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A B S T R A C T   

In the present study, seven propolis samples collected from different areas of Morocco were evaluated for various 
potential attributes. Physicochemical parameters (moisture, pH, soluble substance, insoluble substance, ash 
content, conductivity, organic matter, resin, balsams, total carbohydrates, total proteins and mineral content), 
structural characterization by FTIR, phenolic and flavonoid composition and some biological activities (anti-
oxidant, and α-glucosidase and α-amylase inhibitory activities) were determined. The analyzed physicochemical 
parameters showed the following values: moisture (3.3–5.2%), pH (4.1–5.5), soluble substance (66.1–75.4%), 
insoluble substance (23.8–33.7%), ashes (1.6–2.3%), conductivity (1.5–2.5 mS/cm), organic matter 
(97.70–98.4%), wax (19.7–51.5%), resin (46.8–75.2%), balsam (1.5–3.1%), total carbohydrates (1.5–2.0 mg 
Glceq/g), and total proteins (1.7–6.2 g/100 g). Calcium, sodium, potassium, and magnesium were the most 
predominant minerals present in propolis samples. The phytochemical composition indicated the presence of 
phenolic acids, flavonoids and stilbens compounds described as having a high antioxidant capacity and potential 
α-amylase (IC50 = 195.09–963.79 μg/mL) and α-glucosidase (IC50 = 90.99–876.24 μg/mL) inhibitory activities. 
Moreover, FTIR spectra showed that the samples are structurally different between them, validating the results of 
the physicochemical analysis. The outcome of this study provides relevant information about Moroccan propolis 
composition and quality standards.   

1. Introduction 

Natural products are inexhaustible sources of bioactive molecules, 
and nowadays they have been extensively exploited by the pharma-
ceutical industries (Cseke et al., 2016). Propolis is a lipophilic resinous 
natural material produced by honeybees from different exudates and 
plant buds mixed with wax, pollen, and its hypo-pharyngeal secretions. 
The word propolis is derived from Greek (pro = defense and polis = the 
city) which means defense of the beehive. It is considered as an internal 
immunity of the hive by ensuring its protection against many intruders 
and weather conditions (Pobiega, Kraśniewska, & Gniewosz, 2019). It is 
a popular bee product extensively used in bio-cosmetics and folk med-
icine for the prevention and self-treatment of several diseases and has 
become the objective of many scientific investigations. Different bio-
logical and pharmacological effects have been referred to the propolis 
extracts, including, antioxidant, antibacterial, antitumoral, antiviral 

activities, and anti-hyperglycemic effect (Anjum et al., 2019; Cheng, 
Zhang, & Hu, 2017). The chemical composition of propolis is extremely 
complex and varied worldwide. Actually, more than 420 compounds 
were identified in propolis samples from various geographical locations 
(Milojković Opsenica et al., 2016), such as polyphenols: particularly 
cinnamic and benzoic acids; and their derivatives, aliphatic hydrocar-
bons, amino acids, sugars, vitamin and minerals (Anjum et al., 2019). 
The quantitative and the qualitative composition of propolis depend on 
several factors including, harvest season, predominant plant source, and 
pedoclimatic conditions of areas where hives were located (Valencia 
et al., 2012). Furthermore, the physicochemical characterization and the 
identification of bioactive ingredients of propolis by validated methods 
are crucial approaches for its standardization and quality control for 
possible industrial applications (Bankova et al., 2019; Escriche & 
Juan-Borrás, 2018; Popova et al., 2004). 

In this context, and in order to understand the influence of 
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predominant local plant source and geographical conditions on the 
phytochemical composition of propolis samples and their impact on the 
functional potential of propolis extracts, the current research was 
designed. Seven propolis samples harvested from different geographical 
locations of Morocco were studied for their physicochemical composi-
tion, antioxidant, α-amylase, and α-glucosidase inhibitory activities. 

2. Materials and methods 

2.1. Chemicals 

Aluminum chloride (AlCl3), Folin-Ciocalteu reagent, 2,2′-Azino-bis 
(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2- 
Di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH), 6-hydroxy-2,5,7,8-tet-
ramethylchroman-2-carboxylic acid (Trolox), acarbose, ferrous sul-
phate (FeSO4), sodium nitrite (NaNO2), sodium sulphate (Na2SO4), 
sodium carbonate (Na2CO3), sodium hydroxide (NaOH), phenol re-
agent, Bradford reagent, 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ), nitric 
acid, glucose, Bovine serum albumin (BSA), porcine pancreatic (EC 
3.2.1.1, type VI), saccharomyces cerevisiae α-glucosidase (EC 3.2.1.20, 
type I), p-nitrophenyl-R-d-glucopyranoside (pNPG), glucose and all 
HPLC standard markers (catechin, epicatechin, vanilic acid, o-coumaric 
acid, ferulic acid, ellagic acid, naringin, hesperidin, apigenin, cinnamic 
acid, resveratrol, rosmarinic acid, rutin, chlorogenic acid, quercetin, and 
kaempferol) were obtained from Sigma-Aldrich (St. Louis, MO, USA). All 
other chemicals used were of analytical grade and water was ultra-pure. 

2.2. Propolis samples and extracts preparation 

Seven raw propolis samples were collected between the first of May 
and mid-June 2018 from modern and healthy hives installed in different 
geographical locations of Morocco (Fig. 1 and Table 1). The hives are 
free from any pesticides, mites, and pathogens. One gram of each 
propolis sample was macerated in 30 ml of ethanol (70%, v/v) under 
mechanical stirring for one week in the dark at room temperature. The 
final extracts were filtered (Whatman, nº1), and the supernatant was 
collected for in vitro tests. A yield of 44.56 ± 4.18% was obtained. 

The extractions were performed in triplicate. 

2.3. Physicochemical and elementary analysis of propolis samples 

2.3.1. Moisture, soluble solids, insoluble solids, pH, organic material and 
electrical conductivity 

The moisture, the soluble and the insoluble solids were determined 
according to the standard method AOAC,14thEd (Williams, 1984). 

For the moisture, according to the AOAC method (nº52.729), 3 g of 
propolis were placed in the oven for1h at 105 ◦C; the weight was taken 
three times after their stabilization in the desiccators. The moisture was 
calculated using the following equation: 

Moisture (%)=
(W1 − W2)

W1
× 100 (1)  

where: W1 = weight of sample; W2 = weight of the dried sample. 
For soluble and insoluble solids (AOAC method nº 945.79), 250 mL 

of ethanol was added to 3 g of propolis, and the mixture was automat-
ically stirred for 30 min. After filtration, the percentages of soluble and 

Fig. 1. Map of Morocco regions showing propolis sample location  
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insoluble solids were determined by applying the following equations: 

Solublesolids : SS(%)=
(SW − IW)

SW
× 100 (2)  

Insolublesolids : IS(%) =
IW
SW

× 100 (3)  

where SW = sample weight, IW = insoluble weight. 
The pH of the hydro-ethanolic propolis solution 10% (w/v) was 

determined using a pH apparatus. The ash content was determined ac-
cording to the protocol described by (Bogdanov, Martin, & Lullmann, 
2002). Briefly, after preliminary ashing of propolis sample at 500 ◦C for 
4 h, the ash content was measured. The residue was then weighed 3 
times. The ash (%) was determined as follow: 

Ash (%)=
mA
mP

× 100 (4)  

where mA = the net mass of the ashes, and mP = the gross mass of 
propolis. 

The amount of organic material was calculated by the following 
equation: 

Organic materical(%)= 100 − Ash  content  (%) (5) 

Electrical conductivity was measured on a hydro-ethanolic propolis 
solution, 20% (w/v). The results are expressed as milliSiemens per 
centimeter (mS/cm) (Bogdanov et al., 2002). All physicochemical tests 
were made in triplicate. 

2.3.2. Wax, balsam, and resin quantifications 
The amount of wax, balsam, and resin was determined following the 

method described by (Touzani et al., 2018). Briefly, for the wax: 120 mL 
of petroleum ether were added to 3 g of crude propolis. Then the mixture 
was put in a Soxhlet extractor for 6 h at 50 ◦C. The extract was placed in 
an evaporator flask after weight stabilization in the desiccator and 120 
ml of 70% ethanol were added and mixed until a clear solution was 
obtained. Then, the solution was allowed to cool at 0 ◦C for 1 h. After 
filtration with Whatman nº 1 filter (previously weighed), both, filter 
paper and flask were dried at 110 ◦C for 1 h and weighed after their 
stabilization in a desiccator. The residue weight represents the wax 
content. The results are presented as % w/w. 

