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Abstract

The momentum, fermionic density, spin density, and interaction dependencies of the exponents that con-
trol the (k, ω)-plane singular features of the one-fermion spectral functions of a one-dimensional gas of 
spin-1/2 fermions with repulsive delta-function interaction both at zero and finite magnetic field are stud-
ied in detail. Our results refer to energy scales beyond the reach of the low-energy Tomonaga-Luttinger 
liquid and rely on the pseudofermion dynamical theory for integrable models. The one-fermion spectral 
weight distributions associated with the spectral functions studied in this paper may be observed in systems 
of spin-1/2 ultra-cold fermionic atoms in optical lattices.
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1. Introduction

The one-dimensional (1D) continuous fermionic gas with repulsive delta-function interaction, 
which in this paper we call 1D repulsive fermion model, was one of the first quantum problems 
solved by the Bethe ansatz (BA) [1]. This was achieved by Yang [2] and by Gaudin [3]. Yang’s 
solution of the 1D repulsive fermion model was actually the precursor of the BA solution of the 
lattice 1D Hubbard model by Lieb and Wu [4–7]. That the latter is the simplest condensed-matter 
toy model for the description of the role of correlations in the exotic properties of 1D and quasi-
1D lattice condensed matter systems [8,9] justifies why for several decades it had attracted more 
attention than its continuous cousin, the fermionic gas with repulsive delta-function interaction. 
This refers both to its metallic and Mott-Hubbard insulator phases [10], the latter not existing in 
the case of the continuous 1D repulsive fermion model.

However, in the last years the interest in that Yang-Baxter integrable model has been renewed 
by its new found impact on experiments in both condensed matter physics and ultra-cold atomic 
gases [11]. The latter have provided new opportunities for studying 1D systems of spin-1/2
fermions with repulsive interaction [12,13]. The present model can indeed be implemented with 
ultra-cold atoms [11–17]. Ultra-cold Fermi gases trapped inside a tight atomic waveguide offer 
for instance the opportunity to measure the spin-drag relaxation rate that controls the broaden-
ing of a spin packet. It has been found that while the propagation of long-wavelength charge 
excitations is essentially ballistic, spin propagation is intrinsically damped and diffusive [18,19]. 
A related interesting problem is the force applied to a spin-flipped fermion in a gas, which may 
lead to Bloch oscillations of the fermion’s position and velocity. The existence of such oscilla-
tions has been found crucially to depend on the viscous friction force exerted by the rest of the 
gas on the spin excitation [20].

The ground-state energy of the relative motion of a system of two fermions with spin up and 
spin down interacting via a delta-function potential in a 1D harmonic trap has been calculated by 
combining the BA with the variational principle [21]. Recently, related ground-state properties 
of a 1D repulsive Fermi gas subjected to a commensurate periodic optical lattice of arbitrary 
intensity have been investigated by the use of continuous-space quantum Monte-Carlo simula-
tions [22]. The thermodynamic properties of the model have also been recently studied using a 
specific lattice embedding and the quantum transfer matrix. That allowed the derivation of an ex-
act system of only two nonlinear integral equations for the thermodynamics of the homogeneous 
model, which is valid for all temperatures and values of the chemical potential, magnetic field, 
and repulsive interaction [23].

Another issue that has contributed to the renewed interest in the 1D repulsive fermion model is 
the relation of integrable Yang-Baxter equation fermionic models to topology and quantum com-
puting [24]. That equation can act as a parametric two-body quantum gate [25]. An experimental 
realization of the Yang-Baxter equation through a Nuclear Magnetic Resonance interferometric 
setup has actually verified its validity [26].

The model dynamical properties is another problem of scientific interest. The behavior of dy-
namic structure factors of fermionic models differs dramatically for integrable and non-integrable 
models [27]. The mobile quantum impurity model (MQIM) has been used to derive dynamic re-
sponse functions of interacting one-dimensional spin-1/2 fermions [28,29]. An approximation 
relying on the bosonization technique and diagonalizing the model to two Tomonaga-Luttinger 
liquid (TLL) Hamiltonians, was used in Ref. [30] to obtain some general expressions for the 
spectral function at zero spin density, expressed in terms of the Gauss hypergeometric function. 
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The up-spin and down-spin one-fermion spectral functions of the present model in zero magnetic 
field and in a finite field have not been detailed studied though.

In this paper a systematic and detailed study of the momentum dependent exponents and 
energy spectra that control the line shape near the high-energy singularities of both (i) the one-
fermion removal and addition spectral functions at zero magnetic field and (ii) the up-spin and 
down-spin one-fermion removal and addition spectral functions at finite magnetic field is con-
ducted. (Our designation high energy refers to energy scales beyond the reach of the low-energy 
TLL [31–35].)

The 1D repulsive fermion model describes N = N↑ +N↓ spin-1/2 fermions, N↑ with up-spin 
projection and N↓ with down-spin projection, which in real space have a repulsive delta-function 
interaction. The model Hamiltonian in a chemical potential μ and magnetic field h is in units of 
h̄ = 1 and bare mass m = 1/2 given by,

Ĥ = −
N∑

j=1

∂2

∂x2
j

+ 2C
∑
j ′>j

δ(xj − xj ′)−μN + 2μBh Ŝz where Ŝz = −1

2
(N̂↑ − N̂↓) . (1)

Here δ(x) denotes the Dirac delta-function distribution, xj is the position of the j -th fermion, 
C > 0 gives the strength of the repulsive interaction, μB is the Bohr magneton, and the fermion 
number operator reads N̂ = ∑

σ=↑,↓ N̂σ . Moreover, Ŝz is the diagonal generator of the Hamil-

tonian Ĥ global spin SU(2) symmetry algebra. The lowest-weight states (LWSs) and highest-
weight states (HWSs) of that SU(2) symmetry algebra have numbers S = −Sz and S = Sz, 
respectively, where S is the states spin and Sz is the corresponding projection. The latter is an 
eigenvalue of the spin operator given in Eq. (1).

On the one hand, at zero magnetic field, h = 0, and thus zero spin density, m = 0, our study 
focuses on the one-fermion spectral function,

Bγ (k,ω) =
∑

σ=↑,↓
Bσ,γ (k,ω) for γ ω ≥ 0 , (2)

where,

γ = −1 for fermion removal and γ = +1 for fermion addition . (3)

On the other hand, for h �= 0 and m > 0 it addresses the up-spin and down-spin one-fermion 
removal and addition spectral functions Bσ,γ (k, ω) on the right-hand side of Eq. (2), which read,

Bσ,−1(k, ω) =
∑
ν−

|〈ν−| ck,σ |GS〉|2 δ(ω + (E
Nσ −1
ν− − E

Nσ

GS)) for ω ≤ 0

Bσ,+1(k, ω) =
∑
ν+

|〈ν+| c†
k,σ |GS〉|2 δ(ω − (E

Nσ +1
ν+ − E

Nσ

GS)) for ω ≥ 0 . (4)

Here ck,σ and c†
k,σ are up-spin and down-spin fermion annihilation and creation operators, re-

spectively, of momentum k and |GS〉 denotes the initial Nσ -fermion ground state of energy ENσ

GS . 
The ν− and ν+ summations run over the Nσ − 1 and Nσ + 1-fermion excited energy eigenstates, 
respectively, and ENσ −1

ν− and ENσ +1
ν+ are the corresponding energies.

Our main goal is deriving the (k, ω)-plane line shape near the singularities of the spectral 
functions in Eq. (2) at zero spin density, m = 0, and in Eq. (4) for m > 0. This includes the 
detailed study of the dependence of the exponents that control that line shape on the excitation 
momentum, repulsive interaction C, fermionic density n ∈ [0, ∞[, and spin-density m ∈ [0, n]. 
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For such spin densities, the model ground states are LWSs of the spin SU(2) symmetry algebra. 
Hence we use the LWS formulation of the model BA solution.

The high-energy dynamical correlation functions of some integrable models [36–39] can be 
studied by the form-factor approach. Form factors of the 1D repulsive fermion model up-spin and 
down-spin fermion creation and annihilation operators involved in the spectral functions studied 
here remains though an unsolved problem.

The present study of the momentum dependent exponents that control the line shape near 
the singularities of the one-fermion spectral functions, Eqs. (2) and (4), relies on the pseud-
ofermion dynamical theory (PDT) introduced in Ref. [40] for the related lattice 1D Hubbard 
model, which applies to other integrable systems as well [41–43], including the present 1D re-
pulsive fermion model. For the latter we use in our study an exact representation suitable to 
the PDT in terms of pseudofermions of that model BA solution in the subspace spanned by the 
ground state and one-fermion excited energy eigenstates. The pseudofermions are generated by a 
unitary transformation from corresponding pseudoparticles [41,44]. For simplicity, in this article 
the pseudofermions are called charge or spin particles, depending on the BA branch they refer 
to.

The MQIM [29] applies both to integrable and non-integrable models. The previously intro-
duced PDT [40] applies only to integrable models. In the case of the latter models, the PDT and 
MQIM lead to exactly the same momentum dependent exponents in the power-law expressions of 
the spectral functions near their edges of support. Indeed, for integrable models the two methods 
have been shown to describe exactly the same fractionalized particles microscopic mechanisms 
[41,42].

The remainder of the paper is organized as follows. The related c and s pseudoparticle and 
c and s particle representations, respectively, and corresponding BA and PDT basic quantities 
needed for the study of the up-spin and down-spin one-fermion spectral weights is the topic ad-
dressed in Section 2. In Section 3 the general types of one-fermion spectral singularities studied 
in this paper are reported. The line shape near specific (k, ω)-plane one-fermion removal and 
addition branch and boundary lines singularities of the spectral functions, Eqs. (2) and (4), is 
then studied in Section 4. The low-energy TLL limit of the PDT one-fermion spectral function 
expressions near their singularities is the issue addressed in Section 5. Finally, the discussion 
of the relevance and consequences of the results and the concluding remarks are presented in 
Section 6.

2. The c and s pseudoparticle and c and s particle representations

2.1. The BA equations and quantum numbers

Let {|lr, ls , C〉} be the complete set of energy eigenstates of the Hamiltonian Ĥ , Eq. (1), asso-
ciated with the BA solution for C > 0. We call a Bethe state an energy eigenstate that is a LWS of 
the spin SU(2) symmetry algebra, which is here denoted by |lr, l0

s , C〉. The C-independent label ls
in general energy eigenstates {|lr, ls , C〉} is a short notation for the set of quantum numbers,

ls = S,ns where ns = S + Sz = 0,1, ...,2S . (5)

For a Bethe state one then has that ns = 0, so that l0
s stands for S, 0. Furthermore, the label lr

refers to the set of all remaining C-independent quantum numbers needed to uniquely specify an 
energy eigenstate |lr, ls , C〉. This refers to occupancy configurations of BA momentum quantum 
numbers qj = 2π I

β . Here Iβ are successive integers, Iβ = 0, ±1, ±2, ..., or half-odd integers, 

L j j j
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I
β
j = ±1/2, ±3/2, ±5/2, ..., according to well-defined boundary conditions. Their allowed oc-

cupancies are zero and one. The index β denotes several BA branches of quantum numbers.
In the case of the up-spin and down-spin one-fermion removal and addition spectral func-

tions, the line-shape near their singularities does not involve at finite magnetic field excited states 
described by spin complex BA rapidities. Fortunately, the finite-field quantities lead to correct 
zero-spin density results in the limit of zero spin density. Hence for our study only the charge 
β = c band and spin β = s band momentum qj = 2π

L
I

β
j branches described by real BA rapidities 

are needed.
The general non-LWSs |lr, ls , C〉 for which ns > 0 can be generated from the corresponding 

Bethe states |lr, l0
s , C〉 as,

|lr, ls ,C〉 =
(

1√
Cs

(Ŝ+)ns

)
|lr, l0

s ,C〉

where Cs = (ns !)
ns∏

j=1

(2S + 1 − j ) and ns = 1, ...,2S .

Here Ŝ+ = Ŝx + iŜy , Ŝx and Ŝy are usual spin component operators, and Cs is a normalization 
constant.

The BA equations of the 1D repulsive fermion model, Eq. (1), in the subspace spanned by the 
ground state and the one-fermion excited energy eigenstates that contribute to the spectral weight 
in the vicinity of the spectral functions singularities are of the form [2],

kj = qj − 2

L

N↓∑
j ′=1

arctan

(
2kj − 2
j ′

C

)
where qj = 2π

L
Ic
j and j = 1, ...,∞ , (6)

and

2

L

N∑
j ′=1

arctan

(
2
j − 2kj ′

C

)
= qj − 2

L

N↓∑
j ′=1

arctan

(

j − 
j ′

C

)

where qj = 2π

L
Is
j and j = 1, ...,N↑ . (7)

The c and s band discrete momentum values in those equations,

qj = 2π

L
Ic
j where j = 1, ...,∞ and qj = 2π

L
Is
j where j = 1, ...,N↑ , (8)

respectively, are directly related to the BA solution quantum numbers I c
j and I s

j , respectively. 
Those are such discrete momentum values in units of 2π/L. They are integers or half-odd inte-
gers according to the following boundary conditions,

I c
j = 0,±1,±2, ... for Ns = N↓ even

= ±1/2,±3/2,5/2, ... for Ns = N↓ odd , (9)

and

I s
j = 0,±1,±2, ... for Nc − Ns = N↑ odd

= ±1/2,±3/2,5/2, ... for Nc − Ns = N↑ even , (10)
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respectively. Hence under transitions from the ground state to one-fermion removal or addition 
excited energy eigenstates there may occur shakeup effects involving overall β = c, s band dis-
crete momentum shifts, qj → qj + 2π�0

β/L. It follows directly from the boundary conditions, 

Eqs. (9) and (10), that the non-scattering phase shift 2π�0
β is given by,

2π�0
c = 0 for δNs = δN↓ even and 2π�0

c = ±π for δNs = δN↓ odd

2π�0
s = 0 for δNc − δNs = δN↑ even and 2π�0

s = ±π for δNc − δNs = δN↑ odd .

(11)

The complete set of the model energy eigenstates involves those whose spin rapidities 
j in 
Eqs. (6) and (7) are complex numbers. Fortunately, as mentioned in Sec. 1, such states do not 
contribute to the expressions of the up-spin and down-spin one-fermion spectral functions in the 
vicinity of the singularities studied in this paper.

2.2. The c and s pseudoparticle representation

Within the pseudoparticle representation [41], the energy eigenstates are generated by 
exclusion-principle occupancy configurations of Nc = N charge c pseudoparticles over j =
1, ..., ∞ discrete c band momentum values qj and Ns = N↓ spin s pseudoparticles over 
j = 1, ..., N↑ discrete s band momentum values qj in Eq. (8). Hence within that representation 
each occupied β = c, s band discrete momentum qj corresponds to one β = c, s pseudoparti-
cle.

The β = c, s band momentum distribution function Nβ(qj ) reads Nβ(qj ) = 1 and Nβ(qj ) = 0
for occupied and unoccupied discrete momentum values qj , respectively. The BA equations, 
Eqs. (6) and (7), can then be written in a corresponding functional form as,

k(qj ) = qj − 2

L

N↑∑
j ′=1

Ns(qj ′) arctan

(
2k(qj ) − 2
(qj ′)

C

)

where qj = 2π

L
Ic
j and j = 1, ...,∞ , (12)

and

2

L

∞∑
j ′=1

Nc(qj ′) arctan

(
2
(qj ) − 2k(qj ′)

C

)

= qj − 2

L

N↑∑
j ′=1

Ns(qj ′) arctan

(

(qj ) − 
(qj ′)

C

)

where qj = 2π

L
Is
j and j = 1, ...,N↑ , (13)

respectively.
For the excited energy eigenstates that contribute to the one-fermion spectral weights dis-

tributions near singularities studied below in Section 3 the numbers Nc and Ns of c and s
pseudoparticles, respectively, and the number Nh

s of s band holes are related to those of the 
spin-1/2 fermions N = N↑ + N↓, N↑, and N↓ as follows,
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Nc = N , Ns = N↓ and Nh
s = Nc − 2Ns = N↑ − N↓ ,

so that,

N = Nc , N↑ − N↓ = Nh
s , N↑ = Ns + Nh

s and N↓ = Ns .

The general energy spectrum of the one-fermion excited energy eigenstates generated by c
and s particle occupancy configurations reads,

δE =
∑

β=c,s

Lβ∑
j=1

εβ(qj )δNβ(qj )

+ 1

L

∑
β=c,s

∑
β ′=c,s

Lβ∑
j=1

Lβ′∑
j ′=1

1

2
fβ β ′(qj , qj ′) δNβ(qj )δNβ ′(qj ′) . (14)

Here Lc = L is the system length that is given by L → ∞ in the thermodynamic limit, Ls = N↑, 
and the β = c, s momentum band distribution function deviations read,

δNβ(qj ) = Nβ(qj ) − N0
β(qj ) where j = 1, ...,Lβ and β = c, s . (15)

Nβ(qj ) is in this equation the β = c, s band pseudoparticle momentum distribution function for 
excited states for which the deviation δNβ(qj ) is small and thus in the thermodynamic limit 
involve a vanishing density of β pseudoparticles. The ground-state β = c, s band pseudoparticle 
momentum distribution functions N0

β(qj ) also appearing in Eq. (15) are given by,

N0
c (qj ) = θ(qj − q−

Fc) θ(q+
Fc − qj ) and N0

s (qj ) = θ(qj − q−
Fs) θ(q+

Fs − qj ) , (16)

where the distribution θ(x) reads θ(x) = 1 for x > 0 and θ(x) = 0 for x ≤ 0. The β = c, s
Fermi points of the compact and symmetrical occupancy configurations, Eq. (16), are associated 
with the Fermi momentum values q±

Fβ . If within the thermodynamic limit we ignore unimportant 

1/L corrections, one may consider that q±
Fβ = ±qFβ and thus that N0

β(qj ) = θ(qFβ − |qj |) for 
β = c, s. For densities 0 < n < ∞ and 0 < m < n the β = c, s Fermi momenta qFβ are given by,

qFc = 2kF = π

L
(N − 1) ≈ π n and qFs = kF↓ = π

L
(N↓ − 1) ≈ π n↓ = π

2
(n − m) . (17)

Within the thermodynamic limit, the c and s band discrete momentum values, Eq. (8), such that 
qj+1 − qj = 2π/L, may be replaced by c and s band continuum momentum variables q and q ′, 
respectively. (In some cases the s band momentum q ′ may be denoted by q yet in general is 
called q ′.) The ground-state rapidity functions k0(q) ∈ [−∞, ∞] and 
0(q

′) ∈ [−∞, ∞] whose 
domains are q ∈ [−∞, ∞] and q ′ ∈ [−kF↑, kF↑], respectively, are defined in Eqs. (A.1)-(A.8)
of Appendix A. In the case of the ground state, the BA equations, Eqs. (12) and (13), and corre-
sponding BA distributions are given in Eqs. (A.1)-(A.10) of that Appendix.

Moreover, the c and s pseudoparticle energy dispersions in Eq. (14) are defined as follows,

εc(q) = ε̄c(k0(q)) and εs(q
′) = ε̄s(
0(q

′)) where

ε̄c(k) =
k∫
dk′ ηc(k

′) and ε̄s(
) =

∫

d
′ ηs(

′) . (18)
Q B
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The distributions ηc(
) and ηs(
) appearing here are solutions of the integral equations given 
in Eqs. (A.11)-(A.14) of Appendix A. In the C → 0 limit the c and s pseudoparticle energy 
dispersions read,

εc(q) = q2

2
− k2

F↑ − k2
F↓ for |q| ≤ 2kF↓

= (|q| − kF↓)2 − k2
F↑ for |q| ≥ 2kF↓

εs(q
′) = (q ′)2 − k2

F↓ , (19)

whereas in the C → ∞ limit they are given by,

εc(q) = q2 − (2kF )2

εs(q
′) = 0 . (20)

The c and s pseudoparticles have energy residual interactions associated with the f functions 
in the second-order terms of the energy functional, Eq. (14). Such f functions expression given 
below involves the c and s bands group velocities,

vc(q) = ∂εc(q)

∂q
and vs(q

′) = ∂εs(q
′)

∂q ′ , (21)

associated with the energy dispersions, Eq. (18), respectively. They can be expressed in terms of 
BA distributions, as given in Eq. (A.15) of Appendix A.

