazard function ℎ(𝑡𝑖𝑗) is the conditional probability of the event of interest occurring
to the 𝑖th individual in the 𝑗th interval, given that it has not occurred previously. In this case, each interval
is 1 time unit.

3.1.2 Non-Parametric Survival Models

The most well-known estimator of the survival function, called the product-limit estimator, has been

proposed by Kaplan & Meier (1958). This is a non-parametric estimator, widely used in survival analysis,

that does not make any assumptions for the underlying distribution of the event times. To introduce this

estimator, let 𝑡1, ..., 𝑡𝑘 denote the unique event times in a given sample. Using the law of total probability,

the probability of surviving any time point 𝑡 can be written as the product of the conditional probabilities:

𝑃(𝑇 > 𝑡) = 𝑃(𝑇 > 𝑡|𝑇 > 𝑡 − 1) × 𝑃(𝑇 > 𝑡 − 1|𝑇 > 𝑡 − 2) × … × 𝑃(…).

To estimate survival probabilities at each unique event time, we utilize the above expansion, and in the

calculation of the conditional probabilities, we account for censoring by suitable adjusting the number of

subjects at risk (i.e., the subjects who have not experienced the event and are not censored), which leads

to the product-limit estimator:

̂𝑆𝐾𝑀(𝑡) = ∏
𝑖∶𝑡𝑖≤𝑡

𝑟𝑖 − 𝑑𝑖
𝑟𝑖

, (1)

where 𝑟𝑖 denotes the number of subjects still at risk at the unique event 𝑡𝑖, and 𝑑𝑖 is the number of events

at 𝑡𝑖. This estimate is a step function with jumps at observed event times 𝑡𝑖.

The variance of the product-limit estimator can be determined by Greenwood’s formula, given by,

𝑉̂[ ̂𝑆(𝑡)] = ̂𝑆(𝑡)2 ∑
𝑡𝑖≤𝑡

𝑑𝑖
𝑟𝑖(𝑟𝑖 − 𝑑𝑖)

.

On the other hand, the non-parametric estimator for the discrete-time hazard function is given by the

proportion of subjects entering each time period (i.e., number of subjects at risk) who left the study during

that period (i.e., number of events). Formally,

ℎ̂(𝑡) = 𝑑𝑖
𝑟𝑖

(2)

13



A hazard function defined this way, since it is a probability, varies between 0 and 1.

As aforementioned, any of the two functions 𝑆(𝑡) and ℎ(𝑡) defines uniquely a specific probability

distribution for random variable 𝑇, and each of them provides the investigator a different view of the data.

On top of that, both functions are related, in a way we can deduce one from other. So, the sample hazard

function can be used to estimate the sample survivor function indirectly in time periods that censoring

precludes its direct computation. The sample survival probability for any time period is just 1 minus the

hazard probability for that period multiplied by the sample survival probability from the previous period.

Finally, in order to compare time-to-event between two or more groups of subjects differing for a given

characteristic or randomly allocated to different treatments, the most usually non-parametric approach

adopted is the Mantel-Haenzel test (1959), currently called the log-rank test, where the null hypoth-

esis being tested is: no difference between (true) survival curves. Note that, the log-rank test requires the

assumption that within each level (i.e., group) the populations are homogeneous in survival experiences.

Nevertheless, this assumption is rarely realistic, specially in clinical studies, as populations are made het-

erogeneous in survival experience by demographic variables and possible risk or prognostic factores (i.e.,

effect of covariates).

3.1.3 Semi-Parametric Cox Proportional Hazards Model

The regression method, introduced by Cox (1972), is nowadays widely used to adjust for, as well as to

assess the effects of several covariables simultaneously on the hazard rate. This method is known as the

Cox Proportional Hazards Model (CPHM), given by:

ℎ(𝑡|𝑥𝑥𝑥𝑖) = ℎ0(𝑡) exp (𝛽𝛽𝛽𝑇𝑥𝑥𝑥𝑖) (3)

where ℎ𝑜(𝑡) is the baseline hazard rate, the exponential function 𝑒𝑥𝑝(𝛽𝛽𝛽𝑇𝑥𝑥𝑥𝑖) is the relative risk function,
𝑥𝑥𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑞) represents a vector of 𝑞 covariates mesured at baseline to predict event time, and

𝛽𝛽𝛽 = (𝛽1, … , 𝛽𝑝)𝑇 is a vector of regression parameters to estimate. Basically, the Cox model formula

says that the hazard of experiencing an event for each individual at time 𝑡 is the product of two quantities.
The first of these, ℎ0(𝑡), is called the baseline hazard function. The second quantity is the exponential

expression to the linear sum of 𝑊𝑊𝑊𝑇𝛽𝛽𝛽, where the sum is over the 𝑞 explanatory 𝑊 variables. Note that,

when all covariates are equal to zero, the relative risk function is equal to one, such that the hazard rate

corresponds to the baseline hazard.
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The hazard rate ratio between two individuals, denoted 1 and 2, with covariates vector, x1 and x2,

respectively, is:
ℎ(𝑡|𝑥𝑥𝑥1)
ℎ(𝑡|𝑥𝑥𝑥2) = ℎ0(𝑡)𝑒𝑥𝑝(𝛽𝛽𝛽𝑇𝑥𝑥𝑥1)

ℎ0(𝑡)𝑒𝑥𝑝(𝛽𝛽𝛽𝑇𝑥𝑥𝑥2)
= 𝑒𝑥𝑝{(𝑥𝑥𝑥1 − 𝑥𝑥𝑥2)𝛽𝛽𝛽𝑇, (4)

for all 𝑡 ≥ 0. Since the baseline hazard function ℎ0(𝑡) appears in both the numerator and denominator,
it is canceled out of the formula, and the final expression does not involve time, 𝑡. Thus, one of the crucial
assumptions in Cox regression is that the hazard ratio is constant and independent of time, justifying the

name of Proportional Hazard (PH) model.

If we assume that 𝑥1𝑥1𝑥1 and 𝑥2𝑥2𝑥2 are exactly the same, except for the 𝑘𝑡ℎ covariate, then equation 4

becomes:
ℎ(𝑡|𝑥𝑥𝑥1)
ℎ(𝑡|𝑥𝑥𝑥2) = 𝑒𝑥𝑝{(𝑥𝑥𝑥1 − 𝑥𝑥𝑥2)𝛽𝛽𝛽𝑇} = 𝑒𝑥𝑝(𝛽𝑘), (5)

where 𝑒𝑥𝑝(𝛽𝑘) is the hazard ratio or the relative risk of the 𝑘𝑡ℎ covariate. Hence, regarding the interpre-

tation of regression coefficients vector 𝛽, for a given particular time point 𝑡, 𝑒𝑥𝑝(𝛽𝑘) denotes the relative
increase in the risk for an event that results from one unit change in the 𝑘𝑡ℎ covariate, while the other

covariates are kept unchanged.

The CPHM is said to be a semi-parametric model since the baseline hazard function, ℎ0(𝑡), is a non-
parametric (i.e., non specified) component, and the relative risk function, 𝑒𝑥𝑝(𝛽𝛽𝛽𝑇𝑥𝑥𝑥) is parametric. To

estimate the regression coefficients, Cox (1975) proposed the maximization of partial log-likelihood method,

given by the following function:

𝑃𝐿(𝛽𝛽𝛽) = ∏
𝑡𝑗

𝑒𝑥𝑝(𝛽𝛽𝛽𝑇𝑥𝑥𝑥𝑖𝑗)
∑𝑙∈𝑅𝑗

𝑒𝑥𝑝(𝛽𝛽𝛽𝑇𝑥𝑥𝑥𝑙)

where 𝑖𝑗 is the index of the individual who experiences an event at time 𝑡𝑗, 𝑅𝑗 = {𝑙|𝑌𝑙(𝑡𝑗) = 1} is the

risk set of individuals at 𝑡𝑗, and 𝑌𝑙(𝑡) is the indicator for individual 𝑙 just before time 𝑡. Basically, this

function is constructed based on conditional probabilities, that individual 𝑖 experienced the event, given

that someone did, at the set of observed event times.

The maximum partial likelihood estimate for ̂𝛽 ̂𝛽 ̂𝛽 is obtained by differentiating the log partial likelihood

function, 𝑙𝑜𝑔𝑃𝐿(𝛽𝛽𝛽). By turn, a 95% confidence interval of the relative risk (equation 5) can be obtained

by exponentiating the lower and upper limits of the standard 95% confidence interval for the regression

coefficient, ̂𝛽𝑘 ± 1.96𝑆𝐸( ̂𝛽). For more details on parameter estimates in the partial likelihood see (Klein
& Moeschberger, 2011).
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To conclude, the main advantage of CPHM is that the estimation of the regression coefficients does not

depend on the baseline hazard function ℎ0(.), since it gets absorbed when the coefficients are estimate by
the method of partial log likelihood (i.e., it is nowhere to be seen in the log likelihood calculation). Hence,

the shape of the baseline hazard is irrelevant and there is no need to assume a known distribution (Klein

& Moeschberger, 2011).

3.1.4 Time-Dependent Cox Model

In the relative risk model previously introduced, the covariates are assumed to be constant in time, as

typically occurs when treatment, sex, age, and clinical features at study entry are considered. However, in

many studies it may also be of interest to investigate whether time-dependent covariates are associated

with risk of an event.

An additional advantage of the Cox regression model (Cox, 1972) is that, besides it allows for fixed co-

variates that do not change over time, it can also incorporate time-dependent covariates. So, the extended

model is given by:

ℎ𝑖(𝑡|𝑦𝑖𝑦𝑖𝑦𝑖(𝑡),𝑥𝑥𝑥𝑖) = ℎ0(𝑡) exp {𝛽𝛽𝛽𝑇𝑥𝑥𝑥𝑖 + 𝜁𝜁𝜁𝑦𝑦𝑦𝑖(𝑡)} (6)

where, as in section 3, 𝑥𝑥𝑥𝑖 denotes a vector of baseline covariates, and 𝑦𝑦𝑦𝑖(𝑡) denotes a vector of time-

dependent covariates. In this sense, the hazard ℎ for person 𝑖 at time 𝑡 to experience the event of interest
is a product of a baseline hazard function ℎ0(𝑡), which has no particular parametric form, and the exponen-
tial of a linear combination of explanatory variables, some of which can be functions of time. Estimation of

𝛽 and 𝜁 is also based on the maximization of partial log-likelihood method (for more details see Rizopou-

los).

The interpertation of the regression coefficients vector 𝜁𝜁𝜁 is exactly the same as for 𝛽𝛽𝛽. Namely, if we
assume for simplicity that there is only a single time-varying covariate, then at any particular time point 𝑡,
𝑒𝑥𝑝(𝜁) denotes the relative increase in the risk for an event at time 𝑡 that results from one unit increase

in 𝑦𝑖(𝑡) at the same time point. Moreover, given that 𝑦𝑖(𝑡) is time-varying, model 6 no longer assumes

that the hazard ratio is constant over time Rizopoulos.

To the correct use of this (extended) Cox model, it is crucial to distinguish between two different cat-

egories of time-dependent covariates, namely, external or exogenous covariates and internal or en-

dogenous covariates (Diggle et al., 2002). The reason why it is important to distinguish between then is

that and endogenous covariate requires special treatment compared to an exogenous one.
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An exogenous covariate exists/develops independently of the survival of a subject in the study. A stan-

dard example for an external covariate is the time of the day or the season of the year, or yet environmental

factors like air pollution. The value that an external covariate takes in time are not influenced by the life

experience of the subject, since the value are generated by a mechanism which is external to the individual.

Conversely, an endogenous covariate only exists/can be recorded as long as the participant is alive, as

instance blood pressure measured over time. The value of an endogenous covariate at time 𝑡 carries infor-
mation about the life experience of the individual up to that time. Hence, the first important characteristic

of endogenous covariates is that typically require the survival of the subject for their existence. Another

feature of endogenous covariates is that they are typically measured with error. This measurement error

primarily refers to the biological variation induced by the patient herself rather than to the error induced by

the procedure that determines the value of covariate. In particular, measuring the same client twice, even

on the same day, we do not expect to observe exactly the same value for an endogenous covariate. Thus,

for such covariates, it would be more reasonable to assume that the observed marker levels are actually

a contaminated with biological variation version of the true marker levels. The final important implication

with endogenous covariates is that their complete path up to any time t is not fully observed. That is, the

levels of a biomarker or any other clinical parameter for a client are only known for the specific occasions

that this patient visited the study center to provide measurements, and not in between these visit times

(Rizopoulos, 2012).

The Cox proportional hazards model can be extended to handle exogenous time-dependent covariates,

but it is not appropriate when the time-dependent covariates are of endogenous nature. This is because

the extenden Cox model assumes that time-dependent covariates are predictable processes, measured

without error, and have their complete path fully specified (Rizopoulos, 2012).

3.1.5 Model Diagnostic Procedures

After a model has been fitted to an observed set of survival data, the adequacy of the model needs to

be assessed. Many model-checking procedures are based on quantities known as residuals. These are

values that can be calculated for each individual in the study, and have the feature that their behaviour is

known, at least approximately, when the fitted model is satisfactory (Kleinbaum & Klein, 2012).

The residual that is most widely used in the analysis of survival data is the Cox-Snell residual (Cox &

Snell, 1968), given by:
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𝑟𝐶𝑆
𝑖 = 𝐻̂0(𝑡𝑖)𝑒𝑥𝑝( ̂𝛽 ̂𝛽 ̂𝛽𝑇𝑥𝑥𝑥𝑖),

where 𝐻̂0(𝑡𝑖) is an estimate of the baseline cumulative hazard function at time 𝑡𝑖, with 𝐻̂0(𝑡𝑖) =
−𝑙𝑜𝑔 ̂𝑆𝑖(𝑡𝑖). If the model fitted to the observed data is satisfactory, the residuals should approximately

have an exponential distribution with mean one (Collett, 2015). This can be checked using an exponential

Quantile-Quantile (QQ) plot.

A key assumption of the Cox model is proportional hazards (PH). That is, with time-fixed or constant

covariates, the relative hazard for any two subjects obeys the relationship presented previously in equa-

tion 4, where the proportionality constant is independent of time. In contrast, if there are one or more

explanatory variables in the model whose coefficients vary with time (i.e., time-dependent covariates), the

proportional hazards assumption will be violated. In order to check this assumption, for time-fixed vari-

ables that have a small number of levels, a simple graphical test can be made by looking at the survival

curves. If the Kaplan-Meier curves cross for two or more levels of a predictor of interest, then the PH as-

sumption is not met; in contrast, parallel curves indicate that the PH assumption is satisfied (Kleinbaum

& Klein, 2012). Another graphical option could be to use the Schoenfeld residuals, which represent

the difference between the observed covariate and expected values, given the risk set at that time. In this

sense, whenever we represent them ranked by its event time, they should be flat and centered around

zero. Otherwise, a plot that shows a non-random pattern against time is evidence of violation of the PH

assumption. Schoenfeld (1982) proposed a chi-squared goodness-of-fit test statistic for the proportional

hazards regression model, where a correlation of zero (the null hypothesis) indicates that the model met

the proportional assumption (i.e., the residuals are independent of time). In the case of a violated propor-

tional hazard assumption, results of the Cox’s model cannot be trusted. Nevertheless, determining which

factors have time-varying effects can be quite useful in itself by gaining insights into the data, and, by turn,

the extended models of the Cox regression are required.

3.1.6 Conclusion

Survival analysis has several advantages when applied to the study of psychotherapy termination (Corn-

ing & Malofeeva, 2004). First, this approach, offers a time-based conceptualization and analysis of the

data, appropriate to the time-oriented nature of psychotherapy, which recognizes the population hetero-

geneity in survival experience given demographic variables and possible risk or prognostic factors. Second,
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survival analysis allows for adequate handling of cases for which the event of interest is not observed over

the study’s data collection period. These cases are called censored, and they usually arise as a result of

the therapy ending, or the therapy continuing past the data collection period for some clients, as well as an

end for arbitrary reasons (i.e., when a external circumstances, as instance move to a different city, cause

a disruption in the observation of an entire risk period). Third, when modelling survival data, a breadth of

predictors can be incorporated into statistical models, including not only time-invariant or static variables

(i.e., that vary across individuals but not over time), as also time-variant predictors (i.e., that vary over time).

However, as aforementioned, a drawback of the CPHM is that it’s not account for measurement error in

the endogenous covariables. In fact, the Cox model with internal time-dependent variables is sometimes

misused, and at list, considerable care must be taken in interpreting the results of a model including such

covariates (Rizopoulos, 2012). In section 3.3, we will introduce a modelling framework especially designed

to account for the special features of endogenous time-dependent covariates.

3.2. LONGITUDINAL ANALYSIS

Longitudinal data results from the observation of subjects that are measured repeatedly over time on

one or more response variables. The main feature of longitudinal studies is that they permit the direct

assessment of change in the response variable over time, distinguishing differences among subjects in

their baseline levels (cohort effects) from changes over time within subjects (aging effects) (Diggle et al.,

2002).

For the analysis of repeated measurements it is common to assume independence between subjects.

However, this assumption is not adequate for measurements within the same subject, once we expect

a positive correlation (i.e., intraindividual correlation). Ignoring correlation in longitudinal data, by the

inappropriate application of standard statistical tools (e.g., t-test and simple linear regression), could lead

to incorrect inferences or inefficient estimates of the regression coefficients, as also to the sub-optimal

protection against bias causes by missing data (Diggle et al., 2002). For this reason, correlation structure

of data takes a prominent role to estimate regression parameters in longitudinal analysis (Fitzmaurice et

al., 2004).

Statistically, there are three potential sources of variability that have an impact on the correlation among

repeated measures: (1) between-subjects heterogeneity, (2) within-subjects biological variations, and (3)

measurement error (i.e., the remaining random error) (Fitzmaurice et al., 2004). Between-subjects het-

erogeneity (1) reflects natural variation in individuals’ propensity to respond, since some individuals con-
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sistently respond higher than the average, while others consistently respond below the average. Basically,

each individual has his or her own subject-specific propensity to respond, which drives from unobservable

genetic, biological, environmental, social, or behavioral factors (or some combination of these factors),

and is shared by all of the repeated measures obtained on that individual. As a result a pair of repeated

measures on the same individual will be expected to be more similar than single observations obtained

from two randomly selected individuals. A popular approach to handle between-subjects variability is to

specify the individual-specific ”random effects” (e.g., randomly varying intercepts and slopes) with the

assumption of a known distribution.

The second component of variability in longitudinal data is the within-subject variation. Considering the

inherent within-individual biological variability, each sequence of repeated measurements on any individual

might vary randomly around their long-run average (or ”true” underlying biological process). Consequently,

random deviations or departures from an individual’s underlying response trajectory are expected to be

more similar than those obtained from several randomly selected individual (i.e., there is a subject-specific

dependence). Besides that, measurements (on the same individual) taken very closely together will typi-

cally be more highly correlated than measurements that are further separated in time. So, in recognizing

patterns of correlation (i.e., serial correlation), researchers can account for intraindividual correlation by

specifying within-subject covariance structures on repeated measurements.

A final source of variability in longitudinal data is random measurement error. This is an ubiquitous

component of almost all studies, longitudinal or not, and results from imprecision of the measurement

procedure. As regularly specified in general linear and generalized linear regression models, this random

term for uncertainty can be estimated as regression residuals (Liu, 2016).

Next, we will introduce some vector and matrix notation, as well as present a general linear regression

model for longitudinal data.

3.2.1 Notation and Definition of Concepts

In assuming that 𝑁 subjects are measured repeatedly over time, we let 𝑌𝑖𝑗 represent a response

variable observed at time 𝑡𝑖𝑗, for observation 𝑗 = 1, ..., 𝑛𝑖 on subject 𝑖 = 1, ..., 𝑚. The set of repeated

outcomes for the 𝑖𝑡ℎ subject can be grouped into a 𝑛𝑖 × 1 vector,
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𝑌𝑌𝑌𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑌𝑖1

𝑌𝑖2

⋮
𝑌𝑖𝑛𝑖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑖 = 1, … , 𝑚; 𝑗 = 1, … 𝑛𝑖𝑚 .

Associated with each response, 𝑌𝑖𝑗 , there is a 𝑝 × 1 vector of explanatory variables, given by:

𝑥𝑥𝑥𝑖𝑗 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥𝑖𝑗1

𝑥𝑖𝑗2

⋮
𝑥𝑖𝑗𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑖 = 1, ..., 𝑚; 𝑗 = 1, ..., 𝑛𝑖.

