
JOSÉ ESPÍRITO SANTO

GILDA FERREIRA

A refined interpretation of
intuitionistic logic by means of
atomic polymorphism

Abstract. We study an alternative embedding of IPC into atomic system F whose translation of
proofs is based, not on instantiation overflow, but instead on the admissibility of the elimination
rules for disjunction and absurdity (where these connectives are defined according to the Russell-
Prawitz translation). As compared to the embedding based on instantiation overflow, the alternative
embedding works equally well at the levels of provability and preservation of proof identity, but
it produces shorter derivations and shorter simulations of reduction sequences. Lambda-terms are
employed in the technical development so that the algorithmic content is made explicit, both for the
alternative and the original embeddings. The investigation of preservation of proof-reduction steps
by the alternative embedding enables the analysis of generation of “administrative” redexes. These
are the key, on the one hand, to understand the difference between the two embeddings; on the other
hand, to understand whether the final word on the embedding of IPC into atomic system F has been
said.

Keywords: Atomic system F, Permutative conversion, Instantiation overflow

1. Introduction

Restrictions of Girard’s polymorphic system F to atomic or predicative universal
instantiations have been in use for a long time - see for instance [12, 11, 9, 8].
Since 2006 [1], it is known that the intuitionistic propositional calculus IPC can
be embedded into system Fat – our present name for the restriction of Girard’s
system to atomic universal instantiations. Such embedding of IPC into Fat relies
on the Russell-Prawitz’s translation of the connectives bottom and disjunction,⊥:=
∀X.X and A ∨ B := ∀X.((A ⊃ X) ∧ (B ⊃ X)) ⊃ X , and on instantiation
overflow – the possibility of deriving in Fat the instantiation of the above universal
formulas by any (not necessarily atomic) formula1. This embedding, which we call
the canonical embedding, works at the levels of provability and proof reduction,
with βη-conversions being preserved by the translation [3, 4], and commutative
conversions being mapped to βη-equalities [2].

Presented by Heinrich Wansing; Received December 31, 2017
1Initially conjunction was not considered as primitive in Fat but in recent publications [4, 5] it

has been the case. See the discussion about the advantages of taking ∧ as primitive in the atomic
polymorphic system in Section 5 below.

Studia Logica (2019) 0: 1–30 c©Springer 2019

2 J. Espı́rito Santo and G. Ferreira

Instantiation overflow may be seen as a proof transformation. For instance,
given in Fat a proof M of A ∨ B and an arbitrary formula C, there is in Fat

another proof io(M,A,B,C) of ((A ⊃ C) ∧ (B ⊃ C)) ⊃ C obtained from
M . In this paper we challenge instantiation overflow as the basis on which the
embedding of IPC into Fat rests. Specifically, we define an alternative translation
of proofs of IPC into proofs of Fat based on the proof transformations that witness
the admissibility in Fat of the elimination rules for ⊥ and A ∨ B. We develop
the alternative translation of proofs and show it produces an embedding of IPC
into Fat that works at the levels of provability and proof reduction as well as the
original, canonical embedding.

In addition, instantiation overflow is an immediate corollary of the referred
admissibility. For instance, let us see the case of A ∨ B. Given in Fat a proof M
of A ∨ B and proofs P (resp. Q) of C depending on x : A (resp. y : B), there is
in Fat a proof case(M,x.P, y.Q,C) of C obtained from M . Then instantiation
overflow is derivable, as seen in the following equation written in λ-notation:

io(M,A,B,C) = λz(A⊃C)∧(B⊃C).case(M,xA.z1x, yB.z2y, C) . (1)

Although the alternative embedding enjoys similar properties of preservation of
reduction steps, it produces a much more economical simulation, in the sense that
fewer reduction steps in the target calculus are needed to simulate each source
reduction step. This leads us to analyze the reason for this parsimony, and we find
that the concept of “administrative” redex is the key to such analysis.

Given an IPC proof M , a redex in the translation of M in Fat by an em-
bedding is administrative if it corresponds to no redex in the original proof M ; in
this sense, the redex is created by the translation itself (at “translation time”). The
terminology “administrative” goes back to [13].

An example of such an “administrative” redex is seen in the following equation:

case(M,xA.P, yB.Q,C) = io(M,A,B,C)〈λxA.P, λyB.Q〉 . (2)

Here we see how to derive elimination of disjunctionA∨B from instantiation over-
flow - such derivation is used in the canonical embedding to translate an occurrence
of disjunction elimination in a given IPC proof. The r.h.s. of this equation denotes
the elimination of the implication ((A ⊃ C) ∧ (B ⊃ C)) ⊃ C, implication which
is introduced by the inference represented by io(M,A,B,C): this is a redex cre-
ated by the translation, whether or not a redex is present in the given IPC proof,
i.e. whether or not M represents an introduction.

It will turn out that the alternative embedding is more efficient than the original
one in avoiding the creation of redexes, because it is based on (1) rather than (2),

A refined interpretation of intuitionistic logic by means of atomic polymorphism 3

with instantiation overflow derived from the admissibility of disjunction and absur-
dity elimination rules, and not the other way around. More precisely, as we will
show, the alternative translation of a given IPC proof is obtained from its canonical
translation by reducing redexes that were created by the latter translation.

Another concern of the present paper is the algorithmic content of the embed-
ding of IPC into Fat. In previous papers on atomic polymorphism (e.g. [2, 3]),
the embedding of IPC into Fat and subsequent studies involving such embedding
were done in the natural deduction calculus, with proofs displayed as formula trees.
Making use of the Curry-Howard isomorphism, in the present paper we adopt λ-
notation not only for the new embedding but also for the original canonical embed-
ding (and instantiation overflow) which are recalled in such notational framework,
allowing for more concise proof presentations and for a clearer understanding of
the algorithms involved in the processes of proof translation and transformation.

Overview. The paper is structured as follows. In the next section we recall the
systems involved in the present study: IPC and Fat. In Section 3 we present the
alternative translation of IPC into Fat We derive instantiation overflow and we
prove the soundness of the new translation. In Section 4 we give a detailed analysis
of the preservation of proof-reduction steps by the alternative translation. Section
5 recasts the canonical embedding with λ-terms, which allows a precise compari-
son with the alternative embedding (a supplementary comparison, by means of an
example in terms of natural deduction trees, is given as an appendix to the present
paper). We finish the paper in Section 6 by discussing whether the “best” transla-
tion of IPC into Fat has already been found.

2. Systems

In the first and second subsections we present respectively IPC and Fat.

2.1. System IPC

The types/formulas are given by

A,B,C ::= X | ⊥ |A ⊃ B |A ∧B |A ∨B

We define ¬A := A ⊃⊥.
The proof terms M,N,P,Q are inductively generated as follows:

M ::= x (assumption)
| λxA.M |MN (implication)
| 〈M,N〉 |M1 |M2 (conjunction)
| in1(M,A,B) | in2(N,A,B) | case(M,xA.P, yB.Q,C) (disjunction)
| abort(M,A) (absurdity)

4 J. Espı́rito Santo and G. Ferreira

Figure 1. Typing/inference rules of IPC

Γ, x : A ` x : A
Ass

Γ, x : A `M : B

Γ ` λxA.M : A ⊃ B
⊃I Γ `M : A ⊃ B Γ ` N : A

Γ `MN : B
⊃E

Γ `M : A Γ ` N : B
Γ ` 〈M,N〉 : A ∧B ∧I Γ `M : A ∧B

Γ `M1 : A
∧E1

Γ `M : A ∧B
Γ `M2 : B

∧E2

Γ `M : A
Γ ` in1(M,A,B) : A ∨B ∨I1

Γ ` N : B
Γ ` in2(N,A,B) : A ∨B ∨I2

Γ `M : A ∨B Γ, x : A ` P : C Γ, y : B ` Q : C

Γ ` case(M,xA.P, yB.Q,C) : C
∨E

Γ `M :⊥
Γ ` abort(M,A) : A

⊥E

We work modulo α-equivalence, in particular we assume the name of the bound
variables is always appropriately chosen.

As we will see, the type annotations in ini(M,A,B), in abort(M,A), and
in the bound variable of binders are needed to ensure both the correspondence
between proof terms and derivations, and uniqueness of type. The last argument in
case(M,xA.P, yB.Q,C) is a type annotation with a different purpose, to be used
in the definition of the translation studied in the next section. In any case, such type
annotations will often be omitted when possible.

If the components of the pair 〈P1, P2〉 are denoted by long expressions which
can be written uniformly on i = 1, 2, then we may write this pair as 〈Pi〉i=1,2.

The typing/inference rules are in Fig. 1. As a logical system, those rules define
a natural deduction system for intuitionistic propositional logic. Γ denotes a set of
declarations x : A such that each variable is declared at most one time in Γ.