The c and s band group velocities at the corresponding Fermi points,

±vc ≡ v(±qFc) = v(±2kF ) and ± vs ≡ v(±qFs) = vs(±kF↓) , (22)

play an important role, as they are the velocities of the low-energy particle-hole processes near 
the c and s bands Fermi points. Their expression in terms of BA distributions is provided in 
Eq. (A.16) of Appendix A.

Moreover, the f functions expression involves the functions 2π�β,β ′(qj , qj ′) defined below 
in Section 2.3. The latter are related to the residual interactions of the β pseudoparticle or pseu-
dohole of momentum qj with a β ′ pseudoparticle or pseudohole created at momentum qj ′ under 
a transition from the ground state to an excited energy eigenstate. Those processes are behind the 
momentum function deviations, Eq. (15), in the energy functional, Eq. (14). Specifically, the f
functions expression reads,

fβ β ′(qj , qj ′) = vβ(qj )2π �β,β ′(qj , qj ′) + vβ ′(qj ′)2π �β ′,β(qj ′ , qj )

+ 1

2π

∑
β ′′=c,s

∑
ι=±1

vβ ′′ 2π�β ′′,β(ιqFβ ′′ , qj )2π�β ′′,β ′(ιqFβ ′′ , qj ′) .

The c and s pseudoparticle energy dispersions, Eq. (18), can be written as,

εc(q) = ε0
c (q) − ε0

c (2kF ) for q ∈] − ∞,∞[ and

εs(q
′) = ε0

s (q
′) − ε0

s (kF↓) for q ∈ [−kF↑, kF↑] , (23)

respectively. The energy dispersions ε0
c (q) and ε0

s (q) in this equation fully control the depen-
dence of the magnetic field h on the spin density m and chemical potential μ on the fermionic 
density n. Such dependencies are contained in the following expressions of the energy scales 2μ

and 2μB h,
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2μ = 2ε0
c (2kF ) − ε0

s (kF↓) and 2μB h = −ε0
s (kF↓) = εs(kF↑) , (24)

where μB is the Bohr magneton. (See also Eqs. (A.17) Appendix A.)
For the present spin density interval, m ∈ [0, n], the magnetic field varies in the domain h ∈

[0, hc] where hc is the critical field for fully polarized ferromagnetism achieved in the m → n

and kF↓ → 0 limits. An analytical expression for the energy scale 2μB hc associated with the 
critical field hc can be derived from the use of the expressions of ε̄ 0

s (
) and ε 0
s (q) in the m → n

limit given in Eqs. (B.1) and (B.2) of Appendix B, respectively. It reads,

2μBhc = −ε0
s (0)|kF↓=0 = 1

2π

(
C2 + (2πn)2

)
arctan

(
2πn

C

)
− C n . (25)

Its limiting behaviors are given in Eqs. (B.3) and (B.4) of Appendix B. (In that Appendix sim-
plified expressions in the fully polarized ferromagnetism limit of several physical quantities are 
provided.)

2.3. The related c and s particle representation and corresponding phase shifts

For the 1D repulsive fermion model in the subspace populated only by c and s pseudoparti-
cles considered here, the BA c and s rapidity functions k(qj ) and 
(qj ) of the excited energy 
eigenstates, which are solutions of the BA equations, Eqs. (12) and (13), can be expressed in 
terms of those of the corresponding initial ground state, k0(q) and 
0(q), respectively, defined 
in Eqs. (A.1)-(A.8) of Appendix A. Specifically, k(qj ) = k0(q̄j ) and 
(qj ) = 
0(q̄j ).

The set of j = 1, ..., Lβ values q̄j = q̄(qj ) in such excited energy eigenstates rapidity ex-
pressions k(qj ) = k0(q̄(qj )) and 
(qj ) = 
0(q̄(qj )) are the β = c, s band discrete canonical 
momentum values. They read,

q̄j = q̄(qj ) = qj + 2π�β(qj )

L
= 2π

L

(
I

β
j + �β(qj )

)
where j = 1, ...,Lβ and β = c, s . (26)

Here q̄j+1 − q̄j = 2π/L + h.o. where h.o. stands for contributions of second order in 1/L. The 
function 2π�β(qj ) in Eq. (26) is defined below.

We call a β = c, s particle each of the Nβ occupied β-band discrete canonical momentum 
values q̄j [40,45]. We call a β hole the remaining Nh

β unoccupied β-band discrete canonical mo-
mentum values q̄j of an excited energy eigenstate. (In the case of the related 1D Hubbard model 
PDT, such particles were rather called pseudofermions [40,41,44].) There is a c and s particle 
representation for each initial ground state and its excited states. This holds for all fermionic and 
spin densities.

The set of Lβ discrete β = c, s bare momentum values {qj }, Eq. (8), and the correspond-
ing set of Lβ discrete β = c, s canonical momentum values {q̄j }, Eq. (26), are equally ordered. 
This is because Iβ

j+1 − I
β
j = 1 and �β(qj+1) − �β(qj ) = O(1/L) in q̄j = 2π

L
(I

β
j + �β(qj )). 

For simplicity, in the case of some qj dependent physical quantities one then often associates in 
the thermodynamic limit the bare momentum qj to the β = c, s particle of canonical momen-

tum q̄j = 2π
L

(I
β
j + �β(qj )). (This is in spite of qj being the discrete momentum value of the 

β = c, s pseudoparticle which is transformed into the β = c, s particle under the β pseudopar-
ticle – β particle unitary transformation.) Moreover, if in the thermodynamic limit one replaces 
the sets of discrete c and s bare momentum values {qj } and {q ′

j } by continuous momentum vari-
ables q ∈ [−∞, ∞] and q ′ ∈ [−kF↑, kF↑], respectively, the corresponding sets of discrete c and 
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s canonical momentum values {q̄j } and {q̄ ′
j } are replaced by undistinguishable continuous mo-

mentum variables. For the excited states considered here, the exception is at the c and s bands 
Fermi points, which are slightly shifted under the qj → q̄j and q ′

j → q̄ ′
j unitary transformation, 

respectively. (See Eq. (29) below.)
An example of such qj dependent physical quantities is 2π�β(qj ) in Eq. (26). It is a func-

tional that involves the deviations δNβ ′(qj ′) defined in Eq. (15) and reads,

2π�β(qj ) =
∑

β ′=c,s

Lβ′∑
j ′=1

2π�β,β ′(qj , qj ′) δNβ ′(qj ′)

where j = 1, ...,Lβ and β = c, s , (27)

and 2π�β,β ′(qj , qj ′) is for β = c, s and β ′ = c, s given by,

2π�s,s

(
q, q ′) = 2π�̄s,s

(
2
(q)

C ,
2
(q ′)

C

)
;

2π�s,c

(
q, q ′) = 2π�̄s,c

(
2
(q)

C ,
2k(q ′)
C

)

2π�c,c

(
q, q ′) = 2π�̄c,c

(
2k(q)

C ,
2k(q ′)
C

)
;

2π�c,s

(
q, q ′) = 2π�̄c,s

(
2k(q)

C ,
2
(q ′)

C

)
. (28)

The quantities on the right-hand side of these equations are functions of the rapidity-related 
variables r = 2k/C for the c band and r = 2
/C for the s band. They are uniquely defined by the 
integral equations given in Eqs. (A.26)-(A.31) of Appendix A. (In such equations they appear in 
units of 2π .)

In the c and s particle representation, 2π�β,β ′(qj , qj ′), Eq. (28), has a precise physical mean-
ing: 2π�β,β ′(qj , qj ′) (and −2π�β,β ′(qj , qj ′)) is the phase shift acquired by a β = c, s particle 
or hole of canonical momentum q̄j = q̄(qj ) upon scattering off a β ′ = c, s particle (and β ′ = c, s
hole) of canonical momentum value q̄j ′ = q̄(qj ′) created under a transition from the ground state 
to an excited energy eigenstate. For simplicity, in the thermodynamic limit one often says it to 
be the phase shift acquired by a β = c, s particle or hole of momentum qj upon scattering off a 
β ′ = c, s particle (and β ′ = c, s hole) of momentum qj ′ . Indeed, 2π�β,β ′(qj , qj ′) is expressed 
in terms of those bare momentum values.

Such a phase shift is thus imposed to the β = c, s particle or hole scatterer by the β ′ = c, s
particle or hole created under such a transition, which plays the role of mobile scattering center. 
Within the MQIM the latter is called a mobile quantum impurity.

It then follows that the functional 2π�β(qj ), Eq. (27), in the β = c, s canonical momentum 
expression q̄j = qj + 2π

L
�β(qj ), Eq. (26), is the phase shift acquired by a β particle or hole of 

canonical momentum value q̄j = q̄(qj ) (or momentum value qj ) upon scattering off the set of β ′
particles and β ′ holes created under such a transition. Hence the β particle phase shift 2π�β(qj )

has a specific value for each ground-state – excited-state transition.
The overall phase shift,

2π�T
β (qj ) = 2π�0

β + 2π�β(qj ) where j = 1, ...,Lβ and β = c, s ,

involves both a non-scattering term 2π�0 , Eq. (11), and the scattering term 2π�β(qj ), Eq. (27).
β
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The scattering functional 2π�β(qj ), Eq. (27), and the overall functional 2π�T
β (qj ) fully 

determine the deviations of the β = c, s Fermi canonical momentum values under transitions 
from the ground state to one-fermion excited states as follows,

δq̄ι
Fβ =

(
ι δN

0,F
β,ι + �T

β (ιqFβ)
) 2π

L

=
(
ι δNF

β,ι + �β(ιqFβ)
) 2π

L
where β = c, s and ι = ±1 . (29)

Here such functionals appear in units of 2π , qFc = 2kF and qFs = kF↓ as given in Eq. (17), 
δNF

β,ι = δN
0,F
β,ι + ι �0

β is the deviation in the number of right (ι = 1) and left (ι = −1) β particles 

at the corresponding β, ι Fermi point, and δN0,F
β,ι is such a deviation without accounting for the 

effects of the non-scattering phase shift 2π�0
β , Eq. (11). Hence while δN0,F

β,ι either vanishes or is 
a positive or negative integer number, the deviation δNF

β,ι may be a positive or negative half-odd 

integer number. Indeed, 2π�0
β has in units of 2π the values �0

β = 0, ±1/2.
The exponents in the one-fermion spectral functions power-law expressions given below in 

Sections 3 and 5 have different expressions in the high-energy regime and in the low-energy 
TLL regime, respectively. On the one hand, the TLL and the crossover to TLL regimes involve 
processes in the c and s bands whose continuum momentum absolute values are in the intervals 
|q| ∈ [2kF −k0

Fc, 2kF +k0
Fc] and |q ′| ∈ [kF↓ −k0

Fs, kF↓ +k0
Fs], respectively. Here k0

Fc/2kF � 1
and k0

Fs/kF↓ � 1. On the other hand, the high-energy regime involves processes in the comple-
mentary c band momentum intervals q ∈ [−2kF + k0

Fc, 2kF − k0
Fc], q ∈] − ∞, −2kF − k0

Fc], 
and q ∈ [2kF + k0

Fc, ∞[ and s band momentum intervals q ′ ∈ [−kF↓ + k0
Fs, kF↓ − k0

Fs], 
q ′ ∈ [−kF↑, −kF↓ − k0

Fs], and q ∈ [kF↓ + k0
Fs, kF↑].

The one-fermion spectral functions exponents expressions studied below in Section 3 involve 
the following general functionals, which are merely the square of the Fermi canonical momentum 
value deviations, Eq. (29), in units of 2π/L,

2�ι
β =

(
δq̄ι

Fβ

(2π/L)

)2

=
(
ιδNF

β,ι + �β(ιqFβ)
)2

where β = c, s and ι = ±1 . (30)

Finally, expression of the energy functional, Eq. (14), in the c and s particle representation 
involves the β = c, s bands discrete canonical momentum values q̄j = q̄(qj ), Eq. (26). One finds 
after some algebra that in such a representation it reads up to O(1/L) order,

δE =
∑

β=c,s

Lβ∑
j=1

εβ(q̄j ) δNβ(q̄j ) . (31)

Here δNβ(q̄j ) = Nβ(qj ) and the β = c, s particle energy dispersions εβ(q̄j ) have exactly the 
same form as those given in Eq. (18) with the bare momentum, qj , replaced by the corresponding 
canonical momentum, q̄j = q̄(qj ).

In contrast to the equivalent pseudoparticle energy functional, Eq. (14), that in Eq. (31) has 
no energy interaction terms of second-order in the deviations δNβ(q̄j ). This has a deep physical 
meaning: The β = c, s particles generated from corresponding β = c, s pseudoparticles by a 
qj → q̄j uniquely defined unitary transformation have no such interactions up to O(1/L) order.

Within the present thermodynamic limit, only finite-size corrections up to that order are rel-
evant for the spectral functions expressions. The property that the excitation energy spectrum, 
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Eq. (31), has no c and s particle energy interactions plays a key role in the derivation by the PDT 
of the general one-fermion spectral functions used below in our studies of Section 3. Indeed it 
allows them to be expressed in terms of a sum of convolutions of c and s particle spectral func-
tions. Moreover, the spectral weights of the latter spectral functions can be expressed as Slater 
determinants of c and s particles operators.

Such spectral weights involve the functionals, Eq. (30), determined by the Fermi canonical 
momentum value deviations, Eq. (29). Since the derivation within the PDT of the general one-
fermion spectral functions used below in Section 3 is similar to that of other integrable models 
[41–43], it is not reported in this paper.

3. General types of one-fermion spectral singularities

3.1. The two-dimensional (k, ω)-plane spectra where the one-fermion spectral singularities are 
contained

The two-parametric excitation processes that are behind (k, ω)-plane one-fermion spectral 
weight distribution near the singularity branch lines and boundary lines defined below involve 
both creation of one charge or hole particle and creation of one spin or hole particle.

In contrast to the related lattice 1D Hubbard model [41], all charge excitations of the present 
continuous model only involve real BA rapidities. At finite magnetic field the same applies to spin 
part of the one-fermion excitations studied in this paper whereas at zero magnetic field they in-
volve as well complex BA spin rapidities. Fortunately, due to both the spin SU(2) symmetry and 
the lack of a spin energy gap at zero spin density, the same zero-spin-density spectral-function 
expressions in the vicinity of the singularities are reached by taking the limit of zero magnetic 
field in the corresponding suitable finite-field expressions or by their direct derivation at zero 
magnetic field. The former method used in this paper has the advantage of only involving real 
BA spin rapidities.

At zero spin density, m = 0, the transitions from the ground state under one-fermion removal 
lead to excited energy eigenstates associated with the two-parametric processes whose number 
deviations relative to those of the initial ground state read,

δNc = −1 ; δJF
c = ±1/2 ; δNs = −1 ; δJF

s = 0 . (32)

Both the β = c, s Fermi points current number deviations δJF
β in this equation and the β =

c, s Fermi points number deviations δNF
β are defined in terms of β = c, s left (ι = −1) and right 

(ι = +1) Fermi points number deviations δNF
β,ι as follows,

δNF
β =

∑
ι=±1

δNF
β,ι and δJF

β = 1

2

∑
ι=±1

(ι)δNF
β,ι for β = c, s . (33)

The number deviations δNF
c and δNF

s are particular cases of those given in Eq. (32). The 
latter refer to c and s band momentum values, respectively, at and away of the Fermi points. 
While the β = c, s Fermi points number deviations and current number deviations δNF

β and 
δJF

β , respectively, defined in Eq. (33) correspond to number fluctuations at the β = c, s Fermi 

points, one denotes by δNNF
β the β = c, s the number deviations that refer to creation of β = c, s

particles or holes away from those Fermi points.
The ω < 0 energy spectrum of such excitations is of the form −ω = ωR(k) = −εc(q) −εs(q

′). 
It has the following two branches,
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ωR(k) = −εc(q) − εs(q
′) where k = ±2kF − q − q ′ for

q ∈ [−2kF ,2kF ] and q ′ ∈ [−kF , kF ] with intervals

k = 2kF − q − q ′ ∈ [−kF ,5kF ] for branch A,

k = −2kF − q − q ′ ∈ [−5kF , kF ] for branch B . (34)

Here the two alternative contributions ±2kF to the excitation momentum k = ±2kF − q − q ′
result from c band momentum shifts 2π�0

c = ±π in Eq. (11), such that 2π
L

�0
c × Nc = ±πn =

±2kF where Nc is the number of c band Fermi sea occupied discrete momentum values qj , 
Eq. (8). In contrast, 2π�0

s = 0 for the present one-fermion removal excitations.
At zero spin density, m = 0, the transitions under one-fermion addition lead to excited energy 

eigenstates associated with the two-parametric processes whose number deviations relative to 
those of the initial ground state are given by,

δNc = 1 ; δJF
c = 0 ; δNs = 0 ; δJF

s = ±1/2 . (35)

The ω > 0 energy spectrum of such excitations is given by ω = ωA(k) = εc(q) − εs(q
′). It 

has again two branches,

ωA(k) = εc(q) − εs(q
′) where k = q − q ′ and

k ∈ [kF ,∞] for q ∈ [2kF ,∞] and q ′ ∈ [−kF , kF ] for branch A

k ∈ [−∞,−kF ] for q ∈ [−∞,−2kF ] and q ′ ∈ [−kF , kF ] for branch B . (36)

The transitions under up-spin one-fermion removal at spin density m > 0 lead to excited en-
ergy eigenstates associated with the two-parametric processes whose number deviations relative 
to those of the initial ground state read,

δNc = −1 ; δJF
c = 0 ; δNs = 0 ; δJF

s = ±1/2 . (37)

Moreover, in general δNF
s = −1 and δNNF

s = 1 with a limiting case being δNF
s = δNNF

s = 0.

The corresponding ω < 0 energy spectrum of such excitations reads −ω = ω
↑
R(k) = −εc(q) +

εs(q
′). It has the following two branches,

ω
↑
R(k) = −εc(q) + εs(q

′) where k = −q + q ′ and

k ∈ [−kF↑, (2kF + kF↑)] for q ∈ [−2kF ,2kF ] and

q ′ ∈ [kF↓, kF↑] for branch A

k ∈ [−(2kF + kF↑), kF↑] for q ∈ [−2kF ,2kF ] and

q ′ ∈ [−kF↑,−kF↓] for branch B . (38)

The transitions under up-spin one-fermion addition at spin density m > 0 give rise to ex-
cited energy eigenstates associated with the two-parametric processes whose number deviations 
relative to those of the initial ground state are given in Eq. (35).

The ω > 0 energy spectrum of such excitations spectrum is given by ω = ω
↑
A(k) = εc(q) −

εs(q
′). It has again two branches,

ω
↑
A(k) = εc(q) − εs(q

′) for k = q − q ′ and

k ∈ [kF↑,∞] for q ∈ [2kF ,∞] and q ′ ∈ [−kF↓, kF↓] for branch A

k ∈ [−∞,−kF↑] for q ∈ [−∞,−2kF ] and q ′ ∈ [−kF↓, kF↓] for branch B .

(39)
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The transitions under down-spin one-fermion removal lead at spin density m > 0 to excited 
energy eigenstates associated with the two-parametric processes whose number deviations rela-
tive to those of the initial ground state are given in Eq. (32).

The ω < 0 energy spectrum of such excitations is of the form −ω = ω
↓
R(k) = −εc(q) −εs(q

′). 
It has two branches corresponding to ι = ±1,

ω
↓
R(k) = −εc(q) − εs(q

′) for k = ±2kF − q − q ′ where q ∈ [−2kF ,2kF ] and

q ′ ∈ [−kF↓, kF↓] with intervals

k = 2kF − q − q ′ ∈ [−kF↓, (4kF + kF↑)] for branch A

k = −2kF − q − q ′ ∈ [−(4kF + kF↑), kF↓] for branch B . (40)

Finally, the transitions under down-spin one-fermion addition give rise at spin density m > 0
to excited energy eigenstates associated with the two-parametric processes whose number devi-
ations relative to those of the initial ground state are given by,

δNc = 1 ; δJF
c = ±1/2 ; δNs = 1 ; δJF

s = 0 .