The vectors of explanatory variables can be grouped into a 𝑛𝑖 × 𝑝 matrix denoted by 𝑋𝑋𝑋𝑖, where:

𝑋𝑋𝑋𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥𝑥𝑥𝑇
𝑖1

𝑥𝑥𝑥𝑇
𝑖2

⋮
𝑥𝑥𝑥𝑇

𝑖𝑛𝑖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥𝑖11 𝑥𝑖12 … 𝑥𝑖1𝑝

𝑥𝑖21 𝑥𝑖22 … 𝑥𝑖2𝑝

… … ⋱ …
𝑥𝑖𝑛𝑖1 𝑥𝑖𝑛𝑖2 … 𝑥𝑖𝑛𝑖𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑖 = 1, ..., 𝑚,

Thus, the matrix 𝑋𝑋𝑋𝑖 is simply an ordered collection of the values of the 𝑝 explanatory variables for the 𝑖𝑡ℎ

subject at each of the 𝑛𝑖 measurement occasions, where the rows correspond to the explanatory variables

associated with the responses at the 𝑛𝑖 different measurement occasions, and the columns correspond

to the 𝑝 distinct explanatory variables.

The explanatory variables can be measured at baseline or can be time dependent. In the former case,

the same values of the explanatory variables are replicated in the corresponding rows of 𝑋𝑋𝑋𝑖. In the latter

case, the values taken by the explanatory variables can vary over time (for at least some individuals) and

the values in the corresponding rows of 𝑋𝑋𝑋𝑖 can be different at each measurement occasion.

Most longitudinal analysis are based on a regression model such as the linear model,

𝑌𝑖𝑗 = 𝛽1𝑥𝑖𝑗1 + 𝛽2𝑥𝑖𝑗2 + … + 𝛽𝑝𝑥𝑖𝑗𝑝 + 𝑒𝑖𝑗, 𝑖 = 1, … , 𝑚; 𝑗 = 1, ..., 𝑛𝑖,

where 𝛽1, … , 𝛽𝑝 are the unknown regression parameters relating the mean of 𝑌𝑖𝑗 to its corresponding

explanatory variables, and 𝑒𝑖𝑗 is a zero-mean random variable which represents deviations of the responses
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from their corresponding predicted means. In using vector and matrix notation, the regression model can

be expressed in an even more compact form:

𝑌𝑌𝑌𝑖 = 𝑋𝑋𝑋𝑖𝛽𝛽𝛽 + 𝑒𝑒𝑒𝑖 (7)

where 𝑋𝑋𝑋𝑖 is a 𝑛𝑖 × 𝑝 matrix, with the vector 𝑥𝑖𝑗 in the 𝑗𝑡ℎ row, and 𝑒𝑒𝑒𝑖 = (𝑒𝑖1, ..., 𝑒𝑖𝑛𝑖
). The vector of

continuous response,𝑌𝑌𝑌𝑖, is assumed to have a conditional distribution
2 (i.e., the mean of the longitudinal

response vector is related to the explanatory variables via the linear regression model given above in

equation 7) , that is multivariate normal, with mean response vector:

𝐸(𝑌𝑌𝑌𝑖|𝑋𝑋𝑋𝑖) = 𝜇𝜇𝜇𝑖 = 𝑋𝑋𝑋𝑖𝛽𝛽𝛽

and covariance matrix,

ΣΣΣ𝑖 = 𝐶𝑜𝑣(𝑌𝑌𝑌𝑖|𝑋𝑋𝑋𝑖).

The multivariate normal distribution is completely specified by the vector of means,𝜇𝜇𝜇𝑖, and the covariance

matrix, ΣΣΣ𝑖.

Finally, in order to obtain a complete specification of the model for response variable 𝑌𝑌𝑌𝑖, we need

model the covariance structure. As we notice before, repeated observations on the same individual are

not independent. In fact, this is an advantage, given that correlated observations provide more precise

estimates of the rate of change than would be obtained from an equal number of independent observations

of different individuals. Thus, although the correlation, or more generally, the covariance among the

repeated responses, is not usually of intrinsic interest, it must be properly accounted in order to yield valid

inferences about the regression parameters of primary interest.

According to Fitzmaurice et al. (2004), three broad approaches to modeling the covariance can be dis-

tinguished: (1) unstructured covariance, (2) covariance pattern models, and (3) random effects covariance

structures. The first, also called fully parametrized, allows all of the parameters of the variance-covariance

matrix to be different (see unstructured covariance in Table 2). As no explicit structure is assumed for

2 For simplicity of notation, we often replace 𝐸(𝑌𝑖 |𝑋𝑖) by 𝐸(𝑌𝑖) and 𝐶𝑜𝑣(𝑌𝑖 |𝑋𝑖) by 𝐶𝑜𝑣(𝑌𝑖). However, it should be clear from the context that it denotes,

respectively, the conditional mean of the responses and the conditional covariance of the responses, given the explanatory variables. In a similar vein, in

discussing the distribution of 𝑌𝑖, it should be understood that we are always referring to the conditional distribution of 𝑌𝑖 given the explanatory variables.
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the covariance among repeated measures, there are 𝑞 = 𝑛(𝑛 + 1)/2 unique parameters. A favorable

aspect of unstructured covariance is the lack of assumptions about them, since they can take any form.

However, the number of covariance parameters can be quite large, until larger than sample size, which

potentially produces unstable estimates. Moreover, incomplete data across time are unallowable under

this approach (i.e., it is only applicable when all individuals are measured at the same set of occasions).

An alternative approach are covariance pattern models, which place a structure on covariance matrix.

Taking into account any trend in the dispersion matrix, the correlation among repeated measures is ex-

pressed as an explicit function of the time lag. Then, the covariance matrix can be adequately described

with only a few parameters (the number of parameters depends on matrix form or structure). There are

several possible forms for Σ. A simple form is that of compound symetry (as shown in Table 2), which

specifies equal variances and equal covariances. Notice that, in this case, 𝜎2 is the variance of dependent

variable at every time point, and the covariance equals to 𝜌 for the pairwise association of the dependent

variable for any two time points. Consequently, the number of variance-covariance parameters are 𝑞 = 2.

Another form that only depends on two parameters is the first-order autoregressive (AR1) structure (see
Table 2). In this case, the covariance for time points 𝑗 and 𝑗′ equals

𝜎𝑗𝑗′ = 𝜎2𝜌|𝑗−𝑗′|,

where 𝜌 is the AR(1) parameter and 𝜎2 is the error variance. Note that, in this case, the correlation

decreases exponentially as the lag between the time points increases. A potential drawback within covari-

ance pattern models is that they depend upon a reduced number of parameters to convey accurately the

information of the covariance matrix. On the other hand, if the model assumptions hold, the covariance

is described parsimoniously by a small number of parameters.

An alternative strategy for imposing structure on the covariance is through the introduction of random

effects. The random effects models assumes the correlation between repeated measurements arises

because each subject has an underlying (or latent) level of response that persists over time and influences

all repeated measurements on that subject. This individual-specific effect is regarded as a random variable.

A more detailed account will be given in the next section (3.2.2).
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Table 2: The three most common covariance structures

Unstructured Compound Symmetry First-order Autoregressive

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜎2
1 𝜎12 𝜎13 … 𝜎1𝑛

𝜎2
2 𝜎21 … 𝜎2𝑛

𝜎2
3 … 𝜎3𝑛

⋱ …
𝜎2

𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝜎2.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 𝜌 𝜌 … 𝜌
1 𝜌 … 𝜌

1 … 𝜌
⋱ …

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝜎2.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 𝜌 𝜌2 𝜌3 … 𝜌𝑛−1

1 𝜌 𝜌2 … 𝜌𝑛−2

1 𝜌 … 𝜌𝑛−3

1 … 𝜌𝑛−4

⋱ …
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Note. As all matrices are symmetric, only their upper triangles are shown. Greek letters represent unknown parameters. The parameter 𝜌 satisfies |𝜌| ≤ 1.

3.2.2 Linear Mixed Effects Models

The most widely used class of models for repeated measurement data is the linear mixed effects

models, that incorporate both fixed effects and random effects. According to this approach the mean

response is modeled as a combination of the population characteristics, that are assumed to be shared

by all individuals (i.e., fixed effects), and subject-specific effects that are unique to a particular individual

and vary randomly from one individual to another (i.e., random effects). In this sense, individuals in the

population are assumed to have their own subject-specific mean response trajectories over time and a

subset of the regression parameters (e.g., the intercept and slope) are regarded as being random (Diggle

et al., 2002; Fitzmaurice et al., 2004).

The general linear mixed effects model is defined as:

𝑌𝑌𝑌𝑖 = 𝑋𝑋𝑋𝑖𝛽𝛽𝛽 + 𝑍𝑍𝑍𝑖𝑏𝑏𝑏𝑖 + 𝜖𝜖𝜖𝑖, (8)

where 𝑌𝑌𝑌𝑖 is the 𝑛𝑖-dimensional response vector for subject 𝑖, 1 ≤ 𝑖 ≤ 𝑚, 𝑚 is the number of subjects,

𝑋𝑋𝑋𝑖 and 𝑍𝑍𝑍𝑖 are (𝑛𝑖 × 𝑝) and (𝑛𝑖 × 𝑞) dimensional matrices of known covariates, 𝛽𝛽𝛽 is a (𝑝 × 1) vector

of fixed effects, 𝑏𝑏𝑏𝑖 is a (𝑞 × 1) vector of random effects, and 𝜖𝜖𝜖𝑖 is an 𝑛𝑖-dimensional vector of residual

components. Note that,𝑍𝑍𝑍𝑖 is a known design matrix linking the vector of random effects 𝑏𝑏𝑏𝑖 to𝑌𝑌𝑌𝑖, and the
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columns of 𝑍𝑍𝑍𝑖 are a subset of the columns of 𝑋𝑋𝑋𝑖. The random components are assumed to be normally

distributed with zero expectation and the following properties:

⎧{{{
⎨{{{⎩

𝑏𝑏𝑏𝑖 ∼ 𝑁(000,𝐷𝐷𝐷),
𝜖𝜖𝜖𝑖𝑗 ∼ 𝑁(000,ΣΣΣ𝑖),
𝑏1, … , 𝑏𝑚, 𝜖1, … , 𝜖𝑚 independent,

where 𝐷𝐷𝐷 and ΣΣΣ𝑖 are the variance-covariance matrices for the random effects across subjects and for the

within-subject random errors, respectively (Fitzmaurice et al., 2004; Liu, 2016).

The mean response trajectory over time for any individual can be described as

𝐸[𝑌𝑌𝑌𝑖|𝑏𝑏𝑏𝑖] = 𝑋𝑋𝑋𝑖𝛽𝛽𝛽 + 𝑍𝑍𝑍𝑖𝑏𝑏𝑏𝑖,

whereas the mean response profile in the population is given by

𝐸(𝑌𝑌𝑌𝑖) = 𝜇𝜇𝜇𝑖

= 𝐸[𝑋𝑋𝑋𝑖𝛽𝛽𝛽 + 𝑍𝑍𝑍𝑖𝑏𝑏𝑏𝑖 + 𝜖𝜖𝜖𝑖]

= 𝑋𝑋𝑋𝑖𝛽𝛽𝛽 + 𝑍𝑍𝑍𝑖 𝐸[𝑏𝑏𝑏𝑖]

= 𝑋𝑋𝑋𝑖𝛽𝛽𝛽,

since 𝐸[𝑏𝑏𝑏𝑖] = 000. The former is referred as the conditional mean of 𝑌𝑖, given the subject-specific effect,

and the latter is referred as the marginal mean of 𝑌𝑖, where the averaging is over all individuals in the

population (i.e., averaged over the distribution of the subject-specific effects)(Fitzmaurice et al., 2004). In a

similar way, we can distinguish between conditional and marginal covariances. The conditional covariance

of 𝑌𝑌𝑌𝑖, given 𝑏𝑏𝑏𝑖, is:

𝐶𝑜𝑣(𝑌𝑌𝑌𝑖|𝑏𝑏𝑏𝑖) = 𝐶𝑜𝑣(𝜖𝜖𝜖𝑖) = ΣΣΣ𝑖,

which describes the covariance among the longitudinal observations when focusing on the conditional

mean response profile of a specific individual (i.e., the covariance of the 𝑖𝑡ℎ individual’s deviations from

his or her mean response profile). Note that, these deviations are positive and negative, and vary randomly

about zero. Besides that, it is usually assumed that Σ𝑖 is a diagonal matrix , 𝜎2
𝜖𝐼𝐼𝐼𝑛𝑖, where 𝐼𝐼𝐼𝑛𝑖 denotes an

𝑛𝑖 ×𝑛𝑖 identity matrix
3, and measurements errors are independently distributed with a common variance

𝜎2
𝜖 .

3 Recall that, in the identity matrix, the diagonal elements are all 1 and the off-diagonal elements are 0.
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On the other hand, the marginal covariance of 𝑌𝑌𝑌𝑖, averaged over the distribution of 𝑏𝑏𝑏𝑖, is:

𝐶𝑜𝑣(𝑌𝑌𝑌𝑖) = 𝐶𝑜𝑣(𝑍𝑍𝑍𝑖𝑏𝑏𝑏𝑖) + 𝐶𝑜𝑣(𝜖𝜖𝜖𝑖)

= 𝑍𝑍𝑍𝑖𝐶𝑜𝑣(𝑏𝑏𝑏𝑖)𝑍𝑍𝑍′ + 𝐶𝑜𝑣(𝜖𝜖𝜖𝑖)

= 𝑍𝑍𝑍𝑖𝐷𝐷𝐷𝑍𝑍𝑍′
𝑖 + ΣΣΣ𝑖

= 𝑍𝑍𝑍𝑖𝐷𝐷𝐷𝑍𝑍𝑍′
𝑖 + 𝜎2

𝜖𝐼𝐼𝐼𝑛𝑖,

where the covariance matrix, 𝐶𝑜𝑣(𝑌𝑌𝑌𝑖), will, in general, have non-zero off-diagonal elements, thereby ac-
counting for the correlation among repeated observations on the same individual. Thus, the introduction of

random effects, 𝑏𝑏𝑏𝑖, can be seen to induce correlation among repeated measurements of 𝑌𝑌𝑌𝑖. A particular

property of the linear mixed effects models is that 𝐶𝑜𝑣(𝑌𝑌𝑌𝑖) has been described in terms of a set of covari-
ance parameters, some defining the matrix 𝐷𝐷𝐷 and some defining the matrix ΣΣΣ𝑖, which allows the explicit

analysis of between-subject (𝐷𝐷𝐷) and within-subject (ΣΣΣ𝑖) sources of variation in the responses. In addition,

the marginal covariance of𝑌𝑌𝑌𝑖 can be expressed as an explicit function of the times of measurement (when

times of measurement, or functions of time, are included in 𝑍𝑍𝑍𝑖), and by turn each individual can have a

unique sequence of measurement times.

Given the specification of the variance/covarince components, the total variance of 𝑌𝑌𝑌𝑖, denoted 𝑉𝑉𝑉𝑖, is

given by:

𝑉𝑉𝑉𝑖 = 𝑍𝑍𝑍𝑖𝐷𝐷𝐷𝑍′𝑍′𝑍′
𝑖 + ΣΣΣ𝑖,

where the off-diagonal elements in𝑉𝑉𝑉𝑖 reflect dependence of the repeated measurements of the responses

𝑌𝑌𝑌𝑖. Therefore, 𝑌𝑌𝑌𝑖 can be expressed as:

𝑌𝑖𝑌𝑖𝑌𝑖 ∼ 𝑀𝑉𝑁(𝑋𝑖𝑋𝑖𝑋𝑖𝛽𝛽𝛽,𝑉𝑖𝑉𝑖𝑉𝑖 = 𝑍𝑍𝑍𝑖𝐷𝐷𝐷𝑍𝑍𝑍′
𝑖 + ΣΣΣ𝑖). (9)

Diggle et al. (2002) proposed a useful model which can be viewed as an extension of the general linear

mixed model, and where the covariance assumptions are relaxed by allowing an appropriate, more general,

residual covariance structure ΣΣΣ𝑖 for the vector 𝜖𝜖𝜖𝑖 of subject-specific error components. They propose to

decompose the random term 𝜖𝑖 into two components in an additive way,

𝜖𝜖𝜖𝑖 = 𝜖𝜖𝜖(1)𝑖 + 𝜖𝜖𝜖(2)𝑖

where 𝜖𝜖𝜖(1)𝑖 is a component of measurement process itself and 𝜖𝜖𝜖(2)𝑖 is a component of serial correlation,

suggesting that at least part of an individual’s observed profile is a response to time-varying stochastic

processes operating within that individual. Thus, Diggle et al. (2002) suggest using a single subject effect
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(𝑏𝑖), setting 𝑉𝑎𝑟(𝜖(1)𝑖) = 𝜏2𝐼𝑛𝑖
, and introducing a third random error vector, 𝜖(2)𝑖, which has a serial

correlation structure.

The resulting linear mixed model can be written as:

𝑌𝑌𝑌𝑖 = 𝑋𝑋𝑋𝑖𝛽𝛽𝛽 + 𝑍𝑍𝑍𝑖𝑏𝑏𝑏𝑖 + 𝜖𝜖𝜖(1)𝑖 + 𝜖𝜖𝜖(2)𝑖 (10)

⎧{{{{
⎨{{{{⎩

𝑏𝑏𝑏𝑖 ∼ 𝑁(000,𝐷𝐷𝐷),
𝜖𝜖𝜖(1)𝑖 ∼ 𝑁(000, 𝜏2𝐼𝐼𝐼𝑛𝑖),
𝜖𝜖𝜖(2)𝑖 ∼ 𝑁(000, 𝜎2𝐻𝐻𝐻𝑖),
𝑏1, … , 𝑏𝑚, 𝜖(1)𝑚, 𝜀(2)1, … , 𝜖(2)𝑚 independent,

and the model is completed by assuming a specific structure for the (𝑛𝑖 × 𝑛𝑖) correlation matrix 𝐻𝐻𝐻𝑖.

Specifically, the random serial effect 𝜖(2)𝑖 results in a correlation between serial measurements, which

depends only on the distance or time between the observations. The serial correlation matrix𝐻𝐻𝐻𝑖 then only

depends on 𝑖 through the number 𝑛𝑖 of observations and through the time points 𝑡𝑖𝑗 at which measure-

ments are taken. Diggle et al. (2002) suggest several parametric forms for the correlations which model it

as a decreasing function of increasing time. Two frequently used are the exponential and Gaussian serial

correlation functions which are shown in figure 2.

Given the additive formulation proposed by Diggle et al. (2002), 𝑌𝑌𝑌𝑖 can now be expressed as:

𝑌𝑌𝑌𝑖 ∼ 𝑀𝑉𝑁(𝑋𝑋𝑋𝑖𝛽𝛽𝛽,𝑉𝑉𝑉𝑖 = 𝑍𝑍𝑍𝑖𝐷𝐷𝐷𝑍𝑍𝑍′
𝑖 + 𝜎2𝐻𝑖𝐻𝑖𝐻𝑖 + 𝜏2𝐼𝑖𝐼𝑖𝐼𝑖). (11)

where 𝐻𝐻𝐻𝑖 is a matrix with (𝑗, 𝑘) elements ℎ𝑖𝑗𝑘 = 𝜌(|𝑡𝑖𝑘 − 𝑡𝑖𝑗|).
One very appealing aspect of this general linear mixed effects model is its flexibility in accommodating

any degree of imbalance in longitudinal data, coupled with its ability to account for the covariance in a

relative parsimonious way. In fact, it allows one to model correlation and variance with only few parameters,

event when there are many different observation times, using only one random effect. Additionally, the

model assumes a continuous outcome variable which is linearly related to a set of explanatory variables,

and it expands on the ordinary linear regression model by incorporating lack of independence between

repeated observations and more than one error term (Cnaan & Laird, 1997).

Under the assumption that the 𝑏𝑏𝑏𝑖 and 𝜖𝜖𝜖𝑖 are independently distributed as multivariate normal, and

𝑌𝑌𝑌𝑖 ∼ 𝑀𝑉𝑁(𝑋𝑖𝛽, 𝜎2𝑉(𝛼)), estimation of the parameters by maximum likelihood (ML) is straightfor-
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ward. Thus, in the present study, we will consider simultaneous estimation of the parameters of interest,

𝛽𝛽𝛽, and of the covariance parameters, 𝜎2 and 𝛼, using likelihood function for observed data, as given by:

𝐿(𝛽𝛽𝛽, 𝜎2, 𝛼) = −0.5{𝑛𝑚 𝑙𝑜𝑔(𝜎2) + 𝑚 𝑙𝑜𝑔(|𝑉𝑉𝑉(𝛼)|) + 𝜎−2(𝑦𝑦𝑦 − 𝑋𝑋𝑋𝛽𝛽𝛽)′𝑉𝑉𝑉−1(𝑦𝑦𝑦 − 𝑋𝑋𝑋𝛽)𝛽)𝛽)} (12)

For given 𝛼, the maximum likelihood estimator for 𝛽𝛽𝛽 is the weighted last-squares estimator (Diggle et

al., 2002), given by:

̂𝛽 ̂𝛽 ̂𝛽(𝛼) = (𝑋𝑋𝑋′𝑉𝑉𝑉(𝛼)−1𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑉𝑉𝑉(𝛼)−1𝑦𝑦𝑦. (13)

Substituting 13 in 12 we will have:

𝐿(𝛽𝛽𝛽(𝛼), 𝜎2, 𝛼) = −0.5{𝑛𝑚 𝑙𝑜𝑔(𝜎2) + 𝑚 𝑙𝑜𝑔(|𝑉𝑉𝑉(𝛼)|) + 𝜎−2𝑅𝑆𝑆(𝛼)}, (14)

where the residual sum of squares (𝑅𝑆𝑆) is given by,

𝑅𝑆𝑆(𝛼) = {𝑦 − 𝑋 ̂𝛽(𝛼)}′𝑉(𝛼)−1{𝑦 − 𝑋 ̂𝛽(𝛼)}.