For Balsam: After wax extraction, the obtained filtrate was concen-
trated in a rotary evaporator at 60 ◦C. After that, 50 mL of dichloro-
methane was added to the aqueous residue. The mixture was put under 
mechanical stirring; the organic phase was recovered and filtered in a 

previously weighed evaporator flask, and dried over 30 g of anhydrous 
Na2SO4. The solution was evaporated at 60 ◦C; the flask weight was 
taken 3 times after its stabilization in the desiccators. The results are 
expressed as % w/w. 

For Resin: The residual propolis obtained after the wax extraction 
was mixed with120 mL of chloroform/ethanol 1:1 (v/v) and placed in a 
Soxhlet extractor. After 6 h, the extract was transferred to an evaporator 
flask (previously weighed) and concentrated at 70 ◦C. The flask was 
weighed 3 times after drying in the oven for 1 h at 110 ◦C. The results are 
expressed as % w/w. 

2.4. Total proteins quantification (TP) 

The protein content of propolis was estimated by quantification of 
total nitrogen after sample acid digestion using a Kjeldahl digestor 
(Tecator, FOSS, Denmark), applying the nitrogen conversion factor (N 
× 6.25) (Ferreira-Santos, Nunes, et al., 2020). 

2.5. Determination of mineral elements 

Mineral elements were determined as described previously by 
(Laaroussi, Bouddine, Bakour, Ousaaid, & Lyoussi, 2020) using the 
calcination method (ICP-AES). Briefly, 5 mL of nitric acid (100 mM) was 
mixed with propolis ashes. After the total evaporation of the nitric acid, 
more 10 mL of the same acid was slowly added and the final mixture was 
made up to 25 mL with ultra-pure water. Mineral elements were 
determined using an air/acetylene flame, and the quantitative deter-
mination was carried out after calibrating the instrument using different 
concentrations of Ca, Na, K, Mg, Cu, Zn, Ni, Pb, and Cd dissolved in 0.1% 
lanthanum. The results were expressed in mg of mineral per kilogram of 
propolis (mg/Kg). All samples were analyzed in triplicate. 

2.6. ATR-fourier transform infrared spectroscopy 

Functional groups and bonding arrangement of constituents present 
in the raw propolis samples were determined by Fourier Transform 
Infrared Spectroscopy (FTIR) using an ALPHA II- Bruker spectrometer 
(Ettlingen, Germany) with a diamond-composite attenuated total 
reflectance (ATR) cell. The FTIR spectra were recorded in the range of 
4000–400 cm− 1, with 24 scan cycles per sample at a resolution of 4 cm− 1 

(Ferreira-Santos, Genisheva, et al., 2020). 

Table 1 
Geographical characteristics and predominant plant species of harvesting areas.  

Samples Locality 
name 

Latitude (N) Longitude 
(W) 

Altitude 
(m) 

Pluviometry 
(mm) 

Temperature 
(◦C) 

Surrounding plant species 

S1 Boulemane 33◦21′46.3′′ 4◦43′48.3′′ 1752 9–60 3.2–22.1 Rosmarinus officinalis L, Thymus vulgarisL, Pinus halepensis Mill, 
Globularia alypum L, Juniperus oxycedrus L, Cistus ladanifer L, 
Lavandula angustifolia Mill and Bupleurum spinosum Gouan 

S2 Sefrou 33◦49′49.89′′ 4◦50′7.14′′ 823 2.4–62.7 9.2–26.3 Quercus ilex L, Juniperus thurifera L, Pinus halepensis Mill, 
Rosmarinus officinalis L, Cistus ladanifer L, Lavandula angustifolia 
Mill, and Pistacia lentiscus L 

S3 Taounate 34◦32′12.9′′ 4◦38′23.53′′ 600 1–101 9.1–26.5 Ceratonia siliqua L, Pistacia lentiscus L, Lavandula angustifolia Mill, 
Ficus carica L, Rosmarinus officinalis L, Prunus domestica L, Quercus 
ilexL, and Pinus halepensis Mill 

S4 Sidi Kacem 34◦13′ 33.66 
′′

5◦ 42′

46.49′′

83 1–93 12.6–28.5 Eucalyptus globulus Labill, Pinus halepensis Mill, Ceratonia siliqua L, 
Juniperus thurifera L, Quercus suber L, Pistacia lentiscus L, and Thuya 
occidentalis L 

S5 Errachidia 31◦55′38.05′′ 4◦25′42.59′′ 1039 3–20 9.1–31.6 Ficus carica L, Rosmarinus officinalis L, thymus vulgaris L, and 
Juniperus thuriferaL 

S6 Settat 32◦ 59′

39.00′′

7◦ 37′ 24′′ 405 1–66 10.4–25.4 Eucalyptus globulus Labill, Quercus suber L, Cedrus atlantica (Manetti 
ex Endl), Lavandula angustifolia Mill, Ferula communis L, Cistus 
ladanifer L and Tetraclinis articulate (Vahl) Mast 

S7 Agadir 30◦ 25′

39.91′′

9◦ 35′ 53.18 
′′

31 0–52 13.9–22.6 Euphorbia resinifera berg, Argania spinosa L  
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2.7. Phytochemical constituents, antioxidant, α-amylase and 
α-glucosidase inhibitory activities of propolis extracts 

2.7.1. Total phenolic content (TPC) 
The TPC was determined by the method of Folin-Ciocalteu described 

by (Ferreira-Santos, Genisheva, Pereira, Teixeira, & Rocha, 2019). 
Briefly, 60 μL of Folin− Ciocalteu reagent and 15 μL of sodium carbonate 
solution (75 g/L) were added to 5 μL of propolis hydro-ethanolic extract. 
The concentration of the coloration produced was measured at 700 nm 
by an UV/Vis spectrophotometer (Synergy HT, BioTek Instruments, Inc., 
U.S.A.) after incubating the mixture for 5 min at 60 ◦C. Gallic acid 
(0–500 mg/L) was used as a standard to achieve the calibration curve 
(R2 = 0.996) and the results were expressed in mg gallic acid equivalent 
(GAE) per gram of propolis (mg GAE/g). 

2.7.2. Total flavonoids content (TFC) 
Total flavonoids were determined following the procedure described 

by (Ferreira-Santos, Genisheva, et al., 2020). One hundred microliters of 
ethanolic extract of propolis were mixed with sodium nitrite (5%) and 
150 μL of AlCl3 solution (10%). After 6min, 200 μL of NaOH solution 
(1%) was added and the mixture was properly mixed and allowed to 
stand in the dark for 60 min. The absorbance was measured at 510 nm. 
Quercetin (2.6–142 mg/L) was used to perform the standard curve (R2 

= 0.997) and the results were expressed in milligram of quercetin 
equivalent (QE) per gram of propolis (mg QE/g). 

2.7.3. Total carbohydrates (TC) 
TC content was determined using the phenol-sulfuric acid method 

described (Ferreira-Santos, Nunes, et al., 2020). For this, 50 μL of the 
sample was mixed with 150 μL of sulfuric acid (96–98% (v/v)). Then, 30 
μL of phenol reagent (5%) was added and the final solution was heated 
for 5min at 90 ◦C. The absorbance was measured at 490 nm by micro-
plate reader after cooling down at room temperature for 5 min. Glucose 
(10–600 mg/L) was used as a standard to achieve the calibration curve 
(R2 = 0.992). The total carbohydrates content was expressed as a 
milligram of glucose equivalents (GlcE) per g of propolis (mg GLcE/g). 

2.7.4. Soluble protein content 
The soluble protein content was analyzed using the Bradford assay 

with some modifications (Bradford, 1976). For this, a subsample of 20 
μL propolis extract was mixed with 230 μL of Bradford dye reagent. The 
microplate was placed in the dark for 5 min and the absorbance was 
measured at a wavelength of 595 nm by an UV/Vis spectrophotometer 
(Synergy HT, BioTek Instruments, Inc., U.S.A.). Bovine albumin serum 
(BSA) was used to perform the standard curve (33–1000 mg/L, R2 =

0.989) and the results were expressed as milligram of BSA equivalents 
per gram of propolis (mg BSA/g). 

2.7.5. Antioxidant activity of propolis extracts 

2.7.5.1. Radical cation decolorization (ABTS assay). The ABTS assay of 
propolis extracts was determined as follows: 200 μL of 2,2′-azino-bis(3- 
ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical 
cation solution was mixed with 10 μL of different dilutions of each 
propolis extract. The resulting solutions were incubated in the dark for 
30 min at room temperature and the intensity of produced coloration 
was measured immediately at 734 nm by UV/Vis spectrophotometer. 
Ethanol 70% was used as a control solution instead of the sample. A 
standard solution of Trolox was used as a positive control. The ABTS 
radical cation inhibition percent was determined using equation (6) 
(Ferreira-Santos et al., 2019). The IC50 results were expressed in 
(μg/mL). 