A proof term M is typable if there are Γ and A such that Γ ` M : A is
derivable from the typing rules. The following proposition explains in what sense
does a typable proof term represent a unique typing/logical derivation, and does a
typable proof term have a unique type.

PROPOSITION 1. Given Γ andM , if Γ `M : A is derivable for someA, then such

A refined interpretation of intuitionistic logic by means of atomic polymorphism 5

Figure 2. Typing rules for elimination contexts

Γ| ⊥ ` abort([], A) : A Γ|A1 ∧A2 ` []i : Ai
(i = 1, 2)

Γ ` N : A
Γ|A ⊃ B ` []N : B

Γ, x : A ` P : C Γ, y : B ` Q : C

Γ|A ∨B ` case([], x.P, y.Q,C) : C

Γ `M : A Γ|A ` E : B

Γ ` E [M] : B

an A is unique, and the derivation of Γ `M : A is unique.

PROOF. By induction on M . For each case of M , one analyzes the correspond-
ing typing rules. The type annotation in the bound variable of binders ensure one
applies the induction hypothesis with a determined set of declarations. The type an-
notations in ini(M,A,B) and in abort(M,A) ensure uniqueness despite the fresh
formulas that show up in the conclusion of rules ∨I and ⊥E. Notice that the type
annotation that constitutes the fourth argument of case plays no role in the analysis
of rule ∨E.

For the purpose of defining some reduction rules and the translation of proof
terms, it is convenient to arrange the syntax of the system in a different way:

(Terms) M ::= V | E [M]
(Values) V ::= x |λx.M | 〈M,N〉 | in1(M,A,B) | in2(N,A,B)

(Elim. contexts) E ::= []N | []1 | []2
| case([], x.P, y.Q,C) | abort([], A)

A value V ranges over terms representing assumptions or introduction inferences.
E stands for an elimination context, which is a term representing an elimination
inference, but with a “hole” in the position of the main premiss. E [M] denotes the
term resulting from filling the hole of E with M .

In Fig. 2 one finds the typing rules for elimination contexts. In a sequent Γ|A `
E : B, the type A is the type of the hole of E and B is the type of the term obtained
by filling the hole of E with a term of type A.

The reduction rules are given in Fig. 3. The detour conversion rules make use
of ordinary substitution [N/x]M . The commutative conversion rules make use of
a specific organization of the definition of elimination contexts:

E ::= E⊃ | E∧ | E∨ | E⊥ E⊃ ::= []N E∧ ::= []1 | []2
E∨ ::= case([], x.P, y.Q) E⊥ ::= abort([])

6 J. Espı́rito Santo and G. Ferreira

Figure 3. Reduction rules

Detour conversion rules:

(β⊃) (λx.M)N → [N/x]M
(β∧) 〈M1,M2〉i → Mi (i = 1, 2)
(β∨) case(ini(M), x1.P1, x2.P2) → [M/xi]Pi (i = 1, 2)

Commutative conversion rules for disjunction (© =⊃,∧,∨,⊥):

(π©) E©[case(M,x.P, y.Q)] → case(M,x.E©[P], y.E©[Q])

Commutative conversion rules for absurdity (© = ∧,⊃,∨,⊥):

($©) E©[abort(M)]→ abort(M)

η-rules:

(η⊃) λx.Mx → M (x /∈M)
(η∧) 〈M1,M2〉 → M
(η∨) case(M,x.in1(x), y.in2(y)) → M

We let β := β⊃ ∪ β∧ ∪ β∨ and similarly for η; we let π := π⊃ ∪ π∧ ∪ π∨ ∪ π⊥
and similarly for $. Equivalent definitions of π and $ are:

(π) E [case(M,x.P, y.Q)] → case(M,x.E [P], y.E [Q])
($) E [abort(M)] → abort(M) .

Given a reduction rule R of IPC, we say R is compatible if R is compatible
with all the primitive term-formation operations of IPC, that is: M RM ′ implies
(λx.M)R (λx.M ′), (MN)R (M ′N), (NM)R (NM ′), 〈M,N〉R 〈M ′, N〉, etc.
We employ the usual notations concerning reduction relations generated byR:→R

denotes the compatible closure of R, also known as context closure of R; and→+
R,

→∗R, =R denote respectively the transitive closure, the reflexive-transitive closure,
and the reflexive-symmetric-transitive closure of →R. If R = R1 ∪ R2, then we
may omit “∪” in out notation and write→R1R2 , etc. The same notations apply to
system Fat to be introduced in the next subsection.

PROPOSITION 2. Let R be a reduction rule of IPC. If Γ ` M : A is derivable
and M →R N then Γ ` N : A is derivable.

PROOF. By induction on M →R N .

A refined interpretation of intuitionistic logic by means of atomic polymorphism 7

This is the “subject reduction” property, which states that reduction preserves
types. Once worked out in detail, the proof shows how to obtain a derivation of
Γ ` N : A from a given derivation of Γ `M : A when M →R N . The interesting
case is the base case, corresponding to the reduction rule itself: the derivation of
Γ ` N : A is obtained by the familiar procedures that eliminate a maximal formula,
or shorten a segment, etc. We may see the proof of this proposition as defining the
proof transformation induced by the reduction rule R.

2.2. System Fat

The atomic system F, denoted Fat, is the fragment of system F induced by restrict-
ing to atomic instances the elimination inference rule for ∀, and the corresponding
proof term constructor. We give a precise definition of Fat by saying what changes
relatively to IPC.

Regarding formulas, ⊥ and A ∨ B are dropped, and the new form ∀X.A is
adopted. The quantifier ∀X binds free occurrences of X , inducing the obvious
concept of free occurrence of a type variable in a type. Concerning α-equivalence,
we deal with type variables as we deal with term variables, relying on silent α-
renaming. We write X /∈ A to say that X does not occur free in A; given the silent
α-renaming in A, we may assume X does not occur bound in A either. Another
novelty is type substitution in types, which we only require in the atomic form
[Y/X]A, meaning: substitution in A of each free occurrence of X by Y .

Regarding proof terms, the constructions relative to ⊥ and A ∨B are dropped,
and the new forms ΛX.M andMX are added. The latter gives rise to E∀ ::= []X .
Types occur in proof terms, not only viaMX , but also via the type annotations in λ-
abstractions; in particular, this is how type variables may occur free in proof terms.
Accordingly, there is the operation of type substitution in proof terms, denoted
[Y/X]M , defined by recursion on M : the critical equations are [Y/X](MX) =
([Y/X]M)Y and [Y/X](λxA.M) = λx[Y/X]A.[Y/X]M . Again, we write X /∈
M to say that X does not occur free in M , which is the same to say X does not
occur at all in M , due to the assumed α-renaming of type variables.

Regarding typing rules, those relative to ⊥ and A ∨ B are dropped, and two
rules relative to ∀X.A are adopted:

Γ `M : A
Γ ` ΛX.M : ∀X.A ∀I

Γ `M : ∀X.A
Γ `MY : [Y/X]A

∀Eat

where the proviso for ∀I is: for any type in Γ, X does not occur free in that type.
The new form of elimination contexts E∀ is typed with:

Γ|∀X.A ` []Y : [Y/X]A

8 J. Espı́rito Santo and G. Ferreira

Regarding reduction rules, we drop commutative conversion rules (since they
are relative to ∨ and ⊥). What remains are the β and η-rules (but we drop those
relative to disjunction). For ∀, these are:

(β∀) (ΛX.M)Y → [Y/X]M
(η∀) ΛX.MX → M (X /∈M)

We let β := β⊃ ∪ β∧ ∪ β∀. Similarly for η.

3. Alternative translation

As an alternative to the canonical embedding of IPC into Fat [2, 3, 4], in this
section we introduce another translation (·)◦ : IPC→ Fat. The alternative trans-
lation comprises the Russell-Prawitz translation of formulas and a translation of
proof-terms (which induces a translation of derivations). In this section we show
the soundness of the translation and the derivation of instantiation overflow.

DEFINITION 1. In Fat:

1. A∨B := ∀X.((A ⊃ X) ∧ (B ⊃ X)) ⊃ X , with X /∈ A,B.

2. ⊥ := ∀X.X .

We define the Russell-Prawitz translation of formulas. Using the abbreviations
just introduced, the definition can be given in a homomorphic fashion:

X◦ = X
⊥◦ = ⊥

(A ⊃ B)◦ = A◦ ⊃ B◦
(A ∧B)◦ = A◦ ∧B◦
(A ∨B)◦ = A◦∨B◦

The translation of proof terms will rely on the following, crucial definition:

DEFINITION 2. In Fat:

1. Given M,A,B, given i ∈ {1, 2}, we define

ini(M,A,B) := ΛX.λw(A⊃X)∧(B⊃X).wiM ,

where the bound variable X is chosen so that X /∈M,A,B.