The maximum likelihood estimator for 𝜎2 is obtained differentiating 14 with respect to 𝜎2, for given 𝛼,
as:

𝜎̂2(𝛼) = 𝑅𝑆𝑆(𝛼)/(𝑛𝑚),

where 𝑁 = ∑𝑚
𝑖=1 𝑛𝑖 is the total number of measurements on all 𝑚 units.

Finally, the maximum likelihood estimate of 𝛼 maximizes

𝐿(𝛼) = −0.5[𝑁 𝑙𝑜𝑔{𝑅𝑆𝑆(𝛼)} +
𝑚

∑
𝑖=1

𝑙𝑜𝑔|𝑉(𝛼)|].

Regarding the interpretation of the parameters, the fixed effects throughout parameter vector 𝛽𝛽𝛽 de-

scribe patterns of change in the mean response over time (and their relation to covariates) in the population

of interest. The interpretation is exactly the same as in a simple linear regression model. So, assuming

we have 𝑝 covariates in the design matrix, the coefficient 𝛽𝛽𝛽𝑗, where 𝑗 = 1, … , 𝑝, denotes the change in
the average𝑌𝑌𝑌𝑖 when the corresponding covariate 𝑥𝑗 is increased by one unit, while all other predictors are

held constant. On the other hand, the random effects throughout parameter vector 𝑏𝑏𝑏𝑖 describe how the

trend over time for the 𝑖𝑡ℎ individual deviates from the population average. So, when combined with the

fixed effects, 𝑏𝑏𝑏𝑖 describes the mean response trajectory over time for any individual, which varies randomly
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from one individual to another. Finally, the random errors are denoted by 𝜖𝜖𝜖𝑖 and represent the deviation

of 𝑌𝑌𝑌𝑖 from the subject-specific mean response, 𝑋𝑋𝑋𝑖𝛽𝛽𝛽 + 𝑍𝑍𝑍𝑖𝑏𝑏𝑏𝑆𝑖. Note that there is a change in notation

from measurement or sampling errors in model (7), where 𝑒𝑖 represents the deviation of 𝑌𝑖 from the

mean response in the population. So, the random error in previous longitudinal regression model (7) have

now been decomposed into two random components, 𝑒𝑖 = 𝑏𝑖 + 𝜖𝑖, a between-subject component and

a within-subject component, as specified in model (8) (Fitzmaurice et al., 2004). Recall that, in general

linear mixed model proposed by Diggle et al. (2002), the within-subject component, by turn, have been de-

composed into two random components, 𝜖(1)𝑖 and 𝜖(2)𝑖, representing the measurement error and serial

correlation, respectively (model 10).

3.2.3 Variogram

When analyzing longitudinal data, it is often essential to explore the covariance structure of the data

before deciding which models might be most appropriate. The variogram (VG) is a helpful graphical tool,

which displays the variability between data points as a function of distance or time lag (Diggle, 2005).

So, for longitudinal data, the VG is defined as one-half the expected squared difference between residuals

obtained on the same individual. The VG, denoted as 𝛾(ℎ𝑖𝑗𝑘), is given by:

𝛾(ℎ𝑖𝑗𝑘) = 1
2𝐸(𝑟𝑖𝑗 − 𝑟𝑖𝑘)2, (15)

where (ℎ𝑖𝑗𝑘) is the time elapsed between the 𝑗𝑡ℎ and 𝑘𝑡ℎ repeated measurement on the 𝑖𝑡ℎ individual

(Fitzmaurice et al., 2004).

The empirical or sample variogram, 𝛾̂(ℎ), is simply defined as one-half the average squared difference
between pairs of residuals on the same individual whose corresponding observations are ℎ units apart

and average is taken over all pairs of observations for which ℎ𝑖𝑗𝑘 = ℎ (Fitzmaurice et al., 2004). One

practical advantage of the variogram over, for instance, the covariance function, is that estimation from

observed data is more straightforward, especially when the underlying stochastic process is observed at

irregular time-points. So, with unbalanced longitudinal data, the empirical VG can be easily estimated by

fitting a smooth curve to the scatterplot of the observed half squared differences between residuals from

the same individual and the corresponding time lags (also called variogram cloud) (Diggle, 2005).

Three sources of variability - random effects (or between-client variance), serial correlation (or whitin-

client variance), and measurement error (or white noise) - can be broken out with this graphical tool,
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Figure 2: Example of a theorical variogram

as displayed in Figure 2(A). Thus, the upper horizontal line represents the total variability present in the

model. The curved line is actually the representation of the theorical variogram function; consequently,

the amplitude of this curve represents the variability within the client (or serial correlation). The distance

between the maximum of the curve and the upper horizontal line represents the variability between clients

(or random effects). Finally, the distance between zero and the minimum value of the variogram line is

the variability not explained in the model (white noise or measurement error) (Diggle et al., 2002).

Figure 2(B), by turn, shows the parameters of the variogram. Range indicates the lag time beyond

observations appear independent (i.e., variance no longer increases); sill is the value that the variogram

attains at the range (the value on the y-axis). From this point forward, one assumes that there is no more

time dependence, as variance of the differences between the pairs of residuals becomes constant with

time lag. The partial sill is the sill minus the nugget effect. Nugget represents the measurement error and

it is estimated from the variogram as the value of 𝛾(ℎ) for ℎ = 0 (Diggle et al., 2002).

In order to select the appropriate statistical model, it is necessary to adjust the mathematical model (i.e.,

theorical variogram) which better represents the trend of the empirical variogram with relation to time lag.

So, based on the shape of the variogram, we can select the parameterisation for the correlation function in

the model which better fit the data. Several theoretical models are used to adjust the variogram including

exponential, gaussian and spherical (see Figure 2 (c)) (Diggle et al., 2002).
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3.2.4 Model Diagnostic Procedures

Once a linear mixed model is fitted, regression diagnostics are necessary in order to verify whether the

statistical model fits data appropriately or any systematic discrepancies comes to light. According Diggle

et al. (2002), simple plots can be a very effective tool in revealing inconsistencies between data and model,

regarding both the mean structure (the fixed effects) and the covariance structure (the random effects and

residual error). In this sense, one can: i) superimpose the fitted mean response profiles on a

time-plot of the average observed response within each combination of treatment and time;

and, ii) superimpose the fitted variogram on a plot of the empirical variogram. This procedures

will allow the validation of mean structure and correlation structure, respectively, by graphical comparison.

Residuals, defined as the differences between the observed and fitted values of the response, have long

been used for graphical and numerical examinations of the adequacy of standard regression models with

independent observations. In the longitudinal setting, regression diagnostics are more complex because

an individual’s response is measured repeatedly over time (i.e., there are serial correlation). However, with

relatively minor modifications, many of the residuals diagnostic developed for standard linear regression

can be extended to the longitudinal setting, particularly to the mixed effect models (Fitzmaurice et al.,

2004). So, given that the residuals from an analysis of longitudinal data are correlated, and potentially

correlated with the covariates, and do not necessarily have constant variance over time, the first step is

transform the residuals to ensure they have constant variance and zero correlation, thereby mimicking

residuals from a standard linear regression. This can be achieved using a well-known technique called the

Cholesky decomposition (or Cholesky factorization) (for more details, see Fitzmaurice et al.2004). Using

the set of transformed residuals, all of the usual residuals diagnostics for standard regression can be

applied.

In order to check for any systematic departures form the model for the mean response, we can construct

a scatterplot of the transformed residuals versus the transformed predicted values. The fitting

of a smooth curve to the scatterplot can often help in judging whether curvature is present. In a correctly

specified model, the scatterplot should display no systematic pattern, with a random scatter around a

constant mean of zero. Similarly, the transformed residuals also make it somewhat easier to assess the

normal distribution assumption and to identify potential outliers that require further investigation, call on a

normal quantile plot (or so-called quantile-quantile or Q-Q plot). So, on the basis of the ranks, we can

plot the sample quantiles of the residuals against the quantiles expected if they have a normal distribution.
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If the residuals depart discernibly from a straight line, then the assumption of normality may not be tenable.

By turn, outliers, will appear far from the ends of the line (Fitzmaurice et al., 2004).

In order to assess the adequacy of the model for the covariance, the variogram, previously used to

suggest appropriate models, can now be used as a diagnostic tool. The variogram, given by (15), can be

expressed as:

𝛾(ℎ𝑖𝑗𝑘) = 1
2𝐸(𝑟𝑖𝑗 − 𝑟𝑖𝑘)2

= 1
2𝐸(𝑟2

𝑖𝑗 + 𝑟2
𝑖𝑘 − 2𝑟𝑖𝑗𝑟𝑖𝑘)

= 1
2𝑉𝑎𝑟(𝑟𝑖𝑗) + 1

2𝑉𝑎𝑟(𝑟𝑖𝑘) − 𝐶𝑜𝑣(𝑟𝑖𝑗, 𝑟𝑖𝑘).

.

When the variogram is applied to the transformed residuals, it simplifies to:

𝛾(ℎ𝑖𝑗𝑘) = 1
2𝑉𝑎𝑟(𝑟𝑖𝑗∗) + 1

2𝑉𝑎𝑟(𝑟𝑖𝑘∗) − 𝐶𝑜𝑣(𝑟𝑖𝑗∗, 𝑟𝑖𝑘∗) = 1
2(1) + 1

2(1) − (0) = 1.

Thus, in a correctly specified model for the covariance, a smooth plot of the empirical variogram

for the transformed residuals should fluctuate randomly around a horizontal line centered at 1, and

display no systematic curvature or trend over time (Fitzmaurice et al., 2004).

3.2.5 Missing Data

In longitudinal studies scope, it is very often the case that some subjects miss some of their planned

measurements for a variety of reasons, originating missing data (Diggle et al., 2002). Depending on the

features of themissing data patterns, we can distinguish two types of missingness, namelymonotone

and non-monotone. The earliest covers the case of loss to follow-up or dropout, when a subject is with-

drawn from the study before its intended completion, so measurement sequence terminates prematurely.4

The non-monotone missingness, also known as intermittent, is a more general type that covers cases in

which the response of a subject is missing at one follow up time, but other measurements are observed

following missing values (Little & Rubin, 2019).

4 Another case of monotone missingness is late entry, when a subject does note provide some of her initial response measurements but appears later and stays

in the study until completion.
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Missing data poses several challenges for analysis. The first and most obvious is a loss of information

and a potential reduction in precision of inference on the population of interest (i.e., loss of efficiency).

In fact, the reduction in precision is directly related to the amount of missing data, and, to prevent this,

standard pieces of advice are reiterated in literature, namely: i) enroll more individuals to achieve the same

levels of power in detecting important effects; ii) avoid missing values wherever possible, by taking energetic

steps to retain subjects in the study; and, iii) collect covariates that are useful for predicting missing values

(Little, 1995). Another issue is that missingness results in unbalanced data sets because not all subjects

have same number of measurements at a common set of occasions. This creates complications for

methods of analysis that require balanced data, but it does not pose any concern for the linear mixed-

effect model introduced earlier. Finally, of much greater concern is the potential for biased and misleading

inferences that can result if the reasons for missingness are related to outcomes of interest. In fact, the

main concern of longitudinal analysis with missing data arises when there is an association between the

longitudinal profile and the missing process. For example, if a patient drops-out the study because he/she

believes that the treatment is not being effective, the missing values should not be dissociated from the

measurement process. Therefore, it is necessary to distinguish between different reasons or mechanisms

for missing values, in order to account a possible association (Little, 1995).

The appropriateness of different methods to the analysis of incomplete longitudinal data is determined

by the missing data mechanism (i.e., reason for missing values). The missing data mechanism can

be thought of as the probability model describing the relation between the missing data R and response

data Y processes. So, in general, let Y∗ denote the complete set of measurements which would have been

obtained were there no missing values. To distinguish between the response measurements we actually

collected from the ones we have planned to, let R denote a set of indicator random variable defined as:

𝑟𝑖𝑗 =
⎧{
⎨{⎩

1 if 𝑦𝑖𝑗 𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Therefore, we obtain a partition of the complete response vector Y∗ into two subvectores, the observed

data subvector Y𝑜 containing those 𝑦𝑖𝑗 for which 𝑟𝑖𝑗 = 1, and the missing data subvector Y𝑚 containing

the measurements which would have been available had they not been missing, for whatever cause.

A taxonomy of missing data mechanisms, first proposed by Rubin (1976), and further developed by

Little & Rubin (2019), is based on the conditional density of the missingness process R given the complete

response vector Y∗ = (Y𝑜, Y𝑚).
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MCAR - Missing Completely at Random: refers to the probability of missing does not depend on

either the observed or unobserved measurements. So, the conditional density is given by:

[R|Y𝑜, Y𝑚] = [R]

An example is when subjects drop out prior to the end of the study because they move to locations that

are inaccessible to the research or, in a clinical trial, when subjects forgot the appointment originating

missing data. In both scenarios, we have arbitrary reasons for missingness.

UnderMCAR assumption, the observed data Y𝑜 can be considered as a random sample of the complete

data Y∗. This, in turn, means that the distribution of the observed data does not differ from the distribution

of the complete data, and we can obtain valid inferences using any valid statistical procedures for the data,

while ignoring the process(es) generating the missing values (Rizopoulos, 2012). A standard procedure

for testing for MCAR is to compare the equality of the empirical distributions of observed variables across

the patterns (i.e., for respondents and non respondents subjects), using t-tests for location (Little, 1995).

MAR - Missing at Random: refers to the probability of missing depends on the observed data, but

not on the unobserved measurements. In this scenarios, the conditional density is given by:

[R|Y𝑜, Y𝑚] = [R|Y𝑜]

A standard example of MAR longitudinal data arises when a protocol stated that subjects, whose response

value exceeds a specific threshold (e.g., diastolic blood pressure exceeding 110 mmHg), should ”jump” or

to be removed from the study - which can be seen as a form of planned drop-out. In this case, subjects

leaves the study on doctors’ advice based on previous observed longitudinal measurements, missingness

is under the control of the investigator and is related to the observed components of Y𝑜 only (Little, 1995).

Due the fact that the missing data mechanism depends on Y𝑜, the distribution of Y𝑜 does not coin-

cide with the distribution of Y∗, and therefore the observed data cannot be considered a random sample

from target population (as in MCAR case). An important implication of this feature of MAR is that sample

moments (e.g., mean and variance) are not unbiased estimates of the same moments in the target popula-

tion. Thus, statistical based on these moments, without accounting for MAR (e.g., Generalized Estimation

Equation - GEE), may prove misleading. In contrast, likelihood-based analysis based on the observed data,

even without accounting for MAR, can provide valid inferences if the model for the measurement process

Y∗ is correctly specified (Rizopoulos, 2012).

MNAR - Missing Not at Random: refers to the probability of missing depends on observed and

unobserved data. In this scenario, the conditional density is given by:

[R|Y𝑜, Y𝑚]𝑜𝑟[R|Y𝑜, Y𝑚] = [R|Y𝑚]
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An example of MNAR longitudinal data arises when subject decides to leave the study because he/ she

feels ill on the day of their appointment, and the illness is related with the observed longitudinal profile, as

also with those measurements that would have been observed if he/she have kept on the study (Sousa,

2011).

MNAR also is often called nonrandom missingness, and in the case of dropout, nonrandom dropout,

given the observed data do not constitute a random sample from the target population. Under MNAR, as

the missingness mechanism is nonignorable, we can only obtain valid inferences from an analysis that is

based on the joint distribution of the measurement and missing process. (Rizopoulos, 2012).

Concluding, MCAR and MAR missing data mechanisms are known in the literature as ignorable, since

longitudinal likelihood-based analysis can be performed while the missing data model can be left unspec-

ified, or ignored (Little & Rubin, 2019). However, missing values originated by MNAR are said to be

informative or nonignorable, and in such cases, models for the missing-data mechanism become useful,

as we will explain on section 3.3. To perform this models and inform researchers about the mechanism

that is creating missing values, one should collect as much information as possible about the reasons for

missing value (Little, 1995).

3.2.6 Conclusion

Longitudinal approach enable direct study of change, giving its capacity to distinguish changes over time

within individuals (ageing effects) from differences among people in their baseline levels (cohort effects)

(Diggle et al., 2002). In this sense, longitudinal analysis is a powerful tool to the scope of psychotherapy

research, which enables expanding our knowledge about client’s process change. Particularly, answering

questions as whether, how, and for whom psychotherapy (doesn’t) work(s).

In a longitudinal study, individuals are measured repeatedly over time, and, inevitably, missing data is

a ubiquitous issue. By missing data, we mean data that we planned to collect but did not get, considering

different reasons and patterns. A particular case is dropout (i.e., loss during follow-up of participants who

initially were in the study), which, as the remains, poses challenges for both reliability and validity of the

estimates.

According Little & Rubin (2019), there are three drop-out mechanisms, which need be appropriately

handled in order to achieve unbiased estimates. They are: MCAR - missing completely at random, MAR -

missing at random, and MNAR - missing not at random. The first two are known in literature as ignorable,

since longitudinal likelihood-based analysis can be performed ignoring them. However, the former is said to
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be informative or nonignorable, since the reasons for dropout are related to observed (longitudinal profile)

and unobserved (survival mechanism) data, requiring, by turn, the joint modelling of longitudinal and

survival data (Rizopoulos, 2012). Following section introduces a modelling framework especially designed

to account for nonignorable dropout mechanisms.

3.3. JOINT MODELLING OF LONGITUDINAL AND SURVIVAL DATA

Joint models for longitudinal and survival data are particularly relevant to many longitudinal studies,

specially when repeated measurements on a response variable, an observation on a possibly censored

time-to-event (”failure” or ”survival”), and additional covariate information are collected on each participant,

and the main interest relies on interrelationships between these variables (Tsiatis & Davidian, 2004). In

fact, joint modelling approach is required whenever at least one of the following scenarios is suspicious or

true (Teixeira et al., 2019):

1. repeated measurements are correlated with time-to-event (i.e., in the presence of informative cen-

soring - when the reason for censure is related to the study outcomes)

2. repeated measures are measured with error, and/or

3. non-ignorable missing data are present

In these scenarios, the researcher needs to establish the statistical structure for accounting for potential

lack of independence between survival (or missing data mechanism) and longitudinal processes. Thus,

joint modelling methods are preferable to separate analyses, both to make optimal use of the available

information and to obtain unbiased estimates of the model parameters (Asar et al., 2015).

Depending on specific applications, there are at least three different kinds of scientific objectives

in joint modelling methodology. Firstly, the objective may be to analyse the longitudinal measurements

𝑌 while allowing for association with a time-to-event outcome 𝑇 that is not of direct scientific interest.

A widely occurring example of this is when 𝑇 is a potentially informative (non-random) dropout time. A

second possible objective is to analyse the distribution of time-to-event outcome 𝑇, while taking account
of the association between 𝑇 and 𝑌. In this case, the joint model can be interpreted as a strategy for

conducting a survival analysis in the presence of an endogenous time-varying variable measured with error.

Finally, joint modelling can be undertake to analyse the effects of covariates of interest on both longitudinal

and time-to-event processes, considering their joint evolution. In this case, the relationship between 𝑌 and

𝑇 is of direct scientific interest.
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3.3.1 Joint Models

The essence of likelihood approaches in joint modelling is the specification of the joint distribution

[𝑌, 𝑇] for 𝑌 and 𝑇, the random variables of repeated measurements and failure time, respectively. There

are three types of likelihood approaches that can be classified according to how the joint distribution

is factored: selection models, mixture models and random effects models. Their differences can be

perceived in the following equations, where 𝑈 = (𝑈1, 𝑈2) represents the latent random effects that

links the longitudinal and survival processes:

Selection models: [𝑌, 𝑇] = [𝑌] × [𝑇|𝑌] (16)

Pattern-mixture models: [𝑌, 𝑇] = [𝑇] × [𝑌|𝑇]. (17)

Random effects models: [𝑌, 𝑇, 𝑈] = [𝑈][𝑌|𝑈1][𝑇|𝑈2] (18)

Selection models factorise the joint density into to product of the marginal density of the repeated

measurements and the conditional density of the survival process given the repeated measurement, as

in (16). So, besides to specify a model for the complete longitudinal data, a survival or selection model

is required in order to characterizes the dropout probability as a function of covariates and complete data

(Hogan et al., 2004).