%  inhibition=
Abs  control − Abs  sample

Abs  control
× 100 (6)  

2.7.5.2. Free radical scavenging activity (DPPH assay). Two hundred and 
seventy μL of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) solution 
(150 μM, prepared in methanol with an absorbance of 0.700 ± 0.01 at 
515 nm) was added to 30 μl of different dilutions of each propolis extract 
(Ferreira-Santos et al., 2019). Then, the mixture reactions were incu-
bated in the dark during 1 h at room temperature. The absorbance was 
measured at 515 nm and the antiradical activity (% inhibition) was 
calculated using equation (6). DPPH inhibition concentration at 50% 
(IC50) is determined using six different dilutions of each sample, 
considering that the percent inhibition had to be between 20% and 80%, 
and the results were expressed in microgram of propolis extract per mL 
(μg/mL). Ethanol 70% was used as control solution instead of the 
sample, and a standard solution of 6-hydroxy-2,5,7,8-tetramethylchro-
man-2-carboxylic acid (Trolox) was used as a positive control. 

2.7.5.3. Ferric reducing antioxidant power (FRAP assay). Two hundred 
ninety μL of FRAP reagent was mixed with a 10 μL aliquot of propolis 
sample the absorbance was determined at 593 nm after the incubation of 
the reaction mixture in the dark at 37 ◦C for 15 min (Ferreira-Santos 
et al., 2019). Aqueous solution of ferrous sulphate FeSO4⋅7H2O 
(1000–100 μM) was used for standard curve preparation (R2 = 0.993). 
The FRAP values are expressed as micromoles of ferrous equivalent per g 
of propolis (μmol Fe2+/g). 

2.7.6. α-amylase and α-glucosidase inhibitory activities of propolis extracts 
α-amylase and α-glucosidase inhibition assays were determined as 

described previously by (Ferreira-Santos, Genisheva, et al., 2020). For 
α-amylase inhibition assay, 500 μL of α-amylase solution (0.5 mg/mL) 
was incubated with 500 μL of different concentrations of each propolis 
extract at 37 ◦C for 15 min. Ethanol 70% and acarbose were used as a 
negative and positive control, respectively. Afterward, 500 μL of starch 
solution (1%) was added and the mixture was incubated for 15 min at 
37 ◦C. Immediately, 1 mL of dinitrosalicylic acid color reagent was 
added to the reaction and placed 10 min in a boiling water bath. The 
final mixture was diluted 10 times and the absorbance of each dilution 
was read at 540 nm. 

Concerning α-glucosidase inhibition assay, a mixture of different 
propolis concentrations and p-nitrophenyl-R-d-glucopyranoside (pNPG, 
3 mM) was added to the α-glucosidase solution (10U/mL) then, the 
mixture was incubated for 15 min at 37 ◦C, and the reaction was stopped 
by adding Na2CO3 solution (1 M). The intensity of p-nitrophenol 
coloration produced was measured at 400 nm. 

α-amylase and α-glucosidase inhibitory activities (%) were calcu-
lated using equation (2). The propolis concentration required to inhibit 
50% (IC50) of α-amylase and α-glucosidase activity was calculated from 
a dose-response curve, and the results were expressed in (μg/mL). 

2.8. Identification and quantification of phenolic compounds by UHPLC 

Ethanolic extracts of propolis samples were analyzed using a Shi-
matzu Nexpera X2 UPLC chromatograph equipped with Diode Array 
Detector (DAD) (Shimadzu, SPD-M20A) following the method described 
by (Ferreira-Santos et al., 2019). Separation was performed on a 
reversed-phase Aquity UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 
μm particle size; from Waters) and a precolumn of the same material at 
40 ◦C. The flow rate was 0.4 mL/min. HPLC grade solvents water/formic 
acid 0.1% (A) and acetonitrile (B) were used. The elution gradient for 
solvent B was as follows: from 0.0 to 5.5 min eluent B at 5%, from 5.5 to 
17 min linearly increasing from 5 to 60%, from 17.0 to 18.5 min a lin-
early increasing from 60 to 100%; the column was equilibrated at 5% 
from 18.5 to 30.0 min. Phenolic compounds were identified by 
comparing their UV spectra and retention times with that of corre-
sponding standards. Quantification was carried out using calibration 
curves for each compound analyzed using concentrations between 250 
and 2.5 mg/L. In all cases, the coefficient of linear correlation was R2 >
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0.99. Compounds were quantified and identified at different wave-
lengths (209–370 nm). The values of individual phenolic compounds 
were expressed in milligrams per kilogram of propolis (mg/Kg). All 
analyses were made in triplicate. 

2.9. Statistical analysis 

The extraction and analyses were performed in triplicate and the 
data are presented as mean ± standard deviation (SD) values. GraphPad 
Prism software (version 6.0; GraphPad Software, Inc., San Diego, CA, U. 
S.A.) was used for statistical analyses. The analysis of variance (ANOVA) 
and the least significant difference test was used to determine statisti-
cally different values at a significance level of p < 0.05. Principal 
component analysis (PCA) was made using the R software (version 3.6.2, 
Vienna, Austria). 

3. Results and discussion 

3.1. Physicochemical analysis of propolis 

Physicochemical proprieties, essential parameters on the standardi-
zation and the evaluation of propolis quality, are summarized in 
(Table 2). The recorded moisture in our propolis samples ranged be-
tween 3.30 ± 0.17 and 5.16 ± 0.20%, which are in the range of Por-
tuguese propolis that shows values between 2.0 ± 0.0 and 13.6 ± 0.3% 
(Falcão, 2013). The results are in accordance with the standard norms 
cited by (Bankova et al., 2019) that fixed the max limit of water content 
at 8%, and that is an indicator of propolis quality. The water content is 
affected by beekeeping techniques and storage conditioning (Falcão, 
Freire, & Vilas-Boas, 2013). In fact, this wide variation of moisture 
content may be related to the climatic conditions of each harvesting 
station (see Table 1). 

The pH values are between 4.11 ± 0.17 and 5.10 ± 0.18, with the 
lowest value referred to the station of Sefrou (S2) and the highest value 
to the station of Errachidia (S5). Our results are in agreement with the 
data of (Dias, Pereira, & Estevinho, 2012) concerning propolis samples 
collected from different areas in Portugal (4.7–5.3) which confirms the 
acid character of propolis. The acidity of propolis is probably related to 
its richness on aliphatic and aromatic acids, which strongly depend on 
the plant source and geographical conditions (Silici, Ünlü, & Vardar--
Ünlü, 2007). 

Regarding soluble and insoluble substance, our values are in the 
range of 66.05 ± 0.47 to 75.39 ± 2.5% and 23.82 ± 1.72 to 33.68 ±
3.10%, respectively. Boulemane sample (S1) has the lower content of 
soluble substance and higher content in insoluble substance. Agadir 
station (S7) has the higher content in soluble substance and lower 
content in insoluble substance. This wide variability confirms the 

heterogeneity between the analyzed samples. These results go on hand 
with the finding of (Dias et al., 2012), where the soluble substance 
varied from 66.0 ± 4.1 to 71.1 ± 2.2% and the insoluble substance 
ranged from 27.0 ± 1.0 to 45.1 ± 2.0%. Ash content is a crucial 
parameter used to guarantee the propolis quality concerning fraud and 
unethical practice, by differentiating between the powder of fresh 
propolis and that of propolis mixed with its extraction residue and 
adulterated with loam (Woisky & Salatino, 1998). The ash content is 
largely depending on the mineral quantitative composition of crude 
propolis. The amounts of ash content in all examined samples were 
between 1.55 ± 0.03% and 2.29 ± 0.10%, the highest value being 
detected in propolis from Taounate (S3). The ashes in all studied samples 
were less than the maximum limit of 5% cited by (Bankova et al., 2019). 
This strong difference is largely depending on the soil composition of 
each propolis source (Regnier, Salatino, & Luiza, 2020). The organic 
matter is inversely correlated to the ash content and ranges between 
97.70 ± 0.10% in propolis from Taounate (S3) to 98.44 ± 0.03% in 
propolis from Boulemane (S1). 