A refined interpretation of intuitionistic logic by means of atomic polymorphism 9

2. Given M,P,Q,A,B,C, we define case(M,xA.P, yB.Q,C) by recursion on
C as follows:

case(M,xA.P, yB.Q,X) = MX〈λxA.P, λyB.Q〉
case(M,xA.P, yB.Q,C1 ∧ C2) = 〈case(M,xA.P i, yB.Qi, Ci)〉i=1,2

case(M,xA.P, yB.Q,C ⊃ D) = λzC .case(M,xA.P z, yB.Qz,D)
case(M,xA.P, yB.Q,∀X.C) = ΛX.case(M,xA.PX, yB.QX,C)

where, in the third clause, the bound variable z is chosen so that z 6= x, z 6= y
and z /∈ M,P,Q; and in the fourth clause, the bound variable X is chosen so
that X /∈M,P,Q,A,B.

3. Given M,A, we define abort(M,A) by recursion on A as follows:

abort(M,X) = MX
abort(M,A1 ∧A2) = 〈abort(M,A1), abort(M,A2)〉
abort(M,B ⊃ C) = λzB.abort(M,C)
abort(M, ∀X.A) = ΛX.abort(M,A)

where, in the third clause, the bound variable z is chosen so that z /∈ M ; and
in the fourth clause, the bound variable X is chosen so that X /∈M .

Next we see how in, case and abort behave w.r.t. typing, substitution and
compatibility. The first lemma states that the inference rules for disjunction and
absurdity are admissible in Fat.

LEMMA 1. The typing rules in Fig. 4 are admissible in Fat.

PROOF. The first rule has a straightforward proof. Each of the remaining two rules
is proved by induction on C. The three proofs use admissibility of weakening in
Fat: if Γ `M : A is derivable and Γ ⊆ ∆ then ∆ `M : A is derivable.

We do not give more details, we just argue that the proviso of ∀I is satisfied
when typing each occurrence of Λ in the definitions of in, case and abort. Notice
that:

Regarding the definition of ini(M,A,B), in item 1 of Def. 2, and given Γ
satisfying the premiss of the first rule in Fig. 4, the bound variableX can be chosen
so that, additionally, X does not occur in a type in Γ.

Regarding the fourth clause of the definition of case(M,x.P, y.Q,C), in item
2 of Def. 2, and given Γ satisfying the three premisses of the second rule in Fig. 4,
the bound variable X can be chosen so that, additionally, X does not occur in a
type in Γ.

Regarding the fourth clause of the definition of abort(M,A), in item 3 of
Def. 2, and given Γ satisfying the premiss of the third rule in Fig. 4, the bound
variable X can be chosen so that, additionally, X does not occur in a type in Γ.

10 J. Espı́rito Santo and G. Ferreira

Figure 4. Admissible typing rules of Fat

Γ `M : Ai
Γ ` ini(M,A1, A2) : A1∨A2

(i = 1, 2)

Γ `M : A∨B Γ, x : A ` P : C Γ, y : B ` Q : C

Γ ` case(M,xA.P, yB.Q,C) : C

Γ `M : ⊥
Γ ` abort(M,C) : C

LEMMA 2. In Fat:

1. (a) [N/z]ini(M,A,B) = ini([N/z]M,A,B).

(b) [Y/X]ini(M,A,B) = ini([Y/X]M, [Y/X]A, [Y/X]B).

2. (a) [N/z]case(M,xA.P, yB.Q,C) =

= case([N/z]M,xA.[N/z]P, yB.[N/z]Q,C).

(b) [Y/X]case(M,xA.P, yB.Q,C) =

= case([Y/X]M,xA
′
.[Y/X]P, yB

′
.[Y/X]Q,C ′),

where A′ = [Y/X]A, B′ = [Y/X]B, and C ′ = [Y/X]C.

3. (a) [N/z]abort(M,C) = abort([N/z]M,C).

(b) [Y/X]abort(M,C) = abort([Y/X]M, [Y/X]C).

PROOF. The first two items are immediate. Each of the remaining four are proved
by induction on C.

LEMMA 3. Let R be a compatible relation in the proof-terms of Fat. Then the
compatibility rules in Fig. 5 are admissible in Fat.

PROOF. The first rule is immediate. Each of the remaining four rules is proved by
induction on C.

Due to Definition 2, the translation of proof terms can be given in a purely
homomorphic fashion:

DEFINITION 3. Given M ∈ IPC, M◦ is defined by recursion on M as in Fig. 6.

Notice that (MN)◦ = M◦N◦ and (Mi)◦ = M◦i. Also observe the use of the type
information provided by the last argument in case(M,xA.P, yB.Q,C): from C we
determine the argument C◦ required by case.

A refined interpretation of intuitionistic logic by means of atomic polymorphism 11

Figure 5. Compatibility rules of Fat

M RM ′

ini(M,A,B)R ini(M
′, A,B)

M RM ′

case(M,x.P, y.Q,C)R case(M ′, x.P, y.Q,C)

P RP ′

case(M,x.P, y.Q,C)R case(M,x.P ′, y.Q,C)

QRQ′

case(M,x.P, y.Q,C)R case(M,x.P, y.Q′, C)

M RM ′

abort(M,C)R abort(M ′, C)

Given Γ in IPC, let Γ◦ denote {x : A◦|x : A ∈ Γ}. The next result means
that the alternative embedding works well at the level of provability.

PROPOSITION 3 (Type soundness). If Γ ` M : A in IPC, then Γ◦ ` M◦ : A◦ in
Fat.

PROOF. By induction on Γ `M : A, using Lemma 1.

The constructive content of the proof of this lemma is the proof transformation
induced by the proof-term mapping.

What is the role of instantiation overflow in the alternative embedding we just
proved? The third rule in Fig. 4 is already the example of instantiation overflow rel-
ative to the definition of absurdity in Fat. The second rule gives the other example,
relative to disjunction, which has been discussed in Section 1.

COROLLARY 1 (Instantiation overflow). Let C be an arbitrary type in Fat, and let

io(M,A,B,C) := λz(A⊃C)∧(B⊃C).case(M,xA.z1x, yB.z2y, C) .

The following typing rule is admissible in Fat:

Γ `M : A∨B
Γ ` io(M,A,B,C) : ((A ⊃ C) ∧ (B ⊃ C)) ⊃ C

PROOF. Follows immediately from admissibility of the second rule in Fig. 4.

12 J. Espı́rito Santo and G. Ferreira

Figure 6. The translation of proof expressions

x◦ = x

(λxA.M)◦ = λxA
◦
.M◦

〈M,N〉◦ = 〈M◦, N◦〉
(ini(M,A,B))◦ = ini(M

◦, A◦, B◦) (i = 1, 2)
(E©[M])◦ = E◦©[M◦] (© =⊃,∧)

(case(M,xA.P, yB.Q,C))◦ = case(M◦, xA
◦
.P ◦, yB

◦
.Q◦, C◦)

(abort(M,A))◦ = abort(M◦, A◦)

([]N)◦ = []N◦

([]i)◦ = []i

So instantiation overflow, like the alternative embedding of IPC into Fat, is
a consequence of the admissibility of the elimination inference rules for absurdity
and disjunction.

4. Analysis of the alternative translation

This section analyzes how the alternative embedding maps proof-reduction steps,
leading to Theorem 1. There is a first lemma about the commutation of the embed-
ding with substitution, and a long sequence of lemmas, from Lemma 5 to Lemma
12, about the admissibility in Fat of the reduction rules relative to ∨ and ⊥, that
is, the respective β-, η-, and commutative rules. Proofs are given in considerable
detail, to allow a later analysis of administrative redexes.

LEMMA 4. [N◦/x]M◦ = ([N/x]M)◦.

PROOF. By induction on M . All cases follow by definitions and IH, except M =
ini(M0, A,B), M = case(M0, y1.P1, y2.P2, C), and M = abort(M0, A), which
also require respectively items 1(a), 2(a), and 3(a) of Lemma 2. We just show one
of these cases, namely M = case(M0, y1.P1, y2.P2, C).

LHS = [N◦/x]case(M◦0 , y1.P
◦
1 , y2.P

◦
2 , C

◦) (a)
= case([N◦/x]M◦0 , y1.[N

◦/x]P ◦1 , y2.[N
◦/x]P ◦2 , C

◦) (b)
= case(([N/x]M0)

◦, y1.([N/x]P1)
◦, y2.([N/x]P2)

◦, C◦) (c)
= RHS (d)

Justifications: (a) By definition of (·)◦. (b) By item 2.(a) of Lemma 2. (c) by IH.
(d) By definitions of (·)◦ and substitution.