Pattern-mixture models factorise the joint density in the alternative way, that is as the product of

the marginal density of the survival process, and the conditional density of repeated measurement given

the event time (i.e., dropout), as in (17). In this sense, mixture models treat the longitudinal response

distribution as a mixture over dropout patterns (or times to dropout), regarding them as a source of het-

erogeneity. Applied to longitudinal studies, patter-mixture models are well suited to analysis where the

number of dropouts is small, and can be perfectly used as an exploratory tool to check on longitudinal

profile stratify by missing pattern groups (Hogan et al., 2004; Sousa, 2011).

Although mathematically the selection and the pattern-mixture models describe exactly the same joint

distribution, they have different statistical interpretations. Therefore, the model strategy to adopt depends

mostly on the nature of the statistical problem and the scientific questions to be answered. Selection

models are mainly used when inference focus relies on the influence of a longitudinal variable, measured

with error, in the estimation of the survival sub-model parameters. In this case, it is possible to quantify

the effect of the longitudinal outcome on the survival hazard. On the other hand, when primary interest is
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on the longitudinal trajectory, which might be associated with an event pattern, the pattern-mixture models

are more commonly used. To a review of different approaches and applications that have been suggested

in the literature, please see for example Sousa (2011).

Random effects models, the third general class of joint models, use latent frailties or random effects

to induce dependence between the responses 𝑌 and the event time 𝑇. Some versions of these models
also have been referred to as frailty models, shared parameter models, or models with random-coefficient-

dependent dropout (Hogan et al., 2004). A key feature of random effects joint models is that they are

specified conditionally on a latent variable or a unobserved random effect (as in 18), by assuming condi-

tional independence between 𝑌 and 𝑇 given a bivariate random effect 𝑈 = (𝑈1, 𝑈2). They formalize
the intuitive idea that a subject’s pattern of response in a study as well as his/her propensity to dropout

are likely to depend on many characteristics of that subject, including some which are unoservable as

an underlying disease or illness progression. These unobervable characteristics are then included in the

model by a random effect, rather than to a the actual outcome (Diggle et al., 2002; Sousa, 2011). More-

over, in terms of Little & Rubin (2019) taxonomy of missing data mechanisms, the dropouts equation 18

are completely random if 𝑈1 and 𝑈2 are independent, whereas if 𝑈1 and 𝑈2 are dependent then in

general the dropouts are informative (Diggle et al., 2002). Consequently, in practice, in absence of depen-

dence between longitudinal response and dropout mechanism, the analysis becomes as two independent

longitudinal and survival analyses (Sharf & Diener, 2010).

Depending on the primary interest of the analysis, random effects joint models can be formulated to

handle either a survival process with longitudinal covariates measured with error or a longitudinal process

with informative censoring, while accounting for the strength of the link between longitudinal and survival

processes. Along with the different formulations there are various types of random effects joint models,

which make use of different submodels. A typical formulation is given and detailed following.

3.3.2 Random Effects Joint Model

The most commonly used formulation of the random effects model is the use of a linear mixed effects

model linked to a semi-parametric Cox model. In this sense, to represent the longitudinal process, an oft

used submodel is a linear mixed effects model, previously introduced in section 3.2.2, that incorporates

random effects into a linear model in order to account for the within-subject correlation, as given by:

Longitudinal process: 𝑦𝑖(𝑡𝑖𝑗) = 𝑋𝑋𝑋1𝑖(𝑡𝑖𝑗)𝛽𝛽𝛽1 + 𝑈0𝑖 + 𝑈1𝑖𝑡(𝑖𝑗) + 𝜖𝑖(𝑡𝑖𝑗) (19)
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where 𝑦𝑖(𝑡𝑖𝑗) corresponds to the 𝑖𝑡ℎ individual at time 𝑡𝑖𝑗, 𝑋1𝑖 is the (𝑛𝑖 × 𝑝) design matrix for the

fixed covariates, with corresponding regression parameters 𝛽𝛽𝛽. The random measurement error term 𝜖𝑖 ∼
𝑁(0, 𝜎2𝐼𝑛𝑖

) is assumed to be independent of 𝑊𝑖(𝑡) = 𝑈0𝑖 + 𝑈1𝑖𝑡(𝑖𝑗). Finally, 𝑊𝑖 is the subject-

specific random effects, where 𝑈0𝑖 and 𝑈1𝑖𝑡(𝑖𝑗) represent, for the individual 𝑖, the random intercept

and slope effects, respectively. Although the random intercept and slope model is used here to represent

the longitudinal process, others options can be considered like a random intercept only or a random

quadratic model (Philipson et al., 2012). Additionally, as postulated in section 3.2.2, this model can be

extended by incorporating a stochastic component which accounts for the within-individual fluctuations in

their repeated measurements over time (i.e., serial correlation). In doing so, this allows the separation of

the within-subject variations from measurement error, which by turn gives us a better representation of the

true overall longitudinal process (Diggle et al., 2002).

Regarding the survival process, an often used submodel is a time-dependent Cox model, as an extension

of the Cox proportional Hazards model, to allow the incorporation of time-varying covariates. This model

was previously indroduced in section 3.1. Thus, in order to incorporate the longitudinal random effects

into the survival model, a joint model commonly used is shown in equation 20:

Survival Process: ℎ𝑖(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝{𝑥𝑇𝑥𝑇𝑥𝑇
2𝑖𝛽𝛽𝛽2 + 𝛾0𝑈0𝑖 + 𝛾1𝑈1𝑖𝑡}, (20)

where 𝑥𝑥𝑥2𝑖 represents the baseline covariates with corresponding regression parameters 𝛽𝛽𝛽2, ℎ0(𝑡) repre-
sents the baseline hazard, and 𝛾0 and 𝛾1 represent the effect of the longitudinal random intercept and

slope on the survival process, that is, the association parameters. Equation 20 assumes a separate asso-

ciation for the influence of the random effects on the survival process. However, a common association

can also be assumed by allowing 𝛾 = 𝛾0 = 𝛾1 (Henderson et al., 2000).

Maximum likelihood (ML) estimation, one widely used method to estimate the parameters of the joint

model, adopted in the present work, involves maximizing the log likelihood of the joint distribution of the

longitudinal and survival processes given the random effects that are assumed to underlie both processes.

The joint likelihood is given by:

𝑁
∏
𝑖=1

∫ 𝑓 (𝑌𝑌𝑌𝑖|𝑈𝑈𝑈𝑖, 𝜃𝜃𝜃)𝑓 (𝑇𝑇𝑇𝑖, 𝛿𝛿𝛿𝑖|𝑈𝑈𝑈𝑖, 𝜃𝜃𝜃)𝑓 (𝑈𝑈𝑈𝑖|𝜃𝜃𝜃)𝑑𝑈𝑈𝑈𝑖,

where 𝑓 (𝑌𝑌𝑌𝑖|𝑈𝑈𝑈𝑖, 𝜃𝜃𝜃), 𝑓 (𝑇𝑇𝑇𝑖, 𝛿𝛿𝛿𝑖|𝑈𝑈𝑈𝑖, 𝜃𝜃𝜃) and 𝑓 (𝑈𝑈𝑈𝑖|𝜃𝜃𝜃) are the densities functions for the longitudinal process,
survival process, and random effects, respectively. The event indicator is given by 𝛿𝛿𝛿𝑖, equaling one if the

event occurred and zero otherwise.
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In order to maximize the likelihood of the observed data and estimate the parameters of interest,

maximization algorithms are implemented, with the most popular algorithm being the Expectation Maxi-

mization (EM) proposed by Dempster et al. (1977). More details of this approach can be founded in Diggle

et al. (2008) and Henderson et al. (2000).

To synthesize, in the present study we adopt the random effect methodology developed by Wulfsohn &

Tsiatis (1997) with the extension of Henderson et al. (2000), making use of joineR package in R, developed

by Philipson et al.(2012). The idea behind this methodology is to analyse simultaneously data arising

from survival and longitudinal processes exploiting dependencies between the components. Next, we will

introduce some joint model diagnostic tools, namely conditional residual analysis for longitudinal data with

nonrandom informative dropout.

3.3.3 Model Diagnostic Procedures

After obtain a final joint model using the random effects approach described in the previous subsection,

regression diagnostic are necessary in order to validate the model’s assumptions. The standard tools

to assess these assumptions are residual plots. Properties and features of residuals, when survival and

longitudinal outcomes are separately modeled, were introduced in section 3.1.5 and 3.2.4, respectively.

Even though the same type of diagnostic plots can be easily constructed to inspect the fit of joint models,

they can be misleading because residuals can be markedly affected by knowledge of the dropout time and

type, which therefore should properly be taken into account in an assessment of model adequacy.

The dropout mechanism implied by joint models is of nonrandom nature, and consequently the observed

data, upon which the residual are calculated, do not constitute a random sample of the target population

(Fitzmaurice et al., 2004). This in turn implies that residual plots based on the observed data alone can

be misleading because these residuals should not be expected to exhibit standard properties, such as zero

mean and independence. In practice, due to the impact of nonrandom dropouts, we cannot discern if a

given systematic trend in residual plots or lack-of-fit is truly attributed to a model misspecification.

To overcome the issue caused by the nonrandom dropout and produce residuals for the longitudinal

process that can be readily used in diagnostic plots, Rizopoulos et al., (2010) proposed a multiple impu-

tation (MI) procedure for generating multiple sets of completed data. Basically, the authors suggested to

augment the observed data with randomly imputed longitudinal responses under the complete data model,

corresponding to the longitudinal outcomes that would have been observed had the subjects not dropped

40



out. The simulation scheme to conduct this kind of analysis is available in the residuals() method, and

can be invoked using the logical argument MI, in package JM() Rizopoulos, 2010, 2012b).

3.3.4 Conclusion

Often, psychotherapy studies collect both longitudinal measurements and event times, recorded on the

participants during follow-up times. Joint models are appropriate when the longitudinal outcome and sur-

vival endpoints are associated in some way, and by turn, they can serve distinct purposes. Joint modelling

methodology can be applied i) to analyse the time-to-event outcome (survival analysis), accounting the

measurement errors or missing data in time-dependent covariate; ii) to analyse the longitudinal outcome

in the presence of informative (non-random) dropout; and iii) to analyse effects of unobservable (latent)

variables on both longitudinal and time-to-event outcomes, simultaneously. In these cases, separate in-

ferences based on the longitudinal model and the survival model may lead to biased or inefficient results.

Joint models, on the other hand, incorporate all information simultaneously and provide valid and efficient

inferences (Wu et al., 2012).

Over the last two decades, joint models for longitudinal and survival data have received much attention

in the literature, and have been adopted in several clinical research fields. Examples of the application can

be found on the scopes of immune deficiency disease (HIV/AIDS) (e.g., Tsiatis et al., 1995), leukemia and

cancer (e.g., Brown & Ibrahim, 2003; Ibrahim et al., 2010), cardiovascular and kidney diseases e.g.,(e.g.,

Andrinopoulou et al., 2012; Garre et al., 2008), and dementia (e.g., Proust-Lima et al., 2019) to name a few.

However, as far as we know, no study has yet applied the joint modelling approach to the psychotherapy

data, not even to the dropout or premature termination research.

Using a real data set as an example for the comparison between the separate (longitudinal and survival)

analysis and joint model approaches, the present work has a threefold purpose: i) discussing the parame-

trerisation and implementation of these models in R, using the joineR package, ii) draw attention of users

of this package to the interpretations of model parameters, iii) reinforce the relevance of these models in

psychotherapy research. In the next two chapters we present the method and results, respectively, from

the empirical study.
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4

J O I N T A N A LY S I S O F L O N G I T U D I N A L D ATA A N D T I M E U N T I L P R E M AT U R E

T E R M I N AT I O N I N P S Y CH O T H E R A P Y

The following chapter presents the results fromUP study, regarding separate and joint analysis of survival

and longitudinal processes. Firstly, in Section 4.1, we give an overview of UP sample regarding some

descriptive statistics and group comparison (i.e., censored vs. PT cases) for baseline sociodemographic

and clinical variables.

In Section 4.2, we present the survival analysis performed in order to understand what the possible

risk factors were for premature termination in psychotherapy, for these clients. Namely, the Kaplan-Meier

estimates and the Cox regression models main results are described.

Section 4.3 focuses on longitudinal analysis of therapeutic alliance quality (4.3.1) and treatment out-

come (4.3.2) in order to identify risk factors related to the mean progression of its values. Beginning with

an exploratory analysis for group (i.e., censored vs. PT cases) means over time as for variation among

individuals, following with the presentation of the main results of each longitudinal model fitted to the data.

Finally, in Section 4.4 we present the main results for joint analysis, incorporating both factors risk

for the premature termination in psychotherapy (survival process) and for the progression of therapeutic

alliance and treatment outcome variables (longitudinal process).

4.1. SAMPLE CHARACTERISTICS

Ninety-seven clients were available for analysis. Approximately 74% of overall sample consisted of

woman (n = 72), and the modal age was 24 years, with a range of 18 to 56 years (mean age = 28.97, SD

= 10.42)

Almost half (51.54%) of the subjects were married or had a significant relationship, 40.21% were single,

and 8.25% were divorced or separated. The majority have an university degree (56.7%), and 43.3% com-
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pleted between 9 to 12 years of school. Slightly more than half (54.64%) were students at the time of the

first appointment, while 39.18% worked full-time or part-time, and 6.19% were unemployed.

Recall that, according survival analysis framework, Premature Termination (PT), defined as the uni-

lateral initiative of the client to discontinue treatment, after at last one therapeutic session, without the

therapist’ agreement or knowledge, is, in the present study, the event of interest. Thus, considering the

time-to event-outcome, 31 (32%) clients experienced the event of interest - Premature Termination; and

66 (68%) were censored. Table 3 shows the descriptives for demographic characteristics of the sample

at intake, according to time-to-event outcome. No meaningful group differences were found in any of the

demographic variables (age, sex, relationship status, education level, and professional status).

Table 3: Demographic characteristics of the sample at intake, according to termination status

PT Censored

(n = 31) (n = 66)

M(SD) n(%) M(SD) n(%) Statistics p-value

Age at intake

(years) 28.61 (10.12) 29.14 (10.63) W = 1028.5 0.969

Sex

Male 7 (7.22%) 18 (18.56%) 𝜒2(1) = 0.06 0.807

Female 24 (24.74%) 48 (49.48%)

Relationship status

Single 15 (15.46%) 24 (24.74%) 𝜒2(2) = 1.30 0.523

Married/ in a relationship 14 (14.43%) 36 (37.11%)

Divorced 2 (2.06%) 6 (6.19%)

Education level

9-12 years 12 (12.37%) 30 (30.93%) 𝜒2(1) = 0.164 0.685

University 19 (19.59%) 36 (37.11%)

Professional status

Employed 14 (14.43%) 24 (24.74%) 𝜒2(2) = 0.748 0.688

Unemployed 2 (2.06%) 4 (4.12%)

Student 15 (15.46%) 38(39.18%)

Note. PT = Premature termination; M = mean; SD = standard deviation; W = non parametric Mann-Whitney test ; 𝜒2 = chi-square test.

Regarding clinical characteristics of the sample, approximately 29 % of overall sample was taking psy-

chiatric medication at the beginning of treatment. The clients were assigned a diagnosis according to

DSM-V (American Psychiatric Association, 2013) with the following distribution of principal diagnoses:
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50.52% anxiety disorders (22.68% social phobia, 17.53% panic disorders, 6.19% unspecified anxiety

disorder, 3.09% generalized anxiety disorder, 1.03% specific phobia), 41.24% mood disorders (35.05%

major depression, 4.12% dysthymia, 2.06% unspecified depressive disorder), and 8.25% others disor-

ders (3.09% obsessive-compulsive disorder, 1.03% trichotillomania, 3.09% illness anxiety disorder, and

1.03% post-traumatic stress disorder).

At intake, a considerable number of clients presented clinical symptomatology on the OQ-45.2 (79.38%),

as also clinical severity of depressive symptoms on the BDI-II (78.35%), while a few presented clinical

anxiety on BAI (30.93%). Figure 3 shows the distribution from QO-45.2, BDI-II and BAI data, at intake, for

all sample.

Considering PT and censored subgroups, there was also no major difference (Table 4) in any of the

clinical variables at intake (psychiatric medication, diagnoses areas, symptomatology level, depressive

severity and anxiety level), as also in symptomatology level as measured by OQ-10.2 questionnaire at last

session observed. However, regarding the therapeutic alliance quality, as measured by WAI inventory at

last session observed, premature termination group differ significantly from censored group. As we can

see in Table 4, clients who discontinue treatment (PT) show, on average, a worse therapeutic alliance

quality at last session observed (i.e., immediately before treatment discontinuation), when compared to

censored cases (49.03 vs 55.38 mean scores).
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Figure 3: Frequency distributions graphs of clients’ (a) symptomatology level, (b) depressive severity, and (c) anxiety

level at intake
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Table 4: Clinical characteristics of the sample at intake and last session observed, according to termination status

PT Censored

(n = 31) (n = 66)

M(SD) n(%) M(SD) n(%) Statistics p-value

Psychiatric medication at intake

No 22 (23.40%) 45 (47.87%) 𝜒2(1)=0.003 0.954

Yes 8 (8.51%) 19 (20.21%)

Diagnoses at intake

Anxiety 14 (14.43%) 35 (36.08%) 𝜒2(2)=0.542 0.763

Mood 14 (14.43%) 26 (26.80%)

Other 3 (3.09%) 5 (5.15%)

Symptomatology level at intake

clinical 22 (22.68%) 55 (56.70%) 𝜒2(1)=1.288 0.257

non-clinical 9 (9.28%) 11 (11.34%)

Depressive severity at intake

clinical 21 (21.65%) 55 (56.70%) 𝜒2(1) = 2.174 0.140

non-clinical 10 (10.31%) 11(11.34%)

Anxiety level at intake

clinical 10 (10.31%) 20 (20.62%) 𝜒2(1)= 0.003 1

non-clinical 21 (21.65%) 46 (47.42%)

Therapeutic alliance at last session

(WAI score) 49.03 (8.74) 55.38 (6.19) W = 1543 4.78×10−5 ∗ ∗∗
Symptomatology level at last session

(OQ-10.2 score) 16.04 (7.16) 14.09 (7.50) t(95)= -1.21 0.228

Note. PT = Premature termination; M = mean; SD = standard deviation; W = non parametric Mann-Whitney test ; 𝜒2 = chi-square test; 𝑡 = Student’s

t-test. *** Indicates statistical significance at 𝑝 < .001.
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4.2. SURVIVAL ANALYSIS

Considering the time-to-event outcome, as aforementioned, 31 (32%) clients experienced the event of in-

terest - premature termination; and 66 (68%) were censored. The sample distribution of event occurrences,

namely the number and proportion of clients remaining in treatment (i.e., survival function), dropping out

(i.e., hazard function), and completing treatment across the treatment sessions, is summarized in Table

5.

Table 5: Life table describing the number and proportion of dropouts by session for a sample of 97 clients

Session interval Remaining in treatment Dropping out Censored Hazard* Survival**

[1, 2) 97 1 0.01 0.99

[2, 3) 96 3 2 0.03 0.96

[3, 4) 91 1 2 0.01 0.95

[4, 5) 88 6 1 0.07 0.88

[5, 6) 81 3 3 0.04 0.85

[6, 7) 75 3 4 0.04 0.82

[8, 9) 68 1 1 0.02 0.80

[9, 10) 66 4 2 0.06 0.76

[10, 11) 60 3 1 0.05 0.72

[11, 12) 56 2 1 0.04 0.69

[12, 13) 53 1 1 0.02 0.68

[13, 14) 51 2 1 0.04 0.65

[15, 16) 48 1 0.00 0.65

[16, 17) 47 8 0.00 0.65

[17, 18) 39 1 8 0.03 0.64

[18, 19) 30 18 0.00 0.64

[19, 20) 12 8 0.00 0.64

[20, 21) 4 4 0.00 0.64

Note. * The estimated hazard function is given by equation 2; ** The estimated survival function is given by equation 1.

Table 5 shows the greatest proportion of dropout occurred after completing the fourth treatment session

(7%; n = 6). Besides that, nearly half of the clients (n = 17) who would ultimately dropout of treatment had

already done so after completing the sixth treatment session. On the other hand, after session thirteen

the hazard function is nearly zero, so the survivor function is flat, as we can see in Figure 4.

Figure 4 presents the Kaplan-Meier survival curve for all clients, considering right censoring and entire

observed follow up time. Note that, the estimated survival probability (𝑆𝑡), given by equation 1 and
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represented by black line, is a step function that changes value only at the time of each event, that is when

some participant drooped out. The dashed lines represent the 95% confidence intervals for the survival

probability.