The ω > 0 energy spectrum of such excitations reads ω = ω
↓
A(k) = εc(q) + εs(q

′). It has four 
branches,

ω
↓
A(k) = εc(q) + εs(q

′) for k = ±2kF + q + q ′ and

sgn{q ′} = ± for q ′ �= 0 with intervals

k = 2kF + q + q ′ ∈ [(4kF + kF↑),∞] for branch A

where q ∈ [2kF ,∞] and q ′ ∈ [kF↓, kF↑]
k = 2kF + q + q ′ ∈ [−∞, kF↑] for branch B

where q ∈ [−∞,−2kF ] and q ′ ∈ [kF↓, kF↑]
k = −2kF + q + q ′ ∈ [−∞,−(4kF + kF↑)] for branch A′

where q ∈ [−∞,−2kF ] and q ′ ∈ [−kF↑,−kF↓]
k = −2kF + q + q ′ ∈ [−kF↑,∞] for branch B ′

where q ∈ [2kF ,∞] and q ′ ∈ [−kF↑,−kF↓] . (41)

In the present case of the one-fermion spectral functions, Eq. (2), and of the up-spin and 
down-spin one-fermion spectral functions, Eq. (4), the one-parametric branch lines that for some 
momentum subdomains correspond to singularities are contained in the two-parametric spectra, 
Eqs. (32)-(36), and, Eqs. (37)-(41), respectively. Spectra that do not contain singularities gener-
ated by higher-order c and s particle processes and/or complex spin rapidities are not considered 
in our present study.

3.2. The (k, ω)-plane one-fermion spectral singularities on the c and s branch lines

A branch line results from transitions to a well-defined subclass of the excited energy eigen-
states associated with such spectra. At zero spin density, m = 0, the one-parametric (k, ω)-plane 
β = c, s branch line spectrum has the general form,

ωβ(k) = ±εβ(q) ≥ 0 where k = k0 ± q for δNβ(q) = ±1 and β = c, s . (42)
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Here εβ(q) is the β = c, s band energy dispersion, Eq. (18), the momentum distribution function 
deviation, Eq. (15), reads δNβ(q) = +1 and δNβ(q) = −1 for a particle and hole β branch line, 
respectively. The momentum k0 in Eq. (42) is given by,

k0 = 4kF δJF
c + 2kF δJF

s . (43)

At zero spin density the branch-line singularities are found below to occur at some k inter-
vals of two c branch lines called c+ and c− branch lines, respectively, which refer to different 
subdomains of q in k = k0 ± q , and at some k intervals of one s branch line.

The one-parametric (k, ω)-plane β = c, s branch line spectrum has for spin densities m > 0 a 
similar general form,

ωσ
β (k) = ±εβ(q) ≥ 0 where k = k0 ± q for δNβ(q) = ±1 and β = c, s , (44)

where now σ =↑ and σ =↓ refers to the up-spin and down-spin one-fermion spectral function, 
respectively, and the momentum k0, Eq. (43), more generally reads,

k0 = 4kF δJF
c + 2kF↓ δJF

s . (45)

At finite spin density the branch-line singularities of the up-spin and down-spin one-fermion 
spectral functions are found to occur at some k intervals of two c branch lines called again 
c+ and c− branch lines, respectively, which correspond to different subdomains of the c band 
momentum q in the excitation momentum expression k = k0 ± q , and at some k intervals of one 
s branch line.

For one-fermion excitations at zero spin density, the use of the PDT leads in the case of the 
present model to the following general high-energy behavior in the vicinity of a β = c, s branch 
line,

Bγ (k,ω) = Cγ,β

(
γ ω − ωβ(k)

)ξβ (k)

for (γ ω − ωβ(k)) ≥ 0 and γ = ±1 where

ξβ(k) = −1 + 2�+1
c + 2�−1

c + 2�+1
s + 2�−1

s

= −1 +
∑
ι=±1

(2�ι
c(q)|q=±(k−k0) + 2�ι

s) . (46)

Here the momentum k0 is provided in Eq. (43) and γ = −1 for fermion removal and γ = +1
for fermion addition, as given in Eq. (3). The simplified expressions of the functionals 2�ι

c(q)

and 2�ι
s appearing in Eq. (46) that are specific to a β = c, s branch line involve a summation ∑

j ′=1 in the general phase-shift functional expression, Eq. (27), that refers to creation of a single 
β ′ = c, s particle or hole. Moreover, at zero spin density, m = 0, such functionals read,

2�ι
c(q) =

(
ι

ξ0

δNF
c

2
+ ξ0

[
δJF

c + δJF
s

2

]
+ cβ ′′ �c,β ′′(ι2kF , q)

)2

and

2�ι
s = 1

2

( ι

2

[
2δNF

s − δNF
c + cβ ′′(−1)

δβ′′,c
]
+ δJF

s

)2
. (47)

In this equation ξ0 is the parameter defined in Eq. (A.35) of Appendix A whose limiting values 
are ξ0 = √

2 for C → 0 and ξ0 = 1 for C → ∞.
On the one hand, the two ι = ±1 functionals 2�ι

c(q) depend on the excitation momentum 
k = k0 ± q , Eq. (42), through the c band momentum q where the momentum k0 is given in 
Eq. (43). On the other hand, that the two ι = ±1 functionals 2�ι

s in Eq. (47) do not depend on 
the s band momentum of the β ′′ particle or hole created under the one-fermion excitation follows 
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from the spin SU(2) symmetry. Indeed, that symmetry is behind the very simple behavior of the 
s particle phase shifts in units of 2π given in Eq. (A.25) of Appendix A whose use in the general 
expression of the ι = ±1 functionals 2�ι

s , Eq. (30), leads to the present simple expressions.
For up-spin and down-spin one-fermion excitations at spin densities m > 0, the use of the 

PDT leads to the following general high-energy behavior near a β = c, s branch line,

Bσ,γ (k,ω) = Cσ,γ,β

(
γ ω − ωσ

β (k)
)ξσ

β (k)

for (γ ω − ωσ
β (k)) ≥ 0 and γ = ±1 where

ξσ
β (k) = −1 + 2�+1

c + 2�−1
c + 2�+1

s + 2�−1
s

= −1 +
∑

β ′=c,s

∑
ι=±1

2�ι
β ′(q)|q=±(k−k0) . (48)

At m > 0 all four β = c, s and ι = ±1 functionals 2�ι
β(q) in the exponent expression depend on 

the excitation momentum k = k0 ± q , Eq. (44), through the β = c, s band momentum q where 
k0 is given in Eq. (45).

The four β ′ = c, s and ι = ±1 functionals 2�ι
β ′(q) in the exponent ξσ

β (k) expression, Eq. (48), 
specific to a β = c, s branch line are again such that the summation 

∑
j ′=1 in Eq. (27) corre-

sponds to creation of a single β ′ = c, s particle or hole. Hence from the use of their general 
expression in Eq. (30) one finds,

2�ι
c(q) =

⎛
⎝ ∑

β ′=c,s

(
ι ξ0

c β ′
δNF

β ′

2
+ ξ1

c β ′ δJF
β ′

)
+ cβ ′′ �c,β ′′(ι2kF , q)

⎞
⎠

2

and

2�ι
s(q

′) =
⎛
⎝ ∑

β ′=c,s

(
ι ξ0

s β ′
δNF

β ′

2
+ ξ1

s β ′ δJF
β ′

)
+ cβ ′′ �s,β ′′(ιkF↓, q ′)

⎞
⎠

2

. (49)

Here cβ ′′ = 1 and cβ ′′ = −1 for creation of one β ′′ particle and of one β ′′ hole, respectively. The 
band momenta q and q ′ belong to the intervals q ∈ [−2kF + k0

Fc, 2kF − k0
Fc] for creation of one 

β ′′ = c hole, q ∈] −∞, −2kF −k0
Fc] and q ∈ [2kF +k0

Fc, ∞[ for creation of one β ′′ = c particle, 
q ′ ∈ [−kF↓ + k0

Fs, kF↓ − k0
Fs] for creation of one β ′′ = s hole and q ′ ∈ [−kF↑, −kF↓ − k0

Fs] and 
q ∈ [kF↓ + k0

Fs, kF↑] for creation of one β ′′ = s particle.
The definition of the phase shifts in Eqs. (47) and (49) in units of 2π involves their expression 

provided in Eq. (A.24) of Appendix A in terms of the corresponding phase-shift functions of 
rapidity variables. The latter are uniquely defined by solution of the coupled integral equations, 
Eqs. (A.26)-(A.31) of that Appendix.

Furthermore, the parameters ξj

β β ′ appearing in Eq. (49) are the following phase-shift super-
positions,

ξ
j

β β ′ = δβ,β ′ +
∑
ι=±1

(ι)j �β,β ′
(
qFβ, ιqFβ ′

)
where β = c, s , β ′ = c, s , and j = 0,1 .

(50)

(When β = β ′ and ι = 1 the second momentum qFβ ′ in �β,β ′
(
qFβ, ιqFβ ′

)
reads qFβ − 2π/L.) 

The behaviors of these parameters and their limiting values are given in Eqs. (A.32)-(A.37) of 
Appendix A.

Importantly, the one-electron spectral functions expressions in the vicinity of a β = c, s branch 
line, Eqs. (46) and (48), are valid provided that ξβ(k) > −1 and ξσ (k) > −1, respectively. That 
β
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for a given β = c, s branch line k range that exponents read ξβ(k) = −1 and ξσ
β (k) = −1, respec-

tively, means that the exact expression of the spectral function is not that given in those equations. 
For these k ranges the four functionals 2�ι

β in Eqs. (47) and (49) vanish. In this case the PDT also 
provides the corresponding behavior of the one-electron spectral functions in Eqs. (2) and (4), 
which is δ-function-like and given by,

Bγ (k,ω) = δ
(
γ ω − ωβ(k)

)
and Bσ,γ (k,ω) = δ

(
γ ω − ωσ

β (k)
)

, (51)

respectively.
On the one hand, the s branch line studied below corresponds to edges of support of the 

one-fermion spectral functions, i.e. it separates two regions with finite and vanishing spectral 
weight, respectively. The underlying physical mechanism behind the line shape near it follows 
from the requirement of energy and momentum conservation. The excitation leads to creation 
of the s hole or s particle on its energy dispersion and thus mass shell, which carries almost the 
entire energy. The remaining momentum is absorbed by a dressing of low-energy particle-hole 
processes near the Fermi points. The expression of the PDT s branch line momentum dependent 
exponent is exact.

On the other hand, the c± branch lines also studied in the following run within the spectral-
weight distribution continuum. In non-integrable models their power-law singularities are broad-
ened or even progressively washed by relaxation processes of the c band particle or c band hole 
created away from its band Fermi points [29]. However, in the present solvable model, its integra-
bility is associated with the occurrence of an infinite number of conservation laws. They ensure 
that the c band multi-particle scattering factorizes into two-particle scattering processes. This pre-
vents relaxation processes, so that the line shape near the c± branch lines remains power-law like.

Furthermore, in the present model there is very little continuum spectral weight just above 
for fermion removal and just below for fermion addition the c± branch lines. For finite repulsive 
interaction C the c± branch lines exponents in Eqs. (46) and (48) are the leading zero-order 
term of an expansion whose very small parameter is the coupling to that small spectral weight. 
Their expressions are exact for large values of C and their use leads to exact spectral-function 
expressions in the C → 0 limit. At intermediate C values the higher-order terms are extremely 
small and vanish when the exponents vanish. This means that the exact exponents are negative 
and positive when their leading terms are negative and positive, respectively. Otherwise, the c±
branch lines exponents in Eqs. (46) and (48) are a very good approximation.

3.3. The (k, ω)-plane one-fermion removal spectral singularities on boundary lines

There is a second type of high-energy (k, ω)-plane feature in the vicinity of which the PDT 
provides an analytical expression of the one-fermion spectral functions. It is called a bound-
ary line. In the case of the present repulsive fermion model, such boundary lines exist in the 
one-fermion removal spectral function at zero magnetic field and in the up-spin and down-spin 
one-fermion removal spectral functions at finite field. It is generated by a subclass of the general 
processes behind the branch A or B of the m = 0 one-fermion removal two-parametric spec-
trum, Eq. (34), and m > 0 up-spin and down-spin one-fermion removal two-parametric spectra, 
Eqs. (38) and (40), respectively.

Specifically, the up-spin one-fermion removal boundary line is generated by processes where 
one c band hole is created at a momentum value q and one s band particle is created at a mo-
mentum value q ′ such that their group velocities, Eq. (21), obey the equality vc(q) = vs(q

′). 
Similarly, both the m = 0 one-fermion removal boundary line and the m > 0 down-spin one-
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fermion removal boundary line are generated by processes where one c band hole is created at 
a momentum value q and one s band hole is created at a momentum value q ′ such that again 
vc(q) = vs(q

′).
That such a feature is a (k, ω)-plane line results from the c band and s band momentum val-

ues q and q ′, respectively, not being independent of each other because of the boundary-line 
velocity equality constraint, vc(q) = vs(q

′). For the momentum k domains for which those one-
fermion removal boundary lines exist, they are part of the limiting line of the corresponding 
two-dimensional (k, ω) plane branches. However and as further discussed below in Sections 4.6
and 4.7, most of such a limiting line is not a boundary line and thus does not correspond to a 
singularity.

At zero spin density, m = 0, the removal one-fermion boundary line (k, ω)-plane spectrum 
has the following general form,

ωBL(k) = (−εc(q) − εs(q
′)
)

δvc(q),vs (q ′) where k = ±2kF − q − q ′ . (52)

Near such a line at small energy deviation (ω+ωBL(k)) values, the one-fermion removal spectral 
function has the following behavior,

Bγ (k,ω) ∝
(
ω + ωBL(k)

)−1/2
. (53)

This expression is determined by the density of the two-parametric states generated upon varying 
q and q ′ within the corresponding c and s band values, respectively.

The up-spin (σ =↑) and down-spin (σ =↓) one-fermion removal boundary line (k, ω)-plane 
spectrum has at spin density m > 0 the following general form,

ωσ
BL(k) = (−εc(q) + γσ εs(q

′)
)

δvc(q),vs (q ′) where k = ±[1 − γσ ]kF − q + γσ q ′ , (54)

where,

γ↑ = +1 and γ↓ = −1 . (55)

In the vicinity of such lines at small energy deviation (ω + ωσ
BL(k)) values the up-spin and 

down-spin one-fermion removal spectral functions have the following behavior,

Bσ,γ (k,ω) ∝
(
ω + ωσ

BL(k)
)−1/2

. (56)

Again, this expression is determined by the density of the two-parametric states generated upon 
varying q and q ′ within the corresponding c and s band values, respectively.

4. Specific one-fermion removal and addition spectral singularities on branch and 
boundary lines

In the following, the line shape behavior of the one-fermion spectral function, Eq. (2), near 
the branch lines and boundary lines at zero spin density and line shape behavior of the up-spin 
and down-spin one-fermion spectral functions, Eq. (4), in the vicinity of the branch lines and 
boundary lines is studied. Such lines are plotted in the (k, ω)-plane in Figs. 1-3. The curves 
refer to repulsive interactions C = 0.1, C = 1.0, C = 10.0, fermionic densities n = 0.7, n =
1.0, n = 2.0 and corresponding spin densities m = 0, m = 0.15, m = 0.65 such that m < n. 
The c+, c−, s branch lines are the only branch lines whose exponent is negative for at least 
some k interval and C, n, and m ranges. At those k intervals there are singularity cusps in the 
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Fig. 1. The β = c+, c−, s singular branch lines k intervals (solid lines) and other branch lines k intervals (dashed lines) in 
units of 2kF = π n for which the corresponding exponent ξβ (k), Eq. (46), is negative and positive, respectively, and the 
singular boundary lines (dashed-dotted lines) of the weight distribution associated with the one-fermion spectral function 
are plotted in the (k, ω) plane. The curves refer to fermionic density n = 0.7 for interaction (a) C = 0.1, (b) C = 1.0, 
and (c) C = 10.0 and fermionic density n = 2.0 for interaction (d) C = 0.1, (e) C = 1.0, and (f) C = 10.0. The branch 
line spectra plotted here are defined in Section 3. (Online, the c+ , c−, and s branch lines appear blue, red, and green, 
respectively.)

corresponding one-fermion spectral functions. Those branch lines are in Figs. 1-3 represented by 
solid lines and dashed lines for the k ranges for which the corresponding momentum dependent 
exponent is negative and positive, respectively. The one-fermion removal boundary lines also 
refer to singularity cusps and are represented by dashed-dotted lines.

At zero spin density, m = 0, all C = 0 non-interacting δ-function like one-fermion spectrum 
k ranges are recovered from specific branch lines in the C → 0 limit. For m > 0 this applies to 
most of the C = 0 non-interacting δ-function like up-spin and down-spin one-fermion spectrum k

ranges. The exceptions refer to the C = 0 non-interacting up-spin one-fermion removal spectrum 
for the momentum interval k ∈ [−kF↓, kF↓] and to the C = 0 non-interacting down-spin one-
fermion addition spectrum for the momentum intervals k ∈ [−∞, −kF↑] and k ∈ [kF↑, ∞]. The 
corresponding C = 0 non-interacting δ-function like one-fermion spectra are in these k inter-
vals recovered in the C → 0 limit from well-defined C > 0 spectral features that are here called 
non-branch lines. Those are represented for m > 0 in Figs. 2 and 3 by sets of diamond symbols.

4.1. The one-fermion removal and addition c± branch lines at zero magnetic field

At zero magnetic field and thus zero spin density, m = 0, the one-fermion removal and ad-
dition c± branch lines are generated by one-parametric processes that correspond to particular 
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Fig. 2. The singular branch lines k ranges (solid lines) and other branch lines k ranges (dashed lines) in units of 2kF = π n

for which the corresponding exponent ξσ
β (k), Eq. (48), is negative and positive, respectively, and the singular boundary 

lines (dashed-dotted lines) of the weight distribution associated with the up-spin and down-spin one-fermion spectral 
function are plotted in the (k, ω) plane. The curves refer to fermionic density n = 1.0 and spin density m = 0.15 for up 
spin and interaction (a) C = 0.1, (b) C = 1.0, and (c) C = 10.0 and for down spin and interaction (d) C = 0.1, (e) C = 1.0, 
and (f) C = 10.0. The branch line spectra plotted here are defined in Section 3. (Online, the c+, c−, and s branch lines 
appear blue, red, and green, respectively.) The lines represented by sets of diamond symbols contribute to the C → 0
one-fermion spectrum yet are not branch lines.

cases of the two-parametric processes that generate the spectra in Eqs. (34) and (36), respec-
tively. These lines one-parametric spectra are plotted in Fig. 1 where they are contained within 
such two-parametric spectra. (Online, the c+ and c− branch lines are blue and red, respectively, 
in these figures.)

The one-parametric spectra ωc±(k) and the corresponding exponents ξc±(k) associated with 
these branch lines are related by the following symmetry,

ωc+(k) = ωc−(−k) and ξc+(k) = ξc−(−k) . (57)

Considering both the c+ and c− branch lines for k ∈ [0, ∞] or only the c+ branch line for 
k ∈ [−∞, ∞] contains exactly the same information. Here we chose the latter option.

The one-fermion removal and addition c+ branch line refers to excited energy eigenstates 
with the following number deviations relative to those of the initial ground state,

δNF
c = 0 ; δJF

c = δγ,−1/2 ; δNNF
c = γ ; δNF

s = −δγ,−1 ; δJF
s = γ /2 .

The spectrum of general form, Eq. (42), that defines the (k, ω)-plane shape of the one-fermion 
removal and addition c+ branch line is given by,
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Fig. 3. The same as Fig. 2 for spin density m = 0.65 and interaction C = 1.0 for up spin and fermionic densities (a) n =
0.7, (b) n = 1.0, and (c) n = 2.0 and for down spin and fermionic densities (d) n = 0.7, (e) n = 1.0, and (f) n = 2.0.

ωc+(k) = γ εc(q) for γ = ±1 where

q ∈ [−2kF ,2kF ] for σ branch A fermion γ = −1 removal

q ∈ [2kF ,∞] for σ branch A fermion γ = +1 addition

q ∈ [−∞,−2kF ] for σ branch B fermion γ = +1 addition . (58)

Here εc(q) is the c band energy dispersion, Eq. (18) for β = c. The excitation momentum k is 
expressed in terms of the c band momentum q as follows,

k = γ q + kF with intervals

k ∈ [−kF ,3kF ] for branch A fermion γ = −1 removal

k ∈ [3kF ,∞] for branch A fermion γ = +1 addition

k ∈ [−∞,−kF ] for branch B fermion γ = +1 addition . (59)

As given in Eq. (57), the corresponding one-fermion removal and addition c− branch line spec-
trum reads ωc−(k) = ωc+(−k).