Electrical conductivity is the capacity of a matrix to permit the 
passage of electrical current. It is influenced by the mineral matter and 
other conductive compounds of propolis. The sample collected from 
SidiKacem (S4) has the lowest value (1.21 ± 0.03 mS/cm), while the 
highest value of 2.53 ± 0.1 mS/cm referred to the sample collected from 
Taounate (S3). 

Regarding resin, wax, and balsam, the results showed that samples 
with high resin content had low wax content. Propolis samples from 
Boulemane (S1), SidiKacem (S4), Settat (S6), and Errachidia (S5) 
expressed the highest amount of resin in comparison with samples from 
other areas. The lower value of resin corresponds to propolis from 
Agadir (S7) and the highest value to the sample from Boulemane (S1). 
These large variations between the studied samples reaffirm the impact 
of botanical sources in the composition of bee glue. 

The low resin proportion in propolis from Agadir (S7) (46.81 ±
1.76%) may be explained by the low availability of collectible resins or 
by the difficulty of its harvest in this area (Sawaya, da Silva Cunha, & 
Marcucci, 2011). Previous reports about different Moroccan propolis 
showed a strong relationship between the amount of resin, total 
phenolic content, and antioxidant power (Touzani et al., 2018). 

Generally, the results of resin in all propolis samples go on hand with 
the common criteria and standard norms cited by (Bankova et al., 2019) 
at a maximum value of 45%. Besides bud plants, wax in the raw propolis 
comes from its addition by bees during the propolis manufacturing 
process (Krell, 1996). The proportion of bee wax in propolis depends on 
its location within the hive as well as on the availability of resin in the 
area where the hives were located. The amount of wax varied between 
19.70 ± 0.11% in propolis from Boulemane (S1) and 51.48 ± 2.40% in 
propolis from Agadir (S7). 

Table 2 
Physicochemical parameters of propolis samples.  

Samples Moisture 
(%) 

pH Conductivity 
(ms/cm) 

Soluble 
substance (%) 

Insoluble 
substance (%) 

Ash (%) Organic 
matter (%) 

Wax (%) Resin (%) Balsams 
(%) 

Protein 
(%) 

S1 5.16 ±
0.20a 

4.43 ±
0.28 abc 

2.52 ± 0.01a 72.39 ± 1.69a 26.44 ± 1.12 ab 1.55 ±
0.03 bc 

98.44 ±
0.03a 

19.70 ±
0.11g 

75.19 ±
0.11a 

3.10 ±
0.01a 

1.65 ±
0.07d 

S2 4.86 ±
0.20a 

4.11 ±
0.17 abc 

2.08 ± 0.03b 66.05 ± 0.47 
abc 

33.68 ± 3.10a 1.89 ±
0.04b 

98.10 ±
0.04 ab 

36.27 ±
0.14c 

59.37 ±
0.40c 

2.21 ±
0.12c 

3.91 ±
0.06b 

S3 4.26 ±
0.21b 

5.10 ±
0.18a 

2.53 ± 0.10a 67.54 ± 2.18 
ab 

31.38 ± 1.48a 2.29 ±
0.10a 

97.70 ±
0.10d 

39.37 ±
0.42b 

52.67 ±
3.08c 

1.85 ±
0.03d 

1.47 ±
0.16b 

S4 3.63 ± 0.15 
bc 

4.63 ±
0.15 ab 

1.21 ± 0.03e 69.51 ± 1.20 
ab 

27.28 ± 1.66 ab 1.75 ±
0.08 bc 

98.24 ±
0.08a 

24.13 ±
0.37e 

72.43 ±
1.61a 

1.48 ±
0.03e 

6.18 ±
0.03a 

S5 3.3 0 ±
0.17 bcd 

5.53 ±
0.11a 

1.62 ± 0.02c 67.69 ± 3.35 
ab 

26.79 ± 3.50 ab 1.82 ±
0.10b 

98.18 ±
0.10 ab 

24.31 ±
0.63d 

68.90 ±
1.61 ab 

2.17 ±
0.07c 

2.89 ±
0.02c 

S6 4.03 ±
0.32b 

4.66 ±
0.23 ab 

2.21 ± 0.03b 66.01 ± 1.34 
abc 

32.40 ± 1.65a 2.03 ±
0.09b 

97.97 ±
0.09 abc 

22.02 ±
0.46f 

69.40 ±
3.76 ab 

2.62 ±
0.04b 

1.93 ±
0.01d 

S7 3.56 ± 0.05 
bc 

5.06 ±
0.11 ab 

1.74 ± 0.05c 75.39 ± 2.5a 23.82 ± 1.72 ab 1.62 ±
0.0 bc 

98.38 ±
0.05a 

51.48 ±
2.40a 

46.81 ±
1.76d 

1.76 ±
0.02d 

1.74 ±
0.15d 

Values in the same column followed by the same letter are not significantly different by Tukey’s multiple range test (p < 0.05). 
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For balsams, the result showed a significant difference between the 
samples. Propolis sample from Boulemane (S1) presented the highest 
balsam content (3.10 ± 0.01%) and samples from SidiKacem (S4) had 
the lowest amount (1.48 ± 0.03%). The results obtained are similar to 
those shown by (Touzani et al., 2018) for seven propolis samples 
collected from different zones in Morocco. 

Total Protein content varied between 1.65% in (S1) and 6.18% in 
(S4) with an average value of 2.82%, which was in agreement with the 
values reported by (Shehata, Ahmad, Badr, Masry, & El-Sohaimy, 2020) 
for propolis from different geographic regions, in which the samples 
revealed a value of 2.35% for Brazilian, 2.89% for Egyptian, 2.24% for 
Omani and 2.40% for Saudi propolis. 

The presence of protein in propolis is most probably related to the 
pollen fraction added by bees in the process of bee glue production. 

3.2. Mineral elements 

The mineral content of the studied propolisis indicated in (Table 3). 
The results showed that calcium, sodium, potassium, and magnesium 
are the predominant metals in our samples with average values of 
844.15 ± 337.50, 499.01 ± 270.9, 345.30 ± 139.70, and 340.97 ±
96.25 mg/kg, respectively. The same main representative minerals were 
founded in twenty-five propolis samples harvested from different areas 
of south Spain (Serra Bonvehí & Orantes-Bermej, 2013). Zinc, copper, 
and nickel are detected in low amounts with mean values of 10.39 ±
5.99, 6.5 ± 2.12, and 0.93 ± 0.39 mg/kg, respectively. Minerals are 
involved in the regulation of many biochemical processes required for 
the maintenance of human health (Gupta & Gupta, 2014). It has been 
reported that calcium supplementation improves the maintenance of 
bones, skeletal integrity and prevents osteoporosis (Wimalawansa, 
Razzaque, & Al-Daghri, 2018). Magnesium has literally several func-
tioning roles in the human body, from a neurological standpoint; it plays 
an essential role in neuromuscular conduction and nerve transmission. It 
is also essential for the regulation of blood pressure, protein production, 
muscle contraction, and insulin metabolism (Kirkland, Sarlo, & Holton, 
2018). Potassium has been documented to improve blood pressure 
control and to regulate the normal electrical activity of the heart (Fili-
ppini, Violi, D’Amico, & Vinceti, 2017; Udensi & Tchounwou, 2017). 

Propolis is exposed to different sources of contamination brought by 
soil, plants, water, and air. In fact, during foraging, bees can transport 
toxic metals contained in the atmosphere, the honeydew, the nectar, or 
pollen of flowers into the hive (Perugini et al., 2011). Regarding heavy 
metals, lead and cadmium were not detected in all analyzed samples 
except S4 from the area of Settat which presented a low concentration of 
Cd (0.03 mg/kg), which is under the maximum limit fixed by the EU 
Legislation at (0.05 mg/kg) (Commission Regulation, 2006). Taking into 
consideration that this sample was harvested from hives located in an 
agricultural area, indeed, the presence of Cd could be associated with 
the use of fertilizers and pesticides (Zoffoli et al., 2013). 

For the minor elements, copper was not detected in propolis from 

Sefrou (S2) and Settat (S6) areas, with the lowest detected concentration 
found in the sample of Agadir (S7) (2.54 mg/kg) and the highest con-
centration was referred to Boulemane station (S1) (11.54 mg/kg). The 
quantified concentration of zinc varied from 1.89 to 25.37 mg/kg in 
Errachidia (S5) and SidiKacem (S4) samples, respectively. However, 
zinc was not detected in the sample harvested from Agadir (S7). For 
nickel, the sample from Taounate (S3) had the lowest quantity (0.13 
mg/kg) and the sample from Boulemane (S1) had the highest concen-
tration (2.10 mg/kg). The amount of Zn found in our studied samples is 
lower than that showed in 25 Brazilian propolis samples (Souza, Zaluski, 
Veiga, & Orsi, 2016). Micro-elements are known beneficial for our or-
ganism; in fact, they act in synergy with enzymes in the catalysis of 
several chemical reactions. The study of (Souza et al., 2016) shed light 
on the impact of the collection method and the harvest season on the 
minor and major mineral composition of propolis, in addition to the soil 
nature and plant buds. 