A refined interpretation of intuitionistic logic by means of atomic polymorphism 13

LEMMA 5 (Admissible β∨). In Fat:

case(ini(N), x1.P1, x2.P2, C)→+
βη [N/xi]Pi .

PROOF. By induction on C. In each case, the first equality in the calculation is
justified by the definition of case. Additionally, the first equality of case C = Y
uses the definition of ini(N).

Case C = Y .

LHS = (ΛX.λz(A⊃X)∧(B⊃X).ziN)Y 〈λx1.P1, λx2.P2〉
→β∀ (λz(A⊃Y)∧(B⊃Y).ziN)〈λx1.P1, λx2.P2〉
→β⊃ 〈λx1.P1, λx2.P2〉iN
→β∧ (λxi.Pi)N
→β⊃ [N/xi]Pi

Case C = D1 ⊃ D2.

LHS = λz.case(ini(N), x1.P1z, x2.P2z,D2)
→+ λz.[N/xi](Piz) (by IH)
= λz.([N/xi]Pi)z
→η⊃ [N/xi]Pi

Case C = D1 ∧D2. Similar, uses η∧.
Case C = ∀Y.D.

LHS = ΛY.case(ini(N), x1.P1Y, x2.P2Y,D)
→+ ΛY.[N/xi](PiY) (by IH)
= ΛY.([N/xi]Pi)Y
→η∀ [N/xi]Pi

LEMMA 6 (Admissible η∨). In Fat:

case(M,xA.in1(x,A,B), yB.in2(y,A,B), A∨B)→+
βη M .

PROOF. Notice the LHS term is

ΛX.case(M,x.(ΛY.λz.z1x)X, y.(ΛY.λz.z2y)X, ((A ⊃ X) ∧ (B ⊃ X)) ⊃ X)

14 J. Espı́rito Santo and G. Ferreira

Hence:

LHS
→2
β∀

ΛX.case(M,x.λz.z1x, y.λz.z2y, ((A ⊃ X) ∧ (B ⊃ X)) ⊃ X)

= ΛX.λw.case(M,x.(λz.z1x)w, y.(λz.z2y)w,X)
→2
β⊃

ΛX.λw.case(M,x.w1x, y.w2y,X)

= ΛX.λw.MX〈λx.w1x, λy.w2y〉
→2
η⊃ ΛX.λw.MX〈w1, w2〉
→η∧ ΛX.λw.MXw
→η⊃ ΛX.MX
→η∀ M

LEMMA 7 (Admissible π©, for© =⊃,∧, ∀). In Fat:

1. (case(M,x.P, y.Q,C ⊃ D))N →β⊃ case(M,x.PN, y.QN,D).

2. case(M,x.P, y.Q,C1 ∧ C2)i→β∧ case(M,x.P i, y.Qi, Ci).

3. (case(M,xA.P, yB.Q,∀X.C))Y →β∀ case(M,xA.PY, yB.QY, [Y/X]C).

PROOF. Proof of 1.

LHS = (λz.case(M,x.Pz, y.Qz,D))N (a)
→β⊃ [N/z]case(M,x.Pz, y.Qz,D)

= case([N/z]M,x.[N/z](Pz), y.[N/z](Qz), D) (b)
= RHS (c)

Justifications: (a) By def. of case. (b) By item 2.(a) of Lemma 2. (c) Since
z /∈M,P,Q.

Proof of 2.

LHS = 〈case(M,x.Pj, y.Qj, Cj)〉j=1,2i (by def. of case)
→β∧ RHS

Proof of 3.

LHS = (ΛX.case(M,xA.PX, yB.QX,C))Y (a)
→β∀ [Y/X]case(M,xA.PX, yB.QX,C)

= case(M,xA.[Y/X](PX), yB.[Y/X](QX), [Y/X]C) (b)
= RHS (c)

Justifications: (a) By def. of case. (b) Item 2.(b) of Lemma 2 and X /∈ M,A,B.
(c) Since X /∈ P,Q.

A refined interpretation of intuitionistic logic by means of atomic polymorphism 15

LEMMA 8 (Admissible $©, for© =⊃,∧,∀). In Fat:

1. (abort(M,A ⊃ B))N →β⊃ abort(M,B).

2. abort(M,A1 ∧A2)i→β∧ abort(M,Ai), i = 1, 2.

3. (abort(M,∀X.A))Y →β∀ abort(M, [Y/X]A).

PROOF. Proof of 1.

LHS = (λzA.abort(M,B))N (by def. of abort)
→β⊃ [N/z]abort(M,B)

= abort([N/z]M,B) (by item 3. (a) of Lemma 2)
= RHS (since z /∈M)

Proof of 2.

LHS = 〈abort(M,A1), abort(M,A2)〉i (by def. of abort)
→β∧ RHS

Proof of 3.

LHS = (ΛX.abort(M,A))Y (by def. of abort)
→β∀ [Y/X]abort(M,A)

= abort([Y/X]M, [Y/X]A) (by item 3. (b) of Lemma 2)
= RHS (since X /∈M)

LEMMA 9 (Admissible $∨). In Fat:

case(abort(M,A∨B), x.P, y.Q,C)→+
β abort(M,C) .

PROOF. By induction on C.
Case C = X .

LHS = abort(M,A∨B)X〈λx.P, λy.Q〉 (a)
= (ΛY λz(A⊃Y)∧(B⊃Y).MY)X〈λx.P, λy.Q〉 (b)
→β∀ (λz(A⊃X)∧(B⊃X).MX)〈λx.P, λy.Q〉 (c)
→β⊃ MX (d)

= RHS (b)

Justifications: (a) By def. of case. (b) By def. of abort. (c) Since Y /∈ M,A,B.
(d) Since z /∈M .

16 J. Espı́rito Santo and G. Ferreira

Case C = C1 ⊃ C2.

LHS = λzC1 .case(abort(M,A∨B), x.Pz, y.Qz, C2) (a)
→+
β λzC1 .abort(M,C2) (b)

= RHS (c)

Justifications: (a) By def. of case. (b) By IH. (c) By def. of abort.
Case C = C1 ∧ C2.

LHS = 〈case(abort(M,A∨B), x.P i, y.Qi, Ci)〉i=1,2 (a)
→+
β 〈abort(M,C1), abort(M,C2)〉 (b)

= RHS (c)

Justifications: (a) By def. of case. (b) By IH twice. (c) By def. of abort.
Case C = ∀Y.D.

LHS = ΛY.case(abort(M,A∨B), x.PY, y.QY,D) (a)
→+
β ΛY.abort(M,D) (b)

= RHS (c)

Justifications: (a) By def. of case. (b) By IH. (c) By def. of abort.

LEMMA 10 (Admissible $⊥). In Fat:

abort(abort(M,⊥), A)→+
β∀

abort(M,A) .

PROOF. By induction on A.
Case A = Y .

LHS = (ΛX.MX)Y (by def. of abort)
→β∀ MY (since X /∈M)

= RHS (by def. of abort)

Case A = B ⊃ C.

LHS = λzB.abort(abort(M,⊥), C) (by def. of abort)
→+
β∀

λzB.abort(M,C) (by IH)
= RHS (by def. of abort)

CasesA = B1∧B2 andA = ∀Y.B follow similarly by IH and definition of abort.
Notice that case A = B1 ∧B2 calls the IH twice, and this explains that the lemma
is stated with→+

β∀
rather than→β∀ .

Now we see that the remaining reduction rules of IPC hold in Fat as admissi-
ble equalities.

A refined interpretation of intuitionistic logic by means of atomic polymorphism 17

LEMMA 11 (Admissible π∨-equality). In Fat:

case(case(M,xA1
1 .P1, x

A2
2 .P2, B1∨B2), y

B1
1 .Q1, y

B2
2 .Q2, C) =β

case(M,x1.case(P1, y1.Q1, y2.Q2, C), x2.case(P2, y1.Q1, y2.Q2, C), C).

PROOF. For typographic reasons, the type annotations of binders have been omit-
ted in the r.h.s. member of the equality stated by the lemma. They are the same as
in the l.h.s. member, they will remain constant throughout the proof, and they may
be omitted again. The proof is by induction on C.