At excitation momentum k = kF the removal spectrum is such that,

ωc+(kF ) = −εc(0) and
∂ωc+(k)

∂k
|k=kF

= 0 ,

where −εc(0) > 0 is the energy bandwidth of the c band occupied Fermi sea, Eq. (A.18) of 
Appendix A at m = 0. The limiting behaviors for C → 0 and C → ∞ of the spectrum, Eqs. (58)
and (59), are given in Eqs. (C.1) and (C.2) of Appendix C, respectively.
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Fig. 4. The exponent ξc+ (k) = ξc− (−k), Eq. (60), that controls the singularities in the vicinity of the c+ branch line 
whose (k, ω)-plane one-parametric spectrum is defined in Eqs. (58) and (59) is plotted for the one-fermion removal and 
addition spectral function, Eq. (61), as a function of the momentum k/2kF . The soft grey region refers to the ground-state 
occupied Fermi sea. The curves refer to several C = 0.10 − 30.00 values, fermionic densities n (a) 0.3, (b) 0.7, (c) 1.0, 
(d) 2.0 and spin density m = 0. The type of exponent line associated with each C value is for all figures the same. Dashed 
horizontal and vertical lines denote specific momentum values between different subbranches and momentum values 
where the C → 0 limiting value of the exponent changes, respectively.

The use within the PDT of the values of the functional, Eq. (47), specific to the excited energy 
eigenstates that determine spectral weight distribution near the c± branch lines, allows accessing 
the momentum dependence of the exponents of general form, Eq. (48), that control such a line 
shape. The exponent ξc+(k) = ξc−(−k) is found to read,

ξc+(k) = ξc−(−k) = −3

4
+

∑
ι=±1

(
ξ0

4
+ γ �c,c(ι2kF , q)

)2

, (60)

where the parameter ξ0 is defined in Eq. (A.35) of Appendix A. The phase shift �c,c(±2kF , q)

is defined in Eq. (A.24) for m = 0. The exponents, Eq. (60), are plotted in Fig. 4 as a function 
of the momentum k. The curves correspond to several C = 0.10 − 30.00 values and fermionic 
densities n (a) 0.3, (b) 0.7, (c) 1.0, (d) 2.0.

The specific form of the general PDT expression, Eq. (48), of the one-fermion spectral func-
tion Bγ (k, ω), Eq. (2), in the vicinity of the present c± branch lines is,

Bγ (k,ω) = Cγ,c±
(
γω − ωc±(k)

)ξc± (k)

for (γ ω − ωc±(k)) ≥ 0 and γ = ±1 . (61)
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Here Cγ,c± are constants that have a fixed value for the k and ω ranges corresponding to small 
values of the energy deviation (γω − ωc±(k)) and the spectra ωc+(k) = ωc−(−k) in that energy 
deviation are given in Eqs. (58) and (59). The exponent ξc+(k) = ξc−(−k) is defined in Eq. (60).

In the C → 0 limit the c+ branch line exponent for one-fermion removal (γ = −1) reads,

lim
C→0

ξc+(k) = 0 for k ∈ [−kF ,3kF ] and γ = −1 .

For one-fermion addition (γ = +1), one finds in that limit,

lim
C→0

ξc+(k) = −1 for k ∈ [−∞,−kF ] and γ = +1

= 1 for k ∈ [3kF ,∞] and γ = +1 .

Similar values for the exponent ξc−(k) are obtained upon exchanging k by −k. The important c−
branch line subbranch is that of one-fermion addition for which,

lim
C→0

ξc−(k) = −1 for k ∈ [kF ,∞] and γ = +1 .

For the k ranges for which limC→0 ξc±(k) = −1 for one-fermion addition, the line shape has 
not the form given in Eq. (69). It rather is δ-function like, Eq. (51). In the present case, this gives,

lim
C→0

B+1(k,ω) = δ
(
ω − ωc+(k)

)
= δ

(
ω − (k2 − k2

F )
)

for k ∈ [−∞,−kF ] and k ∈ [kF ,∞] , (62)

where the expression of the c band energy dispersion in the C → 0 limit, Eq. (19) for m = 0, has 
been used.

For the k ranges for which the exponents are for C → 0 given by 0 and/or 1, the one-fermion 
spectral weight at and near the corresponding branch lines vanishes in the C → 0 limit.

In the C → ∞ limit the c± branch line exponent in Eq. (60) has the following values for its 
whole k range,

lim
C→∞

ξc±(k) = lim
C→∞

lim
m→0

ξσ
c±(k) = −3

8
. (63)

4.2. The up-spin and down-spin one-fermion removal and addition c± branch lines

The up-spin and down-spin one-fermion removal and addition c± branch lines are generated 
by one-parametric processes that correspond to particular cases of the two-parametric processes 
that generate the spectra, Eqs. (38)-(41). Hence these lines one-parametric spectra plotted in 
Figs. 2 and 3 are contained within such two-parametric spectra. Those occupy well defined re-
gions in the (k, ω) plane.

As at zero spin density, Eq. (57), the one-parametric spectra ωσ
c±(k) and the corresponding 

exponents ξσ
c±(k) associated with these branch lines are related by the symmetry, ωσ

c+(k) =
ωσ

c−(−k) and ξσ
c+(k) = ξσ

c−(−k). And again, considering both the c+ and c− branch lines for 
k ∈ [0, ∞] or only the c+ branch line for k ∈ [−∞, ∞] contains exactly the same information. 
Here we chose the latter option.

The up-spin and down-spin one-fermion removal and addition c+ branch line refers to excited 
energy eigenstates with the following number deviations relative to those of the initial ground 
state,
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δNF
c = 0 ; δJF

c = δσ,↓/2 ; δNNF
c = γ ; δNF

s = δσ,↓ γ ; δJF
s = γσ /2 .

The spectrum of general form, Eq. (44), that defines the (k, ω)-plane shape of the up-spin and 
down-spin one-fermion removal and addition c+ branch line reads,

ωσ
c+(k) = γ εc(q) for γ = ±1 where

q ∈ [−2kF ,2kF ] for σ branch A fermion γ = −1 removal

q ∈ [2kF ,∞] for σ branch A fermion γ = +1 addition

q ∈ [−∞,−2kF ] for σ branch B fermion γ = +1 addition . (64)

Here εc(q) is the c band energy dispersion, Eq. (18) for β = c. The expression of the excitation 
momentum k in terms of the c band momentum q is given by,

k = γ q + kF σ̄ where

k ∈ [−kFσ , (2kF + kF σ̄ )] for σ branch A fermion γ = −1 removal

k ∈ [(2kF + kF σ̄ ),∞] for σ branch A fermion γ = +1 addition

k ∈ [−∞,−kFσ ] for σ branch B fermion γ = +1 addition . (65)

In this equation,

↑̄ =↓ and ↓̄ =↑ , (66)

so that kF ↑̄ = kF↓ and kF ↓̄ = kF↑. The two-parametric spectra branches A and B where the c+
branch line is contained are defined in Eqs. (38)-(41). The corresponding k intervals of the c−
branch line subbranches are obtained from those provided here upon exchanging k by −k.

Combined analysis of the momentum k intervals in Eq. (65) with the relation ωσ
c+(k) =

ωσ
c−(−k) reveals that the up-spin and down-spin one-fermion addition c± branch lines are the 

natural continuation of the up-spin and down-spin one-fermion removal c± branch lines, respec-
tively.

The limiting behaviors for C → 0 and C → ∞ of the up-spin and down-spin one-fermion 
c+ branch-line spectra, Eqs. (64) and (65), are given in Eqs. (C.3) and (C.4) of Appendix C, 
respectively.

We use the values of the functional, Eq. (49), specific to the excited energy eigenstates that 
determine spectral weight distribution near the c± branch lines, to access the momentum depen-
dence of the exponents of general form, Eq. (48), that control such a line shape. One finds,

ξ
↑
c+(k) = ξ

↑
c−(−k) = −1 +

∑
ι=±1

(
ξ1
c s

2
+ γ �c,c(ι2kF , q)

)2

+
∑
ι=±1

(
ξ1
s s

2
+ γ �s,c(ιkF↓, q)

)2

, (67)

for the up-spin one-fermion c± branch lines and,

ξ
↓
c+(k) = ξ

↓
c−(−k) = −1 +

∑
ι=±1

(
ι γ ξ0

c s

2
+ (ξ1

c c − ξ1
c s)

2
+ γ �c,c(ι2kF , q)

)2

+
∑ (

ι γ ξ0
s s

2
+ (ξ1

s c − ξ1
s s)

2
+ γ �s,c(ιkF↓, q)

)2

, (68)

ι=±1
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Fig. 5. The exponent ξ↑
c+ (k) = ξ

↑
c− (−k), Eq. (67), that controls the singularities in the vicinity of the c+ branch line 

whose (k, ω)-plane shape is defined by Eqs. (64) and (65) for σ =↑ is plotted for the up-spin one-fermion removal and 
addition spectral function, Eq. (69) for σ =↑, as a function of the momentum k/2kF . The soft grey region refers to the 
ground-state occupied Fermi sea. The curves refer to several C = 0.03 − 30.00 values and spin density m = 0.15 and 
fermionic densities n (a) 0.7 and (b) 2.0 and spin density m = 0.65 and fermionic densities (c) 0.7 and (d) 2.0.

for the down-spin one-fermion c± branch lines. The phase shifts �c,c(±2kF , q) and
�s,c(±kF↓, q) in those exponents expressions are defined in Eq. (A.24) and the j = 0, 1 pa-

rameters ξj

β β ′ are defined in Eq. (50).
The up-spin and down-spin one-fermion exponents are plotted in Figs. 5 and 6, respectively, 

as a function of the momentum k. The curves correspond to several C = 0.03 − 30.00 values, 
fermionic densities n = 0.7 and 2.0, and spin densities m = 0.15 and m = 0.65.

The specific form of the general expression, Eq. (48), of the up-spin and down-spin one-
fermion spectral function Bσ,γ (k, ω), Eq. (4), in the vicinity of the present c± branch lines is,

Bσ,γ (k,ω) = Cσ,γ,c±
(
γω −ωσ

c±(k)
)ξσ

c± (k)

for (γ ω −ωσ
c±(k)) ≥ 0 where γ = ±1 , (69)

and Cσ,γ,c± are constants that have a fixed value for the k and ω ranges corresponding to small 
values of the energy deviation (γω − ωσ

c±(k)). The spectra ωσ
c+(k) = ωσ

c−(−k) in that energy 
deviation are given in Eqs. (64) and (65) and the exponents ξσ

c+(k) = ξσ
c−(−k) are defined in 

Eqs. (67) and (68) for σ =↑ and σ =↓, respectively.
In C → 0 limit the c+ branch line exponents for up-spin one-fermion removal (γ = −1) 

read,
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Fig. 6. The exponent ξ↓
c+ (k) = ξ

↓
c− (−k), Eq. (68), that controls the singularities in the vicinity of the c+ branch line 

whose (k, ω)-plane one-parametric spectrum is defined by Eqs. (64) and (65) for σ =↓ is plotted for the one-fermion 
removal and addition spectral function, Eq. (69) for σ =↓, as a function of the momentum k/2kF . The soft grey region 
refers to the ground-state occupied Fermi sea. The curves refer to several C = 0.03 − 30.00 values and spin density 
m = 0.15 and fermionic densities n (a) 0.7 and (b) 2.0 and spin density m = 0.65 and fermionic densities (c) 0.7 and 
(d) 2.0. The type of exponent line associated with each C value is for all figures the same. Dashed horizontal and vertical 
lines denote specific momentum values between different subbranches and momentum values where the C → 0 limiting 
value of the exponent changes, respectively.

lim
C→0

ξ
↑
c+(k) = −1 for k ∈ [−kF↑,−kF↓] and γ = −1

= 0 for k ∈ [−kF↓,3kF↓] and γ = −1

= 1 for k ∈ [3kF↓, (2kF + kF↓)] and γ = −1 . (70)

For one-fermion addition (γ = +1), one finds,

lim
C→0

ξ
↑
c+(k) = −1 for k ∈ [−∞,−kF↑] and γ = +1

= 1 for k ∈ [(2kF + kF σ̄ ),∞] and γ = +1 . (71)

Similar values for the exponent ξ↑
c−(k) are obtained upon exchanging k by −k. Important c−

branch line subbranches are those for which limC→0 ξ
↑
c−(k) = −1. They refer to the k ranges,

lim
C→0

ξ
↑
c−(k) = −1 for k ∈ [kF↓, kF↑] and γ = −1

= −1 for k ∈ [kF↑,∞] and γ = +1 .
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As discussed previously, for the k ranges for which limC→0 ξ
↑
c±(k) = −1, the line shape has 

not the form given in Eq. (69). It rather is δ-function like, Eq. (51). In the present case this gives,

lim
C→0

B↑,−1(k,ω) = δ
(
ω + ω

↑
c+(k)

)
= δ

(
ω − (k2 − k2

F↑)
)

for k ∈ [−kF↑,−kF↓]
lim
C→0

B↑,−1(k,ω) = δ
(
ω + ω

↑
c−(k)

)
= δ

(
ω − (k2 − k2

F↑)
)

for k ∈ [kF↓, kF↑]
lim
C→0

B↑,+1(k,ω) = δ
(
ω − ω

↑
c+(k)

)
= δ

(
ω − (k2 − k2

F↑)
)

for k ∈ [−∞,−kF↑]
lim
C→0

B↑,+1(k,ω) = δ
(
ω − ω

↑
c−(k)

)
= δ

(
ω − (k2 − k2

F↑)
)

for k ∈ [kF↑,∞] , (72)

where the expression of the c band energy dispersion in the C → 0 limit, Eq. (19), has been 
used. The spectra ω↑

c±(k) indeed become in the C → 0 limit the corresponding exact C = 0
non-interacting spectra. In the case of the up-spin one-fermion spectra this applies to all its 
momentum intervals except for k ∈ [−kF↑, kF↑].

For the excitation momentum k intervals for which the exponents are for C → 0 given by 
0 and/or 1, the up-spin one-fermion spectral weight at and near the corresponding branch lines 
vanishes in the C → 0 limit. Specifically, one finds that in the C → 0 limit the down-spin one-
fermion removal exponent, Eq. (68), has the following behaviors,

lim
C→0

ξ
↓
c+(k) = 1 for k ∈ [−kF↓, (kF↑ − 2kF↓)] and γ = −1

lim
C→0

ξ
↓
c+(k) = 0 for k ∈ [(kF↑ − 2kF↓), (2kF + kF↓)] and γ = −1

lim
C→0

ξ
↓
c+(k) = 1 for k ∈ [(2kF + kF↓), (2kF + kF↑)] and γ = −1 . (73)

The down-spin one-fermion addition exponent is found to behave in that limit as,

lim
C→0

ξ
↓
c+(k) = 1 for k ∈ [−∞,−kF↓] ; k ∈ [(2kF + kF↑),∞] and γ = +1 . (74)

Hence the down-spin one-fermion spectral weight at and near these branch lines vanishes in the 
C → 0 limit both for one-fermion removal and addition. Similar values for the exponent ξ↓

c−(k)

are obtained upon exchanging k by −k.
In the C → ∞ limit the c± branch lines exponents in Eqs. (67) and (68) have for m → n the 

following values for their whole k intervals,

lim
C→∞

ξσ
c±(k) = −γσ

2
for m → n . (75)

On the one hand and as shown in Fig. 5, the main effect on the k dependence of the up-spin 
one-fermion removal and addition exponent ξ↑

c+(k) = ξ
↑
c−(−k), Eq. (67), of increasing the inter-

action C from C � 1 to C � 1 is to continuously changing its C → 0 values −1, 0, and 1 for 
the k ranges given in Eqs. (70) and (71) to a k independent value for k ∈ [−∞, ∞] as C → ∞, 
Eq. (63) and Eq. (75) for σ =↑. The latter smoothly changes from −3/8 for m → 0 to −1/2 for 
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m → n. The general trend of such an exponent C dependence is the following: For the momen-
tum k ranges for which it reads 0 and 1 in the C → 0 limit, it decreases upon increasing C; For 
the k intervals for which it is given by −1 in that limit, it rather increases for increasing C values.

On the other hand, the exponent ξ↓
c+(k) = ξ

↓
c−(k), Eq. (68), plotted in Fig. 6 becomes negative 

only for large C and small spin density values. For C → 0 it reads 0 and 1 for the k intervals 
provided in Eqs. (73) and (74). As C → ∞ it continuously evolves to a k independent value for 
k ∈ [−∞, ∞]. Such a value smoothly changes from −3/8 for m → 0 to 1/2 for m → n. The 
general trend of that exponent C dependence is different upon changing the densities. As shown 
in Fig. 6, for some densities it always decreases upon increasing C. For other densities it first 
decreases upon increasing C until reaching some minimum at a finite C value above which it 
increases upon further increasing C.

4.3. The one-fermion removal and addition s branch line at zero magnetic field

The one-parametric spectrum of this branch line is an even function of k, ωs(k) = ωs(−k). 
The corresponding exponent given below is also an even function of k, ξs(k) = ξs(−k). Hence 
for simplicity we restrict our following analysis to k ≥ 0. For such a momentum range the one-
fermion removal and addition parts of the s branch line refer to excited energy eigenstates with 
the following number deviations relative to those of the initial ground state,

δNF
c = γ ; δJF

c = δγ,+1/2 ; δNF
s = δγ,+1 ; δJF

s = 0 ; δNNF
s = −1 .

The spectrum ωs(k) of general form, Eq. (42), is for the present branch line at k > 0 given by,

ωs(k) = −εs(q
′) where

q ′ ∈ [−kF ,0] for branch A fermion removal γ = −1

q ′ ∈ [−kF , kF ] for branch A fermion addition γ = +1 . (76)

The relation of the s band momentum q ′ to the excitation momentum k is,

k = δγ,+1 2kF − q ′ ≥ 0 . (77)

The corresponding intervals of the excitation momentum k are,

k ∈ [0, kF ] for fermion removal γ = −1

k ∈ [kF ,3kF ] for fermion addition γ = +1 . (78)

The limiting behavior for C → 0 of the spectrum, Eqs. (76) and (77), is given in Eq. (C.5) of 
Appendix C. For C → ∞ it reads ωs(k) = 0 for its whole k intervals.

One finds from inspection of the momentum k intervals in Eq. (78) that the one-fermion 
addition s branch line is the natural continuation of the one-fermion removal s branch line. The 
momentum dependent exponent of general form, Eq. (46), that controls the line shape near the 
one-fermion removal and addition s branch line is given by,

ξs(k) = −1 +
∑
ι=±1

(
ι

2ξ0
+ (1 + γ )

ξ0

4
− γ �c,s(ι2kF , q ′)

)2

. (79)

As reported above, the parameter ξ0 is defined by Eq. (A.35) of Appendix A. The phase shift 
�c,s(±2kF , q ′) is defined in Eq. (A.24) for m = 0.
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Fig. 7. The exponent ξs (k), Eq. (82) for γ = +1, that controls the singularities in the vicinity of the s branch line whose 
(k, ω)-plane shape is defined by Eqs. (76) and (78) for γ = +1 is plotted for the one-fermion addition spectral function, 
Eq. (80) for γ = +1, as a function of the momentum k/2kF . The curves refer to several C = 0.10 − 30.00 values, 
fermionic densities n (a) 0.3, (b) 0.7, (c) 1.0, (d) 2.0 and spin density m = 0. The type of exponent line associated with 
each C value is for all figures the same.

The s branch line one-fermion exponents are plotted as a function of the momentum k in 
Fig. 7 for one-fermion addition and in Fig. 8 for one-fermion removal. The curves correspond to 
several C = 0.10 − 30.00 values and fermionic densities n (a) 0.3, (b) 0.7, (c) 1.0, (d) 2.0.