3.3. Structural characterization by ATR-FTIR spectroscopy 

FTIR peaks are attributed to stretching and bending vibrations of 
major structural groups present in the examined sample. IR spectra 
displayed in Fig. 2 showed a large difference between the sample peaks 
and their intensity, which goes on hand with the outcomes of physico-
chemical parameters, phytochemical profile and biological activities. 
The largest band observed was between 3550 and 3200 cm− 1 and is 
attributed to intermolecular hydrogen bonds, C–H stretch of a terminal 
alkyne and O–H stretch of phenolic and aliphatic molecules (3325 cm− 1) 
which is confirmed by the phenolic component profile (Table 5). A large 
peak between 2950 and 2900 cm− 1 (Fig. 2B) is related to the presence of 
C–H stretch vibration in methyl groups. This peak (2950 and 2900 
cm− 1) was detected in all examined samples, but with different in-
tensities; indeed, propolis S7 and S6 have the most intense peaks, while 
propolis S1 and S2 have less intense peaks. The peaks at approximately 
2849 cm− 1 (Fig. 2A) are associated also to C–H elongation symmetrical 
vibration of hydrocarbons (Wu, Sun, Zhao, Li, & Zhou, 2008). The band 
between 1750 and 1725 is related to aliphatic esters (Fig. 2C) (Socrates, 
2001, p. 332) and assigned also to the (C = O) stretching vibration of 
lipids and flavonoids (Ibrahim, Zakaria, Zhari Ismail, & Mohd, 2018). 
The peaks detected at 1735 cm− 1 confirm the presence of a carbonyl 
group (C = O) ester bond. This vibration could be related to monoesters 
of the bee wax fraction present in the raw propolis (Svečnjak et al., 
2019). The peaks at 1700-1600 cm− 1, more precisely between 1660 and 
1610 cm− 1 are assigned to the N–H asymmetric stretching of amino 
acids in addition to C––C and C––O stretching vibration of flavonoids 
(Ibrahim et al., 2018). Absorption at 1463 cm− 1 corresponding to the 
C–H bending vibration and aromatic stretching (Svečnjak, Marijanović, 
Okińczyc, Marek Kuś, & Jerković, 2020) appears with different in-
tensities which can explain compositional difference between the 
examined samples. The peaks between 1200 and 1100 cm− 1 (Fig. 2C) 
corresponding to the C–O asymmetric stretching ester vibration of 

Table 3 
Mineral elements content of propolis samples.  

Samples Ca Na K Mg Cu Zn Ni Pb Cd 

S1 1748.36 ± 22.45a 516.43 ± 3.47c 711.34 ± 9.85a 502.61 ± 11.45a 11.54 ± 1.24a 11.25 ± 0.58b 0.78 ± 0.04c nd nd 
S2 857.69 ± 9.11bc 19.40 ± 9.41e 327.12 ± 14.67c 256.67 ± 15.02 cd nd 3.45 ± 0.24bc 2.10 ± 0.08a nd nd 
S3 104.25 ± 13.74f 811.45 ± 14.2b 404.67 ± 8.76b 148.57 ± 14.64 cd 06.87 ± 0.67a 12.54 ± 0.97b 0.13 ± 0.01d nd nd 
S4 698.25 ± 15.62d 432.52 ± 18.07d 142.68 ± 7.85d 467.43 ± 5.97a 05.87 ± 1.14a 25.37 ± 2.34a 0.91 ± 0.01c nd nd 
S5 936.74 ± 7.14bc 967.04 ± 25.78a 123.74 ± 24.46d 389.75 ± 17.64b 05.68 ± 3.64a 1.89 ± 0.02bc 1.17 ± 0.05b nd nd 
S6 1015.09 ± 19.38b 947.60 ± 5.59a 408.87 ± 10.90b 311.92 ± 13.60c nd 7.85 ± 0.41b 0.54 ± 0.03d nd 0.03 ± 0.00 
S7 548.69 ± 9.25e 98.73 ± 11.04e 298.69 ± 5.78c 309.84 ± 22.94c 2.54 ± 0.01a nd 0.94 ± 0.01c nd nd 
Means ± SD 844.15 ± 337.50 499.01 ± 270.9 345.30 ± 139.70 340.97 ± 96.25 6.5 ± 2.12 10.39 ± 5.99 0.93 ± 0.39 – – 
Min 104.25 19.40 123.74 256.67 2.54 1.89 0.13 – – 
Max 1748.36 967.04 711.34 502.61 11.54 25.37 2.10 – 0.03 

Values of mineral elements are expressed as concentration (mg/Kg) mean ± SD of 3 experiments.Values in the same column followed by the same letter are not 
significantly different by Tukey’s multiple range test (p < 0.05). nd: not detected. 
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aliphatic acids with a maximum absorption detected at 1164 cm− 1 

(Fig. 2A). The peaks detected at719 cm− 1 are assigned to CH2 rocking of 
hydrocarbons (Svečnjak et al., 2019). Furthermore, a deformation effect 
of the OH functional group of phenols can be also detected in this region 
(Svečnjak et al., 2020). The spectral analysis (positions and intensities) 
of different propolis samples reflects the similarity between certain 
propolis varieties- (S1andS4), (S2, S3 and S5) and (S6 and S7) and a 
great difference between other samples, which are related to their spe-
cific botanical sources, pedo-climatic conditions and thus, composi-
tional differences. 

3.4. Phytochemical analysis of propolis extracts 

3.4.1. Total phenolic content 
Phenolic compounds are considered the main effective 

phytochemical components and are responsible for several biological 
activities of propolis (Cauich-Kumul & Segura Campos, 2019, pp. 
227–243). Furthermore, the solvent used and the extraction method 
influence the quantity and the selectivity of extract components 
(Rafińska et al., 2019). Phenolic compounds and other phytochemical 
constituents that have hydroxyl groups are mostly soluble in hydro-
ethanolic solution and other polar solvents (Ferreira-Santos, Zanuso, 
Genisheva, Rocha, & Teixeira, 2020). As indicated in Table 4, our results 
show that the total phenolic content of the analyzed samples ranged 
from 5.99 ± 0.86 to 117.81 ± 5.43 mg GAE/g for Agadir (S7) and 
Boulemane (S1) samples, respectively. These results are higher than 
those reported by (Miguel, Doughmi, Aazza, Antunes, & Lyoussi, 2014) 
for different Moroccan propolis samples and lower than those shown for 
propolis samples from China and United States (Xu et al., 2019). The 
amount of phenolic compounds in propolis depends on the botanical 

Fig. 2. FTIR-ATR spectrum of raw propolis samples. Spectral region from 4000 to 400 cm− 1(A), 3000–2800 cm− 1 (B) and 1800–600 cm− 1 (C).––S1; –– S2; –– S3; 
––S4; –– S5; –– S6;––S7. 

Table 4 
Phytochemical constituents, antioxidant activities, α-Amylase and α-Glucosidase inhibitory activities of propolis extracts.  