Case C = Y . The LHS term is, by definition of case,

(ΛX.λw(B1⊃X)∧(B2⊃X).MX〈λx1.P1Xw, λx2.P2Xw〉)Y 〈λy1.Q1, λy2.Q2〉 ,

which, after one β∀-reduction step, becomes

(λw(B1⊃Y)∧(B2⊃Y).MY 〈λxA1
1 .P1Y w, λx

A2
2 .P2Y w〉)〈λyB1

1 .Q1, λy
B2
2 .Q2〉 ,

because X /∈ M,P1, P2, A1, A2, B1, B2. This term, in turn, yields, after one β⊃-
reduction step,

MY 〈λxA1
1 .P1Y 〈λy1.Q1, λy2.Q2〉, λxA2

2 .P2Y 〈λyB1
1 .Q1, λy

B2
2 .Q2〉〉 .

This is the RHS terms, by definition of case.
Case C = C1 ⊃ C2. The LHS term is, by definition of case,

λzC1 .case(case(M,x1.P1, x2.P2, B1∨B2), y1.Q1z, y2.Q2z, C2) ,

which, by IH, is β-equal to

λzC1 .case(M,x1.N1, x2.N2, C2) , (3)

with N1 = case(P1, y1.Q1z, y2.Q2z, C2), N2 = case(P2, y1.Q1z, y2.Q2z, C2).
On the other hand, the RHS term is, by definition of case,

λzC1 .case(M,x1.N
′
1, x2.N

′
2, C2) ,

with N ′1 = (case(P1, y1.Q1, y2.Q2, C))z, N ′2 = (case(P2, y1.Q1, y2.Q2, C))z.
The RHS term, after two β⊃-reduction steps (in the “wrong” direction), yields the
term (3). These β⊃-reduction steps are justified by item 1 of Lemma 7.

Case C = C1 ∧ C2. The LHS terms is, by definition of case,

〈case(case(M,x1.P1, x2.P2, B1∨B2), y1.Q1i, y2.Q2i, Ci)〉i=1,2 ,

18 J. Espı́rito Santo and G. Ferreira

which, by application of IH twice, is β-equal to

〈case(M,x1.N1, x2.N2, Ci)〉i=1,2 , (4)

withN1 = case(P1, y1.Q1i, y2.Q2i, Ci) andN2 = case(P2, y1.Q1i, y2.Q2i, Ci).
On the other hand, the RHS term is, by definition of case,

〈case(M,x1.N
′
1, x2.N

′
2, Ci)〉i=1,2 ,

with N ′1 = case(P1, y1.Q1, y2.Q2, C)i and N ′2 = case(P2, y1.Q1, y2.Q2, C)i.
The RHS term, after four β∧-reduction steps (in the “wrong” direction), yields the
term (4). These β∧-reduction steps are justified by item 2 of Lemma 7.

Case C = ∀Y.D. The LHS term is, by definition of case,

ΛY.case(case(M,x1.P1, x2.P2, B1∨B2), y1.Q1Y, y2.Q2Y,D)

which, by application of IH, is β-equal to

ΛY.case(M,x1.N1, x2.N2, D) , (5)

with N1 = case(P1, y1.Q1Y, y2.Q2Y,D), N2 = case(P2, y1.Q1Y, y2.Q2Y,D).
On the other hand, the RHS term is, by definition of case,

ΛY.case(M,x1.N
′
1, x2.N

′
2, D) ,

with N ′1 = (case(P1, y1.Q1, y2.Q2, C))Y , N2 = (case(P2, y1.Q1, y2.Q2, C))Y .
The RHS term, after two β∀-reduction steps (in the “wrong” direction), yields the
term (5). These β∀-reduction steps are justified by item 3 of Lemma 7.

LEMMA 12 (Admissible π⊥-equality). In Fat:

abort(case(M,xA.P, yB.Q,⊥), C) =β

case(M,xA.abort(P,C), yB.abort(Q,C), C) .

PROOF. By induction on C. The proof has the same pattern as that of the previous
lemma. The inductive cases generate β-reduction steps in the “wrong” direction,
justified by Lemma 8. The type annotations in bound variables will be omitted after
the base case.

Case C = Y .

LHS = case(M,xA.P, yB.Q,⊥)Y (a)
= (ΛX.MX〈λxA.PX, λyB.QX〉)Y (b)
→β∀ MY 〈λxA.PY, λyB.QY 〉 (c)

= MY 〈λxA.abort(P, Y), λyB.abort(Q,Y)〉 (a)
= RHS (b)

A refined interpretation of intuitionistic logic by means of atomic polymorphism 19

Justifications: (a) By def. of abort. (b) By def. of case. (c) Since X /∈
M,P,Q,A,B.

Case C = C1 ⊃ C2. The LHS term is, by definition of abort,

λzC1 .abort(case(M,x.P, y.Q,⊥), C2) ,

which, by IH, is β-equal to

λzC1 .case(M,x.abort(P,C2), y.abort(Q,C2), C2) . (6)

On the other hand, the RHS term is, by definition of case,

λzC1 .case(M,x.abort(P,C1 ⊃ C2)z, y.abort(Q,C1 ⊃ C2)z, C2) ,

which β⊃-reduces (in the “wrong direction”) to (6). The reduction is justified by
item 1 of Lemma 8.

Case C = C1 ∧ C2. The LHS term, is, by definition of abort,

〈abort(case(M,x.P, y.Q,⊥), Ci)〉i=1,2 ,

which, by IH applied twice, is β-equal to

〈case(M,x.abort(P,Ci), y.abort(Q,Ci), Ci)〉i=1,2 . (7)

On the other hand, the RHS term is, by definition of case,

〈case(M,x.abort(P,C1 ∧ C2)i, y.abort(Q,C1 ∧ C2)i, Ci)〉i=1,2 ,

which β∧-reduces (in the “wrong direction”) to (7). The reduction is justified by
item 2 of Lemma 8.

Case C = ∀Y.D. The LHS term is, by definition of abort,

ΛY.abort(case(M,x.P, y.Q,⊥), D) ,

which, by IH, is β-equal to

ΛY.case(M,x.abort(P,D), y.abort(Q,D), D) . (8)

On the other hand, the RHS term is, by definition of case,

ΛY.case(M,x.(abort(P,∀Y.D))Y, y.(abort(Q,∀Y.D))Y,D) ,

which β∀-reduces (in the “wrong direction”) to (8). The reduction is justified by
item 3 of Lemma 8.

20 J. Espı́rito Santo and G. Ferreira

We are ready to give the full picture of how (·)◦ maps reduction steps.

THEOREM 1. Let R be a reduction rule of IPC given in Fig. 3.

• Case R ∈ {β⊃, β∧}: if M →R N in IPC, then M◦ →β N
◦ in Fat.

• Case R ∈ {η⊃, η∧}: if M →R N in IPC, then M◦ →η N
◦ in Fat.

• Case R ∈ {β∨, η∨}: if M →R N in IPC, then M◦ →+
βη N

◦ in Fat.

• Case R ∈ {π⊃, π∧, $⊃, $∧}: if M →R N in IPC, then M◦ →β N
◦ in Fat.

• Case R ∈ {$∨, $⊥}: if M →R N in IPC, then M◦ →+
β N

◦ in Fat.

• Case R ∈ {π∨, π⊥}: if M →R N in IPC, then M◦ =β N
◦ in Fat.

PROOF. By induction on M → N . Let us check the base cases.
Case R ∈ {β∧, η∧, η⊃}. Trivially one has M◦ →R N

◦.
Case R = β⊃: Again M◦ →R N

◦, using Lemma 4.
Case R = β∨: By Lemmas 4 and 5.
Case R = η∨: By Lemma 6.
Case R = π©,© =⊃,∧: By Lemma 7.
Case R = $©,© =⊃,∧: By Lemma 8.
Case R = $©,© = ∨,⊥: By Lemmas 9 and 10.
Case R = π©,© = ∨,⊥: By Lemmas 11 and 12.
Inductive cases are routine since the relations→β ,→η,→+

β ,→+
βη, and =β are

compatible relations (hence enjoy the compatibility rules in Fig. 5).

Comments on Theorem 1. Given a reduction step M → N in IPC, we
give an analysis of the reduction steps in Fat between M◦ and N◦, profiting from
the detailed proofs given before, and trying to “explain” why Theorem 1 fails to
preserve the direction of reduction in some cases. The interesting reduction rules
are those relative to disjunction or absurdity, that is, β∨, η∨, and the commutative
rules π© and $©. We have to go back to Def. 2, and make four observations.

First observation. The term ini(M,A,B), as seen in its definition (item 1
of Def. 2), is expecting some data: an atomic type X and a pair of type (A ⊃
X) ∧ (B ⊃ X). This data is provided in the base case of the definition of
case(M,x.P, y.Q,C), that is, the case C = X: the atomic type X and the pair
〈λx.P, λy.Q〉 are ready to be “passed” to M . Sometimes, the data request meets
the data provision: we see this happening in the first reduction steps either of the
base case of the proof of Lemma 5, or the proof of Lemma 6.