Figure 4: Kaplan-Meier curve estimate of UP clients

In order to estimate the relative risk of treatment PT we proceeded with the calculation of the Kaplan-

Meier estimates stratified by category, considering the baseline covariables (i.e., measured at intake). To

evaluate whether or not Kaplan-Meier survival curves were statistically different, the log rank test (Mantel-

Cox test) was used. So, in Figure 5, the Kaplan-Meier survival curves comparing the probability of event

free (i.e., still on treatment at the end of each session) for ten covariables are displayed, namely client’s sex,

age, relationship status, educational level, professional status, diagnoses areas, psychiatric medication,

symptomatology level, depression severity and anxiety severity. The Log-rank test results are displayed in

table 6.

Only one covariable turned out to have significant effect on client’s risk of PT. The survival curves for

clinical and non-clinical groups, regarding the depression severity (as measured by BDI-II at intake), differ

marginally from each other (𝜒2(1) = 3.4, p=0.07). The respective Kaplan-Meier survival plot (Figure 5)

shows the same probability of PT in the first sessions, but already on the fifth session, the clinical curve

start to show a higher probability of survive per session when compared with the non-clinical curve. In other
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Figure 5: Kaplan-Meier curves estimates for the categorical variables measured at intake
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words, after session five, the probability of PT is higher for non-clinical subgroup, regarding depression

severity.

Table 6: Log-rank test results

p-value

Sex 0.7

Age 0.6

Relationship status 0.5

Educational level 0.7

Professional status 0.8

Diagnoses 0.6

Medication at intake 0.9

Symptomathology level (OQ-45.2) 0.1

Depression severity (BDI-II) 0.07 †

Anxiety level (BAI) 0.7

Note. †indicates marginally significant difference at p < .10.

4.2.1 Analysis with Cox Semi-Parametric Model

The non-parametric methods described in previous section (i.e., Kaplan-Meier curves and log-rank tests),

even useful in comparing the survival distributions of two or more groups, are unsuitable to describe the

effect of a quantitative variable on survival times. Besides that, they compare groups for univariate analysis,

taking into account only one factor at time and ignoring the impact of any others.

In order to assess simultaneously the effect of several risk factors, by considering both quantitative

and categorical variables, we proceed to modeling techniques. So, for the analysis of the premature

termination data in study, the Cox Proportional Hazards semi-parametric model (CPHM), given by the

equation 3, described in section 3.1.3, was considered.
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Univariate analysis for effect of explanatory variables

First, we started out by performing a univariate Cox regression analysis with single explanatory vari-

ables measured at intake (i.e., sex, age, relationship status, education level, professional status, diagnoses,

psychiatric medication, symptomatology level, depression severity and anxiety level), as well as with two

single explanatory variables measured at last session observed (i.e., therapeutic alliance quality and symp-

tomatology level), in order to estimate the effect of those independent variables on survival of clients. Note

that, some quantitative variables measured at intake, namely symptomatology level, depressive severity

and anxiety level, were re-codified into a categorical type (i.e., clinical vs. non-clinical), so both scales were

considered in the univariate analysis. Table 7 shows the estimates obtained.

Three covariables turned out to have marginally to highly significant effect on the client’s risk of PT.

Namely, there is an association between depressive severity (as measured by BDI-II at intake) and the risk

of PT ( ̂𝛽 = 0.694, p = 0.071), meaning that the hazard to PT is two times higher for non-clinical group (HR

= 2.003). Notably, this result is comparable to the log rank test (see Table 6), and may be interpreted in the

same way. Likewise, there is an association between symptomatology level (as measured by OQ-45.2 at

intake) and the risk of PT ( ̂𝛽 = - 0.014, p = 0.08), meaning that a unit decrease in the outcome questionnaire

total score corresponds to a 1.4% fold increase in the risk for PT. Finally, there is an association between

therapeutic alliance quality (as measured by WAI at last session) and the risk of PT ( ̂𝛽 = - 0.082, p = 3.53

×10−5), meaning that a unit decrease in the working alliance inventory total score corresponds to a 8.6%

fold increase in the risk for PT. To sum up, a decrease in symptomatology level score, depressive severity

or therapeutic alliance quality is linked to a higher risk of PT.

Multivariate analysis for effect of explanatory variables

In a second phase, a multivariate model was adjusted and estimated by ”step-wise backwards”, start-

ing with the sutured model with all baseline covariables (i.e., measured at intake) as also last observations

for therapeutic alliance quality and symptomatology level, and then eliminating one-by-one the variables

with lower significance (with a limit of 0.1 for the p-value, for inclusion of the variable). After adjusting

several survival models with multiple covariates, we end up with a Cox proportional Hazard Model that in-

corporate four covariables with a significant effect on client’s risk of PT, namely: diagnoses areas (anxiety,

mood and others), symptomatology level at intake (OQ-45.2 score), symptomatology level at last session

observed (OQ-10 score) and therapeutic alliance quality at last session observed (WAI score).

Table 8 shows the estimates obtained from multivariate Cox model adjusted. As one can see, the

hazard to PT is 3.6 times higher for clients with a mood disorders and 4.1 times higher for clients with
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Table 7: Estimated parameters (Est), hazard ratios (HR) and related 95% confidence intervals and p-value in analysis

of UP data set with univariate CPHM for PT as the event

Est HR (95% CI) p-value

Age at intake

(years) - 0.004 0.996 (0.961;1.03) 0.814

Sex (Ref = Male)

(Female) 0.175 1.191 (0.513;2.764) 0.685

Relationship status (Ref = Single)

(Married/ in a relationship) - 0.325 0.723 (0.349;1.498) 0.383

(Divorced) - 0.637 0.529 (0.121; 2.315) 0.398

Education level (Ref = 9-12 years)

(University) 0.124 1.132 (0.549;2.333) 0.737

Professional status (Ref = Employed)

(Unemployed) - 0.144 0.866 (0.197;3.811) 0.849

(Student) - 0.276 0.759 (0.366;1.573) 0.458

Diagnoses (Ref = Anxiety)

(Mood) 0.316 1.372 (0.664;2.879) 0.403

(Others) 0.446 1.563 (0.448; 5.448) 0.484

Medication at intake (Ref = No)

(Yes) - 0.045 0.956 (0.426;2.148) 0.913

Depressive severity at intake (Ref = clinical)

(non-clinical) 0.694 2.003 (0.942;4.257) 0.071 †

(BDI-II score) - 0.019 0.981 (0.947;1.015) 0.273

Anxiety level at intake (Ref = clinical)

(non-clinical) - 0.152 0.859 (0.404;1.826) 0.692

(BAI score) - 0.006 0.994 (0.958; 1.031) 0.736

Symptomatology level at intake (Ref = clinical)

(non-clinical) 0.599 1.82 (0.836;3.959) 0.131

(OQ-45.2 score) - 0.014 0.986 (0.971;1.002) 0.081 †

Symptomatology level at last session

(OQ-10 score) 0.034 1.035 (0.988;1.084) 0.152

Therapeutic alliance at last session

(WAI score) - 0.082 0.921 (0.886;0.958) 3.5 ×10−5 ∗ ∗∗
Note. Ref = Reference category; †Indicates marginally statistical significance; *** Indicates statistical significance at p<.001.
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Table 8: Estimated parameters (Est), hazard ratios (HR) and related 95% confidence intervals and p-value in analysis

of UP data set with multivariate CPHM for PT as the event

Est HR (95% CI) p-value

Diagnoses (Ref = Anxiety)

(Mood) 1.272 3.568 (1.399; 9.100) 0.008 **

(Others) 1.412 4.103 (1.012; 16.639) 0.048 *

Symptomatology level at intake

(OQ-45.2 score) - 0.041 0.960 (0.938; 0.983) 7.39 ×10−5∗∗∗

Symptomatology level at last session

(OQ-10 score) 0.077 1.080 (1.010; 1.155) 0.025 *

Therapeutic alliance at last session

(WAI score) - 0.097 0.908 (0.865; 0.953) 8.75 ×10−5∗∗∗

Note. Ref = Reference category; †Indicates statistical significance at p <.1; * Indicates statistical significance at p < .05; ** Indicates statistical

significance at p < .01; *** Indicates statistical significance at p<.001.

other disorders, when compared with clients with anxiety disorders. At baseline, an unit decrease in the

outcome questionnaire (OQ-45.2 score) corresponds to a 4% fold increase in the risk for PT, but, at last

session observed, an unit increase in the outcome questionnaire (OQ-10 score) corresponds to a 8% fold

increase in the risk for PT. Besides that, there is an association between therapeutic alliance quality (as

measured by WAI inventory at last session observed) and the risk to PT ( ̂𝛽 = - 0.097, p = 8.75 ×10−5),

meaning that a unit decrease in the working alliance inventory total score corresponds to a 9.2% fold

increase in the risk for PT.

Figure 6 presents the plot of the Kaplan-Meier estimate and the multivariate Cox Proportional Hazard

model for a subject with the following characteristics: mood disorder (the most frequent diagnoses ob-

served in the data), an OQ-45.2 score at intake of 81, an OQ-10.2 score at last session of 14, and a WAI

score at last session of 56 (i.e., the median values observed). This graph was built in order to graphi-

cally assess the model fit. The Cox Proportional hazards model curve remains within the 95% confidence

interval of the Kaplan-Meier curve, which indicates a good fit to the data.

Along with this, Figure 7 shows the Kaplan-Meier estimates of the Cox-Snell residuals. Note that, the

black solid line represents the Kaplan-Meier estimate of the survival function of the residuals (with the

dashed lines corresponding the 95% confidence intervals), and the grey solid line denotes the survival

function of the unit exponential distribution. Comparing the fit of the Kaplan-Meier estimate to the expected

asymptotic distribution, even though some discrepancies occur (especially for residuals greater than 1.2),
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Figure 6: Kaplan Meier curve versus Cox Proportional Hazards curve for a combination of covariates (mood disorder,

OQ-45.2 at intake=81, OQ-10.2 at last session=14, and WAI at last session=56)

the survival function of the unit exponential distribution lies within 95% confidence intervals of Kaplan-Meier

estimate, which indicates, once again, a good fit of the multivariate Cox model to the data.

The goodness-of-fit (GOF) tests presented in Table 9 were conducted to investigate proportional haz-

ards assumption. This approach provides chi-square statistics (i.e., correlation coefficients between trans-

formed survival time and the scaled Schoenfeld residuals) for each variable in the model, as well as a

global test. The idea behind the statistical test is that if the proportional hazards assumption holds for

a particular covariate then the Schoenfeld residuals for that covariate will not be related to survival time.

Consequently, a non significant p-value suggests that the proportional hazard assumption is reasonable,

whereas a small p-value (i.e., less than 0.05) suggests that the variable being tested does not satisfy this

assumption.
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Figure 7: Superposition of Kaplan-Meier estimates of the survival function of the Cox-Snell residuals and survival

function of the unit exponential distribution

Table 9: Chi-square statistics (𝜒2) and p-values obtaining to investigate the PH assumption

𝜒2 p-value

Diagnoses areas 0.861 0.65

Symptomatology level at intake (OQ-45.2 score) 1.499 0.22

Symptomatology level at last session (OQ-10 score) 0.027 0.87

Therapeutic alliance at last session (WAI score) 0.001 0.99

Global 2.316 0.80

As shown in Table 9, there is no evidence to reject the null hypothesis of constant regression coefficients,

both globally as well as for each covariate, which means that PH assumption was not violated.
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Extended Cox Model

Following, the extended Cox Model, given by the equation 6, described in the section 3.1.4, was used

in order to incorporate two time-dependent covariables, namely: symptomatology level (as measured by

OQ-10.2 questionnaire at the beginning of each session) and therapeutic alliance quality (as measured

by WAI inventory at the end of each session). First, we adjusted two univariate survival models with both

covariates. Only the symptomatology level turned out to have a significant effect on the client’s risk of PT.

Specifically, there is an association between symptomatology level and the risk of PT ( ̂𝛽 = - 0.076, 𝑝 =

0.012), meaning that a unit decrease in the outcome questionnaire total score corresponds to a 7.3% fold

increase in the risk for PT (see Table 10).

Table 10: Estimated parameters (Est), hazard ratios (HR) and related 95% confidence intervals and p-value in analysis

of UP data set with univariate time-dependent Cox model for PT as the event

Est HR (95% CI) p-value

Symptomatology level

(OQ-10 score) - 0.076 (0.03) 0.927 (0.874; 0.984) 0.012 *

Therapeutic alliance

(WAI score) - 0.028 (0.026) 0.972 (0.923; 1.024) 0.29

Note. * Indicates statistical significance at p <.05.

In a second phase, a multivariate model was adjusted and estimated by ”step-wise backwards”, start-

ing with the satured model with both time-fixed and time-dependent variables. Note that, when these

new covariables were included in the satured model, we dropped out therapeutic alliance quality at last

session observed and symptomatology level at last session observed, once they are a sub sample of

time-dependent variables. After adjusting several survival models we end up once again with only one co-

variable with a significant effect on client’s risk of PT, the symptomatology level (as measured by OQ-10.2

questionnaire).

56



4.3. LONGITUDINAL ANALYSIS

4.3.1 Results of the Therapeutic Alliance Longitudinal Analysis

The therapeutic alliance quality, as previously mentioned, was measured session by session, using the

WAI inventory. Ninety-seven clients were available for analysis, which translates in a total number of 1179

measurements for this response variable. The median number of measurements per client is 14, varying

between 1 and 20. Recall that, the total number of PT, the event of interest, is 31.

Group means over time

A spaghetti plot showing the therapeutic alliance quality individual progression (grey lines) of the

longitudinal response for the both censored cases and premature terminators groups is presented in figure

8. The dashed black lines represent a non-parametric smooth spline of all observation points in the same

plot, indicating the average trend of progression.

Figure 8: Spaghetti plot and smooth spline empirical mean of therapeutic alliance progression against the time from

the beginning of treatment, for censored vs. PT cases

Considering Figure 8, we verify that, on average, the Premature Terminators start with lower values for

therapeutic alliance quality, when compared to censored cases. Besides that, even the variable response

progression for PT increases at a higher rate at the beginning of treatment, after session three slow down

and the general trend of progression is lower when compared to censored cases.
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In order to proceed with the inspection of a potential relation between the progression of the therapeutic

alliance values and the PT event, a new spaghetti plot was built, considering the change in the response

during the period before the event occurrence. This was achieved through recoding time so that one

represents the event time (i.e., the last session observed for everyone).

Figure 9: Spaghetti plot and smooth spline empirical mean of therapeutic alliance progression against the time until

the event occurs, for censored vs. PT cases

Similarly to spaghetti plots with a positive time scale, in Figure 9 the smooth splines (dashed black

lines) suggest that, on average, the therapeutic alliance quality progression increases at a higher rate for

censored cases. In addition, premature terminators present a lower end point of the mean progression

when compared to censored cases. And, it is evident, that the closer to the event time, the more therapeutic

alliance quality fluctuate.

A linear-mixed effect analysis with an exponential correlation structure 1 was conducted in order to check

if groups differences on therapeutic alliance mean progression are statistically significant.

In table 11 we present the results of two longitudinal models, using different time scales (i.e., time since

first session vs time before the event occurs). As expected, premature terminators and censored cases

differ significantly on both the starting and end points of the mean progression regarding therapeutic

alliance quality. Intercept component of both models means that censored cases (i.e., the reference

category for status variable) will start the progression of the therapeutic alliance quality with an expected

value of 49.145 points, considering time since first session, and will terminate the progression of the

therapeutic alliance quality with an expected value of 55.944 points, considering time since last session.

1 We are using the same correlation structure as the one obtained in the selected longitudinal model with multiple explanatory variables. The selection was

advised on the empirical variogram as we opportunely will show.
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Table 11: Estimated parameters (Est), standard errors (SE) and p-values for longitudinal models regarding group

means differences over time. The response variable is therapeutic alliance quality

Est (SE) p-value

Intercept 49.145 (0.821) <0.001 ***

Time (since 1𝑠𝑡 session) 0.421 (0.053) <0.001 ***

Status

PT -3.237 (1.476) 0.031 *

Time * Status (=PT) 0.097 (0.147) 0.509

Intercept 55.944 (0.827) <0.001 ***

Time (since last session) 0.430 (0.054) <0.001 ***

Status

PT - 5.990 (1.491) <0.001 ***

Time* Status (=PT) 0.025 (0.149) 0.865

Note. PT = Premature termination. * Indicates statistical significance at 𝑝 < 0.05; *** Indicates statistical significance at 𝑝 < 0.001.

Premature terminators, by turn, have an expected decrease of -3.237 points on the intercept component

at beginning of treatment, as well as an expected decrease of -5.990 points on the intercept component at

last session observed. On the other hand, no meaningful differences between groups were found regarding

the mean progression or rate of the therapeutic alliance quality throughout therapy (i.e., Time * Status).

Because therapeutic alliance mean progression differs according to the final event observed (i.e., PT vs

censored), it becomes even more important investigate the association between longitudinal and survival

mechanisms. This analysis, as we previously announced, requires a joint modelling approach, which will

be presented further.

Variation among individuals

To explore the correlation structure present in the data, namely the association among repeated

observations for an individual, and to determine the suitability of a linear mixed model to represent ther-

apeutic alliance quality, an estimate of the empirical variogram 𝛾(𝑢) was conducted. Figure 10 shows

both basic quantities (𝑢𝑖𝑗𝑘, ℎ𝑖𝑗𝑘), where ℎ𝑖𝑗𝑘 = 1/2(𝑟𝑖𝑗 −𝑟𝑖𝑘)2 is calculated from observed half-squared

differences between pairs of residuals of an Ordinary Least Square Model (OLS), considering ther-

apeutic alliance quality as dependent variable and all attributes measured at intake, namely client’s age,

sex, relationship status, education level, professional status, diagnoses, medication, depressive severity,

symptomatology and anxiety level, as independent variables), and 𝑢𝑖𝑗𝑘 = 𝑡𝑖𝑗−𝑡𝑗𝑘 the corresponding time-
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differences. The upper horizontal line represents the variogram based estimate of the process variance,

Figure 10: Empirical variogram from a OLS model considering therapeutic alliance (i.e., WAI score) as dependent

variable and baseline attributes as independent variables

which is substantially larger than the value of the sample variogram (given by the amplitude of trend line),

indicating that the positive correlation remains at large time separations. Further, we can see that the total

variance in the data can be decomposed into three variance components: within-subject variance (given

by the amplitude of trend line), between-subject variance (given by the distance between the maximum of

the trend line and the upper horizontal line), and measurement error (given by the distance between zero

and the minimum value of variogram line). Therefore, the empirical variogram from Figure 10 corroborates

the adequacy of a longitudinal approach for these data, and indicates the need to include a random effect

at subject level, as well as a random noise. Besides that, regarding the trend of the variogram line, a

time correlation structure with an exponential parametrisation seems to be the one that which better fit

the data.
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Univariate analysis for effect of explanatory variables

With the motivation to understand which of the explanatory variables would affect the progression of

the therapeutic alliance quality, and also how it would affect, firstly, we fitted single longitudinal models

with single explanatory variables, using the same correlation structure as the one obtained in the selected

longitudinal model with multiple explanatory variables, that will be presented next.

In table 12 the results from single models are shown, and, as we can see, time, professional status and

diagnoses areas turned out to have significant effect on the mean progression of the therapeutic alliance

quality. Specifically, there is an increase of 0.433 points per session, on average, of the therapeutic

alliance quality; students present a lower starting point ( - 2.097) of the mean progression, compared

to employed clients; and, clients with mood disorder present also a lower starting point ( - 2.431) of the

mean progression of therapeutic alliance quality, compared to clients with anxiety diagnoses (the reference

category). Overall, regarding diagnoses areas, there is an increasing effect of time on average therapeutic

alliance quality, which is estimated to be 0.228 points per session higher than the rate of improvement

among clients with anxiety disorders.

Multivariate analysis for effect of explanatory variables

Subsequently, a longitudinal analysis starting with all explanatory variables was performed. Specifi-

cally, a longitudinal linear mixed effects analysis with a random intercept at individual level (model given

by equation 10) was conducted. Based on the analysis of the empirical variogram presented in Figure

10, two different correlation structures were tested: exponential and Gaussian. Therefore, two multivariate

models were adjusted and estimated by ”step-wise backwards”, starting with the sutured model (with all

pre-treatment covariables) and then eliminating one-by-one the variables with lower significance (with a

limit of 0.1 for the p-value, for inclusion of the variable). After adjusting several longitudinal models with

multiple covariates, we end up with a Longitudinal Mixed Effects Model that incorporate three covariables

with a significant effect on mean progression of the therapeutic alliance quality, namely: time (i.e., session),

symptomatology level (OQ-45.2 score at intake) and depression severity (BDI-II score at intake).