Samples Phenolics (mg 
GAE/g) 

Flavonoids (mg 
QE/g) 

Carbohydrates (mg 
GLcE/g) 

Soluble protein 
(mg BSA/g) 

DPPH IC50 

(μg/ml) 
ABTS IC50 

(μg/ml) 
FRAP (μmol 
Fe2+/g) 

α-Amylase IC50 

(μg/mL) 
α-Glucosidase IC50 

(μg/mL) 

S1 117.81 ±
5.43a 

112.45 ± 3.87a 2.01 ± 0.00a 11.45 ± 0.34d 20.12 ±
0.98d 

69.13 ±
1.81d 

1299.13 ±
36.96b 

195.09 ± 4.71f 90.99 ± 4.01f 

S2 51.41 ± 4.13 
bcd 

47.13 ± 1.73c 1.86 ± 0.01a 24.99 ± 0.49b 15.47 ±
0.34e 

73.50 ±
1.07d 

1126.96 ±
20.32c 

291.30 ± 6.71d 153.20 ± 9.41e 

S3 8.72 ± 0.06e 5.24 ± 0.48d 1.74 ± 0.07 ab 14.10 ± 0.17 bc 30.73 ±
1.37c 

120.56 ±
2.45c 

632.92 ±
5.26f 

– 582.61 ± 10.02b 

S4 64.37 ± 5.76 
bc 

59.52 ± 1.64b 1.85 ± 0.00a 58.74 ±
0.0.82a 

12.48 ±
0.77e 

39.63 ±
2.36e 

1146.40 ±
16.84c 

327.46 ±
11.91c 

219.23 ± 10.34d 

S5 77.79 ± 0.21b 43.96 ± 2.18c 1.84 ± 0.09a 25.76 ± 0.25b 26.81 ±
0.01c 

83.16 ±
0.70d 

2137.77 ±
31.76a 

248.91 ± 7.96e 457.10 ± 16.48c 

S6 55.34 ± 1.55 
bcd 

45.60 ± 1.01c 1.91 ± 0.01a 19.3 6 ± 0.17b 44.28 ±
0.89b 

194.42 ±
0.99b 

827.64 ±
13.63d 

650.82 ± 7.14b 180.46 ± 8.79e 

S7 5.99 ± 0.86e 4.03 ± 0.05d 1.49 ± 0.02 ab 14.43 ± 0.00 bc 53.76 ±
0.33a 

376.73 ±
5.76a 

738.00 ±
24.74e 

963.79 ±
14.13a 

876.24 ± 11.77a 

Values in the same column followed by the same letter are not significantly different by Tukey’s multiple range test (p < 0.05). 
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source of resin and pedo-climatic conditions of the collecting region 
(Andrade, Denadai, de Oliveira, Nunes, & Narain, 2017). 

3.4.2. Total flavonoid content 
Flavonoids are aromatic substances and powerful antioxidant com-

ponents. Our study showed that the extract from Boulemane (S1) pre-
sents the highest value of flavonoids (112.45 ± 3.87 mg QE/g), while the 
lowest concentration corresponds to the extract of Agadir (S7) (4.03 ±
0.05 mg QE/g) (Table 4). These results were within the range obtained 
in Moroccan and Polish propolis samples (El Menyiy, Bakour, El 
Ghouizi, El Guendouz, & Lyoussi, 2021; Socha, Gałkowska, Bugaj, & 
Juszczak, 2015). The high amount of flavonoids and phenolics occur in 
samples with high content in resin and low content in wax. Similar data 
were reported by (El Menyiy et al., 2021) in which a significant corre-
lation was found between resin content, flavones/flavonols, and total 
phenolic compounds of twenty Moroccan propolis samples. A new 
report about the relationship between climatic conditions, 
metabolite-profile, and antioxidant activity has proved that the amount 
of flavonoids is strongly influenced by climatic conditions of each har-
vested station, which explain these major fluctuations between our 
examined samples and other propolis samples from different countries 
(do Nascimento et al., 2019). 

3.4.3. Carbohydrate and soluble protein contents 
Concerning nutritional parameters, our samples revealed for the first 

time the presence of carbohydrates and soluble proteins in Moroccan 
propolis (Table 4). Soluble proteins varied between 11.45 mg BSAE/g in 
(S1) and 58.74 mg BSAE/g in (S4). Regarding carbohydrates content, 
the sample from Agadir (S7) had the lowest concentration (1.49 mg 
GLcE/g), whereas extract harvested from Boulemane (S1) presented the 
highest concentration (2.01 mg GLcE/g). Plant buds are considered as 
potential sources of carbohydrates in propolis (Ahangari, Naseri, & 
Vatandoost, 2018). Additionally, harvesting techniques may influence 
the carbohydrate composition of propolis due to sugar residues from 
honey (Fikri, Popova, Sulaeman, & Bankova, 2020). 

3.4.4. Antioxidant activity of propolis extracts 
In the present work, the antioxidant activity was evaluated by the 

ABTS, DPPH and FRAP tests. 
Antioxidant activity should not be concluded based on a single 

antioxidant test model (Alam, Bristi, & Rafiquzzaman, 2013; Ferreir-
a-Santos, Genisheva, Botelho, Rocha, & Teixeira, 2021; Singh & Singh, 
2008). And in practice several in vitro test procedures should be per-
formed to assess antioxidant activities with the samples of interest. 

Another aspect is that antioxidant test models vary in different respects; 
therefore, it is difficult to compare fully one method to other one. 
Moreover, it is important to perform a second screening using ex vivo 
models (e.g. cell assays for ROS determination), and in vivo studies (e.g. 
lipid peroxidation and the levels of endogenous antioxidant enzymes) 
(Ferreira-Santos et al., 2021). 

The Free radical scavenging assay DPPH assay is based on the mea-
surement of the scavenging capacity of antioxidants. DPPH assay con-
sists in the reduction of the 2,2-diphenyl-1-picryl-hydrazyl-hydrate 
(DPPH•) radical in the presence of hydrogen-donating antioxidant, and 
in the formation of the non-radical DPPH-H form at the end of the re-
action (Ferreira-Santos, Genisheva, et al., 2020). The DPPH method is a 
valid, easy, accurate, sensitive, and economic method to evaluate 
scavenging activity of antioxidants of fruits and vegetables or extracts, 
since the radical is stable and need not to be generated as in other 
scavenging assays. The results are highly reproducible and comparable 
to other scavenging methods such as ABTS (Singh & Singh, 2008). 

The ABTS radical cation decolorization assay is a spectrophotometric 
method widely used for the assessment of antioxidant activity of various 
substances(Erel, 2004). Scavenging activity of ABTS radical cation 
(ABTS•+) (ABTS assay) is based on the interaction between antioxidant 
components and ABTS radical, that, in the presence of antioxidant 
compounds, the ABTS•+nitrogen atom quenches the hydrogen atom, 
producing the solution decolorization (Ferreira-Santos, Genisheva, 
et al., 2020). 

Ferric reducing antioxidant power (FRAP assay) consists in the 
ability of extracts to reduce ferric ions (Fe3+ to Fe2+), in the form of 
ferric TPTZ at a low pH. This reduction will result in a color change 
(Ferreira-Santos et al., 2021). 

As shown in Table 4, the ABTS assay showed a significant variation 
between samples, the sample of SidiKacem area (S4) expressed the 
highest inhibition percentage of ABTS free radical (IC50 = 39.63 μg/mL). 
Propolis samples of Agadir (S7) that had the lowest phenolic content 
(5.99 ± 0.86 mg GAE/g) and flavonoids content (4.03 ± 0.05 mg QE/g) 
exhibited the lowest ABTS radical scavenging capacity, IC50 = 376.73 
μg/mL. These values were lower than those reported recently for twenty 
Moroccan propolis samples from different origins, in which the con-
centration of propolis required to inhibit 50% of ABTS was between 
0.026 and 1.529 mg/mL (El Menyiy et al., 2021). The obtained results 
were higher than that observed for Trolox (IC50 = 23.15 ± 4.0 μg/mL). 
Substantially different ABTS scavenging capacities were exhibited by 
various phenolic compounds isolated from propolis, viz caffeic acid 
(IC50 = 4.73 ± 0.02 μg/mL), galangin (IC50 = 8.73 ± 0.02 μg/mL), 
ferulic acid (IC50 = 21.62 ± 0.10 μg/mL), p-coumaric acid (IC50 = 23.46 

Table 5 
Phenolic compounds identification and quantification from propolis extracts.  