Second observation. The definition of case(M,x.P, y.Q,C) generates a tree
of recursive calls homomorphic to the syntactic tree of type C, whose leaves corre-
spond to the occurrences of atomic types in C. In each such leaf, relative to atomic
type X , say, one finds MX〈λx.P ′, λy.Q′〉, where P ′ and Q′ are respectively P

A refined interpretation of intuitionistic logic by means of atomic polymorphism 21

and Q applied to the same sequence of formal parameters and projection symbols,
leading from type C to type X; and that sequence is dictated by the sequence of
abstractions and pairings corresponding to the path in the tree from the root to such
a leave. This has the flavor of η-expansion, and indeed one sees two situations
where one has to recover from such “η-expansion” by doing η-reduction: in the
non-atomic cases of the proof of Lemma 5, and in the proof of Lemma 6.

Third observation. The term case(M,x.P, y.Q,C) (resp. abort(M,A)) is
used to translate an elimination inference in IPC; but, when C (resp. A) is not
atomic, the term does not represent an elimination inference in Fat, as it begins
with an abstraction or is a pair. This is useful most of the time: that is how com-
mutative reductions in IPC are turned into β-reductions in Fat - recall the proofs
of Lemmas 7, 8, 9, and 10. Even in the proofs of Lemmas 11 and 12 we see that
the LHS term starts doing β-reduction in the “correct” direction. However, there is
a risk in such a translation of an elimination by an introduction - as we see in the
next observation.

Fourth observation. In the second, third and fourth clauses of the definition of
case(M,x.P, y.Q,C), the expressions Pi, Pz and PX are redexes if P is a pair
or abstraction (and similarly for Q). This happens (1) when P is the translation of
an introduction inference in IPC - see for instance the LHS term in the proof of
Lemma 6; (2) when P or Q are the translation of some inference in IPC eliminat-
ing disjunction or absurdity, that is, P or Q are some case or abort - see the RHS
terms of the non-atomic cases of the proofs of Lemmas 11 and 12: in such cases a
redex is seen in case(M,x.P, y.Q,C) that corresponds to no redex in the source
IPC-proof. These are administrative redexes, a concept already discussed in the
introduction of this paper. As it happens, the reduction of administrative redexes is
often needed, as seen both in the proof of Lemma 6, and in the non-atomic cases
of the proofs of Lemmas 11 and 12 - and the reduction of the latter is the only
reduction that goes in the “wrong” direction in the entire proof of Theorem 1.

Summarizing, if R is a reduction rule of IPC relative to disjunction or ab-
surdity, a reduction step M →R N gives rise to the following diagram, where
double-headed arrows denote 0, 1 or more reduction steps:

M - M◦
admin

-- •

N

R

?
- N◦

admin
-- •

βη

??

22 J. Espı́rito Santo and G. Ferreira

5. The canonical translation

In this section, we compare the alternative embedding of IPC into Fat we pro-
posed in Section 3 with the original, canonical embedding. This requires to present
the latter in λ-notation, which is in itself interesting, as it works out the algorithmic
content of the canonical embedding. (In the appendix to this paper we compare,
using natural deduction derivations, the alternative and canonical translations of a
certain IPC proof.)

The canonical embedding is by now described in several publications but al-
ways in natural deduction style. See for instance [3, 2] or [5, 4]. In the former
references conjunction is interpreted in Fat by the Russell-Prawitz’s translation of
formulas while in the latter references conjunction is a primitive symbol of Fat.
Atomic F was developed with the purpose of avoiding the “bad” connectives of the
natural deduction calculus (see the eloquent exposition about the defects of some
natural deduction rules in [7] Chapter 10). Being ∧ a “good” connective there is
no obstacle in considering it as primitive in Fat. On the contrary, recent studies in
the canonical translation [5, 4] show that the implementation of the η-conversions
into atomic F or the validity of the Rasiowa-Harrop disjunction property in Fat

require conjunction to be primitive in the system. To help the comparison with the
alternative translation of the previous sections which considers ∧ as primitive in
Fat we take the canonical translation with primitive conjunction in the target sys-
tem. Also, for the sake of comparability, in the canonical embedding we consider
the translation of A ∨ B in the form ∀X.((A ⊃ X) ∧ (B ⊃ X)) ⊃ X instead of
∀X.(A ⊃ X) ⊃ ((B ⊃ X) ⊃ X) (see [5], Final Comment (2)).

The canonical translation of formulas is exactly the one presented in the be-
ginning of Section 3 – Russell-Prawitz’s translation. The canonical translation of
proofs relies crucially on the phenomenon of instantiation overflow: (i) given in
Fat a proof M of ⊥ and an arbitrary formula C, there is a proof in Fat of C ob-
tained fromM , which is represented by the previously defined term abort(M,C);
(ii) given in Fat a proof M of A∨B and an arbitrary formula C, there is a proof
in Fat of ((A ⊃ C) ∧ (B ⊃ C)) ⊃ C obtained from M , which is represented by
cio(M,A,B,C), defined as follows:

DEFINITION 4 (Canonical instantiation overflow). In Fat: Given M,A,B,C, we
define cio(M,A,B,C) by recursion on C as follows:

cio(M,A,B,X) = MX
cio(M,A,B,C1 ∧ C2) = λz.〈cio(M,A,B,Ci)〈λxA.z1xi, λyB.z2yi〉〉i=1,2

cio(M,A,B,C1 ⊃ C2) = λz.λuC1 .cio(M,A,B,C2)〈λxA.z1xu, λyB.z2yu〉
cio(M,A,B,∀X.C1) = λz.ΛX.cio(M,A,B,C1)〈λxA.z1xX, λyB.z2yX〉

A refined interpretation of intuitionistic logic by means of atomic polymorphism 23

Figure 7. Admissible typing rule in Fat

Γ `M : A∨B
Γ ` cio(M,A,B,C) : ((A ⊃ C) ∧ (B ⊃ C)) ⊃ C

where, in the second, third and fourth clauses, the bound variable z is chosen
so that z /∈ M ; in the fourth clause, the bound variable X is chosen so that
X /∈ M,A,B; and, in the second, third, and fourth clauses, the type of the bound
variable z is respectively (A ⊃ (C1 ∧ C2)) ∧ (B ⊃ (C1 ∧ C2)), (A ⊃ C1 ⊃
C2) ∧ (B ⊃ C1 ⊃ C2), and (A ⊃ ∀X.C1) ∧ (B ⊃ ∀X.C1).

LEMMA 13. The typing rule in Fig. 7 is admissible in Fat.

PROOF. By induction on C. As in the proof of Lemma 1, we rely on admissibility
of weakening in Fat. We just argue that the proviso of ∀I is satisfied when typing
the occurrence of Λ in the fourth clause of the definition of cio(M,A,B,C). No-
tice that, given Γ satisfying the premiss of the rule in Fig. 7, not onlyX /∈M,A,B,
but also we may assume X does not occur in a type in Γ. Therefore, X does not
occur in a type in Γ, z : (A ⊃ ∀X.C1) ∧ (B ⊃ ∀X.C1).

The constructive contents of the proof of this lemma is the proof transforma-
tion that underlies instantiation overflow as captured in [5, 4]. Def. 4 gives the
algorithmic content of such proof transformation.

DEFINITION 5 (Canonical translation). GivenM ∈ IPC, the canonical translation
ofM , writtenM?, is defined by recursion onM exactly asM◦, except for one case,
which now reads:

(case(M,xA.P, yB.Q,C))? = cio(M?, A?, B?, C?)〈λxA?
.P ?, λyB

?
.Q?〉

LEMMA 14. In Fat:

cio(M,A,B,C)〈λxA.P, λyB.Q〉 →∗β case(M,xA.P, yB.Q,C)

PROOF. Fixing M , A and B we prove, by induction on C, that for all terms P and
Q we have cio(M,A,B,C)〈λxA.P, λyB.Q〉 →+

β case(M,xA.P, yB.Q,C).
Case C = X .

LHS = (MX)〈λxA.P, λyB.Q〉 (by def. of cio)
= RHS (by def. of case)

Case C = C1 ⊃ C2.

24 J. Espı́rito Santo and G. Ferreira

LHS
= (λz.λuC1 .cio(M,A,B,C2)〈λwA.z1wu, λrB.z2ru〉)〈λxA.P, λyB.Q〉
→+
β λuC1 .cio(M,A,B,C2)〈λwA.(λxA.P)wu, λrB.(λyB.Q)ru〉)
→+
β λuC1 .cio(M,A,B,C2)〈λxA.Pu, λyB.Qu〉
→∗β λuC1 .case(M,xA.Pu, yB.Qu,C2)

= RHS

Justifications: The first equality is by definition of cio, the last β-reduction is by
IH, and the last equality is by definition of case.