Table 14 presents the estimated parameters (Estimate) of the fitted longitudinal models, both with a

random intercept an individual level, and with a serial correlation structure: one with Exponential structure

- that is, Linear Mixed Effects, Exponential Serial Correlation Model (LMEE); and the second

with a Gaussian structure - that is, Linear Mixed Effects, Guassian Serial Correlation Model

(LMEG). Besides that, we compare the estimates to those obtained by fitting the simple OLS model, as

well as the respective log Likelihood and Akaike Information Criterion (AIC) values.
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Table 12: Estimated parameters (Est), standard errors (SE), and p-values for single Longitudinal Models. The re-

sponse variable is therapeutic alliance quality

Est (SE) p-value

Time 0.433 (0.058) <0.001 ***

Age at intake

(years) 0.057 (0.058) 0.325

Sex (Ref = Male)

(Female) - 0.841 (1.369) 0.541

Relationship status (Ref = Single)

(Married/ in a relationship) 0.321 (1.259) 0.8

(Divorced) 2.455 (2.239) 0.276

Education level (Ref = 9 to 12 years)

(University) - 0.025 (1.218) 0.984

Professional status (Ref = Employed)

(Unemployed) - 1.906 (2.555) 0.457

(Student) - 2.097 (1.238) 0.094 †

Diagnoses (Ref = Anxiety)

(Mood) - 2.431 (1.427) 0.092 †

(Others) 1.917 (2.573) 0.458

(Time) 0.343 (0.066) <0.001 ***

(Time * Mood) 0.228 (0.101) 0.024 *

(Time * Others) 0.208 (0.202) 0.303

Medication at intake (Ref = No)

(Yes) - 0.540 (1.352) 0.691

Depressive severity at intake (Ref = clinical)

(non-clinical) 0.156 (1.472) 0.916

(BDI-II score) 0.009 (0.054) 0.874

Anxiety level at intake (Ref = clinical)

(non-clinical) - 0.168 (1.301) 0.897

(BAI score) 0.001 (0.059) 0.986

Symptomatology level at intake (Ref = clinical)

(non-clinical) 1.547 (1.492) 0.303

(OQ-45.2 score) -0.042(0.026) 0.103

Note. Ref = Reference category; †Indicates statistical significance at p< .1; * Indicates statistical significance at p < .05; *** Indicates statistical

significance at p<.001.
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Table 13: Estimated parameters (Est), standard errors (SE) and p-values for General Linear Model and Longitudinal

Models. The response variable is therapeutic alliance quality

LME LMEG OLS

Est (SE) p-value Est (SE) p-value Est (SE) p-value

Intercept 52.147 (2.256) <0.001 *** 53.209 (2.269) <0.001 *** 52.061 (0.796) <.001 ***

Time (Session) 0.451 (0.051) <0.001 *** 0.454 (0.045) <.001 *** 0.401 (0.036) <0.001 ***

Depressive severity

(BDI-II score) 0.224 (0.089) 0.013 * 0.223 (0.090) 0.014 * 0.174 (0.029) <0.001 ***

Symptomatology level

(OQ-45.2 score) - 0.124 (0.042) 0.004 ** - 0.125 (0.043) 0.005 ** - 0.085 (0.014) <.001 ***

Log Likelihood - 3.066.545 - 3068.868 - 3851.002

AIC 6149.091 6153.737 7712.003

Note.†Indicates statistical significance at 𝑝 < .10; * Indicates statistical significance at 𝑝 < .05; *** Indicates statistical significance at 𝑝 < .001.

Since LMEE model presented the higher Log Likelihood and the lower AIC values, we selected this as

the model to describe the progression of the therapeutic alliance quality over time.

The intercept component of the LMEE model, in this particular case, means that a client with high OQ-

45.2 score and lower depressive symptoms (BDI-II score) at intake will start the progression of therapeutic

alliance quality with an expected value of 52.147 points. Overall, there is an increase rate of 0.451 points

per session of the therapeutic alliance quality. Besides that, we can infer that depressive severity at intake

affects the therapeutic alliance quality at a rate of 0.224 per unit increase in BDI-II score. Conversely,

symptomatolgy level at intake affects the therapeutic alliance quality at a rate of -0.124 per unit increase

in OQ-45.2 score. Concluding, higher scores for depressive severity and lower scores for symptomatology

level, at intake, are linked to a higher starting point of the therapeutic alliance mean progression.

The correlation structure chosen to represent the variability of the data is the one that incorporates

random effects at individual level with ̂𝑣 ≈ 9.495, an exponential correlation structure to describe the

variability within clients with ̂𝜌(𝑢) ≈ 𝑒𝑥𝑝(− 1
15.640 |𝑢|) and 𝜎̂2 ≈ 29.534, and a measurement error

with variance ̂𝜖 ≈ 4.542.

Figure 11 shows the superposition of the theoretical fitted variogram of both exponential and Gaussian

correlation structure with the empirical variogram (of an OLS model considering time, depressive severity

at intake and symptomatology level at intake as independent variables). This plot supports the choice of

63



Figure 11: Superposition of empirical and theoretical variograms considering therapeutic alliance as dependent vari-

able, and time, depression severity, and symptomatology level as independent variables

the LMEE model, since LMEE curve (green dashed line) is the one that best approaches the empirical

curve.

In order to check assumptions of the final model fitted to the data, namely the normality of the random

effect term and the residuals, normal probability plots (also called quantile-quantile) are presented in Figure

12. Despite some deviations from the expected normal lines towards the tails, the lines look straight and

therefore pretty normal suggesting that the assumption is not violated.

Figure 13, by turn, presents the plot of the subject specific residuals versus the fitted responses. Ob-

serving this plot, the assumptions of homogeneous residual variance and linearity do not seem likely to

be rejected.
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Figure 12: Quantile-quantile plots of predicted random intercepts and residuals for the LMEE model fitted to the data

Figure 13: Residuals versus the fitted responses of WAI values

Group differences in explanatory variables effect

As PT in psychotherapy is our phenomenon of interest, we proceed to test group differences regard-

ing the explanatory variables with significant effect on the mean progression of the therapeutic alliance

quality. So, in order to investigate if explanatory effect on the therapeutic alliance mean progression differ

for censored and PT cases, we added the variable status to the previous LMEE model and tested sev-

eral interactions. The final model include one significant interaction between symptomatology level (as

measured by OQ-45.2 at intake) and status (i.e., censored vs. PT).
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Table 14: Estimated parameters (Est), standard errors (SE) and p-values for Longitudinal Model comparing groups

for explanatory variables effect. The response variable is therapeutic alliance quality

Est (SE) p-value

Intercept 52.723 (2.753) <0.001 ***

Time (Session) 0.431 (0.051) < 0.001 ***

Status (Ref = Censored)

PT 3.404 (4.147) 0.414

Depressive severity at intake

(BDI-II score) 0.236 (0.085) 0.007 **

Symptomatology level at intake

(OQ-45.2 score) - 0.111 (0.044) 0.015 *

Symptomatology level at intake * Status (= PT) - 0.086 (0.051) 0.098†

Log Likelihood -3.062.209

AIC 6144.418

Note. PT = Premature termination.†Indicates statistical significance at 𝑝 < .10; * Indicates statistical significance at 𝑝 < .05; *** Indicates statistical
significance at 𝑝 < .001.

Table 14 presents the estimated parameters (Estimate) of the fitted longitudinal model, with a random

intercept an individual level and an exponential correlation structure (i.e., LMEE model). Thus, regarding

the symptomatology level effect, there is a marginal significant difference between censored and PT cases.

While symptomatology level at intake affects the therapeutic alliance quality at a rate of - 0.111 per unit

increase in OQ-45.2 score for censored cases, the rate almost double (- 0.192) for PT cases. In other

words, higher scores in OQ-45.2 at intake (i.e., higher impairment) are associated to a lower starting point

regarding the mean progression of therapeutic alliance quality (i.e., worse therapeutic alliance quality),

and for PT group this relation/ rate is significantly more accentuate (i.e., 1.775 times higher compared to

censored cases).
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4.3.2 Results of the Treatment Outcome Longitudinal Analysis

The clients’ symptomatology level or treatment outcome throughout therapy was measured by OQ-10.2

questionnaire at commencement of each session attended. Ninety-seven clients were available for analysis,

which translates in a total number of 1184 measurements for this variable response. The median number

of measurements per client is 14, varying between 1 and 20.

Group means over time

A spaghetti plot showing the symptomatology individual progression (grey lines) for the both cen-

sored (N=62) and PT (N=31) groups is presented in Figure 14. The dashed black lines represent a non-

parametric smooth spline of all observation points in the same plot, indicating the average trend progres-

sion.

Figure 14: Spaghetti plot and smooth spline empirical mean of treatment outcome progression against the time

from the beginning of treatment, for censored vs. PT cases

Considering Figure 14, we verify that, on average, premature terminators start with lower values for

symptomatlogy level, when compared to censored cases, and for both groups the average trend of pro-

gression is decreasing over time.

A similar graphical presentation of treatment outcome progression is showed in Figure 15, but now

considering the change in the response during the period before the event occurrence. In this case, the

treatment outcome trend is decreasing for censored cases, but remains almost constant for premature ter-

minators. Notably, this rises the suspicion that symptomatology level throughout treatment for premature
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terminators remained unchanged. Additionally, it is evident, that the closer to the event time, the more a

client’s symptomatology level scores fluctuate.

Figure 15: Spaghetti plot and smooth spline empirical mean of treatment outcome progression against the time

until the event occurs, for censored vs. PT cases

In fact, after fitting a linear-mixed effect model with an exponential correlation structure 2, considering

either time since first session or time since last session observed, we verify according Table 15 that

premature terminators and censored cases differ significantly on starting points of the mean progression

regarding symptomatology level. Intercept component of first model means that censored cases (i.e.,

reference category) will start the progression of symptomatology level with an expected value of 22.468

points. Premature terminators, by turn, have an expected decrease of -3.710 points on the intercept

component at begining of treatment. No meaningful differences between groups were found regarding

time since last session observed, which means that, on average, censored and premature terminators

will terminate the progression of treatment outcome at identically expected values (13.951 vs 15.790

points, respectively). Likewise, no meaningful differences between groups were found regarding the mean

progression rate of treatment outcome throughout therapy (i.e., Time * Status).

Once again, as symptomatology level mean progression differs according to the event outcome (i.e.,

PT vs. censored), a joint modelling approach is required in order to investigate the possible association

between longitudinal and survival mechanisms. This analysis will be presented forward.

2 We are using the same correlation structure as the one obtained in the selected longitudinal model with multiple explanatory variables. The selection was

advised on the empirical variogram as we opportunely will show.
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Table 15: Estimated parameters (Est), standard errors (SE) and p-values for longitudinal models regarding differences

between groups (Censored vs PT). The response variable is symptomatology level

Est (SE) p-value

Intercept 22.468 (0.795) <0.001 ***

Time (since 1𝑠𝑡 session) - 0.532 (0.050) <0.001 ***

Status

PT - 3.710 (1.429) 0.011 *

Time * Status (= PT) 0.154 (0.136) 0.259

Intercept 13.951 (0.801) <0.001 ***

Time (since last session) - 0.535 (0.051) <0.001 ***

Status

PT 1.839 (1.436) 0.204

Time * Status (= PT) 0.198 (0.138) 0.151

Note. PT = Premature termination. * Indicates statistical significance at 𝑝 < 0.05; *** Indicates statistical significance at 𝑝 < 0.001.

Variation among individuals

In order to explore the correlation structure present in the data, an estimate of the empirical variogram

𝛾(𝑢) was conducted. Figure 16 shows both basic quantities (𝑢𝑖𝑗𝑘, ℎ𝑖𝑗𝑘), where ℎ𝑖𝑗𝑘 = 1/2(𝑟𝑖𝑗 −𝑟𝑖𝑘)2 is

calculated from observed half-squared differences between pairs of residuals of an ordinary least squares

(OLS) model (considering symptomatology level as dependent variable and attributes measured at intake,

namely client’s age, sex, relationship status, education level, professional status, diagnoses, medication,

depressive severity, symptomatology and anxiety level, as independent variables), and 𝑢𝑖𝑗𝑘 = 𝑡𝑖𝑗 − 𝑡𝑖𝑘

the corresponding time differences (or lag). The upper horizontal line represents the variogram based

estimate of the process variance, which is substantially larger than the value of the sample variogram,

given by the amplitude of trend line, indicating, by turn, that the positive correlation remains at large time

separations. The total variance can be decomposed into three components: within-subject variance, given

by the amplitude of the trend line; between-subjects variance, given by the distance between maximum

of the trend line and the upper horizontal line; and, measurement error, given by the distance between

zero and the minimum value of variogram line. Consequently, the empirical variogram form Figure 16

corroborates the adequacy of a longitudinal approach for these data, and indicates the need to include

a random effect at subject level, as well as a random noise. Besides that, considering the trend of the
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variogram line, a time correlation structure with an exponential parametrisation seems to be the one that

which better fit the data.

Figure 16: Empirical variogram from a OLS model considering treatment outcome as dependent variable, and time,

and baseline attributes as independent variables

Univariate analysis for effect of explanatory variables

With the motivation to understand which of the explanatory variables would affect the progresison

of the treatment outcome, firstly, we fitted single longitudinal models with single explanatory variables,

using the same correlation structure as the one obtained in the selected longitudinal model with multiple

explanatory variables, that will be presented further. Note that, some quantitative variables measured at

intake, namely symptomatology level, depressive severity and anxiety level, were re-codified into a categor-

ical type (i.e., clinical vs. non-clinical), so both scales were considered in the univariate analysis. Table 16

presents the results of the single longitudinal models.
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Table 16: Estimated parameters (Est), standard errors (SE), and p-values for single Longitudinal Models. The re-

sponse variable is symptomatology level over treatment

Est (SE) p-value

Time - 0.498 (0.046) <0.001 ***

Age at intake

(years) - 0.086 (0.056) 0.131

Sex (Ref = Male)

(Female) 1.408 (1.347) 0.299

Relationship status (Ref = Single)

(Married/ in a relationship) - 3.697 (1.185) 0.002 **

(Divorced) 0.281 (2.113) 0.895

Education level (Ref = 9 to 12 years)

(University) 0.448 (1.196) 0.709

Professional status (Ref = Employed)

(Unemployed) 7.009 (2.429) 0.005 **

(Student) 2.983 (1.175) 0.013 *

Diagnoses (Ref = Anxiety)

(Time) - 3.361 (0.058) <0.001 ***

(Mood) 3.108 (1.352) 0.024 *

(Others) - 3.181 (2.438) 0.195

(Time * Mood) - 0.309 (0.088) 5×10−4∗∗∗

(Time * Others) - 0.226 (0.178) 0.203

Medication at intake (Ref = No)

(Yes) 0.184 (1.326) 0.890

Depressive severity at intake (Ref = clinical)

(Time) - 0.556 (0.050) <0.001 ***

(non-clinical) - 7.982 (1.509) <0.001 ***

(Time * non-clinical) 0.321 (0.119) 0.007 **

(BDI-II score) 0.354 (0.051) <0.001 ***

(Time) - 0.220 (0.103) 0.033 *

(Time * BDI-II score) - 0.012(0.004) 0.004 **

Anxiety level at intake (Ref = clinical)

(non-clinical) - 3.638 (1.224) 0.004 **

(BAI score) 0.231 (0.053) <0.001 ***

Symptomatology level at intake (clinical)

(non-clinical) -8.434 (1.208) <0.001 ***

(OQ-45.2 score) 0.184 (0.017) <0.001 ***

Note. Ref = Reference category; †Indicates marginally statistical significance; ** Indicates statistical significance at p<.01; *** Indicates statistical

significance at p<.001.
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Results show that time, relationship status, professional status, diagnose, depressive severity at intake,

as also anxiety and symtomatology level at intake have a significant effect on the mean progression of the

treatment outcome. Overall, there is a decline of - 0.498 points per session of the symptomatology level

mean progression. Regarding relationship status, clients who are married or in a significant relationship

present a lower starting point -3.697 of mean progression, compared to those who are single (the refer-

ence category). Conversely, unemployed and students present a higher starting point (7.009 and 2.983,

respectively) of the symptomatology level mean progression, when compared to employed clients.

Moving to clinical attributes, mood disorders are related to an increase of the starting point of the

symptomatology mean progression (3.108), and the average rate of decline is estimated to be -0.309 points

per session higher than the rate of decline among clients with anxiety disorders (the reference category).

Besides that, depressive severity at intake affects the symptomatology mean progression at a rate of

0.354 per unit increase in BDI-II score. In a similar vein, taking depressive severity as categorical variable,

we can infer that non-clinical group presents a lower starting point (-7.982) of the mean progression of

symptomatology level, when compared to clinical group (i.e., the group with higher BDI-II scores), and,

additionally, the average rate of decline is estimated to be 0.321 points per session lower than the rate of

decline among clinical group. Also, anxiety level at intake, treated whether as categorical or quantitative

variable, present a significant effect on the mean progression of the symptomatology level, with non-clinical

group showing a lower starting point (-3.683) of the mean progression, compared to clinical group. Finally,

as expected, symptomatology level at intake, affects the mean progression of response variable at a rate of

0.184 per unit increase in OQ-45.2 score. Considering categorical scale, we can also say that, non-clinical

group presents a lower starting point (-8.434) of the mean progression of symptomatology level, compared

to clinical group.

Multivariate analysis for effect of explanatory variables

Subsequently, a longitudinal analysis starting with all explanatory variables was performed. Specifi-

cally, a longitudinal linear mixed effects analysis with a random intercept at individual level (model given

by equation 10) was considered. Based on the analysis of the empirical variogram presented in Figure

16, two different correlation structures were tested: exponential and Gaussian. Therefore, two multivariate

models were adjusted and estimated by ”step-wise-backwards”, starting with the satured model (i.e., with

all pre-treatment covariables) and then eliminating one-by-one the variables with lower significance ( with

a limit of 0.1 for the p-value, for inclusion of the variable). After adjusting several longitudinal models with

multiple covariates, beginning, as already mentioned, with the satured model, we end up with a Longitu-
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dinal Mixed Effects Model that incorporate four covariables with a significant effect on mean progression

of the treatment outcome, namely: time (i.e., session attended), clients’ age (i.e., years), symptomatology

level (i.e., OQ-45.2 score) and depression severity (i.e., BDI-II score) at intake.

Table 18 presents the estimated parameters (Estimate) of the fitted longitudinal models, both with a

random intercept an individual level, and with a serial correlation structure: one with Exponential structure

(LMEE), and the second with a Gaussian structure (LMEG). Besides that, we compare the estimates to

those obtained by fitting the simple OLS model, as well as the respective log Likelihood and AIC values.

Table 17: Estimated parameters (Est), standard errors (SE) and p-values for General Linear Model and Longitudinal

Models. The response variable is symptomatology level

LMEE LMEG OLS

Est (SE) p-value Est (SE) p-value Est (SE) p-value

Intercept 22.491 (1.002) <0.001 *** 22.403 (1.004) <0.001 *** 22.414 (0.414) <0.001 ***

Time (Session) - 0.489 (0.045) <0.001 *** - 0.500 (0.038) <0.001 *** - 0.404 (0.031) <0.001 ***

Professional Status (Ref = Employed)

(Unemployed) 5.074 (2.003) 0.013 * 5.296 (2.035) 0.011 * 4.773 (0.689) <0.001 ***

(Student) 2.493 (0.984) 0.013 * 2.531 (1.001) 0.013 * 2.521 (0.336) <0.001 ***

Anxiety level (Ref = clinical)

(non-clinical) - 2.068 (1.074) 0.057 † - 1.987 (1.092) 0.072 † - 2.560 (0.368) <.001 ***

Symptomatology level (Ref = clinical)

(non-clinical) - 6.960 (1.246) <0.001 *** - 7.050 (1.261) <0.001 *** - 6.371 (0.438) <0.001 ***

Log Likelihood -3113.028 -3123.179 -3663.512

AIC 6246.057 6266.359 7341.025

Note. †Indicates statistical marginal significance at 𝑝 < 0.1; * Indicates statistical significance at 𝑝 < 0.05; *** Indicates statistical significance at
𝑝 < 0.001.

Since LMEE longitudinal model presented the higher Log Likelihood and the lower AIC values, we se-

lected this as the model to describe the progression of the symptomatology level over time.

The intercept component of the LMEE model, in this particular case, means that clients who are em-

ployed, and pertain to the clinical group for both anxiety and symptomatology level at intake will start the

progression regarding treatment outcome with an expected value of 22.491 points. Additionally, unem-

ployed and students will start the mean progression with an expected increase of 5.074 and 2.493 points,

respectively, compared to employed clients (the reference category). Regarding anxiety level and symp-

tomatology level at intake, clients in the non-clinical group will start the mean progression with an expected
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decrease of -2.068 and -6.960 points, respectively, compared to clinical group (the reference category).

Overall, there is a decrease of -0.489 points per session of the symptomatology level. .

The correlation structure chosen to represent the variability of the data is the one that incorporates

random effects at individual level with ̂𝑣 ≈ 1.709 ×10−4, an exponential correlation structure to describe

the variability within clients with ̂𝜌(𝑢) ≈ 𝑒𝑥𝑝(− 1
17.827 |𝑢|) and 𝜎̂ ≈ 24.952, and a measurement error

with variance ̂𝜖 ≈ 5.222.