The general expression, Eq. (46), of the one-fermion spectral function Bγ (k, ω), Eq. (2), near 
the present s branch lines reads,

Bγ (k,ω) = Cγ,s

(
γω − ωs(k)

)ξs (k)

for (γ ω − ωs(k)) ≥ 0 where γ = ±1 , (80)

and Cγ,s is a constant that has a fixed value for the k and ω ranges corresponding to small values 
of the energy deviation (γω − ωs(k)). The spectrum ωs(k) in such an energy deviation is that in 
Eq. (76).

The exponent ξs(k), Eq. (79), in the spectral function expression, Eq. (80), has in the C → 0
limit the following behavior for its whole momentum k intervals,

lim
C→0

ξs(k) = γ .

Hence the γ = +1 addition one-fermion spectral weight at and near these s branch lines vanishes 
in the C → 0 limit.
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Fig. 8. The exponent ξs (k), Eq. (82) for γ = −1, that controls the singularities in the vicinity of the s branch line whose 
(k, ω)-plane shape is defined by Eqs. (76) and (78) for γ = −1 is plotted for the one-fermion removal spectral function, 
Eq. (80) for γ = −1, as a function of the momentum k/2kF . The soft grey region refers to the ground-state occupied 
Fermi sea. The curves refer to several C = 0.10 − 30.00 values, fermionic densities n (a) 0.3, (b) 0.7, (c) 1.0, (d) 2.0 and 
spin density m = 0. The type of exponent line associated with each C value is for all figures the same.

As given generally in Eq. (51), for one-fermion removal for which limC→0 ξs(k) = −1 the line 
shape near the s branch line is not of the power-law form, Eq. (80), in the C → 0 limit. In that 
limit it rather corresponds to the following δ-function-like one-fermion removal spectral weight 
distribution,

lim
C→0

B−1(k,ω) = δ
(
ω + ωs(k)

)
= δ

(
ω − (k2 − k2

F )
)

for k ∈ [−kF , kF ] , (81)

where the expression of the s band energy dispersion for C → 0, Eq. (19) for m = 0, has been 
used.

At zero spin density, m = 0, the importance of the s and c± branch lines is confirmed by 
in the C → 0 limit they leading to the whole C = 0 non-interacting δ-function-like one-fermion 
removal and addition spectrum. Specifically, the s branch line gives rise in the C → 0 limit to 
the C = 0 non-interacting one-fermion removal spectrum, Eq. (81), for its whole momentum 
interval k ∈ [−kF , kF ]. Furthermore, the c+ and c− branch lines lead in the C → 0 limit to 
the C = 0 non-interacting one-fermion addition spectrum for its whole momentum intervals k ∈
[−∞, −kF ] and k ∈ [kF , ∞], respectively, as given in Eq. (62).

In the opposite C → ∞ limit the exponent, Eq. (79), in the spectral function expression, 
Eq. (80), that controls the line shape near both the one-fermion removal and addition s branch 
lines reads,
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ξs(k) = −1

2

(
1 −

(
k

πn

)2
)

for fermion removal at k ∈ [0, kF ]
for fermion addition at k ∈ [kF ,3kF ] . (82)

This implies that,

lim
k→0

ξs(k) = −1

2
; lim

k→kF

ξs(k) = −3

8
; lim

k→2kF

ξs(k) = 0 ; lim
k→3kF

ξs(3kF ) = 5

8
.

For C → ∞ and m = 0 the one-fermion addition exponent ξs(k), Eq. (79), continuously 
changes from ξs(k) = −3/8 for k → kF to ξs(k) = 0 for k → 2kF . For its other k ranges it is pos-
itive. In the case of one-fermion removal it continuously changes in that limit from ξs(k) = −1/2
for k → 0 to ξs(k) = −3/8 for k → kF .

4.4. The up-spin and down-spin one-fermion removal and addition spectral functions near the s
branch line

The up-spin and down-spin fermion removal and addition s branch line is generated by pro-
cesses that correspond to particular cases of the two-parametric processes that generate the 
spectra, Eqs. (38)-(41). For the up-spin and down-spin one-fermion spectral functions its one-
parametric spectrum plotted in Figs. 2 and 3 is thus contained within such two-parametric spectra. 
(Online, the s branch lines are green in these figures.)

As at zero magnetic field, the one-parametric spectrum of this branch line is an even function 
of k, ωσ

s (k) = ωσ
s (−k). The corresponding exponent given below is also an even function of k, 

ξσ
s (k) = ξσ

s (−k). Hence for simplicity we restrict again our following analysis to k ≥ 0. For 
such a momentum range the up-spin and down-spin fermion removal and addition parts of the s
branch line refer to excited energy eigenstates with the following number deviations relative to 
those of the initial ground state,

δNF
c = γ ; δJF

c = δσ,↑/2 ; δNF
s = δσ,↑ γ ; δJF

s = 0 ; δNNF
s = −γσ γ .

The spectrum ωσ
s (k) of general form, Eq. (44), is for the present branch line at k > 0 given 

by,

ωσ
s (k) = −γσ γ εs(q

′) where

q ′ ∈ [−kF↑,−kF↓] for ↑ branch B fermion γ = −1 removal

q ′ ∈ [−kF↓, kF↓] for ↑ branch A fermion γ = +1 addition

q ′ ∈ [−kF↓,0] for ↓ branches A and B fermion γ = −1 removal

q ′ ∈ [−kF↓, kF↓] for ↓ branch A fermion γ = +1 addition , (83)

and εs(q
′) is the s band energy dispersion, Eq. (18) for β = s. In the case of down-spin one-

fermion removal both the branches A and B of the spectrum, Eq. (40), contain the s branch 
line.

The relation of the s band momentum q to the excitation momentum k is,

k = δσ,↑ 2kF − γσ γ q ′ ≥ 0 . (84)

This gives,
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k ∈ [kF↓, kF↑] for ↑ fermion removal γ = −1 ,

k ∈ [kF↑, (2kF + kF↓)] for ↑ fermion addition γ = +1 , (85)

and

k ∈ [0, kF↓] for ↓ fermion removal γ = −1 ,

k ∈ [kF↓, kF↑] for ↓ fermion addition γ = +1 . (86)

The limiting behavior for C → 0 of the spectrum, Eqs. (83) and (84), is given Eq. (C.6) of 
Appendix C where the subdomains of the k intervals that correspond to one-fermion addition 
(γ = +1) and removal (γ = −1) are provided in Eqs. (85) and (86). For C → ∞ this spectrum 
reads ωs(k) = 0 for its whole k intervals.

As for zero spin density, the momentum k intervals in Eq. (86) reveal that the up-spin and 
down-spin one-fermion addition s branch line is the natural continuation of the up-spin and 
down-spin one-fermion removal s branch line. The momentum dependent exponent of general 
form, Eq. (48), that controls the line shape near the up-spin one-fermion removal and addition s
branch lines is given by,

ξ↑
s (k) = −1 +

∑
ι=±1

(
ι γ (ξ0

c c + ξ0
c s)

2
+ ξ1

c c

2
− γ �c,s(ι2kF , q ′)

)2

+
∑
ι=±1

(
ι γ (ξ0

s c + ξ0
s s)

2
+ ξ1

s c

2
− γ �s,s(ιkF↓, q ′)

)2

. (87)

The exponent that controls it in the vicinity of the down-spin one-fermion removal and addition 
s branch line reads,

ξ↓
s (k) = −1 +

∑
ι=±1

(
ι ξ0

c c

2
+ �c,s(ι2kF , q ′)

)2

+
∑
ι=±1

(
ι ξ0

s c

2
+ �s,s(ιkF↓, q ′)

)2

. (88)

This latter exponent has the same formal expression for γ = −1 and γ = +1, respectively. 
The corresponding q ′ ranges are though different, as given in Eq. (83). The phase shifts 
�c,s(±2kF , q ′) and �s,s(±kF↓, q ′) in those exponents expressions are defined in Eq. (A.24)

and the j = 0, 1 parameters ξj

β β ′ are defined in Eq. (50).
The s branch line one-fermion exponents are plotted as a function of the momentum k in Fig. 9

for up-spin one-fermion removal and addition and in Fig. 10 for down-spin one-fermion removal 
and addition. The curves correspond to several C = 0.03 − 30.00 values, fermionic densities 
n = 0.7 and 2.0, and spin densities m = 0.15 and m = 0.65.

The general expression, Eq. (48), of the up-spin and down-spin one-fermion spectral function 
Bσ,γ (k, ω), Eq. (4), is near the present s branch line given by,

Bσ,γ (k,ω) = Cσ,γ,s

(
γω − ωσ

s (k)
)ξσ

s (k)

for (γ ω − ωσ
s (k)) ≥ 0 where γ = ±1 , (89)

and Cσ,γ,s is a constant that has a fixed value for the k and ω ranges corresponding to small 
values of the energy deviation (γω − ωσ

s (k)). The spectrum ωσ
s (k) in such an energy deviation 

is that in Eq. (83). The exponent ξσ
s (k) is given in Eqs. (87) and (88).

The exponent ξσ
s (k) has the following related behavior in the C → 0 limit for its whole k

intervals,
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Fig. 9. The exponent ξ↑
s (k), Eq. (87), that controls the singularities in the vicinity of the s branch line whose (k, ω)-plane 

shape is defined by Eqs. (83) and (84) for σ =↑ and Eq. (85) is plotted for the one-fermion removal and addition spectral 
function, Eq. (89) for σ =↑, as a function of the momentum k/2kF . The soft grey region refers to the ground-state 
occupied Fermi sea. The curves refer to several C = 0.03 − 30.00 values and spin density m = 0.15 and fermionic 
densities n (a) 0.7 and (b) 2.0 and spin density m = 0.65 and fermionic densities (c) 0.7 and (d) 2.0. The type of 
exponent line associated with each C value is for all figures the same.

lim
C→0

ξσ
s (k) = γσ .

Hence the up-spin one-fermion spectral weight at and near these s branch lines vanishes in the 
C → 0 limit both for one-fermion removal and addition.

As given generally in Eq. (51), for the n, m, and k ranges for which limC→0 ξ
↓
s (k) = −1 the 

line shape near the branch line is not of the power-law form, Eq. (89). As for zero spin density, in 
that limit it rather corresponds to the following δ-function-like down-spin one-fermion spectral 
weight distribution,

lim
C→0

B↓,−1(k,ω) = δ
(
ω + ω↓

s (k)
)

= δ
(
ω − (k2 − k2

F↓)
)

for k ∈ [−kF↓, kF↓] ,
lim
C→0

B↓,+1(k,ω) = δ
(
ω − ω↓

s (k)
)

= δ
(
ω − (k2 − k2

F↓)
)

for k ∈ [−kF↑,−kF↓] and k ∈ [kF↓, kF↑] , (90)

where the expression of the s band energy dispersion for C → 0, Eq. (19), has been used. The 
C → 0 limiting behavior reported in the latter equation for that energy dispersion appearing in 
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Fig. 10. The exponent ξ↓
s (k), Eq. (88), that controls the singularities in the vicinity of the s branch line whose (k, ω)-plane 

one-parametric spectrum is defined by Eqs. (83) and (84) for σ =↓ and Eq. (86) is plotted for the down-spin one-fermion 
removal and addition spectral function, Eq. (89) for σ =↓, as a function of the momentum k/2kF . The soft grey region 
refers to the ground-state occupied Fermi sea. The curves refer to several C = 0.03 − 30.00 values and spin density 
m = 0.15 and fermionic densities n (a) 0.7 and (b) 2.0 and spin density m = 0.65 and fermionic densities (c) 0.7 and 
(d) 2.0. The type of exponent line associated with each C value is for all figures the same.

the spectrum ω↓
s (k), Eq. (83), confirms that the latter spectrum becomes in the C → 0 limit the 

corresponding C = 0 non-interacting spin-down fermionic spectrum, as given in Eq. (90). This 
applies to its whole k interval except for down-spin fermion addition for k ∈ [−∞, −kF↑] and 
k ∈ [kF↑, ∞], as further discussed in Section 4.5.

For the k interval for which limC→0 ξ
↓
s (k) = 0, the down-spin one-fermion addition spectral 

weight at and near the present s branch line vanishes in the C → 0 limit.
For C → ∞ and m → n we find the following exponent expressions for the up-spin one-

fermion removal and down-spin one-fermion addition s branch line,

ξ↑
s (k) = 1

2

(
k

πn

)2

+ 2

π2

{
arctan

(
1

2
cot

(
k

2n

))}2

↑ fermion removal for k ∈ [0,2kF ] ,

ξ↓
s (k) = −1

2

(
1 −

(
k

πn

)2
)

+ 2

π2

{
arctan

(
1

2
tan

(
k

2n

))}2

↓ fermion addition for k ∈ [0,2kF ] .
This then implies that,
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lim
k→0

ξ↑
s (k) = 1

2
; lim

k→kF

ξ↑
s (k) = 1

8
+ 2

(
1

π
arctan

(
1

2

))2

≈ 0.16856 ; lim
k→2kF

ξ↑
s (k) = 1

2

lim
k→0

ξ↓
s (k) = −1

2
; lim

k→kF

ξ↓
s (k) = −3

8
+ 2

(
1

π
arctan

(
1

2

))2

≈ −0.33144 ;

lim
k→2kF

ξ↓
s (k) = 1

2
.

Analysis of these expressions and values reveals that in the C → ∞ and m → n limits the 
up-spin one-fermion removal exponent ξ↑

s (k) smoothly decreases from ξ↑
s (k) = 1/2 for k → 0

until it reaches a minimum value at k = kF . For k > kF it continuously increases to ξ↑
s (k) = 1/2

as k → 2kF . In the same limits, the down-spin one-fermion addition exponent ξ↓
s (k) smoothly 

varies from ξ↓
s (k) = −1/2 for k → 0 to ξ↓

s (k) = 1/2 for k → 2kF .
Moreover, analysis of Fig. 9 for other spin densities shows that the exponent ξ↑

s (k) only 
becomes negative for a part of the s branch line k interval. It starts at k = kF↓ and ends at a 
k momentum that for smaller and larger spin density values refers to one-fermion addition and 
removal, respectively. The C values for which it is negative depend on the densities.

For C > 0 the exponent ξ↓
s (k), whose k dependence is plotted in Fig. 10, is in general negative. 

The exception refers to a small k region. It corresponds to the larger k values of its range. For the 
k ranges for which it reads −1 for C → 0, it remains being an increasing function of C for the 
whole C interval. However, for the k domains for which it is given by 0 in the C → 0 limit, upon 
increasing C it first decreases, goes through a minimum value, and then becomes an increasing 
function of C, until reaching its C → ∞ limit k dependent values.

4.5. The up-spin one-fermion removal and down-spin one-fermion addition “non-branch lines”

On the one hand and as discussed in Section 4.3, at zero magnetic field the c± and s branch 
lines lead in the C → 0 limit to the C = 0 non-interaction δ-function-like one-fermion addition 
and removal spectra for their whole k intervals, as given in Eqs. (62) and (81).

On the other hand, at finite magnetic field and finite spin density the c± and s branch lines 
lead in the C → 0 limit to most k intervals of the C = 0 non-interaction δ-function-like up-spin 
and down-spin one-fermion addition and removal spectra, respectively. This is confirmed from 
analysis of the up-spin one-fermion spectral function expressions obtained from the c± branch 
lines in Eq. (72) and of the expressions of the down-spin one-fermion spectral function obtained 
from the s branch lines in Eq. (90).

However and as mentioned above, at finite magnetic field some k subintervals of the C = 0
non-interacting removal up-spin and addition down-spin one-fermion spectra do not stem from 
branch lines. This refers to the momentum interval k ∈ [−kF↓, kF↓] for up-spin one-fermion 
removal and to the momentum intervals k ∈ [−∞, −kF↑] and k ∈ [kF↑, ∞] for down-spin one-
fermion addition.

The C = 0 non-interacting up-spin one-fermion removal spectral weight missing for k ∈
[−kF↓, kF↓] stems in the C → 0 limit from a C > 0 s′ spectral feature that is generated by 
transitions to excited energy eigenstates whose number deviations relative to those of the initial 
ground state are given by,

δNF = δJF = 0 ; δNNF = −1 ; δNF = 1 ; δJF = ±1 ; δNNF = −1 .
c c c s s s
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The one-parametric spectrum of this line reads,

ω
↑
s′(k) = −εs(−k) − εc(±2kF↓) = −εs(q

′) − εc(±2kF↓) where q ′ ∈ [−kF↓, kF↓] and

k = −q ′ ∈ [−kF↓, kF↓] .
Here εc(q) and εs(q

′) are the c and s band energy dispersions, Eq. (18). While the line shape 
expression near the present s′ line involves within the PDT state summations difficult to be 
performed analytically for C > 0, in the C → 0 limit its exact line shape becomes δ-function-
like,

lim
C→0

B↑,−1(k,ω) = δ
(
ω + ω

↑
s′(k)

)
= δ

(
ω − (k2 − k2

F↑)
)

for k ∈ [−kF↓, kF↓] .
Here the expression of the c and s energy dispersions for C → 0, Eq. (19), have been 
used.

The C = 0 non-interacting down-spin one-fermion addition spectral weight missing for k ∈
[−∞, −kF↓] and k ∈ [kF↓, ∞] stems in the C → 0 limit from a C > 0 c′ spectral feature that is 
generated by transitions to excited energy eigenstates whose number deviations relative to those 
of the initial ground state read,

δNF
c = 0 ; δJF

c = ±1/2 ; δNNF
c = 1 ; δNF

s = δJF
s = 0 ; δNNF

s = 1 .

The one-parametric spectrum of this line is given by,

ω
↓
c′(k) = εc(k − kF↓) + εs(−kF↑) with interval

k = q + kF↓ ∈ [−∞,−kF↑] for q ∈ [−∞,−2kF ]
ω

↓
c′(k) = εc(k + kF↓) + εs(kF↑) with interval

k = q − kF↓ ∈ [kF↑,∞] for q ∈ [2kF ,∞] .
Again, the line shape expression in the vicinity of this c′ line involves within the PDT state 

summations difficult to be performed analytically for C > 0. In the C → 0 limit that line shape 
becomes δ-function-like,

lim
C→0

B↓,+1(k,ω) = δ
(
ω − ω

↑
c′(k)

)
= δ

(
ω − (k2 − k2

F↓)
)

for k ∈ [−∞,−kF↑] and [kF↑,∞] ,
where the expressions of the c and s energy dispersions for C → 0, Eq. (19), have again been 
used.

4.6. The one-fermion removal boundary line at zero magnetic field

As given in Eq. (53), the line shape near a one-fermion removal boundary line singularity 
is power law like, Bγ (k, ω) ∝ (ω + ωBL(k))−1/2, with a negative momentum independent ex-
ponent, −1/2, and an energy spectrum ωBL(k) whose details at zero spin density are further 
studied in this section. Such one-fermion removal boundary lines emerge from the c± branch 
lines of energy spectrum ωc±(k), Eqs. (58) and (59) for γ = −1, at a well-defined momentum 
kmin.

For simplicity, here we consider the boundary line emerging from the c+ branch line. The 
spectrum of that emerging from the c− branch line is generated from that considered here by 
interchanging k and −k. We call q = qBL

c and q ′ = qBL
s a pair of c band and s band momenta 
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such that, vc(q
BL
c ) = vs(q

BL
s ), which as given in Eq. (52) are those that contribute to a boundary 

line. For the branch A of the two-parametric spectrum ωR(k), Eq. (34), the one-fermion removal 
boundary line spectrum reads,

ωBL(k) = −εc(2kF − k − qBL
s ) − εs(q

BL
s ) = −εc(q

BL
c ) − εs(2kF − k + qBL

c ])
for vc(2kF − k − qBL

s ) = vs(q
BL
s ) and

equivalently vc(q
BL
c ) = vs(2kF − k + qBL

c ])
with sgn{qBL

c } = sgn{qBL
s } and k interval

k = 2kF − qBL
c − qBL

s ∈ [kmin, kmax] where kmin = kF − q0
c ∈ [−kF , kF ]

and q0
c ∈ [0,2kF ] . (91)

The excitation momentum interval, k ∈ [kmin, kmax], is that for which the boundary line exists. 
Only for that interval is it a limiting line of the two-dimensional (k, ω)-plane domain associated 
with the branch A of the two-parametric spectrum ωR(k), Eq. (34). The limiting values of the 
interval k ∈ [kmin, kmax] read,

kmin = kF − q0
c ∈ [−kF , kF ]

kmax = 4kF − kmin = 3kF + q0
c ∈ [3kF ,5kF ] . (92)

The reference c band momentum value q0
c appearing here is defined by the following velocities 

relation,

vc(q
0
c ) = vs(kF ) . (93)

Useful limiting values of the reference c band momentum q0
c and of the momenta kmin and kmax

defined in Eq. (92) are given in Eq. (D.3) of Appendix D.
The present one-fermion removal singular boundary line is at zero spin density represented in 

the spectrum plotted in Fig. 1 by a dashed-dotted line. For momentum intervals different from k ∈
[kmin, kmax] of the two-parametric spectrum ωR(k), Eq. (34), its two-dimensional (k, ω)-plane 
domain is not limited by a boundary line as defined in Eq. (52). Indeed, for such k values one 
has that |vc(q)| > vs(kF ) and the condition vc(2kF − k − q ′) = vs(q

′) cannot be met, as vs(kF )

is the maximum absolute value of the s band velocity for q ′ ∈ [−kF , kF ].
Further information on the boundary line spectrum, Eq. (91), is given in Appendix D.