Case C = C1 ∧ C2.

LHS
= (λz.〈cio(M,A,B,Ci)〈λwA.z1wi, λrB.z2ri〉〉i=1,2)〈λxA.P, λyB.Q〉
→+
β 〈cio(M,A,B,Ci)〈λwA.(λxA.P)wi, λrB.(λyB.Q)ri〉〉i=1,2

→+
β 〈cio(M,A,B,Ci)〈λxA.P i, λyB.Qi〉〉i=1,2

→∗β 〈case(M,xA.P i, yB.Qi, Ci)〉i=1,2

= RHS

Justifications: The first equality is by definition of cio, the last β-reduction is by
IH twice, and the last equality is by definition of case.

Case C = ∀XC1.

LHS
= (λz.ΛX.cio(M,A,B,C1)〈λwA.z1wX,λrB.z2rX〉)〈λxA.P, λyB.Q〉
→+
β ΛX.cio(M,A,B,C1)〈λwA.(λxA.P)wX,λrB.(λyB.Q)rX〉)
→+
β ΛX.cio(M,A,B,C1)〈λxA.PX, λyB.QX〉
→∗β ΛX.case(M,xA.PX, yB.QX,C1)

= RHS

Justifications: The first eqiality is by definition of cio, the last β-reduction is by
IH, and the last equality is by definition of case.

THEOREM 2 (Canonical vs. alternative translations). For all M ∈ IPC, M? →∗β
M◦.

PROOF. The proof is by induction on M . Since (·)? and (·)◦ coincide except for
the elimination of disjunction, we just need to prove that

(case(N, xA.P, yB.Q,C))? →∗β (case(N, xA.P, yB.Q,C))◦

A refined interpretation of intuitionistic logic by means of atomic polymorphism 25

given the induction hypotheses N? →∗β N◦, P ? →∗β P ◦ and Q? →∗β Q◦.
We have

LHS = cio(N?, A?, B?, C?)〈λxA?
.P ?, λyB

?
.Q?〉 (by def. of (·)?)

→∗β case(N?, xA
?
.P ?, yB

?
.Q?, C?) (by Lemma 14)

→∗β case(N◦, xA
◦
.P ◦, yB

◦
.Q◦, C◦) (by IH + Lemma 3)

= RHS (by def. of (·)◦)

Comments on Theorem 2. We argue that the reduction M? →∗β M◦ stated in
Theorem 2 is administrative, in the following sense: it starts by the reduction of an
administrative redex in M?, continues with the immediate reduction of the redexes
created by this initial reduction step, and continues, if it continues at all, by pick-
ing another administrative redex, that is the “descendant” of some redex already
present in the initial term, and repeating this process. Incidentally we observe that,
if M? →∗β M◦, then the size of M? is bigger than the size of M◦.

We make a preliminary remark. If C is not atomic, cio(M,A,B,C) is an ab-
straction. This has two consequences. On the one hand, the second (resp. third,
fourth) equation in Def. 4 creates a redex, if some Ci (resp. C2, C1) is not atomic.
Let us refer to such a redex as a redex created at cio(M,A,B,C). On the other
hand, the definition of (·)? creates several redexes whenever it translates an occur-
rence of case(M,x.P, y.Q,C) with C non-atomic: not only the redexes created at
cio(M?, A?, B?, C?) (and possibly at subtypes of C?), but also the term displayed
in Def. 5. All these redexes are administrative.

Let us define

CASE(M,xA.P, yB.Q,C) := cio(M,A,B,C)〈λxA.P, λyB.Q〉 .

This definition recalls (2) in the introduction of the present paper; and reduces the
difference between the canonical and the alternative embeddings to the difference
between translating case with case or CASE. Additionally, Lemma 14 can be stated
as CASE(M,xA.P, yB.Q,C)→∗β case(M,xA.P, yB.Q,C).

Recall the equations defining case in Def. 2. They should be contrasted with
the following reductions, seen to hold simply by inspecting the proof of Lemma
14:

CASE(M,x.P, y.Q,C ⊃ D) →∗β λzC .CASE(M,x.Pz, y.Qz,D)

CASE(M,x.P, y.Q,C1 ∧ C2) →∗β 〈CASE(M,x.P i, y.Qi, Ci)〉i=1,2

CASE(M,xA.P, yB.Q,∀X.C) →∗β ΛX.CASE(M,x.PX, y.QX,C)

(9)

26 J. Espı́rito Santo and G. Ferreira

We could have taken (9) as axioms generating the reduction relation stated by
Lemma 14; therefore, the same if true of the reduction relation stated by Theo-
rem 2, because the latter is generated by a single call to Lemma 14, in the inductive
case relative toM = case(N, xA.P, yB.Q,C) displayed in the proof of Theorem 2.
Reduction M? →∗β M◦ is shown to be administrative by an analysis of reductions
(9).

We detail the analysis of the first reduction in (9), the one relative to C ⊃
D. Let LHS and RHS be respectively the terms CASE(M,x.P, y.Q,C ⊃ D)
and λzC .CASE(M,x.Pz, y.Qz,D). It is evident that the size of LHS is bigger
than the size of RHS. Based on the preliminary remark above and its immediate
consequences, and on the inspection of the pertinent inductive case in the proof of
Lemma 14, we make three additional observations. (1) LHS is a redex and the
reduction LHS →∗β RHS consists in an initial step reducing this redex, followed
by the immediate reduction of the redexes created by this initial step. (2) LHS
contains the term cio(M,A,B,C ⊃ D). (3) If D is not atomic, then: (i) LHS
contains a redex created at cio(M,A,B,C ⊃ D); (ii) CASE(M,x.Pz, y.Qz,D)
is a redex contained in RHS; (iii) the reduction LHS →∗β RHS transforms the
redex created at cio(M,A,B,C ⊃ D) into the redex CASE(M,x.Pz, y.Qz,D),
hence the latter is a “descendant” of the former.

We will omit the similar observations about the second and third reductions in
(9), relative to C1 ∧ C2 and ∀X.C.

We end this discussion by completing the diagram at the end of Section 4,
induced by a reduction step M →R N in IPC, with R a reduction rule relative to
disjunction or absurdity.

M - M? admin
-- M◦

admin
-- •

N

R

?
- N? admin

-- N◦
admin

-- •

βη

??

This diagram illustrates how the administrative reduction steps are an obsta-
cle to the goal of achieving a strict simulation (every reduction step of the source
calculus mapped to a non-empty reduction sequence in the target calculus): the
administrative steps from N? or N◦ go in the wrong direction. The alternative
embedding is closer to that goal, but it still falls short.

A refined interpretation of intuitionistic logic by means of atomic polymorphism 27

6. Final remarks

In this paper we proposed an alternative embedding of IPC into atomic system
F, based on the admissibility of disjunction and absurdity elimination rules, rather
than instantiation overflow, and proved that the alternative embedding works as
well as the original one at the levels of provability and preservation of proof re-
duction. In fact, the alternative embedding preserves βη-conversions and maps
commutative conversions to β-equalities, exactly as the original embedding; but
the alternative embedding is more economical, as it produces Fat proofs of smaller
size and Fat simulations of smaller length. In this sense, we may speak of a “re-
fined” embedding. Given the existence of an alternative embedding, one cannot
view the existence of an embedding of IPC into atomic system F as necessarily
based on the phenomenon of instantiation overflow.

We have shown that the existence of an embedding of IPC into atomic system
F (and the phenomenon of instantiation overflow) follows from a property of Fat,
namely the admissibility of the elimination inference rules for absurdity and dis-
junction. One may ask whether such property of Fat is really the key ingredient
of the embedding by proposing a different architecture: first one would transform
a given IPC derivation into another one where the elimination inferences for ab-
surdity and disjunction would only have atomic consequences, and only then one
would apply the Russell-Prawitz translation. However, such architecture does not
seem to work because, in IPC, in the conclusion of an elimination of a disjunc-
tion one may have another disjunction, while Fat avoids this situation because
disjunction is not a primitive connective of the system. Indeed, triggered by this
observation, we may give a fresh motivation to the embedding of IPC into Fat as a
way of circumventing the referred impossibility in IPC of restricting eliminations
of disjunction to atomic consequences.