Figure 17 shows the superposition of the theoretical fitted variogram of both exponential and Gaussian

correlation structure with the empirical variogram (of an OLS model considering time, professional status,

anxiety level and symptomatology level at intake as independent variables). This plot supports the choice

of the LMEE model, since LMEE curve (green dashed line) is the one that best approaches the empirical

curve.

Figure 17: Superposition of empirical and theorical variograms considering symptomatology level as dependent vari-

able, and time, professional status, anxiety level, and symptomatology level at intake as independent

variables
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In order to check assumptions of the final model fitted to the data, namely the normality of the random

effect term and the residuals, normal probability plots are presented in Figure 18. Despite some deviations

from the expected normal lines towards the tails, overall the lines look straight and therefore pretty normal

suggesting that the assumption is not violated.

Figure 18: Quantile-quantile plots of the predicted random intercepts and residuals for the LMEE model fitted to the

data

Figure 19, by turn, presents the plot of the subject specific residuals versus the fitted responses. This

residual plot does not indicate any deviations from a linear form. It also shows relatively constant variance

across the fitted range.

Figure 19: Residuals versus the fitted responses of OQ-10.2 values
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Group differences in explanatory variables effect

In order to investigate if explanatory variables effect on mean progression of symptomatology level

differ for censored and premature termination cases, we added the variable status to the LMEE previous

model and tested several interaction. Thus, the final model include one significant interaction between

professional status and status. Table 18 presents the estimated parameters (Estimate) of the fitted longi-

tudinal model with a random intercept an individual level, and an exponential correlation structure.

Table 18: Estimated parameters (Est), standard errors (SE) and p-values for Longitudinal Model comparing groups

for explanatory variables effect. The response variable is symptomatology level

Est (SE) p-value

Intercept 23.473 (1.093) <0.001 ***

Time (Session) - 0.503 (0.045) <0.001 ***

Status (Ref = Censored)

PT - 3.149 (1.513) 0.041 *

Professional status (Ref = Employed)

(Unemployed) 1.944 (2.281) 0.396

(Student) 2.048 (1.105) 0.067†

Unemployed * Status (= PT) 10.581 (4.107) 0.012 *

Student * Status (= PT) 1.072 (2.024) 0.598

Depressive severity at intake (Ref = clinical)

(non-clinical) - 2.047 (1.031) 0.05†

Symptomatology level at intake (Ref = clinical)

(non-clinical) - 6.544 (1.207) <0.001 ***

Log Likelihood -3108.056

AIC 6242.112

Note. PT = Premature termination. †Indicates statistical marginal significance at 𝑝 < 0.1; * Indicates statistical significance at 𝑝 < 0.05; *** Indicates
statistical significance at 𝑝 < 0.001.

Results show that, there is a significant difference between censored and PT cases, regarding pro-

fessional status effect. So, considering the unemployed clients, those who discontinue treatment (i.e.,

premature terminators) will start the mean progression of symptomatology level with an expected increase

of 10.581 points, compared to censored cases.
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4.4. JOINT MODELLING

In the previous longitudinal analysis (section 4.3) we verify that the mean progression of therapeutic

alliance quality and symptomatology level (i.e., the response variables) differ slightly according, not only

to the final event observed (i.e., PT vs. censored), but also to the moment when this event happened. In

fact, the results of the time effect, specially when a negative scale was considered (i.e., time since last

session observed), indicate a likely association between survival endpoint and both longitudinal therapeutic

alliance and treatment response variables evolution.

Joint modelling approach allow us to understand two processes of interest simultaneously, longitudinal

and survival, given that there is an association between them. Thus, with the purpose of evaluating

the relationship between PT in psychotherapy and both longitudinal therapeutic alliance and treatment

outcome evolution, a joint model specification, implemented in the software R with joineR package,

was analysed. Furthermore, the parameter estimates and their standard errors, using the joint modelling

specification were, compared to those obtained with the independent models, namely a linear mixed model

for longitudinal outcome and a Cox’s regression model for the survival outcome.

The joint model of the therapeutic alliance evolution and the hazard of PT was adjusted and estimated

by ”step-wise backwards”, starting with the satured model with all baseline covariables, allocated to both

submodels, and then eliminating one-by-one the variables with lower significance (with a limit of 0.1 for

the p-value, for inclusion of the variable). After adjusting several joint models with multiple covariables, we

end up with a shared random-effects joint model that incorporate three covariables with a significant effect

on mean progression of the therapeutic alliance quality, and three covariables with a significant effect on

the client’s risk of PT.

The final model implemented was:

Longitudinal submodel ∶ WAI𝑖𝑗 = Intercept + 𝛽𝛽𝛽1 𝑡𝑖𝑗 + 𝛽𝛽𝛽2 if (PS𝑖 = unemployed)

+ 𝛽𝛽𝛽3 if (PS𝑖 = student) + 𝛽𝛽𝛽4 BDI-II𝑖 + 𝛽𝛽𝛽5 OQ-45.2𝑖 + 𝑈0𝑖 + 𝑈1𝑖𝑡𝑖𝑗 + 𝜖𝜖𝜖𝑖(𝑡𝑖𝑗)

Survival submodel ∶ Hazard𝑖 = 𝛽𝛽𝛽6 if (Diagnoses = Mood)𝑖 + 𝛽𝛽𝛽7 if (Diagnoses = Other)𝑖

+ 𝛽𝛽𝛽8 OQ-45.2𝑖 + 𝛽𝛽𝛽9 OQ-10.2 last session𝑖 + 𝛾0 𝑈0𝑖 + 𝛾1 𝑈1𝑖Time𝑖

Table 19 presents the results from joint modelling, namely the parameter estimates (Est) and respective

standard errors (SE) and p-values.
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Table 19: Estimated parameters (Est), standard errors (SE) and p-values for joint model fitted to therapeutic alliance

quality (longitudinal outcome) and time to premature termination (survival outcome)

Est(SE) p-value

Longitudinal Process

Intercept 54.394 (1.981) <0.001 ***

Time (Session) 0.391 (0.059 <0.001***

Professional status (Ref = Employed)

(Unemployed) - 3.014 (2.241) 0.179

(Student) - 1.856 (1.124) 0.099†

Depressive severity at intake

(BDI-II score) 0.205 (0.088) 0.021 *

Symptomatology level at intake

(OQ-45.2 score) - 0.108 (0.037) 0.003 **

Survival Process

Diagnoses (Ref = Anxiety)

(Mood) 0.869 (0.461) 0.059†

(Other) 1.017 (3.863) 0.792

Symptomatology level at intake

(OQ-45.2 score) - 0.034 (0.013) 0.006 **

Symptomatology level at last session

(OQ-10.2 score) 0.094 (0.031) 0.002 **

Latent Association

U0 - 0.066 (0.034) 0.057 †

U1 0.154 (0.047) <0.001 ***

Log Likelihood - 3316.328

Note. Ref = Reference Category; †Indicates statistical marginal significance at 𝑝 < 0.1; * Indicates statistical significance at 𝑝 < 0.05; ** Indicates
statistical significance at 𝑝 < 0.01; *** Indicates statistical significance at 𝑝 < 0.001.

The significance of the latent random effects (U0 and U1) indicates the relationship between the lon-

gitudinal and survival processes, verifying what was shown in previous exploratory longitudinal analysis

(section 4.3.1) and highlighting the need for a joint modelling of this type of data.
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By inspection of the parameter estimates, namely the latent random effect U0, we can infer that clients

with initial therapeutic alliance scores that are lower than the population average tend to have higher

hazard of PT (HR = exp(- 0.066) = 0.936). Specifically, a unit decrease in WAI score, corresponds to a

6.387% fold increase in the risk for PT. Overall, there is an increase rate of 0.391 points per session of

the therapeutic alliance quality. Besides that, from parameter U1, we can infer a significant association

between the therapeutic alliance mean progression over time and the survival of clients. Namely, those

who have a therapeutic alliance mean progression (i.e., slope) that is higher than the population average

tend to have a better survival (HR = exp(0.154) = 1.166).
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5

D I S C U S S I O N

Over the last decades, joint models of longitudinal and survival data have received much attention in

literature. Widely recognized for their gain in efficiency, as well as reduction in bias compared to naive

methods, joint models are often desirable in the following situations: (i) survival models with measurement

errors or missing data in time-dependent covariates; (ii) longitudinal models with informative dropouts; and,

(iii) survival and longitudinal processes are associated via latent variables.

The literature about this theme is quite extensive, and some review papers (Rizopoulos, 2012; Sousa,

2011; Tsiatis & Davidian, 2004) present and discuss various types of joint models. Basically, depending

on the focus of the analysis, as also on the selected submodels to handle either survival and longitudinal

processes, different formulations of joint models can be considered. A typical setup in the literature,

adopted in the present work, is the link of a Cox Proportional Hazards survival model with a Linear Mixed-

Effects longitudinal model through unobserved shared latent random effects.

Random shared effects joint models have been used in a wide range of healthcare applications. These

include immune deficiency disease (HIV/AIDS) (e.g.,Tsiatis et al., 1995; Wu et al., 2010), leukemia and

cancer (Ibrahim et al., 2010), cardiovascular and kidney disease or transplant data (e.g., Andrinopoulou et

al., 2012; McCrink et al., 2013; Teixeira et al., 2019), and cognitive decline (e.g., Henderson et al., 2000;

Proust-Lima et al., 2019), to name a few. Although the majority of applications have a medical focus,

there is no reason to maintain such exclusivity, as other areas could heavily benefit from joint modelling

approaches.

This work represents, as far as we known, the first study on PT in psychotherapy area using random

shared effects joint modelling approach. The main motivation was to evaluate the association between PT

risk and two process variables, namely the progression of therapeutic alliance quality and treatment out-

come. First, ignoring a possible association, separate analysis were conducted in order to infer: i) which

predictors affected significantly the PT hazard (survival analysis); and ii) the effect of significant predictors

on the mean progression of process variables, therapeutic alliance quality and treatment outcome (lon-
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gitudinal analysis). Then, joint modelling analysis was conducted taking into consideration the expected

association between progression in time of each of the referred process variables with client’s PT hazard.

The results obtained from separate survival analysis, namely from multivariate Cox Proportional Hazard

model, show that diagnostic areas (i.e., anxiety, mood and others), as also factors related to client initial

and final impairment, namely symptomatology level (as measured by OQ-45.2 at intake and by OQ-10.2

at last session observed), as well as therapeutic alliance quality (as measured by WAI at last session

observed) are associated with clients ending treatment. Specifically, the hazard to PT is 3.6 times higher

for mood disorders and 4.1 times higher for other disorders, when compared to anxiety diagnoses areas.

Client’s reporting less symptomatology level at intake are more likely to discontinue treatment (i.e., an unit

decrease in the OQ-45.2 corresponds to a 4% fold increase in the risk to PT). However, at last session

observed, those reporting higher symptomatology level and lower therapeutic alliance quality are more

likely to dropout (i.e., an unit increase in OQ-10.2 corresponds to a 8% fold increase in risk to PT and an

unit decrease in WAI corresponds to a 9.2% fold increase in the risk to PT). Additionally, univariate analysis

regarding depressive severity show that the hazard to PT is two times higher for non-clinical group, specially

after session 5 (accordingly to Kaplan-Meier survival curves). The extended Cox model shed to light one

time-varying significant predictor, namely the treatment outcome (as measured by OQ-10.2 at beginning

of each session). As expected, for any given session, a unit decrease in the OQ-10.2 scores corresponds

to a 7.3% fold increase in the risk for PT.

This findings may indicate that mildly impaired clients have not been as motivated, since they were less

severely affected, and consequently had less intense need of treatment. Possibly, these participants would

benefit from short-term help or a treatment more specifically tailored to their needs (e.g., a brief treatment

to cope with specific symptoms, like loneliness and isolation). Besides that, potentially, UP transdiagnostic

treatment of emotional disorders deal more effectively with anxiety disorders than other diagnoses areas,

given the nature of their strategies (e.g., exposure to both interoceptive and situational cues associated

with intense emotional experiences). Notably, results show that hazard to PT is higher for clients with

mood disorders and the greatest proportion of dropout occurred after session 4 and 9, where accordingly

to UP protocol begins psycho-education about emotional experience and exposure modules, respectively.

On the other hand, higher hazard to PT seems to be linked to progress decline for both therapeutic alliance

quality and therapeutic outcome, which may, by turn, reflect an underling dissatisfaction with the treatment

received, leading clients to discontinue their participation.

Regarding separate longitudinal analysis, the resulting multivariate linear mixed effect model fitted to

the data, reveals two predictors with a significant effect on the linear progression of the therapeutic alliance
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quality (as measured by WAI at the end of each session), namely: depressive severity (as measured by BDI-

II at intake) and symptomatology level (as measured by OQ-45.2 at intake). Specifically, lower depressive

severity scores and higher symptomatology level scores both at intake have a decreasing effect on the

starting point for the average therapeutic quality progression (i.e., worse therapeutic alliance quality at

beginning of treatment). Besides that, the effect of symptomatology level on intercept component of the

therapeutic alliance mean progression is 1.775 times higher for PT cases, compared to censored cases.

Additionally, there are other variables that, by themselves (i.e., fitting a longitudinal model considering only

that specific variable alone) have a statistical effect on the mean progression of the therapeutic alliance.

Namely, regarding professional status and diagnoses areas, students present a lower starting point (-

2.097) of the mean progression, compared to employed clients, and those with a mood disorder present

also a lower starting point (-2.431) of the mean progression, compared to clients with an anxiety disorder.

However, despite the overall increasing effect of diagnoses areas predictor on the average therapeutic

alliance progression over time, this rate is 1.681 times higher for mood disorders, when compared to a

anxiety disorders. Moreover, comparing PT and censored cases, we observe that PT have an expected

decrease of -3.277 points on the intercept component at beginning of treatment, as well as an expected

decrease of -5.990 points on the intercept at last session observed, compared to censored cases, which

means that, at least for the beginning and the end of treatment, PT cases show a worse therapeutic alliance

quality.

The findings from longitudinal analysis suggest that PT is linked to worse therapeutic alliance quality

mean progression, which by turn is negatively affected by initial impairment (OQ-45.2 scores), and pos-

itively affected by depressive severity (BDI-II scores). Accordingly, clients with mood disorder present a

lower starting point of the mean progression (compared to clients with anxiety disorders), which once again

might reflect motivation problems concerning participation in UP treatment. Unexpectedly, the increasing

effect of time on mean therapeutic alliance progression is 1.681 higher for clients with mood disorders,

compared to clients with anxiety disorders. However, it is possible that lower starting points coupled to

higher hazard to PT, for clients with mood disorders, have resulted in a large average rate of therapeutic al-

liance mean progression over time. Therefore, the longitudinal profile, in this case, probably reflects more

an artefact caused by selective dropout than genuine change over time, which justifies, by turn, the need

to adopt models that consider non-ignorable dropout, as random shared effects joint modelling models.

Moving to separate longitudinal analysis of therapeutic progress, the resulting multivariate linear mixed

effect model fitted to the data, reveals three predictors with a significant effect on the linear mean pro-

gression of the treatment outcome (as measured by OQ-10.2 at the beginning of each session), namely:
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professional status, anxiety level (as measured by BAI at intake), and symptomatology level (as measured

by OQ-45.2 at intake). Specifically, unemployed and students, when compared to employed cases, start

the mean progression of treatment outcome with an expected increase of 5.074 and 2.493 points, respec-

tively , which means a high impairment at beginning of treatment. Regarding anxiety and symptomatology

level, both measured at intake, non-clinical groups start the mean progression of treatment outcome with

an expected decrease of -2.068 and -6.968 points, respectively, compared to clinical group. Comparing

PT an censored cases, regarding the effect of professional status on the mean progression of treatment

outcome, we verify that, within the unemployed category, those who discontinue treatment (i.e., PT cases)

have an expected increase of 10.581 points at the intercept component of the mean progression. Fur-

thermore, there are other variables that, by themselves (i.e., fitting a longitudinal model considering only

that specific variable alone) have a statistical effect on the mean progression of the treatment outcome.

Namely, as expected, non-clinical group for depressive severity shows a lower starting point (-7.982), and

a lower decline rate (-0.235), compared to clinical group. Regarding relationship status, clients who were

married present a lower starting point (-3.697), compared to those who were single, which reflects lower

impairment at beginning of treatment. On the other hand, as happened for longitudinal analysis regarding

therapeutic alliance progression, clients with mood disorders show an increased starting point (3.108 ;

i.e., high impairment) of the mean progression, but surprisingly the decline rate is higher (-3.670), when

compared to clients with an anxiety disorder (vs. -3.361), which suggests a greatest improvement for

therapeutic progress. Moreover, comparing PT and censored cases, we observe that PT have an expected

decrease of -3.710 points in the intercept component of treatment outcome progression. Regarding the

longitudinal model considering time since last session observed, no meaningful differences were found.

However, premature terminators have a substantially higher estimated value for intercept component,

compared to censored cases (15.760 vs. 13.951).

The findings from longitudinal analysis, regarding treatment outcome progress suggest that, even show-

ing a lower starting point for treatment outcome mean progression (which suggest a lower impairment

at beginning of treatment), dropout cases will untimely terminate the progression with higher impairment

(compared to censored cases). This fact is in line with previous studies that show poor treatment outcomes

and continued impairment for clients who prematurely terminate, compared to those who complete treat-

ment (Swift & Greenberg, 2012). The results of our study also suggest that some baseline variables

may promote worse starting points, as also the risk for deterioration, regarding treatment outcome mean

progression over time, namely: high impairment, more anxiety or depressive symptoms, and being unem-

ployed or student. Within unemployed cases, those who untimely dropped out, show a larger impairment
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at starting point of mean progression, when compared to the remaining cases (e.g., ≈ 12.53 points more,

on average, compared to employed and censored cases). Nevertheless, recall from sample description

(see Table 3) that, in this study, only two clients were unemployed and dropped out, so no generalization

should be applied. Regarding relationship status, being married or in a significant relationship (compared

to a single status), seems to be a protective factor regarding the intercept component of treatment out-

come mean progression, as the impairment is, on average, lower. Finally, along with what happened

for longitudinal analysis regarding therapeutic alliance progression, clients with mood disorders, show an

increased starting point of the treatment outcome mean progression, but the decline rate is 1.092 times

higher, compared to clients with anxiety disorders, which suggest a greats improvement for therapeutic

progress. In a similar vein, the same reasoning applies regarding the need to adopt models that consider

non-ignorable dropout.

Notably, for all linear mixed effect models fitted, the estimated variance of the measurement error is

quite lower than the estimated variance of the ordinary least square (OLS) model, meaning that the earliest

explain the variability of the data mainly by means of variability between and within individuals assigning,

by turn, a very low value for measurement error (also called white noise).

Joint modelling analysis, as the major strength of this study, revealed that, the association between the

longitudinal and survival processes is significant and it is essential its recognition.

84



R E F E R E N C E S

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders:

DSM-5 (5th ed. ed.). Washington, DC: Autor.

Anderson, E., & Lambert, M. (2001). A survival analysis of clinically significant change in outpatient

psychotherapy. Journal of Clinical Psychology, 57(7), 875-888. Retrieved from http://doi

.wiley.com/10.1002/jclp.1056

Anderson, K. (2015). Psychotherapy: Predictors, Reasons, and Outcomes (Doctoral dissertation,

University of Nebraska). Retrieved from http://digitalcommons.unl.edu/psychdiss/74

Andrinopoulou, E.-R., Rizopoulos, D., Jin, R., Bogers, A., Lesaffre, E., & Takkenberg, J. J. (2012). An

introduction to mixed models and joint modeling: Analysis of valve function over time. The Annals

of Thoracic Surgery, 93(6), 1765-1772. Retrieved from http://www.sciencedirect.com/

science/article/pii/S0003497512004092

Asar, O., Ritchie, J., Kalra, P. A., & Diggle, P. J. (2015). Joint modelling of repeated measurement and time-

to-event data: an introductory tutorial. International Journal of Epidemiology, 44(1), 334-344.

Retrieved from https://doi.org/10.1093/ije/dyu262

Barlow, D., Farchione, T., Fairholme, C., Ellard, K., Boisseau, C., Payne, L., & Ehrenreich-May, J. (2011).

Unified protocol for transdiagnostic treatment of emotional disorders. doi: 10.1093/med:

psych/9780199772674.001.0001

Beck, A., Brown, N., & Steer, R. (1988). An inventory for measuring clinical anxiety: Psychometric

properties. Journal of Consulting and Clinical Psychology, 56(6), 893-897. doi: 10.1037//

0022-006x.56.6.893

Beck, A., Steer, R., Ball, R., & Ranieri, W. (1996). Comparison of Beck Depression Inventories -IA and -II

in psychiatric outpatients. Journal of Personality Assessment, 67(3), 588-597. Retrieved from

https://doi.org/10.1207/s15327752jpa6703_13

85

http://doi.wiley.com/10.1002/jclp.1056
http://doi.wiley.com/10.1002/jclp.1056
http://digitalcommons.unl.edu/psychdiss/74
http://www.sciencedirect.com/science/article/pii/S0003497512004092
http://www.sciencedirect.com/science/article/pii/S0003497512004092
https://doi.org/10.1093/ije/dyu262
https://doi.org/10.1207/s15327752jpa6703_13


Björk, T., Björck, C., Clinton, D., Sohlberg, S., & Norring, C. (2009). What happened to the ones who

dropped out? Outcome in eating disorder patients who complete or prematurely terminate treatment.