4.7. The up-spin and down-spin one-fermion removal boundary lines

As at zero spin density, the line shape near a up-spin and down-spin one-fermion boundary 
line singularity given in Eq. (56) is power law like, Bσ,γ (k, ω) ∝ (ω+ωσ

BL(k))−1/2, again with a 
negative momentum independent exponent, −1/2, and an energy spectrum ωσ

BL(k) whose details 
are further studied in this section. Such up-spin and down-spin one-fermion removal boundary 
lines emerge from the c± branch line of energy spectrum ωσ

c±(k), Eqs. (64) and (65) for γ = −1, 
at momentum kσ

min.
As for zero spin density and for simplicity, here we consider the boundary lines emerging from 

the c+ branch line. The spectrum of those emerging from the c− branch line is generated from 
that considered here by replacing k by −k. For branches A of the two-parametric spectra ωσ

R(k), 
Eqs. (38) and (40), the up-spin (σ =↑) and down-spin (σ =↓) one-fermion removal boundary 
lines spectrum reads,
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ω
↑
BL(k) = −εc(kF − k + qBL

s ) + εs(q
BL
s ) = −εc(q

BL
c ) + εs(k − qBL

c )

for vc(−k + qBL
s ) = vs(q

BL
s ) and equivalently vc(q

BL
c ) = vs(k − qBL

c ) with

k = −qBL
c + qBL

s ∈ [k↑
min, k

↑
max]

ω
↓
BL(k) = −εc(2kF − k − qBL

s ) − εs(q
BL
s ) = −εc(q

BL
c ) − εs(2kF − k + qBL

c )

for vc(2kF − k − qBL
s ) = vs(q

BL
s ) and

equivalently vc(q
BL
c ) = vs(2kF − k + qBL

c ]) with

k = 2kF − qBL
c − qBL

s ∈ [k↓
min, k

↓
max]

where sgn{qBL
c } = sgn{qBL

s } for both σ =↑,↓ . (94)

The σ =↑, ↓ excitation momentum intervals k ∈ [kσ
min, k

σ
max] are those for which the cor-

responding boundary lines exist. For k ∈ [kσ
min, k

σ
max] the boundary lines are limiting lines of 

the corresponding two-dimensional (k, ω)-plane domains associated with the branches A of the 
two-parametric spectra ωσ

R(k), Eqs. (38) and (40), respectively.
The limiting values of the σ =↑, ↓ intervals k ∈ [kσ

min, k
σ
max] are given in Eq. (D.4) of Ap-

pendix D. Also further information on the up-spin and down-spin boundary line spectra, Eq. (94), 
is provided in that Appendix.

The up-spin and down-spin one-fermion removal singular boundary lines are at finite spin 
density represented in the spectra plotted in Figs. 2 and 3 by dashed-dotted lines. As at zero 
magnetic field, for momentum intervals different from k ∈ [kσ

min, k
σ
max] of the two-parametric 

spectra ωσ
R(k), Eqs. (38) and (40), such spectra two-dimensional (k, ω)-plane domain is not 

limited by a boundary line as defined in Eq. (54).

5. The spectral function power-law behaviors in the low-energy TLL regime

The expression of the one-fermion spectral functions near the branch lines, Eqs. (46) and 
(48), is valid for energy scales beyond the reach of the low-energy TLL [31–34]. However, as 
for the related 1D Hubbard model [45], the PDT also applies to the TLL low-energy regime 
whose spectral-function exponents near the c± and s branch lines are different from those of the 
high-energy regime.

The processes that generate a branch line involve creation of a single c or s particle or hole 
away from the corresponding Fermi points. They also involve creation of a single s or c parti-
cle or hole, respectively, at the corresponding Fermi points. Finally, such processes are dressed 
by low-energy and small-momentum multiple particle-hole processes around the two branches 
Fermi points.

As reported in Section 2.3, the single c or s particle or hole created away from the correspond-
ing Fermi points within the high-energy regime is in the TLL regime and cross-over to it rather 
created at bare c and s band momenta with absolute values |q| ∈ [2kF − k0

Fc, 2kF + k0
Fc] and 

|q ′| ∈ [kF↓ − k0
Fs, kF↓ + k0

Fs], respectively. In the high energy regime, the group velocity of the 
c or s particle or hole created away from its Fermi points is different from the c or s band Fermi 
velocity at any of the c and s band Fermi points, respectively. In contrast, in the low-energy TLL 
regime that c or s particle or hole velocity becomes the c or s band Fermi velocity, Eq. (22), of 
the low-energy particle-hole excitations near one of the c or s Fermi points. Hence the c or s
particle or hole under consideration loses its identity, in that it cannot be distinguished from the 
c or s particles or holes in the particle-hole excitations.
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It turns out that, as a result, in the TLL regime the γ = c, c′, s branch line exponents expres-
sion ξβ = −1 + 2�+1

c + 2�−1
c + 2�+1

s + 2�−1
s , Eq. (46), at m = 0 or ξσ

β = −1 + 2�+1
c +

2�−1
c + 2�+1

s + 2�−1
s , Eq. (48), for m > 0 loses one of its four 2�s. Specifically, in the case of 

the c or s particle or hole it loses the 2�ι
c and 2�ι

s term, respectively, whose sign ι = ±1 is that 
of the Fermi point whose velocity is the same as its own velocity. The corresponding expressions 
of the exponents in the high-energy spectral function expressions are thus different from those of 
the TLL regime.

Specifically, in the low-energy TLL limit a branch-line energy reads ±γ vβ (k − k0) where 
β = c and β = s for the c± and s branch lines, respectively, and ±vβ is the corresponding Fermi 
velocity, Eq. (22). Indeed, its group velocity equals in that limit the β band Fermi velocity. For 
small excitation energy ω ≈ ±γ vβ (k − k0) the behavior of the one-fermion spectral function 
Bγ (k, ω), Eq. (2) at m = 0 and Bσ,γ (k, ω), Eq. (4), for m > 0 near such a branch line remain 
power-law like. It reads,

Bγ (k,ω) ∝
(
γ ω ∓ vβ (k − k0)

)ζ±
for (γ ω ∓ vβ (k − k0)) ≥ 0 where

ζ± = −1 − 2�∓1
β +

∑
β ′=c,s

∑
ι=±1

2�ι
β ′ and (γ ω) ≈ ±vβ (k − k0) for β = c, s ,

(95)

at m = 0 and,

Bσ,γ (k,ω) ∝
(
γ ω ∓ vβ (k − k0)

)ζ σ±
for (γ ω ∓ vβ (k − k0)) ≥ 0 where

ζ σ± = −1 − 2�∓1
β +

∑
β ′=c,s

∑
ι=±1

2�ι
β ′ and (γ ω) ≈ ±vβ (k − k0) for β = c, s ,

(96)

for m > 0.
The expression of the exponents ζ± and ζ σ± now only involves three 2�s, as reported above. 

Moreover, such β = c, s and ι = ±1 functionals 2�ι
β , Eqs. (47) and (49), now do not involve 

high-energy deviations away from the Fermi points. They read,

2�ι
c =

(
ι

ξ0

δNF
c

2
+ ξ0

(
δJF

c + δJF
s

2

))2

and

2�ι
s = 1

2

(
ι

(
δNF

s − δNF
c

2

)
+ δJF

s

)2

for ι = ±1 , (97)

at m = 0 where ξ0 is the parameter defined in Eq. (A.35) of Appendix A and,

2�ι
β =

⎛
⎝ ∑

β ′=c,s

(
ι ξ0

β β ′
δNF

β ′

2
+ ξ1

β β ′ δJF
β ′

)⎞
⎠

2

for β = c, s and ι = ±1 , (98)

at m > 0 where the j = 0, 1 parameters ξj

β β ′ are defined in Eq. (50). The spectral function 
expressions, Eqs. (95) and (96), are valid at small energy (γ ω) and for small energy deviations 
(γ ω ∓ vβ (k − k0)).
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In the case of a large finite system, there is a cross-over regime between the low-energy 
TLL regime and the high energy regime within which the above quantity 2�ι

c or 2�ι
s gradu-

ally vanishes. Such a cross-over regime momentum and energy widths are very small or vanish 
in the thermodynamic limit. Since our studies refer to the thermodynamic limit, such a cross-over 
regime is not among the goals of this paper.

Finally, within the TLL regime at finite spectral-weight (k, ω)-plane regions near a point 
(k0, 0) in directions other than a branch line the spectral functions behave at small excitation 
energy ω as,

Bγ (k,ω) ∝
(
γ ω

)ζ

for (γ ω) ≥ 0 where

ζ = −2 +
∑

β ′=c,s

∑
ι=±1

2�ι
β ′ and (γ ω) �= ±vβ (k − k0) for β = c, s , (99)

at m = 0 and,

Bσ,γ (k,ω) ∝
(
γ ω

)ζ σ

for (γ ω) ≥ 0 where

ζ σ = −2 +
∑

β ′=c,s

∑
ι=±1

2�ι
β ′ and (γ ω) �= ±vβ (k − k0) for β = c, s , (100)

for m > 0 where the ι = ±1 functionals 2�ι
β in the exponent expression in Eqs. (99) and (100)

are those given in Eqs. (97) and (98), respectively.

6. Discussion and concluding remarks

In this paper we have studied the high-energy one-fermion spectral properties of the 1D re-
pulsive fermion model, Eq. (1), and specifically the momentum and energy dependence of the 
exponents and energy spectra that control the line shape of the one-fermion spectral function, 
Eq. (2), at zero magnetic field and of the up-spin and down-spin one-fermion spectral functions, 
Eq. (4), at finite magnetic field near those functions singularities.

That fermionic model is an interacting system characterized by a breakdown of the basic 
Fermi liquid quasiparticle picture. Indeed, no quasiparticles and no quasi-holes with the same 
quantum numbers as the corresponding free fermions occur when the interacting fermion range 
of motion is restricted to a single spatial dimension [34,35]. In 1D, correlated fermions rather split 
into the basic fractionalized charge-only and spin-only particles whose representation is used in 
our study. That for finite repulsive interaction the generators of the exact energy eigenstates onto 
the fermion vacuum are naturally expressed in terms of creation onto it of such fractionalized par-
ticles renders it the most suitable representation to study the up-spin and down-spin one-fermion 
spectral functions.

The many-fermion system non-perturbative character is thus the reason why in this paper we 
have used a language other than that of a Fermi liquid. Our analysis of the problem focused on 
the vicinity of two types of singular features: The one-fermion removal and addition branch lines 
whose (k, ω)-plane spectra general form is given in Eq. (42) for zero spin density and in Eq. (44)
for finite spin density and the one-fermion removal boundary lines whose (k, ω)-plane spectra 
general form is provided in Eq. (52) for m = 0 and in Eq. (54) for m > 0. The β = c+, c−, s
branch lines are represented in Figs. 1-3 by solid lines and dashed lines for the k ranges for 
which the corresponding exponent ξβ(k), Eq. (46), for m = 0 in Fig. 1 and ξσ (k), Eq. (48), for 
β
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m > 0 in Figs. 2 and 3 is negative and positive, respectively. The one-fermion removal boundary 
lines are in these figures represented by dashed-dotted lines.

Which is the physics behind the occurrence of separate charge and branch lines beyond the 
low-energy TLL regime where the one-fermion spectral singularities are located in the (k, ω)

plane? This follows from at all energy scales the exotic charge and spin fractionalized particles or 
holes moving generally with different speeds and in different directions in the 1D many-fermion 
system. The fermions degrees of freedom in the system have this ability because they behave 
like separate waves. When excited upon fermion removal or addition, such waves can split into 
multiple waves, each carrying different characteristics of the fermion.

This occurs because collective modes take over, so that the one-fermion removal and addi-
tion excitations studied in this paper indeed do not create single Fermi-liquid quasiparticles or 
quasi-holes with the same quantum numbers as the free fermions. Such one-fermion excitations 
rather originate an energy continuum of excitations that display non-Fermi-liquid singularities 
on the charge and spin fractionalized particles branch lines and boundary lines. Consistent, the 
(k, ω)-plane line shape near such spectral features is not δ-function like as in a Fermi liquid. It 
rather is power-law like, controlled by negative exponents that for the charge and spin branch 
lines are momentum, interaction, and fermionic and spin densities dependent.

On the one hand, the one-fermion removal excitations boundary lines refer to charge and spin 
fractionalized holes moving with the same velocity whose energy spectrum has thus contributions 
from both their charge and spin energy dispersions. On the other hand, the energy dispersions of 
the charge and spin fractionalized particles and holes fully control the shape of the correspond-
ing charge and spin branch lines spectra, respectively, whose momentum slope corresponds to 
their generally different velocities. The fractionalized charge-only and spin-only particles and 
holes associated with such spectral features emerge within the 1D many-fermion system. They 
cannot though exist independently, outside such a system. Moreover, they are not adiabatically 
connected to free fermions.

To access the expressions of the one-fermion spectral functions near the branch lines and 
boundary lines singularities, we have used the PDT, which applies to the present model and 
other integrable models [40–44]. For the k ranges for which the (i) branch lines exponents ξβ(k)

at m = 0 (ii) and σ =↑, ↓ branch lines exponents ξσ
β (k) for m > 0 (which are plotted in (i) 

Figs. 4, 7, and 8 and (ii) in Figs. 5, 6, 9, and 10, respectively) are negative, there are singularity 
cusps in the corresponding one-fermion spectral functions, Eqs. (2) and (4). The same occurs in 
the (k, ω)-plane vicinity of the one-fermion removal boundary lines.

The C > 0 branch lines singularity cusps play an important role in the model physics. For 
instance, at zero spin density the c± and s branch lines lead in the C → 0 limit to the C = 0
non-interacting δ-function-like one-fermion addition and removal spectrum for their whole k in-
tervals, as given in Eqs. (62) and (81). At finite spin densities this applies to most of the momen-
tum k ranges of the up-spin and down-spin one-fermion spectrum. This can be confirmed from 
a combined analysis of the up-spin one-fermion spectral function expressions obtained from the 
c± branch lines in Eq. (72) and of the expressions of the down-spin one-fermion spectral function 
obtained from the s branch lines in Eq. (90).

The momentum subranges for which at m > 0 the C = 0 non-interacting δ-function-like one-
fermion spectrum does not stem from branch lines are k ∈ [−kF↓, kF↓] for up-spin one-fermion 
removal and k ∈ [−∞, −kF↑] and k ∈ [kF↑, ∞] for down-spin one-fermion addition. The PDT 
also accounts for the processes that give rise in the C → 0 limit to the C = 0 one-fermion spec-
trum at such k intervals. However, the expression of the corresponding one-fermion spectral 
functions near the spectral line features under consideration involve state summations difficult to 
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analytically compute for C > 0. (Those C > 0 line features are represented in Figs. 2 and 3 by 
sets of diamond symbols.)

The interacting spin-1/2 fermions described by 1D repulsive fermion model, Eq. (1), can 
either be electrons or atoms. Which is the relevance and consequences for actual physical systems 
of the theoretical results of this paper on the up-spin and down-spin one-fermion removal and 
addition spectral functions, Eqs. (2) and (4)? Can their spectral singularities be observed in actual 
systems both at zero and finite magnetic fields?

In condensed matter materials at zero magnetic field, angle resolved photoemission spec-
troscopy (ARPES) directly measures the spectral function of the electrons [46]. ARPES removes 
electrons via the photoelectric effect. This technique does not apply at finite magnetic fields 
and can only measure occupied one-electron states. To measure the unoccupied states, there is 
inverse photo-emission spectroscopy or as well as tunneling experiments [46]. Quasi-1D and 
1D condensed matter systems are in general rather described by toy lattice correlated electronic 
models the simplest of which is the 1D Hubbard model [8,9].

Concerning the relation of our theoretical results on the spectral functions of the 1D con-
tinuous fermionic gas with repulsive delta-function interaction to actual physical systems, that 
model can be implemented with ultra-cold atoms [11–17]. The ability to study ultra-cold atomic 
Fermi gases actually holds the promise of significant advances in testing fundamental theories of 
the corresponding many-fermion quantum physics. This applies to the results presented in this 
paper.

Momentum-resolved radio-frequency (RF) spectroscopy [14,15] and Bragg spectroscopy 
[16,17] are techniques to measure the spectral functions in ultra-cold atomic gases. In partic-
ular, momentum-resolved RF is a tool to achieve an analogue of the photoemission spectroscopy 
measurement for ultra-cold atomic gases. The spectroscopy takes advantage of the many spin 
states of the atoms in these cold gases. Can our results about one-fermion singular spectral fea-
tures at magnetic field be used as theoretical predictions of ultra-cold spin-1/2 atomic gases 
experiments?

In a magnetic field, the degeneracy of the spin states of the atoms is split by the Zeeman in-
teraction and at magnetic field strengths around the Feshbach resonance. This Zeeman splitting 
is much larger than other energy scales in the system. Fortunately, all the spin-relaxation mecha-
nisms available to atoms in some of their spin-states are either forbidden or strongly suppressed, 
so a gas of atoms in those spin states stays that way without relaxing.

Momentum-resolved RF spectroscopy, takes advantage of the fact that the RF photon has a 
negligible momentum compared to the momentum of the atom. As a result, the spin-flip transition 
does not change its momentum state. In the language of photoemission spectroscopy this is a 
vertical transition. The momentum of the spin-flipped atom, and thus the momentum of the atom 
inside the interacting system, can be measured in a time-of-flight experiment. Importantly, with 
this information, one can indeed reconstruct the one-fermion spectral function and thus use the 
present results as a theoretical prediction and check their relevance and consequences for actual 
physical systems [14,15].

Finally, it is interesting to briefly discuss here some complications that momentum-resolved 
RF spectroscopy removes compared to ARPES for condensed-matter systems as well as other 
new complications that it though introduces. For example, ARPES suffers from ejected electrons 
colliding with other electrons on their way out of the material [46]. This introduces a background 
signal and limits ARPES to probing near the material surface. With ultra-cold atoms, the inter-
actions between the atoms in the out-coupled spin state and the rest of the atoms is so weak that 
this is not a problem. Indeed, the mean free path of the out-coupled atom is much larger than the 
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system size [15]. Furthermore, in ARPES there is a matrix element for the process of removing 
an electron with a photon that depends on the angles and wave-vectors of the photon and elec-
tron [46]. This matrix element is not always known well enough to divide out. In the ultra-cold 
atom case, the emission process is simply a Zeeman spin-flip transition and the matrix element is 
constant [47]. Experimentally, the photon source in the atom case is a RF field. It is far easier to 
produce than a synchrotron x-ray radiation ARPES source or even then a laser based ultra-violet 
ARPES source. Moreover, the detection of atoms by time-of-flight absorption imaging is simpler 
than the detection of electrons with an electron spectrometer. It requires only a low power laser, 
charge-coupled device camera, and imaging optics. Another general advantage is the ability of 
ultra-cold atom gas experiments to reproduce identical samples repeatedly. In contrast, this can 
be a real challenge in ARPES for condensed-matter materials.