Compounds Samples 

S1 S2 S3 S4 S5 S6 S7 

Catechin 9.6 ± 1.17 nd nd nd nd nd nd 
Vanilic Acid 5.6 ± 0.90 nd nd nd nd nd nd 
p-coumaric Acid + Epicatechin 8.2 ± 0.97b 13.5 ± 0.58b 14.2 ± 0.04b 95.8 ± 2.26b 190.5 ± 42.00a 7.6 ± 0.39b 5.4 ± 0.21bc 

o-Coumaric Acid 77.5 ± 49.26b 20.4 ± 4.33b 13.3 ± 5.18bc 180.2 ± 0.54a 12.0 ± 0.62bc 58.1 ± 0.38b 4.1 ± 0.10bc 

Ferulic Acid 16.8 ± 2.70bc 10.6 ± 0.42bc 8.4 ± 0.02bc 18.8 ± 0.74b 31.0 ± 4.05a 8.3 ± 0.02bc 8.6 ± 0.15bc 

Ellagic Acid 134.8 ± 19.35a 29.2 ± 0.95b 6.5 ± 0.19b 35.4 ± 3.79b 51.3 ± 5.60b 9.8 ± 0.7b 8.1 ± 0.53b 

Naringin 68.10 ± 7.81a 26.6 ± 0.53 ab 21.5 ± 1.06 ab 51.6 ± 1.81a 36.1 ± 7.68 ab 11.1 ± 0.68abc 7.6 ± 0.89abc 

Hesperidin 36.3 ± 6.80b 15.1 ± 2.36c 7.2 ± 1.28c 57.1 ± 0.15a 67.2 ± 6.26a 8.10 ± 0.57c nd 
Apigenin 32.4 ± 6.18c 75.8 ± 7.65c 7.1 ± 0.12c 134.8 ± 1.99b 262.8 ± 40.03a 35.2 ± 2.61c 9.0 ± 0.01c 

Cinnamic Acid 34.2 ± 3.54a 1.3 ± 0.16 cd 1.6 ± 0.05 cd 11.2 ± 0.41c 20.7 ± 1.98b 3.10 ± 0.10c 0.9 ± 0.07 cd 

Resveratrol 38.7 ± 9.24a 15.2 ± 0.39b 11.6 ± 0.58b 10.0 ± 0.14b 32.1 ± 1.93a 9.9 ± 0.04b 11.5 ± 0.27b 

Rosmarinic Acid 65.6 ± 14.72a 25.1 ± 1.18b 23.5 ± 3.88b 15.1 ± 0.09b 45.8 ± 1.60a 13.0 ± 0.12b 14.7 ± 0.24b 

Rutin 8.4 ± 0.82a 14.0 ± 4.53a 10.5 ± 0.36a 160.6 ± 03.85a 36.5 ± 3.30a 15.3 ± 0.97a 3.7 ± 0.88a 

Chlorogenic Acid nd 9.4 ± 0.69 ab 8.8 ± 0.01 ab 11.2 ± 0.16a 32.0 ± 7.23a nd nd 
Quercetin 11.7 ± 0.13c 19.2 ± 0.52b 7.1 ± 0.19d 12.6 ± 0.09c 26.7 ± 0.05a 6.6 ± 0.91d 5.1 ± 0.94d 

Kaempferol 11.7 ± 0.13b 19.2 ± 0.53b 7.1 ± 0.19b 12.6 ± 0.09b 303.2 ± 21.15a 6.06 ± 0.91b 5.1 ± 0.94b 

Values of phenolic compounds are expressed as concentration (mg/Kg) mean ± SD of 3 experiments. Values in the same line followed by the same letter are not 
significantly different by Tukey’s multiple range test (p < 0.05). nd: not detected. 
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± 0.01 μg/mL) (Yang et al., 2011). These compounds were quantified in 
all analyzed samples at different concentrations, which prove their 
contribution to the antioxidant activity of propolis and explains the wide 
ABTS scavenging activities between the samples. 

Regarding free radical scavenging capacity (DPPH), the concentra-
tion of propolis required to inhibit 50% of DPPH is shown in Table 4. The 
highest capacities were obtained in sample from SidiKacem (S4) (IC50 =

12.48 μg/mL) and Sefrou (S2) (IC50 = 15.47 μg/mL) with the lowest 
activities being found in propolis samples from Agadir (S7) (IC50 =

53.76 μg/mL) and Settat (S6) (IC50 = 44.28 μg/mL). These values are 
within the range of values reported for fourteen propolis samples 
collected from different regions of Morocco, with IC50 values between 
0.025 mg/mL and 1.813 mg/ml (El-Guendouz et al., 2016) and higher 
than observed for trolox (IC50 = 10.81 ± 0.1 μg/mL). 

For the FRAP test, the reducing antioxidant activity was largely 
different between analyzed samples. Propolis from Errachidia (S5) show 
the highest value (2137.77 μmol Fe2+/g) and the lowest value was 
exhibited by sample from Taounate (S3) (632.92 μmol Fe2+/g). These 
results are higher than those obtained by (Falcão et al., 2013) for 
Croatian propolis, in which FRAP values ranging between 0.04 and 1.3 
mmol Fe2+/g. Substantially different capacities in FRAP assay oscil-
lating between 0.1 and 0.8 mmol Fe2+/g were detected in propolis 
samples from Adriatic Sea islands (Svečnjak et al., 2020). The propolis 
extracts indicate potent and large differences of antioxidant activities, 
which are possibly related to their phytochemical constituents, mainly, 
phenolic components. These results allow us to affirm the beneficial use 
of propolis matrices for food, nutraceutical, or pharmaceutical 
applications. 

3.4.5. α-Amylase and α-glucosidase inhibitory activities of propolis extracts 
α-glucosidase and α-amylase are humans carbohydrate digesting 

enzymes (Subramanian, Asmawi, & Sadikun, 2008). Their inhibition 
plays an important role in the prevention of type 2 diabetes (T2D) by the 
stabilization of postprandial blood glucose (Murai et al., 2002). 
Moroccan propolis has been the subject of numerous studies including 
the prevention and treatment of diabetes, but only very few studies have 
focused on their activity on α-glucosidase and α-amylase inhibitory as a 
therapeutic way of T2D management. In this context, hydro-alcoholic 
extracts of different Moroccan propolis samples were evaluated (see 
Table 4). The results revealed that all propolis extracts had α-amylase 
inhibitory activity except the propolis collected from SidiKacem (S4). 
The IC50 of examined samples ranged between 195.78 ± 5.1 and 963.64 
± 6.7 μg/mL, with the highest activity on the sample from Boulemane 
region (S1) and the lowest activity from Agadir (S7). These results were 
higher than Acarbose (IC50 = 35.42 ± 1.0 μg/mL) (Ferreira-Santos, 
Genisheva, et al., 2020). Regarding α-glucosidase inhibitory activity, the 
IC50 values showed that the sample from Boulemane (S1) has the lowest 
IC50 value (91.7 ± 3.6 μg/mL), while, the propolis extract from Agadir 
(S7) displayed the highest IC50 value, 870.6 ± 13.4 μg/mL(Table 4). 
These differences may be related to their distinct individual phenolic 
components. Our results were lower than that reported by(Ferreir-
a-Santos, Genisheva, et al., 2020). for acarbose (IC50 = 11,000 ± 1.0 
μg/mL) and go in hand with those of (El-Guendouz et al., 2016), who 
studied 21 Moroccan propolis samples and they showed that α-amylase 
inhibitory ranged from 18 ± 97. l μg/mL to 3632 ± 97 μg/mL and 
α-glucosidase inhibitory activity ranged from 6 ± 1.6 μg/mL to 746 ±
16 μg/mL. 

Overall, it is shown that propolis from Agadir (S7), with the lowest 
α-glucosidase andα-amylase inhibitory activity, has the highest amount 
of wax and the lowest concentration of phenolic components. On the 
other hand, the best α-glucosidase and α-amylase inhibitory activities 
were exhibited by the sample harvested from Boulemane(S1) that had 
the highest amount of resin, flavonoid, and phenolic contents. A sig-
nificant correlation was found between total phenolic content, total 
flavonoid content, and α-amylase activity (Table 6). This correlation has 
also been documented by (El-Guendouz et al., 2016) for twenty-one 
Moroccan propolis samples, which means that phenolic compounds in-
fluence largely the α-amylase activity. 

These results indicate that propolis extracts have a powerful inhibi-
tory action on these two digestive enzymes. Hence, it can be recom-
mended as an ideal alternative candidate for preventing and 
managingT2D. 

3.4.6. Individual phenolic compounds 
A total of 16 phenolic compounds were tentatively identified by 

UHPLC-DAD in the studied propolis samples. The quantification of 
phenolic components in the propolis extracts was carried out to under-
stand the phytochemical difference between all analyzed samples 
collected from different geographical locations of Morocco and their 
influence on studied biological activities. As indicated in Table 5, ellagic 
acid (134.8 ± 19.35 mg/kg) was the most abundant component quan-
tified in S1, apigenin (75.8 ± 7.65 mg/kg) in S2, o-coumaric acid in S4 
(180.2 ± 0.54 mg/kg) and in S6 (58.1 ± 0.38 mg/kg), kaempferol in S5 
(303.02 ± 21.15 mg/kg), and rosmarinic acid in S3 (23.5 ± 3.88 mg/kg) 
and S7 (14.7 ± 0.24 mg/kg). The studied samples showed a wide dif-
ference of phytochemical profile which is mainly related to specific 
botanical sources of each harvested station (Table 1). The phyto- 
chemical composition of propolis depends strongly on its botanic 
origin, harvesting period, and climatic factors (Bueno-Silva, Marsola, 
Ikegaki, Alencar, & Rosalen, 2017). In fact, qualitative and quantitative 
differences of propolis compounds reflect the interaction between the 
plants’ resin material and the growing environments (El Menyiy et al., 
2021). In turn, this rich and varied composition influences the antioxi-
dant potential of propolis and gives it an extensive range of biological 
and pharmacological properties (Pasupuleti, Sammugam, Ramesh, & 
Gan, 2017). For instance, apigenin plays particular importance in the 
management of diabetes by stimulating insulin secretion and promoting 
hepatic glycogen storage(El Barky, El-Said, Sadek, & Mohamed, 2019). 