European Eating Disorders Review, 17(2), 109-119. Retrieved from http://doi.wiley.com/

10.1002/erv.911

Bordin, E. (1979). The generalizability of psychoanalytic concept of working alliance. Psychotherapy

Theory Research Practice Training, 16(3), 252-260. Retrieved from https://doi.org/10

.1037/h0085885

Brown, E. R., & Ibrahim, J. G. (2003). Bayesian approaches to joint cure-rate and longitudinal models

with applications to cancer vaccine trials. Biometrics, 59(3), 686-693. Retrieved from https://

onlinelibrary.wiley.com/doi/abs/10.1111/1541-0420.00079

Bullis, R., Boettcher, H., Sauer-Zavala, S., Farchione, J., & Barlow, D. (2019). What is an emotional

disorder? a transdiagnostic mechanistic definition with implications for assessment, treatment, and

prevention. Clinical Psychology: Science and Practice, 26(2), 1-19. Retrieved from https://

onlinelibrary.wiley.com/doi/abs/10.1111/cpsp.12278

Cahill, J., Barkham, M., Hardy, G., Rees, A., Shapiro, D. A., Stiles, W. B., & Macaskill, N. (2003). Out-

comes of patients completing and not completing cognitive therapy for depression. British Journal of

Clinical Psychology, 42(2), 133-143. Retrieved from http://doi.crossref.org/10.1348/

014466503321903553

Campos, B., R., & Gonçalves. (2011). The Portuguese version of the Beck Depression Inventory-II (BDI-

II): Preliminary psychometric data with two nonclinical samples. European Journal of Psycho-

logical Assessment, 27, 258-264. Retrieved from https://doi.org/10.1027/1015-5759/

a000072

Carpenter, J., Del Gaudio, C., & Morrow, R. (1979, dec). Dropouts and terminators from a community

mental health center: Their use of other psychiatric services. Psychiatric Quarterly, 51(4), 271-279.

Retrieved from http//link.springer.com/10.1007/BF01082830

Cnaan, A., & Laird, P., N.and Slasor. (1997). Using the general linear mixed model to analyse unbalanced

repeated measures and longitudinal data. Statistics in Medicine, 16(20), 2349-2380. doi: 10

.1002/(SICI)1097-0258(19971030)16:20<2349::AID-SIM667>3.0.CO;2-E

86

http://doi.wiley.com/10.1002/erv.911
http://doi.wiley.com/10.1002/erv.911
https://doi.org/10.1037/h0085885
https://doi.org/10.1037/h0085885
https://onlinelibrary.wiley.com/doi/abs/10.1111/1541-0420.00079
https://onlinelibrary.wiley.com/doi/abs/10.1111/1541-0420.00079
https://onlinelibrary.wiley.com/doi/abs/10.1111/cpsp.12278
https://onlinelibrary.wiley.com/doi/abs/10.1111/cpsp.12278
http://doi.crossref.org/10.1348/014466503321903553
http://doi.crossref.org/10.1348/014466503321903553
https://doi.org/10.1027/1015-5759/a000072
https://doi.org/10.1027/1015-5759/a000072
http//link.springer.com/10.1007/BF01082830


Coelho, M. A., R., & Barros, H. (2002). Clinical profiles relating gender and depressive symptoms among

adolescents ascertained by the Beck Depression Inventory II. European Psychiatry, 17(4), 222-226.

Retrieved from https://doi.org/10.1016/S0924-9338(02)00663-6

Collett, D. (2015). Modelling survival data in medical research (third edition ed.).

Corning, A. F., & Malofeeva, E. V. (2004). The Application of Survival Analysis to the Study of Psychotherapy

Termination. Journal of Counseling Psychology, 51(3), 354-367. Retrieved from http://

doi.apa.org/getdoi.cfm?doi=10.1037/0022-0167.51.3.354

Cox, D. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Se-

ries B (Methodological), 34(2), 187-220. Retrieved from http://www.jstor.org/stable/

2985181

Cox, D. (1975). Partial likelihood. Biometrika, 62(2), 269-276. Retrieved from https://doi.org/

10.1093/biomet/62.2.269

Cox, D., & Snell, E. (1968). A general definition of residuals. Journal of the Royal Statistical Society:

Series B (Methodological), 30(2), 248-265. doi: 10.1111/j.2517-6161.1968.tb00724.x

Diggle, P. (2005). Variogram. In Encyclopedia of biostatistics. American Cancer Society. Retrieved

from https://onlinelibrary.wiley.com/doi/abs/10.1002/0470011815.b2a12078

Diggle, P., Heagertry, P., Liang, K.-Y., & Zeger, S. (2002). Analysis of longitudinal data. Oxford

University Press.

Diggle, P., Sousa, I., & Chetwynd, A. (2008). Joint modelling of repeated measurements and time-to-event

outcomes: The fourth armitage lecture. Statistics in Medicine, 27(16), 2981-2998. Retrieved from

https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.3131

Fitzmaurice, G., Laird, N., & Ware, J. (2004). Applied longitudinal analysis. Wiley-Interscience

Hoboken, N.J.

Garre, F. G., Zwinderman, A. H., Geskus, R. B., & Sijpkens, Y. W. J. (2008). A joint latent class

changepoint model to improve the prediction of time to graft failure. Journal of the Royal Sta-

tistical Society: Series A (Statistics in Society), 171(1), 299-308. Retrieved from https://

rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-985X.2007.00514.x

87

https://doi.org/10.1016/S0924-9338(02)00663-6
http://doi.apa.org/getdoi.cfm?doi=10.1037/0022-0167.51.3.354
http://doi.apa.org/getdoi.cfm?doi=10.1037/0022-0167.51.3.354
http://www.jstor.org/stable/2985181
http://www.jstor.org/stable/2985181
https://doi.org/10.1093/biomet/62.2.269
https://doi.org/10.1093/biomet/62.2.269
https://onlinelibrary.wiley.com/doi/abs/10.1002/0470011815.b2a12078
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.3131
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-985X.2007.00514.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-985X.2007.00514.x


Goates-Jones, M., & Hill, C. (2008). Treatment preference, treatment-preference match, and psy-

chotherapist credibility: Influence on session outcome and preference shift. Psychotherapy: The-

ory, Research, Practice, Training, 45, 61-74. Retrieved from https://doi.org/10.1037/

0033-3204.45.1.61

Henderson, R., Diggle, P., & Dobson, A. (2000). Joint modelling of longitudinal measurements and

event time data . Biostatistics, 1(4), 465-480. Retrieved from https://doi.org/10.1093/

biostatistics/1.4.465

Hogan, J., Roy, J., & Korkontzelou, C. (2004). Handling drop-out in longitudinal studies. Statistics in

medicine, 9(23), 1455-1497. Retrieved from https://doi.org/10.1002/sim.1728

Horvath, O., & Greenberg, L. (1989). Development and validation of the Working Alliance Inventory.

Journal of Counseling Psychology, 36(2), 223-233. Retrieved from https://doi.org/10

.1037/0022-0167.36.2.223

Ibrahim, J., Chu, H., & Chen, L. (2010). Basic concepts and methods for joint models of longitudinal

and survival data. Journal of Clinical Oncology, 28(16), 2796-2801. Retrieved from https://

doi.org/10.1200/JCO.2009.25.0654

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the

American Statistical Association, 53(282), 457-481. Retrieved from http://www.jstor.org/

stable/2281868

Klein, J., & Moeschberger, M. (2011). Survival analysis: Techniques for censored and truncated

data. New York: Springer.

Kleinbaum, D., & Klein, M. (2012). Evaluating the proportional hazards assumption. In Survival

analysis: A self-learning text (3rd ed. ed., p. 161-200). New York, NY: Springer New York. doi:

10.1007/978-1-4419-6646-9_4

Lambert, M., Burlingame, G., Umphress, V., Hansen, N., Vermeersch, D., Clouse, G., & Yanchar, S. (1996).

The reliability and validity of the Outcome Questionnaire. Clinical Psychology & Psychotherapy,

3, 249-258. doi: 10.1002/(SICI)1099-0879(199612)3:4<249::AID-CPP106>3.0.CO;2-S

Lambert, M., Finch, A., Okiishi, J., Burlingame, G., McKelvey, C., & Reisinger, C. (1998). Administra-

tion and Scoring Manual for the OQ-10.2: An adult Outcome Questionnaire for Screening

88

https://doi.org/10.1037/0033-3204.45.1.61
https://doi.org/10.1037/0033-3204.45.1.61
https://doi.org/10.1093/biostatistics/1.4.465
https://doi.org/10.1093/biostatistics/1.4.465
https://doi.org/10.1002/sim.1728
https://doi.org/10.1037/0022-0167.36.2.223
https://doi.org/10.1037/0022-0167.36.2.223
https://doi.org/10.1200/JCO.2009.25.0654
https://doi.org/10.1200/JCO.2009.25.0654
http://www.jstor.org/stable/2281868
http://www.jstor.org/stable/2281868


Individuals and Population OutcomeMonitoring. American Professional Credentialing Services

LLC.

Little, R. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the Amer-

ican Statistical Association, 90(431), 1112-1121. Retrieved from http://www.jstor.org/

stable/2291350

Little, R., & Rubin, D. (2019). Statistical analysis with missing data (3rd ed.). Wiley.

Liu, X. (2016). Chapter 1 - introduction. In X. Liu (Ed.), Methods and applications of longitudinal

data analysis (p. 1-18). Oxford: Academic Press. Retrieved from https://doi.org/10.1016/

B978-0-12-801342-7.00001-0

Machado, P., & Fassnacht, D. (2015). The Portuguese version of the Outcome Questionnaire (OQ-45):

Normative data, reliability and clinical significance cut-offs scores. Psychology and Psychotherapy:

Theory, Research and Practice, 88, 427-437. doi: 10.1111/papt.12048

Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies

of disease. Journal of the National Cancer Institute, 22(4), 719-748. Retrieved from https://

doi.org/10.1093/jnci/22.4.719

McCrink, L. M., Marshall, A. H., & Cairns, K. J. (2013). Advances in joint modelling: A review of recent

developments with application to the survival of end stage renal disease patients. International Sta-

tistical Review, 81(2), 249-269. Retrieved from https://onlinelibrary.wiley.com/doi/

abs/10.1111/insr.12018

Pekarik, G. (1992). Posttreatment adjustment of clients who drop out early vs. late in treatment.

Journal of Clinical Psychology, 48(3), 379-387. doi: 10.1002/1097-4679(199205)48:3<379::

AID-JCLP2270480317>3.0.CO;2-P

Philipson, P., Diggle, P., Sousa, I., Kolamunnage-Dona, R., Williamson, P. R., & Henderson, R. (2012).

joineR: Joint modelling of repeated measurements and time-to-event data. Comprehensive R Archive

Network.

Proust-Lima, C., Philipps, V., & Dartigues, J.-F. (2019). A joint model for multiple dynamic processes and

clinical endpoints: Application to alzheimer’s disease. Statistics in Medicine, 38(23), 4702-4717.

Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.8328

89

http://www.jstor.org/stable/2291350
http://www.jstor.org/stable/2291350
https://doi.org/10.1016/B978-0-12-801342-7.00001-0
https://doi.org/10.1016/B978-0-12-801342-7.00001-0
https://doi.org/10.1093/jnci/22.4.719
https://doi.org/10.1093/jnci/22.4.719
https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12018
https://onlinelibrary.wiley.com/doi/abs/10.1111/insr.12018
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.8328


Quintão, S., Delgado, A., & Prieto, G. (2013). Validity study of the Beck Anxiety Inventory (Portuguese

version) by the Rasch Rating Scale model. , 26, 305-310. Retrieved from https://doi.org/10

.1590/S0102-79722013000200010

Ramos, M. (2008). Análise das características psicométricas da versão portuguesa do Working

Aliance Inventory - short revised.

Reis, B. F., & Brown, L. G. (1999). Reducing psychotherapy dropouts: Maximizing perspective convergence

in the psychotherapy dyad. Psychotherapy: Theory, Research, Practice, Training, 36(2), 123-

136. doi: 10.1037/h0087822

Rizopoulos, D. (2012). Joint models for longitudinal and time-to-event data : With applications

in r. Taylor & Francis Group.

Rubin, D. (1976). Inference and missing data. Biometrika, 63(3), 581-592. Retrieved from http://

www.jstor.org/stable/2335739

Samstag, L. W., Batchelder, S. T., Muran, J. C., Safran, J. D., & Winston, A. (1998). Early identification of

treatment failures in short-term psychotherapy: An assessment of therapeutic alliance and interpersonal

behavior. , 7(2), 126-143.

Schoenfeld, D. (1982). Partial residuals for the proportional hazards regression model. Biometrika,

69(1), 239-241. Retrieved from http://www.jstor.org/stable/2335876

Sharf, P. L. H., J., & Diener, M. J. (2010). Dropout and therapeutic alliance: A meta-analysis of adult

individual psychotherapy. Psychotherapy: Theory, Research, Practice, Training, 47(4), 637-

645. Retrieved from https://doi.org/10.1037/a0021175

Sousa, I. (2011). A review on joint modelling of longitudinal measurements and time-to-event. REVSTAT -

Statistical Journal, 9(1), 57-81.

Swift, J., & Greenberg, R. (2012). Premature discontinuation in adult psychotherapy: A meta-analysis.

Journal of Consulting and Clinical Psychology, 80(4), 547-559. Retrieved from http://

doi.apa.org/getdoi.cfm?doi=10.1037/a0028226

Swift, J., & Greenberg, R. (2015). Premature termination in psychotherapy: Strategies for

engaging clients and improving outcomes. APA Books. doi: 10.1037/14469-000

90

https://doi.org/10.1590/S0102-79722013000200010
https://doi.org/10.1590/S0102-79722013000200010
http://www.jstor.org/stable/2335739
http://www.jstor.org/stable/2335739
http://www.jstor.org/stable/2335876
https://doi.org/10.1037/a0021175
http://doi.apa.org/getdoi.cfm?doi=10.1037/a0028226
http://doi.apa.org/getdoi.cfm?doi=10.1037/a0028226


Teixeira, L., Sousa, I., Rodrigues, A., & Mendonça, D. (2019). Joint modelling of longitudinal and competing

risks data in clinical research. REVSTAT - Statistical Journal, 17(2), 245-264.

Tolin, D., Gilliam, C., Wootton, B., Bowe, W., Bragdon, L., Davis, E., … Hallion, L. (2018). Psychometric

Properties of a Structured Diagnostic Interview for DSM-5 Anxiety, Mood, and Obsessive-Compulsive

and Related Disorders. Assessment, 25(1), 3-13. Retrieved from https://doi.org/10.1177/

1073191116638410

Tsiatis, A. A., & Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An

overview. Statistica Sinica, 14(3), 809-834. Retrieved from http://www.jstor.org/stable/

24307417

Tsiatis, A. A., Degruttola, V., & Wulfsohn, M. S. (1995). Modeling the relationship of survival to longitudinal

data measured with error: Applications to survival and CD4 counts in patients with AIDS. Journal

of the American Statistical Association, 90(429), 27-37. Retrieved from https://www.jstor

.org/stable/2291126

Willett, J., & Singes, J. (1993). Investigating onset, cessation, relapse, and recovery: Why you should, and

how you can, use discrete-time survival analysis to examine event occurrence. Journal of Consulting

and Clinical Psychology, 61(6), 952-965. Retrieved from https://doi.org/10.1037/0022

-006X.61.6.952

Wolke, D., Waylen, A., Samara, M., Steer, C., Goodman, R., Ford, T., & Lamberts, K. (2009). Selective

drop-out in longitudinal studies and non-biased prediction of behaviour disorders. British Journal

of Psychiatry, 195(3), 249–256. Retrieved from https://doi.org/10.1192/bjp.bp.108

.053751

Wu, L., Liu, W., & Hu, X. J. (2010). Joint inference on HIV viral dynamics and immune suppres-

sion in presence of measurement errors. Biometrics, 66(2), 327-335. Retrieved from https://

onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2009.01308.x

Wu, L., Liu, W., Yi, G., & Huang, Y. (2012). Analysis of longitudinal and survival data: Joint modeling,

inference methods, and issues. Journal of Probability and Statistics, 2012, 1-17. Retrieved from

https://doi.org/10.1155/2012/640153

Wulfsohn, M. S., & Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error.

Biometrics, 53(1), 330-339. Retrieved from http://www.jstor.org/stable/2533118

91

https://doi.org/10.1177/1073191116638410
https://doi.org/10.1177/1073191116638410
http://www.jstor.org/stable/24307417
http://www.jstor.org/stable/24307417
https://www.jstor.org/stable/2291126
https://www.jstor.org/stable/2291126
https://doi.org/10.1037/0022-006X.61.6.952
https://doi.org/10.1037/0022-006X.61.6.952
https://doi.org/10.1192/bjp.bp.108.053751
https://doi.org/10.1192/bjp.bp.108.053751
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2009.01308.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2009.01308.x
https://doi.org/10.1155/2012/640153
http://www.jstor.org/stable/2533118

	Página 1
	Página 2
	Página 3
	[2020.07.31] dissertacao mestrado estatistica_angela ferreira.pdf
	1 Introduction
	2 Premature Termination in Psychotherapy Data
	2.1 Participants
	2.1.1 Clients
	2.1.2 Therapists
	2.1.3 Treatment

	2.2 Measures

	3 Statistical Methodology
	3.1 Time-To-Event Data Analysis
	3.1.1 Notation and Definition of Concepts
	3.1.2 Non-Parametric Survival Models
	3.1.3 Semi-Parametric Cox Proportional Hazards Model
	3.1.4 Time-Dependent Cox Model
	3.1.5 Model Diagnostic Procedures
	3.1.6 Conclusion

	3.2 Longitudinal Data Analysis
	3.2.1 Notation and Definition of Concepts
	3.2.2 Linear Mixed Effects Models
	3.2.3 Variogram
	3.2.4 Model Diagnostic Procedures
	3.2.5 Missing Data
	3.2.6 Conclusion

	3.3 Joint Modelling of Longitudinal and Survival Data
	3.3.1 Joint Models
	3.3.2 Random Effects Joint Model
	3.3.3 Model Diagnostic Procedures
	3.3.4 Conclusion


	4 Joint analysis of longitudinal data and time until premature termination in psychotherapy
	4.1 Sample Characteristics
	4.2 Survival Analysis
	4.2.1 Analysis with Cox Semi-Parametric Model

	4.3 Longitudinal Analysis
	4.3.1 Results of the Therapeutic Alliance Longitudinal Analysis 
	4.3.2 Results of the Treatment Outcome Longitudinal Analysis

	4.4 Joint Modelling
	4.4.1 Results of the Therapeutic Alliance Joint Analysis
	4.4.2 Results of the Treatment Outcome Joint Analysis


	5 Discussion
	References

	_2020_07_31__dissertacao_mestrado__angela_ferreira_postum (4).pdf
	1 Introduction
	2 Premature Termination in Psychotherapy Data
	2.1 Participants
	2.1.1 Clients
	2.1.2 Therapists
	2.1.3 Treatment

	2.2 Measures

	3 Statistical Methodology
	3.1 Survival Analysis
	3.1.1 Notation and Definition of Concepts
	3.1.2 Non-Parametric Survival Models
	3.1.3 Semi-Parametric Cox Proportional Hazards Model
	3.1.4 Time-Dependent Cox Model
	3.1.5 Model Diagnostic Procedures
	3.1.6 Conclusion

	3.2 Longitudinal Analysis
	3.2.1 Notation and Definition of Concepts
	3.2.2 Linear Mixed Effects Models
	3.2.3 Variogram
	3.2.4 Model Diagnostic Procedures
	3.2.5 Missing Data
	3.2.6 Conclusion

	3.3 Joint Modelling of Longitudinal and Survival Data
	3.3.1 Joint Models
	3.3.2 Random Effects Joint Model
	3.3.3 Model Diagnostic Procedures
	3.3.4 Conclusion


	4 Joint analysis of longitudinal data and time until premature termination in psychotherapy
	4.1 Sample Characteristics
	4.2 Survival Analysis
	4.2.1 Analysis with Cox Semi-Parametric Model

	4.3 Longitudinal Analysis
	4.3.1 Results of the Therapeutic Alliance Longitudinal Analysis 
	4.3.2 Results of the Treatment Outcome Longitudinal Analysis

	4.4 Joint Modelling

	5 Discussion
	References