To acquire the full spectral function, in the case of the ultra-cold atoms a range of frequencies 
are needed. On the contrary, with ARPES the entire spectral function can be measured with 
a single photon frequency. This follows the non-conservation of momentum and energy in the 
direction perpendicular to the material surface, as discussed in Ref. [46]. In ARPES, the energy 
resolution of the measurements is typically set by the detector resolution. It can be made very 
small compared to the Fermi energy, specifically, meV compared to eV [46]. In the ultra-cold 
atom case, the energy resolution is Fourier limited by the duration of the RF pulse. It must be 
kept much shorter than the oscillation period of the confinement potential. This is needed in order 
to keep the momentum of the out-coupled atoms from changing.

In conclusion, the relevance and consequences for actual physical systems of our detailed 
theoretical study on the up-spin and down-spin one-fermion removal and addition spectral func-
tions, Eqs. (2) and (4), of the 1D repulsive fermion model, Eq. (1), at and near such functions 
singularities where most of the spectral weight is located in the (k, ω) plane, can be checked 
by experimental studies of ultra-cold spin-1/2 atomic systems. Those can rely on momentum-
resolved RF spectroscopy [14,15] or Bragg spectroscopy [16,17]. An interesting program would 
thus be the observation of the one-atom spectral weight distributions over the (k, ω) plane associ-
ated with the spectral functions studied in this paper in systems of spin 1/2 ultra-cold fermionic 
atoms on optical lattices, simulating both a vanishing and finite magnetic fields.
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Appendix A. Useful quantities and limiting behaviors and values

The 1D repulsive fermion model, Eq. (1), BA solution ground-state charge momentum rapid-
ity function k = k0(q) ∈ [−∞, ∞] where q ∈ [−∞, ∞], whose inverse function q = q(k) has 
thus also domain k ∈ [−∞, ∞], is defined by the equation,
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q(k) = k + 1

π

B∫
−B

d
2πσ(
) arctan

(
2k − 2


C

)
for k ∈ [−∞,∞]

q(±Q) = ±2kF where ± Q = k0(±2kF )

q(±∞) = ±∞ where ± ∞ = k0(±∞) , (A.1)

where C > 0. Moreover, the ground-state spin rapidity function 
 = 
0(q
′) domain is q ′ ∈

[−kF↑, kF↑], whose inverse function q = q(
) domain is 
 ∈ [−∞, ∞], is defined by the equa-
tion,

q(
) = 1

π

Q∫
−Q

dk 2πρ(k) arctan

(
2
 − 2k

C

)

− 1

π

B∫
−B

d
′ 2πσ(
′) arctan

(

 − 
′

C

)
for 
 ∈ [−∞,∞]

q(±B) = ±kF↓ where ± B = 
0(±kF↓)

q(±∞) = ±kF↑ where ± ∞ = 
0(±kF↑) and kF↑ = 2kF − kF↓ = π n↑ . (A.2)

(Here we distinguish the functions q = q(k) ∈ [−∞, ∞] and q = q(
) ∈ [−kF↑, kF↑] by their 
variables reading k and 
, respectively.)

The charge distribution 2πρ(k) and the spin distribution 2πσ(
) appearing in the above 
equations are such that,

2πρ(k) = ∂q(k)

∂k
; ∂k(q)

∂q
= 1

2πρ(k(q))
; 2πσ(
) = ∂q(
)

∂

; ∂
(q)

∂q
= 1

2πσ(
(q))
.

(A.3)

They are solutions of the coupled integral equations,

2πρ(k) = 1 + 2

π C

B∫
−B

d

2πσ(
)

1 + ( 2k−2

C

)2 , (A.4)

and

2πσ(
) = 2

π C

Q∫
−Q

dk
2πρ(k)

1 + ( 2
−2k
C

)2 − 1

π C

B∫
−B

d
′ 2πσ(
′)

1 +
(


−
′
C )

)2 , (A.5)

respectively. From the use of Eq. (A.4) in Eq. (A.5) one obtains the following single integral 
equation for the spin distribution 2πσ(
),

2πσ(
) = 2

π C

Q∫
−Q

dk
1

1 + ( 2
−2k
C

)2 +
B∫

−B

d
′ G(
,
′)2πσ(
′) , (A.6)

where the kernel reads,
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G(
,
′) = − 1

π C

⎛
⎜⎜⎝ 1

1 +
(


−
′
C

)2 − 4

π C

Q∫
−Q

dk
1(

1 + ( 2
−2k
C

)2
)(

1 +
(

2
′−2k
C

)2
)

⎞
⎟⎟⎠ .

(A.7)

The k integral in this expression can be solved analytically, with the result,

G(
,
′) = 2

CA

(
2


C ,
2
′

C

)
where

A(r, r ′) = − 1

2π

⎛
⎜⎝ 1

1 +
(

r−r ′
2

)2

⎞
⎟⎠ ×

(
1 − 1

2π

∑
ι=±1

(ι)

{
arctanFι(r) + arctanFι(r

′)

+ ln(1 + F 2
ι (r)) − ln(1 + F 2

ι (r ′))
r − r ′

})
and

Fι(r) = r + ι
2Q

C . (A.8)

As given in Eq. (A.3), the charge distribution 2πρ(k) and the spin distribution 2πσ(
) are 
such that 2πρ(k) = ∂q(k)

∂k
and 2πσ(
) = ∂q(
)

∂

, respectively. Hence they are defined by the 

equations,

q =
k0(q)∫
0

dk 2πρ(k) and q ′ =

0(q

′)∫
0

d
2πσ(
) ,

respectively. The parameters Q and B are then self-consistently defined by the equations,

2kF =
Q∫

0

dk 2πρ(k) and kF↓ =
B∫

0

d
2πσ(
) ,

respectively.
It follows that,

2kF = Q + 1

π

B∫
−B

d
2πσ(
) arctan

(
2Q − 2


C

)
,

and

kF↓ = 1

π

Q∫
−Q

dk 2πρ(k) arctan

(
2B − 2k

C

)
− 1

π

B∫
−B

d
2πσ(
) arctan

(
B − 


C

)
.

Note that Eqs. (A.1) and (A.2) are equivalent to the following equations,

q = k0(q) + 1

π

kF↓∫
−k

dq ′ arctan

(
2k0(q) − 2
0(q

′)
C

)
for q ∈] − ∞,∞[ , (A.9)
F↓
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and

q ′ = 1

π

2kF∫
−2kF

dq ′′ arctan

(
2
0(q

′) − 2k0(q
′′)

C

)

− 1

π

kF↓∫
−kF↓

dq ′′ arctan

(

0(q

′) − 
0(q
′′)

C

)
for q ′ ∈ [−kF↑, kF↑] , (A.10)

respectively. Here the integrals run over the ground-state momentum occupancies q ′′ ∈
[−kF↓, kF↓] of the s band and q ′′ ∈ [−2kF , 2kF ] of the c band whereas Eqs. (A.9) and (A.10)
define the functions 
0(q

′) and k0(q) for their whole momentum ranges q ′ ∈ [−kF↑, kF↑] and 
q ∈] − ∞, ∞[, respectively.

Each occupied c band momentum q is associated with one c pseudoparticle and occupied 
s band momentum q ′ with one s pseudoparticle. The range of the corresponding c band holes 
and s band holes is thus |q| ∈ [2kF , ∞] and |q ′| ∈ [kF↓, kF↑], respectively. For the alternative 
rapidity variables the ground-state momentum occupancy ranges refer to 
 ∈ [−B, B] for the s
band and k ∈ [−Q, Q] for the c band whereas the corresponding full ranges are 
 ∈ [−∞, ∞]
and k ∈ [−∞, ∞], respectively.

The distributions ηc(
) and ηs(
) in Eq. (18) are solutions of the integral equations,

ηc(k) = 2k + 2

π C

B∫
−B

d

ηs(
)

1 + ( 2k−2

C

)2 , (A.11)

and

ηs(
) = 2

π C

Q∫
−Q

dk
ηc(k)

1 + ( 2
−2k
C

)2 − 1

π C

B∫
−B

d
′ ηs(

′)

1 +
(


−
′
C )

)2 . (A.12)

From the use of Eq. (A.11) in Eq. (A.12) one obtains the following single integral equation 
for the distribution ηs(
),

ηs(
) = 2

π C

Q∫
−Q

dk
2k

1 + ( 2
−2k
C

)2 +
B∫

−B

d
′ G(
,
′) ηs(

′) , (A.13)

where the kernel is that already given in Eq. (A.7).
On the one hand, the dispersion ε0

c (q) in Eq. (23) reads ε0
c (q) = ε̄ 0

c (k0(q)) where the related 
dispersion ε̄ 0

c (k) is given by,

ε̄ 0
c (k) = k2 + 1

π

B∫
−B

d
ηs(
) arctan

(
2k − 2


C

)
.

On the other hand, ε0
s (q

′) = ε̄ 0
s (
0(q

′)) where ε̄ 0
s (
) = ∫ 


∞ d
′ 2t η(
′), so that,

ε̄ 0
s (
) = 1

π

Q∫
dk ηc(k) arctan

(
2
 − 2k

C

)
− 1

π

B∫
d
′ ηs(


′) arctan

(

 − 
′

C

)
.

−Q −B
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The distributions given in Eqs. (A.11) and (A.12) are such that,

ηc(k) = ∂ε̄c(k)

∂k
= ∂ε̄ 0

c (k)

∂k
and ηs(
) = ∂ε̄s(
)

∂

= ∂ε̄ 0

s (
)

∂

, (A.14)

respectively.
The c and s group velocities, Eq. (21), can be written as,

vc(q) = ∂ε̄c(k)

∂k

∂k0(q)

∂q
and vs(q

′) = ∂ε̄s(
)

∂


∂
0(q
′)

∂q ′ .

One then finds from the use of Eqs. (A.3) and (A.14) that,

vc(q) = ηc(k)

2πρ(k)
|k=k0(q) and vs(q

′) = ηs(
)

2πσ(
)
|
=
0(q

′) , (A.15)

where the distributions 2πρ(k) and 2πσ(
) are the solutions of Eqs. (A.4)-(A.6) and the distri-
butions ηc(k) and ηs(
) are the solutions of Eqs. (A.11)-(A.13).

The c and s Fermi velocities then read,

vc(±2kF ) = ± ηc(Q)

2πρ(Q)
and vs(±kF↓) = ± ηs(B)

2πσ(B)
. (A.16)

The expressions of the energy scales 2μ and 2μB h given in Eq. (24) can be expressed as,

2μ = 2ε0
c (2kF ) − ε0

s (kF↓) = 2Q2 + 2

∞
B∫

−B

d
ηs(
) arctan

(
2Q − 2


C

)

+ 1

π

Q∫
−Q

dk ηc(k) arctan

(
2k − 2B

C

)

− 1

π

B∫
−B

d
′ ηs(

′) arctan

(

′ − B

C

)

2μB h = −ε0
s (kF↓) = 1

π

Q∫
−Q

dk ηc(k) arctan

(
2k − 2B

C

)

− 1

π

B∫
−B

d
′ ηs(

′) arctan

(

′ − B

C

)
. (A.17)

The particle c energy dispersion bandwidth of the occupied c Fermi sea reads,

W
p
c = −εc(0) = −ε̄c(0)

= Q2 + 1

π

B∫
d
ηs(
)

(
arctan

(
2


C

)
+ arctan

(
2Q − 2


C

))
. (A.18)
−B
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The energy bandwidth of the s bands ε0
s (q

′) and εs(q
′) is given by,

Ws = ε0
s (kF↑) − ε0

s (0) = εs(kF↑) − εs(0)

= ε̄ 0
s (∞) − ε̄ 0

s (0) = ε̄s (∞) − ε̄s (0) . (A.19)

Here ε0
s (kF↑) = ε̄ 0

s (∞) = 0 so that,

Ws = −ε̄ 0
s (0) = 1

π

Q∫
−Q

dk ηc(k) arctan

(
2k

C

)
− 1

π

B∫
−B

d
′ ηs(

′) arctan

(

′

C

)
. (A.20)

The s energy bandwidth Ws can be written as,

Ws = W
p
s + Wh

s where W
p
s = −εs(0) = −ε̄s (0) and Wh

s = εs(kF↑) = 2μB h . (A.21)

W
p
s and Wh

s are here the energy bandwidths of the occupied and unoccupied s Fermi sea, re-
spectively. Hence,

W
p
s = 1

π

Q∫
−Q

dk ηc(k) arctan

(
2k

C

)
− 1

π

B∫
−B

d
ηs(
) arctan

(



C

)
− 2μB h . (A.22)

For all C > 0 values the energy scale Wh
s is an increasing function of the magnetic field h with 

the following limiting behaviors,

lim
h→0

Wh
s = 0 and lim

h→hc

Wh
s = 2μBhc , (A.23)

where the 2μBhc expression is given in Eq. (25).
The phase shifts contributing to functionals in Eqs. (47) and (49) can be expressed in terms of 

the corresponding phase-shift functions of rapidity variables as,

�s,s

(±kF↓, q ′) = �̄s,s

(
±2B

C ,
2
0(q

′)
C

)
; �s,c

(±kF↓, q
) = �̄s,c

(
±2B

C ,
2k0(q)

C

)

�c,c (±2kF , q) = �̄c,c

(
±2Q

C ,
2k0(q)

C

)
; �c,s

(±2kF , q ′) = �̄c,s

(
±2Q

C ,
2
0(q

′)
C

)
.

(A.24)

The latter phase-shift functions are uniquely defined by solution of the coupled integral equations 
given below. At zero spin density the s particle phase shifts in Eq. (A.24) have the following 
simple expressions due to the spin SU(2) symmetry,

�s,c(ιkF , q) = − ι

2
√

2

�s,s(ιkF , q ′) = ι

2
√

2
for q ′ �= ιkF

= ι

2
√

2
(3 − 2

√
2) for q ′ = ιkF at m = 0 and ι = ±1 . (A.25)

The phase shifts on the right-hand side of the equations, Eq. (28), are functions of the rapidity-
related variables r = 2k/C for the c branch and r = 2
/C for the s branch. They are defined by 
the following integral equations,
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�̄s,s

(
r, r ′) = 1

π
arctan

(
r − r ′

2

)
− 1

π2

2Q/C∫
−2Q/C

dr ′′ arctan
(
r ′′ − r ′)

1 + (r − r ′′)2

+
2B/C∫

−2B/C

dr ′′ A(r, r ′′) �̄s,s(r
′′, r ′) , (A.26)

�̄s,c

(
r, r ′) = − 1

π
arctan(r − r ′) +

2B/C∫
−2B/C

dr ′′ A(r, r ′′) �̄s,c(r
′′, r ′) , (A.27)

�̄c,c

(
r, r ′) = 1

π

2B/C∫
−2B/C

dr ′′ �̄s,c(r
′′, r ′)

1 + (r − r ′′)2 , (A.28)

and

�̄c,s

(
r, r ′) = − 1

π
arctan(r − r ′) + 1

π

2B/C∫
−2B/C

dr ′′ �̄s,s(r
′′, r ′)

1 + (r − r ′′)2 . (A.29)

The kernel A(r, r ′) appearing in Eqs. (A.26) and (A.27) is that given in Eq. (A.8).
Alternative equations for the phase shifts �̄s,s

(
r, r ′) and �̄s,c

(
r, r ′) are,

�̄s,s

(
r, r ′) = 1

π
arctan

(
r − r ′

2

)
+ 1

π

2Q/C∫
−2Q/C

dr ′′ �̄c,s

(
r ′′, r ′)

1 + (r − r ′′)2

− 1

2π

2B/C∫
−2B/C

dr ′′ �̄s,s(r
′′, r ′)

1 +
(

r ′′−r
2

)2 , (A.30)

�̄s,c

(
r, r ′) = − 1

π
arctan(r − r ′) + 1

π

2Q/C∫
−2Q/C

dr ′′ �̄c,c

(
r ′′, r ′)

1 + (r − r ′′)2

− 1

2π

2B/C∫
−2B/C

dr ′′ �̄s,c(r
′′, r ′)

1 +
(

r ′′−r
2

)2 . (A.31)

The parameters in Eq. (50) are the entries of two 2 × 2 matrices, one for each j = 0, 1 value,

Z1 =
[

ξ1
c c ξ1

c s

ξ1
s c ξ1

s s

]
and Z0 = ((Z1)−1)T =

[
ξ0
c c ξ0

c s

ξ0
s c ξ0

s s

]
. (A.32)

From manipulations of the phase-shift integral equations, Eqs. (A.26)-(A.29), one finds that 
the entries of the 2 × 2 matrix Z1 are given by,

ξ1
c c = ξ1

c c

(
2Q

)
; ξ1

c s = ξ1
c s

(
2Q

)
; ξ1

s s = ξ1
s s

(
2B

)
; ξ1

s c = ξ1
s c

(
2B

)
, (A.33)
C C C C
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where the functions on the right-hand side of these equations are the solutions of the integral 
equations,

ξ1
c c(r) = 1 + 1

π

2B/C∫
−2B/C

dr ′ ξ1
s c(r

′)
1 + (r − r ′)2

ξ1
c s(r) = 1

π

2B/C∫
−2B/C

dr ′ ξ1
s s(r

′)
1 + (r − r ′)2

ξ1
s s(r) = 1 +

2B/C∫
−2B/C

dr ′ A(r, r ′) ξ1
s s(r

′)

ξ1
s c(r) = 1

π

∑
ι=±1

(ι) arctan

(
r + ι

2Q

C

)
+

2B/C∫
−2B/C

dr ′ A(r, r ′) ξ1
s c(r

′) . (A.34)

Here A(r, r ′) stands for the kernel whose expression is provided in Eq. (A.8).
For m → 0 the matrices in Eq. (A.32) are given by,

lim
m→0

Z1 =
[

ξ0 ξ0/2
0 1/

√
2

]
and lim

m→0
Z0 =

[
1/ξ0 0

−1/
√

2
√

2

]
.

The dependence of the m → 0 parameter ξ0 on the particle density n ∈]0, ∞[ and C is given by 
ξ0 = ξ0 (2Q/C). The function ξ0(r) obeys the following integral equation,

ξ0(r) = 1 +
2Q/C∫

−2Q/C

dr ′D(r − r ′) ξ0(r
′) where D(r) = 1

π

∞∫
0

dω
cos(ω r)

1 + e2ω
. (A.35)

The parameter ξ0 has limiting values ξ0 = √
2 for C → 0 and ξ0 = 1 for C → ∞.

On the one hand, for n ∈]0, ∞[ and m > 0 such matrices read in the C → 0 limit,

lim
C→0

Z1 =
[

1 0
1 1

]
and lim

m→n
Z0 =

[
1 −1
0 1

]
. (A.36)

On the other hand, if one takes the m → 0 limit before C → 0 they rather read,

lim
C→0

lim
m→0

Z1 =
[ √

2 1/
√

2
0 1/

√
2

]
and lim

C→0
lim
m→0

Z0 =
[

1/
√

2 0
−1/

√
2

√
2

]
. (A.37)

The singular behavior of the phase-shift parameters, Eq. (50), reported in Eqs. (A.36) and (A.37)
means that at m = 0 and for m → 0 they have different values in the C → 0 limit. This does not 
affect though the values of the physical quantities that depend on them.