Kaempferol, a natural flavonol presents in beehive products has been 
shown to inhibit cell proliferation and induces apoptosis in colorectal 
cancer cells through the down-regulation of PI3K-Akt signaling pathway 
and/or the suppression of thymidylate synthase (Li et al., 2019). In the 
same context, several studies have reported that ellagic acid, an 
hydroxybenzoic acid presents in many functional foods possess a wide 
spectrum of pharmacological properties including, anti-cancer effect 
(Cheshomi, Bahrami, & Matin, 2020), neuroprotective potential (Gupta 
et al., 2021), anti-microbial and anti-viral activities(Shakeri, Zirak, & 
Sahebkar, 2018). 

Catechin and vanillic acid were not detected in all examined sam-
ples, except in propolis from Boulemane (S1), which explains the in-
fluence of plant source on the phenolic composition. These results are in 
agreement with (Gargouri, Osés, Fernández-Muiño, Sancho, & Kechaou, 
2019) where catechin was not detected in propolis samples from four 
different regions of Tunisia. Chlorogenic acid was not detected in 

Table 6 
Pearson correlation coefficients between phenolics, flavonoids and antioxidant activity (ABTS, FRAP, DPPH),α-amylase, α-glucosidase inhibitory activities.   

Phenolics Flavonoids ABTS FRAP DPPH α-amylase α-glucosidase 

Phenolics 1 0.958*** − 0.627 0.641 − 0.562 − 0.842* − 0.405 
Flavonoids  1 − 0.592 0.416 − 0.581 − 0.759* − 0.555  

* Correlation is significant at the level p < 0:05. **Correlation is significant at the level p < 0:01. ***Correlation is significant at the level p < 0:001.  
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samples S1, S6, and S7; and hesperidin was not detected in the S7. The 
amount of resveratrol found in all analyzed samples was higher than that 
signaled by (Ristivojević et al., 2020) for Serbian, Turkish, Russian and 
Chinese propolis samples. Twenty-six phenolic compounds were previ-
ously detected in four Moroccan propolis samples, where pinobanksin, 
caffeic acid isoprenyl ester, isosakuranetin, caffeic acid, galangin and 
chrysin were the predominant phenolic components identified (Falcão 

et al., 2019). Thus, Moroccan propolis could have its place in the 
pharmaceutical revolution and the search for new natural drugs with 
high therapeutic efficacy. According to the results shown in Table 4, the 
sample from Boulemane (S1) that had the highest content of total 
phenolic and flavonoids exhibited the highest ABTS scavenging activity 
and best α-amylase and α-glucosidase inhibition. The lowest phenolic 
profile was found in the samples harvested from S3 and S7, accompanied 

Fig. 3. Principal component analysis (PCA). (A) biplots for physicochemical analysis of studied propolis samples, (B) biplotsfor phytochemical results of hydro-
ethanolic propolis extracts 
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by lowest flavonoid contents and poorest antioxidant activity, displayed 
the lowliest α-amylase and α-glucosidase inhibitory activities. In the 
same context, in the data published by (Touzani et al., 2018) for seven 
Moroccan propolis samples, a strong correlation was observed between 
the chemical profile, total phenolic content, flavonoids, and antioxidant 
activity, which is not the case in the present study (Table 6). 

3.4.7. Correlations and multivariate analysis 
A Principle component analysis (PCA) was applied to the previously 

obtained results and the main outcomes are presented in Fig. 3. 
Fig. 3A, represents the PCA for physicochemical analysis of the 

studied propolis samples raw materials, and thePC1 and PC2 explained 
variance of 54.4%. The first component (PC1) explained 30.3%and 
represents in its positive part insoluble substance, ash, Na, proteins, wax 
and pH. The negative part includes conductivity, moisture, balsams, K, 
resin, Ca, Cu, Mg, Zn, Ni, organic matter, and soluble substance. The 
second component (PC2) explained 24% and regrouped in its positive 
part the propolis sample from Boulemane (S1), the sample from Sefrou 
(S2), the sample from Taounate (S3), and the sample from Settat (S6). 
These samples shared characteristics regarding ash, insoluble substance, 
Na, conductivity, moisture, balsams, K, resin, Ca, while the negative part 
includes Mg, organic matter, soluble substance, Ni, proteins, pH, and 
wax. 

Fig. 3B, represent the PCA for phytochemical results of hydro- 
ethanolic propolis extracts, the two principal components (PC1 and 
PC2) explained variance of 77.9%.The first component explained 48.8% 
and represents in its negative part all investigated phytochemical anal-
ysis, whereas the second component explained 29.1%, and represents in 
its positive part, p-coumaric acid + epicatechin, apigenin, chlorogenic 
acid, ferulic acid, hesperidin, quercetin, kaempferol, proteins, rutin, and 
o-coumaric acid. While, its negative part represents: phenolics, naringin, 
carbohydrates, resveratrol, cinnamic acid, rosmarininc acid, flavonoids, 
ellagic acid, vanillic acid, and catechin. 

The sample from Sidi Kacem (S4) and the sample from Errachidia 
(S5) shared characteristics regarding proteins, rutin, chlorogenic acid, p- 
coumaric acid + epicatechin, apigenin, kaempferol, quercetin, ferulic 
acid, and hesperidin. Considering the similarities of the samples, the 
samples S1, S4, and S5 from Boulemane, Sidi Kacem, and Errachidia 
respectively, have high flavonoids and phenolic components, with the 
best-studied activities were recorded to the S1. 

The relationship between total phenolic content, total flavonoid 
content, and the biological activities of propolis (ABTS scavenging ac-
tivity, α-amylase, and α-glucosidase inhibitory activities) was performed 
using the Pearson correlation coefficient (Table 6). A significant (p <
0.001) positive correlation was observed between phenolics and flavo-
noids, whilea negative correlation was obtained between phenolics, 
flavonoids and IC50 values of ABTS and DPPH. However, this correlation 
was not significant as expected. Similar results were obtained elsewhere 
(Teixeira, Negri, Salatino, & Stringheta, 2010; H.; Zhang, YANG, & 
ZHOU, 2018). Besides phenolic compounds, the most likely suggestion 
of this no significant correlation may be related tothe presence of other 
antioxidant compounds that could be involved in the observed antiox-
idant activity such as ascorbic acid and terpenoids (Mouhoubi-Tafinine, 
Ouchemoukh, & Tamendjari, 2016; Zhang, Cai, Chen, Ji, & Sun, 2020). 
On the other hand, a significant (p < 0.01) negative correlation was 
observed between phenolics, flavonoids and α-amylase inhibitory ac-
tivity, while no significant correlation was obtained between phenolics, 
flavonoids, and α-glucosidase inhibition. It was reported that hesperidin 
and quercetin, flavonoids compounds present in all examined propolis 
expect sample (S7) exhibit potent α-amylase inhibition by establishing 
high hydrogen and hydrophobic bindings between the flavonoids and 
the enzyme (Martinez-Gonzalez, Díaz-Sánchez, De La Rosa, 
Bustos-Jaimes, & Alvarez-Parrilla, 2019). In addition, a previous study 
has suggested that the natural antioxidant compounds may affect the 
disulfide bridges located on the surface of α-amylase and induce struc-
tural alterations that may negatively affect the activity of the enzyme 

(Ademiluyi & Oboh, 2013). 

4. Conclusion 

Overall, the data presented in this report shows a wide range of 
phenolic compounds in propolis extracts, belonging to different chem-
ical groups: phenolic acids, flavanones, flavanols, flavonoids, and stil-
bens. Moreover, all examined samples revealed a great variability in 
their mineral contents, physicochemical parameters, antioxidant activ-
ity (ABTS, DPPH and FRAP), α-amylase, and α-glucosidase inhibitory 
activities, which could be related to the plant origin and pedoclimatic 
characteristics of each harvested station. All propolis samples are in line 
with the international standards of propolis quality control. This data 
provides new and useful information in the standardization procedure of 
Moroccan propolis and supports the development of research on this 
natural product. 
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