Given that we propose in this paper an embedding of IPC into atomic system
F alternative to the previously known, “canonical” embedding, one immediately
questions whether there is a “truly canonical” translation of IPC proofs into Fat

proofs - as stable as Russell-Prawitz translation at the level of formulas. Our results
go far enough to sketch what an answer to this question might be. The key technical
tool is that of an “administrative” redex, a redex created by the translation itself.
We have proved that the translation of a given IPC proof by the alternative embed-
ding is obtained from the translation of the same proof by the original embedding
through the reduction of administrative redexes which the original translation cre-
ated (this already explains why the alternative embedding is more economical, and
in what sense the alternative embedding is an optimization of the original one).
In addition, the alternative embedding also creates administrative redexes. This
explains why the alternative embedding falls short of delivering preservation of

28 J. Espı́rito Santo and G. Ferreira

reduction steps in all cases; but, more important, this suggest how the alternative
embedding could be further optimized. In fact, the main suggestion we offer is that
the “truly canonical” embedding will be the embedding free from administrative
redexes.

So the final question is: is there such a fully optimized, “truly canonical” em-
bedding, which: (i) can be defined by recursion on the syntax of the given IPC
proof; (ii) by virtue of being free from administrative redexes, delivers preservation
of reduction steps in all cases? We do not have an answer. But, having developed
the original and the alternative embeddings with λ-terms, we can now recognize
the problem as a problem of program optimization, and conjecture that it can be
solved by techniques like reduction “on the fly” (at compile time) that have been
successfully employed since long in the study of other program transformations
[13].

In the past [2], it was tentatively suggested that Fat is an alternative represen-
tation of IPC derivations free from the problems caused by commutative conver-
sions. One referee remarked that a test for such a representation is to offer relief to
the difficult problem [6, 10] of equipping IPC with a normalizing and confluent
rewrite relation comprising βη-reduction and commutative conversions, the latter
in forms more general than those considered by Prawitz [14, 15], but required by
categorical proof theory [16]. In this particular direction, the present paper only
explains why commutative conversions, already in the form considered by Prawitz
(which is the form adopted here), constitute an obstacle for such a representation.
The achievement of a “truly canonical” embedding, as described in the preceding
paragraph, would be a step forward in that direction.

A. Appendix

Since most of the previous work in Fat was written in the natural deduction calcu-
lus, for curiosity, we illustrate the difference between the canonical and the alter-
native translation in tree-style derivation, showing how a concrete proof in IPC is
translated into Fat via both the above embeddings.

Let D be the following derivation of (¬Z) ∨W ` Z ⊃W in IPC:

(¬Z) ∨W

[Z ⊃ ⊥]v [Z]u
⊃ E⊥ ⊥E

W ⊃ Iu
Z ⊃W

[W]v
⊃ I

Z ⊃W
∨Ev

Z ⊃W

Via the canonical translation, we obtain the following derivation D? in Fat:

A refined interpretation of intuitionistic logic by means of atomic polymorphism 29

∀X.(((Z ⊃ ∀Y.Y) ⊃ X) ∧ (W ⊃ X)) ⊃ X
i.o.

(((Z ⊃ ∀Y.Y) ⊃ (Z ⊃W)) ∧ (W ⊃ (Z ⊃W))) ⊃ (Z ⊃W) Q
Z ⊃W

where the double line of instantiation overflow hides the following portion of de-
rivation

∀X.(((Z ⊃ ∀Y.Y) ⊃ X) ∧ (W ⊃ X)) ⊃ X
(((Z ⊃ ∀Y.Y) ⊃W) ∧ (W ⊃W)) ⊃W

P1 P2

((Z ⊃ ∀Y.Y) ⊃W) ∧ (W ⊃W)

W
Z ⊃W

(((Z ⊃ ∀Y.Y) ⊃ (Z ⊃W)) ∧ (W ⊃ (Z ⊃W))) ⊃ (Z ⊃W)

where P1 and P2 are respectively the derivations

[((Z ⊃ ∀Y.Y) ⊃ (Z ⊃W)) ∧ (W ⊃ (Z ⊃W))]

(Z ⊃ ∀Y.Y) ⊃ (Z ⊃W) [Z ⊃ ∀Y.Y]

Z ⊃W [Z]

W

(Z ⊃ ∀Y.Y) ⊃W

and

[((Z ⊃ ∀Y.Y) ⊃ (Z ⊃W)) ∧ (W ⊃ (Z ⊃W))]

W ⊃ (Z ⊃W) [W]

Z ⊃W [Z]

W
W ⊃W

and Q is the derivation

[Z ⊃ ∀Y.Y] [Z]

∀Y.Y
W

Z ⊃W
(Z ⊃ ∀Y.Y) ⊃ (Z ⊃W)

[W]

Z ⊃W
W ⊃ (Z ⊃W)

((Z ⊃ ∀Y.Y) ⊃ (Z ⊃W)) ∧ (W ⊃ (Z ⊃W))

Via the alternative translation, we obtain the following derivation D◦ in Fat,
considerably simpler than the previous one:

∀X.(((Z ⊃ ∀Y.Y) ⊃ X) ∧ (W ⊃ X)) ⊃ X

(((Z ⊃ ∀Y.Y) ⊃ W) ∧ (W ⊃ W)) ⊃ W

[Z ⊃ ∀Y.Y] [Z]

∀Y.Y

W

Z ⊃ W [Z]

W

(Z ⊃ ∀Y.Y) ⊃ W

[W]

Z ⊃ W [Z]

W

W ⊃ W

((Z ⊃ ∀Y.Y) ⊃ W) ∧ (W ⊃ W)

W

Z ⊃ W

30 J. Espı́rito Santo and G. Ferreira

Observe that the original derivation D has no redexes; D? has a single redex of
the form (((Z ⊃ ∀Y.Y) ⊃ (Z ⊃W))∧ (W ⊃ (Z ⊃W))) ⊃ (Z ⊃W), which is
administrative (created by the translation (·)?); from the results of the present paper
it follows that D? reduces to D◦; the latter derivation has two redexes of the form
Z ⊃ W , which are administrative (created by the translation (·)◦), and descendant
of the single redex in D?.

References

[1] FERREIRA, F., ‘Comments on predicative logic’, Journal of Philosophical Logic, 35 (2006),
1–8.

[2] FERREIRA, F., and G. FERREIRA, ‘Commuting conversions vs. the standard conversions of the
“good” connectives’, Studia Logica, 92 (2009), 63–84.

[3] FERREIRA, F., and G. FERREIRA, ‘Atomic polymorphism’, The Journal of Symbolic Logic, 78
(2013), 1, 260–274.

[4] FERREIRA, G., ‘Eta-conversions of IPC implemented in atomic F’, Logic Jnl IGPL, 25
(2017), 2, 115–130.

[5] FERREIRA, G., ‘Rasiowa-Harrop disjunction property’, Studia Logica, 105 (2017), 3, 649–664.
[6] GHANI, N., ‘βη-equality for coproducts’, in Second International Conference on Typed

Lambda Calculi and Applications, TLCA ’95, Edinburgh, UK, April 10-12, 1995, Proceedings,
vol. 902 of Lecture Notes in Computer Science, Springer, 1995, pp. 171–185.

[7] GIRARD, J-Y., Y. LAFONT, and P. TAYLOR, Proofs and Types, Cambridge University Press,
1989.

[8] KRETZ, M., On the treatment of predicative polymorphism in theories of explicit mathematics,
Ph.D. thesis, Universitat Bern, 2002.

[9] LEIVANT, D., ‘A foundational delineation of poly-time’, Information and Computation, 110
(2) (1994), 391–420.

[10] LINDLEY, S., ‘Extensional rewriting with sums’, in Proc. of 8th International Conference
on Typed Lambda Calculi and Applications, vol. 624 of Lecture Notes in Computer Science,
Springer, 2007, pp. 255–271.

[11] MITCHELL, J. C., ‘Type systems for programming languages’, in J. van Leeuwen, (ed.), Hand-
book of Theoretical Computer Science, Elsevier, 1990, pp. 365–458.

[12] MITCHELL, J. C., and R. HARPER, ‘The essence of ML’, in Proc. of the 15th ACM Symp. on
Principles of Programming Languages, ACM, 1988, pp. 28–46.

[13] PLOTKIN, G., ‘Call-by-name, call-by-value and the λ-calculus’, Theoretical Computer Sci-
ence, 1 (1975), 125–159.

[14] PRAWITZ, D., Natural Deduction. A Proof-Theoretical Study, Almquist and Wiksell, Stock-
holm, 1965.

[15] PRAWITZ, D., ‘Ideas and results in proof theory’, in Proc. Second Scandinavian Logic Sym-
posium, vol. 63 of Studies in Logic and the Foundations of Mathematics, Elsevier, 1971, pp.
235–307.

[16] SEELY, R. A. G., ‘Weak adjointness in proof theory’, in Proc. of the Durham Conference on
Applications of Sheaves, vol. 753 of Lecture Notes in Mathematics, Springer, 1979, pp. 697–
701.