Appendix B. Simplified expressions for m → n

In the m → n limit for which B = 0 the quantities defined in Appendix A in terms of equations 
have in general simple analytical expressions. Specifically,
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2πρ(k) = 1 and 2πσ(
) = − 1

π

∑
ι=±1

(ι) arctan

(
2
 − ι2πn

C

)
,

ηc(k) = 2k and ηs(
) = −2


π

∑
ι=±1

(ι) arctan

(
2
 − ι2πn

C

)

+ C
2π

∑
ι=±1

(ι) ln

(
1 +

(
2
 − ι2πn

C

)2
)

,

k0(q) = q and q(k) = k


0(q
′) inverse of q(
) = 1

2
ηs(
) + n

∑
ι=±1

arctan

(
2
 − ι2πn

C

)
,

ε̄ 0
c (k) = k2 and ε̄c(k) = k2 − (π n)2

ε̄ 0
s (
) = 1

4π

∑
ι=±1

(ι)
(
C2 + (2πn)2 − (2
)2

)
arctan

(
2
 − ι2πn

C

)

+ 
C
2π

∑
ι=±1

(ι) ln

(
1 +

(
2
 − ι2πn

C

)2
)

+ nC and ε̄s (
) = ε̄ 0
s (
) − ε̄ 0

s (0) ,

(B.1)

ε 0
c (q) = q2 and εc(q) = q2 − (π n)2

ε 0
s (q ′) = 1

4π

∑
ι=±1

(ι)
(
C2 + (2πn)2 − (2
0(q

′))2
)

arctan

(
2
0(q

′) − ι2πn

C

)

+ 
0(q
′)C

2π

∑
ι=±1

(ι) ln

(
1 +

(
2
0(q

′) − ι2πn

C

)2
)

+ nC and

εs(q
′) = ε 0

s (q ′) − ε 0
s (0) . (B.2)

The related limiting behaviors of the energy scale 2μB hc , Eq. (25), are,

2μBhc = 2πn2 for n � 1

= π2n2 for n � 1 , (B.3)

for finite interaction C and,

2μBhc = 2πn2 for C � 1

= π2n2 for C � 1 , (B.4)

or finite density n.
The phase shifts expressed in terms of rapidities in Eqs. (A.26)-(A.29) of Appendix A simplify 

to,

�̄s,s

(
r, r ′) = 1

π
arctan

(
r − r ′

2

)
− 1

π2

2πn
C∫

− 2πn
C

dr ′′ arctan
(
r ′′ − r ′)

1 + (r − r ′′)2 ,

�̄s,c

(
r, r ′) = − 1

arctan(r − r ′) ,

π



96 T. Čadež et al. / Nuclear Physics B 942 (2019) 45–102
�̄c,c

(
r, r ′) = 0 ,

�̄c,s

(
r, r ′) = − 1

π
arctan(r − r ′) .

Moreover, in the m → n limit the matrices in Eq. (A.32) of Appendix A read,

lim
m→n

Z1 =
[

1 0
η0 1

]
and lim

m→n
Z0 =

[
1 −η0
0 1

]
,

where,

η0 = 2

π
arctan

(
2πn

C

)
.

Appendix C. Limiting behaviors of the one-fermion branch lines spectra

In the C → 0 limit the spectrum, Eqs. (58) and (59), is given by,

ωc+(k) = −1

2
(k − kF )2 + 2(kF )2 for k ∈ [−kF ,3kF ] and γ = −1

= (k − 2kF )2 − k2
F for k ∈ [−∞,−kF ] and γ = +1

= k2 − k2
F for k ∈ [3kF ,∞] and γ = +1 . (C.1)

For C → ∞ it reads,

ωc+(k) = γ
(
(k − kF )2 − (2kF )2

)
for k ∈ [−kF ,3kF ] and γ = −1

and for k ∈ [−∞,−kF ] ; k ∈ [3kF ,∞] and γ = +1 . (C.2)

To derive the expressions of the spectrum in Eqs. (C.1) and (C.2) those of the c energy dispersion 
for C → 0 and C → ∞ in Eqs. (19) and (20) for m = 0, respectively, have been used.

In the C → 0 limit the up-spin and down-spin one-fermion c+ branch-line spectra, Eqs. (64)
and (65), respectively, read,

ωσ
c+(k) = −

(
k − (1 − γσ )

2
(kF↑ − kF↓)

)2

+ k2
F↑

for k ∈
[
−kFσ ,−kF↓ + (1 − γσ )

2
(kF↑ − kF↓)

]
and γ = −1

= −1

2
(k − kF σ̄ )2 + k2

F↑ + k2
F↓

for k ∈
[
−kF↓ + (1 − γσ )

2
(kF↑ − kF↓), kF σ̄ + 2kF↓

]
and γ = −1

= −(k − kF σ̄ − kF↓)2 + k2
F↑ for k ∈ [

kF σ̄ + 2kF↓, kF σ̄ + 2kF

]
and γ = −1

= (k − kF σ̄ + kF↓)2 − k2
F↑ for k ∈ [−∞,−kFσ ] and γ = +1

= (k − kF σ̄ − kF↓)2 − k2
F↑ for k ∈ [(2kF + kF σ̄ ),∞] and γ = +1 . (C.3)

For C → ∞ they are given by,

ωσ
c+(k) = γ

(
(k − kF σ̄ )2 − (2kF )2

)
for k ∈ [−kFσ , kF σ̄ + 2kF ] and γ = −1

and for k ∈ [−∞,−kFσ ] ; k ∈ [(2kF + kF σ̄ ),∞] and γ = +1 . (C.4)
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To derive the expressions of the spectra in Eqs. (C.3) and (C.4) those of the c and s energy 
dispersions for C → 0 and C → ∞ in Eqs. (19) and (20), respectively, have been used.

In the C → 0 limit the spectrum, Eqs. (76) and (77), is given by,

ωs(k) = −k2 + k2
F for k ∈ [0, kF ] and γ = −1

= −(k − 2kF )2 + k2
F for k ∈ [kF ,3kF ] and γ = +1 . (C.5)

To derive the expressions of the spectrum in Eq. (C.5) and ωs(k) = 0 for C → ∞ those of the 
s energy dispersion for C → 0 and C → ∞ in Eqs. (19) and (20) for m = 0, respectively, have 
been used.

In the C → 0 limit the spectrum, Eqs. (83) and (84), is given by,

ω↑
s (k) = −γ

(
(k − 2kF )2 − k2

F↓
)

for k ∈ [kF↓, (2kF + kF↓)] and γ = ±1

= γ
(
k2 − k2

F↓
)

for k ∈ [0, kF↑] and γ = ±1 , (C.6)

where the subdomains of these k intervals that correspond to one-fermion addition (γ = +1) and 
removal (γ = −1) are given in Eqs. (85) and (86). To derive the expressions of the spectrum in 
Eq. (C.6) and ωs(k) = 0 for C → ∞ those of the s energy dispersion for C → 0 and C → ∞ in 
Eqs. (19) and (20), respectively, have again been used.

Appendix D. Additional information on the spectra of the one-fermion removal boundary 
lines

The expansions of the boundary line spectra, Eqs. (91) and (94), given in this Appendix in-
volve the derivatives of the β = c, s band group velocities in Eq. (21),

aβ(q) = ∂vβ(q)

∂q
where β = c, s . (D.1)

Such quantities obey the following inequalities,

ac(q) > 0 for q ∈ [−∞,∞]
as(q

′) > 0 for q ′ ∈] − q0
s , q0

s [ ; as(±q0
s ) = 0 ;

as(q
′) < 0 for |q ′| ∈]q0

s , kF↑] when m < 0 and C > 0

as(q
′) > 0 for q ′ ∈ [−kF↑, kF↑] when

(i) m = 0 for C ∈ [0,∞] and (ii) C → 0 for m ∈ [0, n] . (D.2)

Here q0
s is defined by the equation as(q

0
s ) = 0.

For excitation momentum k in the vicinity and just above kmin the small-(k −kmin) expansion 
of the boundary line spectrum, Eq. (91), reads,

ωBL(k) = −εc(q
0
c ) + vs(kF ) (k − kmin) − as(kF ) ac(q

0
c )

2(as(kF ) + ac(q0
c ))

(k − kmin)
2

= −εc(q
0
c ) + vs(kF ) (k + q0

c − kF ) − as(kF ) ac(q
0
c )

2(as(kF ) + ac(q0
c ))

(k + q0
c − kF )2 .

Moreover, for k near and both just below and above 2kF it has the following behavior,

ωBL(k) = −εc(0) − εs(0) − as(0) ac(0)
(k − 2kF )2 ,
2(as(0) + ac(0))
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whereas for k near and just below kmax it is given by,

ωBL(k) = −εc(q
0
c ) − vs(kF ) (k − kmax) − as(kF ) ac(q

0
c )

2(as(kF ) + ac(q0
c ))

(k − kmax)
2

= −εc(q
0
c ) − vs(kF ) (k − 2kF − q0

c − kF )

− as(kF ) ac(q
0
c )

2(as(kF ) + ac(q0
c ))

(k − 2kF − q0
c − kF )2 .

Here ac(q) and as(q
′) are the derivatives of the β = c, s band group velocities, Eq. (D.1), and 

−εc(0) > 0 and −εs(0) > 0 are the energy bandwidths of the c and s band occupied Fermi seas 
defined in Eq. (A.18) and Eqs. (A.21) and (A.22), respectively, of Appendix A for m = 0.

The reference c band momentum q0
c and related momentum values kmin and kmax defined 

in Eq. (92) appearing in the above expressions have at zero spin density the following limiting 
values,

lim
C→0

q0
c = 2kF and lim

C→∞
q0
c = 0

lim
C→0

kmin = −kF and lim
C→∞

kmin = kF

lim
C→0

kmax = 5kF and lim
C→∞

kmax = 3kF . (D.3)

In the C → 0 limit the boundary line spectrum, Eq. (91), is given by,

ωBL(k) = −1

3
(k − 2kF )2 + 3 (kF )2 for k ∈ [−kF ,5kF ] ,

where the expression of the c and s energy dispersions for C → 0, Eq. (19) for m = 0, have been 
used.

For C → ∞ such a boundary line spectrum reads,

ωBL(k) = (2kF )2 for k ∈ [kF ,3kF ] ,

where the expression of the c and s energy dispersions for C → ∞, Eq. (20) for m = 0, have 
been used.

The velocity relative to the physical excitation momentum k of the one-fermion removal 
boundary line spectrum, Eq. (91), is given by,

∂ωBL(k)

∂k
= vc(q

BL
c ) = vs(q

BL
s ) .

Particular reference values of that velocity read,

∂ωBL(k)

∂k
|k=kmin

= vs(kF ) ; ∂ωBL(k)

∂k
|k=2kF

= 0 ; ∂ωBL(k)

∂k
|k=kmax = −vs(kF ) .

The following expansions of the up-spin and down-spin boundary line spectra, Eq. (94), in-
volve both the β = c, s group velocities and their derivatives aβ(q), Eq. (D.1). For excitation 
momentum k near and just above k↑

min the corresponding small-(k − k
↑
min) expansion of the 

up-spin boundary line spectrum, Eq. (94) for σ =↑, reads,

ω
↑
BL(k) = −εc(q

0
c ) + vs(kF↓) (k − k

↑
min) − as(kF↓) ac(q

0
c )

2(as(kF↓) − ac(q0
c ))

(k − k
↑
min)

2

= −εc(q
0
c ) + vs(kF↓) (k + q0

c − kF↓) − as(kF↓) ac(q
0
c )

0 (k + q0
c − kF↓)2 ,
2(as(kF↓) − ac(qc ))
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whereas for k near and just below k↑
max it is given by,

ω
↑
BL(k) = −εc(0) + εs(kF↑) − as(kF↑) ac(0)

2(as(kF↑) − ac(0))
(k − kF↑)2 .

For excitation momentum k in the vicinity and just above k↓
min the expansion of the down-spin 

boundary line spectrum, Eq. (94) for σ =↓, reads,

ω
↓
BL(k) = −εc(q

0
c ) + vs(kF↓) (k − k

↓
min) − as(kF↓) ac(q

0
c )

2(as(kF↓) + ac(q0
c ))

(k − k
↓
min)

2

= −εc(q
0
c ) + vs(kF↓) (k + q0

c − kF↑) − as(kF↓) ac(q
0
c )

2(as(kF↓) + ac(q0
c ))

(k + q0
c − kF↑)2 .

Moreover, for k near and both just below and above 2kF it has the following behavior,

ω
↓
BL(k) = −εc(0) − εs(0) − as(0) ac(0)

2(as(0) + ac(0))
(k − 2kF )2 ,

whereas for k near and just below k↓
max the down-spin boundary line spectrum expansion is given 

by,

ω
↓
BL(k) = −εc(q

0
c ) − vs(kF↓) (k − k↓

max) − as(kF↓) ac(q
0
c )

2(as(kF↓) + ac(q0
c ))

(k − k↓
max)

2

= −εc(q
0
c ) − vs(kF↓) (k − 2kF − q0

c − kF↓)

− as(kF↓) ac(q
0
c )

2(as(kF↓) + ac(q0
c ))

(k − 2kF − q0
c − kF↓)2 .

The limiting values of the σ =↑, ↓ intervals k ∈ [kσ
min, k

σ
max] read,

k
↑
min = −q0

c + kF↓ ∈ [−kF↓, kF↓]
k↑
max = kF↑ when m < 0 and C > 0

k↑
max = −qmax

c + kF↑ ∈ [−kF↓, kF↑] when

(i) m = 0 for C ∈ [0,∞] and (ii) C → 0 for m ∈ [0, n] .
k
↓
min = 2kF + kF↓ + q0

c ∈ [2kF + kF↓,2kF + 3kF↓]
k↓
max = 4kF − k

↓
min = kF↑ − q0

c ∈ [kF↑ − 2kF↓, kF↑] . (D.4)

At finite spin density that c band momentum q0
c and the related momentum values kσ

min and 
kσ
max given in Eq. (D.4) appearing in the above expressions have the following limiting values 

where σ is the projection that the interval k ∈ [kσ
min, k

σ
max] when specified and otherwise the 

limiting values refer to both σ =↑, ↓,

lim
C→0

q0
c = 2kF↓ and lim

C→∞
q0
c = 0

lim
C→0

qmax
c = 2kF and lim

C→∞
qmax
c = 0 for σ =↑ ,

lim
C→0

k
↑
min = −kF↓ and lim

C→∞
k
↑
min = kF↓

lim k↑
max = kF↑ when m < 0 and C > 0
C→0
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lim
C→0

k↑
max = −kF↓ when (i) m = 0 for C ∈ [0,∞] and (ii) C → 0 for m ∈ [0, n]

lim
C→∞

k↑
max = kF↑

lim
C→0

k
↓
min = kF↑ − 2kF↓ and lim

C→∞
k
↓
min = kF↑

lim
C→0

k↓
max = 2kF + 3kF↓ and lim

C→∞
k↓
max = 2kF + kF↓ . (D.5)

The reference c band momentum values q0
c and qmax

c appearing in Eq. (D.4) are related to 
reference s band momentum values q0

s and q1
s , the latter existing only for σ =↑. Those reference 

c and s band reference momentum values are defined by the following velocities and s band 
velocity derivative as(q

′) = ∂vβ(q ′)/∂q ′ relations where σ is projection that the interval k ∈
[kσ

min, k
σ
max] refers to,

vc(q
0
c ) = vs(kF↓) for σ =↑,↓

vc(q
0
c ) = vs(q

1
s ) and as(q

1
s ) < 0 for σ =↑ when m < 0 and C > 0

vc(q
max
c ) = vs(q

0
s ) and as(q

0
s ) = 0 for σ =↑ when m < 0 and C > 0

vc(q
max
c ) = vs(kF↑) for σ =↑ when

(i) m = 0 for C ∈ [0,∞] and (ii) C → 0 for m ∈ [0, n]
vc(q

max
c ) = vs(kF↑) for σ =↓ ,

where kF↓ < q0
s < q1

s < kF↑.
In the C → 0 limit the boundary line spectra, Eq. (94), read,

ω
↑
BL(k) = k2

F↑ − k2
F↓ at k = −kF↓

ω
↓
BL(k) = −1

3
(k − 2kF )2 + k2

F↑ + 2 (kF↓)2 for k ∈ [
2kF − 3kF↓,2kF + 3kF↓

]
. (D.6)

Note that the up-spin one-fermion removal boundary line collapses in the C → 0 limit to a single 
(k, ω)-plane point.

For C → ∞ such boundary line spectra are given by,

ω
↑
BL(k) = (2kF )2 for k ∈ [

kF↓, kF↑
]

ω
↓
BL(k) = (2kF )2 for k ∈ [

kF↑,2kF + kF↓
]

. (D.7)

To obtain the expressions of the spectra in Eqs. (D.6) and (D.7) those of the c and s energy 
dispersions for C → 0 and C → ∞ in Eqs. (19) and (20), respectively, have been used.

The velocities relative to the physical excitation momentum k of the boundary lines spectra, 
Eq. (94), read,

∂ωσ
BL(k)

∂k
= vc(q

BL
c ) = vs(q

BL
s ) .

Specific reference values of those velocities are given by,

∂ωσ
BL(k)

∂k
|k=kσ

min
= vs(kF↓) ; ∂ω

↑
BL(k)

∂k
|k=kF↑ = 0 when m < 0 and C > 0

∂ω
↓
BL(k) |k=2kF

= 0 ; ∂ω
↓
BL(k) | ↓ = −vs(kF↓) .
∂k ∂k k=kmax
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Related energy scales read,

ω
↑
BL(kF↑) = −εc(0) + εs(kF↑) = −εc(0) + 2μB h when m < 0 and C > 0

ω
↓
BL(2kF ) = −εc(0) − εs(0) ,

where −εc(0) > 0 and −εs(0) > 0 are the energy bandwidths of the c and s band occupied 
Fermi seas, respectively, and the magnetic energy 2μB h = εs(kF↑), Eq. (24), equals the en-
ergy bandwidth of the s band unoccupied Fermi sea. Such energy bandwidths are defined in 
Eqs. (A.18)-(A.23) of Appendix A.
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[23] O.I. Pâţu, A. Klümper, Phys. Rev. A 93 (2016) 033616.
[24] L.H. Kauffman, S.J. Lomonaco, Quantum Inf. Process. 17 (2018) 201.
[25] Y. Zhang, Quantum Inf. Process. 11 (2012) 585.
[26] F.A. Vind, A. Foerster, I.S. Oliveira, R.S. Sarthour, D.O. Soares-Pinto, A.M. Souza, I. Roditi, Sci. Rep. 6 (2016) 

20789.
[27] M. Colomé-Tatché, D.S. Petrov, Phys. Rev. Lett. 106 (2011) 125302.
[28] T.L. Schmidt, A. Imambekov, L.I. Glazman, Phys. Rev. B 82 (2010) 245104.
[29] A. Imambekov, T.L. Schmidt, L.I. Glazman, Rev. Mod. Phys. 84 (2012) 1253.
[30] E. Orignac, M. Tsuchiizu, Y. Suzumura, Phys. Rev. B 84 (2011) 165128.
[31] S. Tomonaga, Prog. Theor. Phys. 5 (1950) 544.
[32] J.M. Luttinger, J. Math. Phys. 4 (1963) 1154.
[33] J. Sólyom, Adv. Phys. 28 (1979) 201.
[34] J. Voit, Rep. Prog. Phys. 57 (1994) 977.
[35] B. Sutherland, Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems, World Scientific, 

Singapore, 2004.
[36] B.L. Altshuler, R.M. Konik, A.M. Tsvelik, Nucl. Phys. B 739 (2006) 311.
[37] F.H.L. Essler, R.M. Konik, J. Stat. Mech. (2009) 09018.
[38] J. Fuksa, N.A. Slavnov, J. Stat. Mech. (2017) 043106.
[39] S. Pakuliaka, E. Ragoucy, N.A. Slavnov, Nucl. Phys. B 893 (2015) 459.

http://refhub.elsevier.com/S0550-3213(19)30075-6/bib42657468655F3331s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib59616E675F3637s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib47617564696E5F3637s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib4C696562s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib4C6965622D3033s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib54616B616861736869s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib4D617274696E73s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib737065637472616C30s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib737065637472616C30s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib44696F6E79732D3837s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib4453462D6E31s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib4261746368656C6F725F3136s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib4775616E5F3133s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib5A696E6E65725F3136s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib44616F5F32303037s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib537465776172745F3038s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib436C656D656E745F3039s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib4665626272695F3132s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib506F6C696E695F3037s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib5261696E69735F3038s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib47616E67617264745F3039s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib527562656E695F3132s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib50696C6174695F3137s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib506174755F3136s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib4B617566666D616E5F3138s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib5A68616E675F3132s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib56696E645F3136s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib56696E645F3136s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib5461746368655F3131s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib5363686D6964745F3130s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib496D616D62656B6F765F3132s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib4F7269676E61635F3131s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib546F6D6F6E6167612D3530s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib4C757474696E6765722D3633s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib536F6C796F6D2D3739s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib566F6974s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib5375746865726C616E642D3034s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib5375746865726C616E642D3034s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib416C747368756C6572s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib4B6F6E696Bs1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib46756B73615F3137s1
http://refhub.elsevier.com/S0550-3213(19)30075-6/bib50616B756C69616B615F3135s1
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