Abstract

Solar thermal energy has been used as a renewable green energy source. Here we present a design of highly selective solar thermal absorber coating deposited by dc magnetron sputtering, which is four layers based on W/AlSiTiN\(_x\)/SiAlTiO\(_y\)/N\(_x\)/SiAlO\(_x\). The coating revealed an excellent average solar thermal absorbance \(\alpha = 95.5\% \) with very low emittance \(\varepsilon = 9.6\% \) (calculated for 500 °C) together with an excellent thermal stability at 500 °C, in air for 350 h, and 630 °C in vacuum for 220 h.

Keywords: Selective coating, Sputtering, Thermal stability, AlSiTiN\(_x\)/SiAlTiO\(_y\)/N\(_x\)

Introduction

Recently, there has been a significant increase in the levels of interest for the use of solar thermal energy as a renewable green energy source. For example, the concentrated solar power (CSP) is being used to produce the electricity by utilizing a parabolic-trough solar system, which concentrates the sunlight onto evacuated tubes containing a selective absorber coating. Then, the conducting heat can be used in steam turbines to produce electricity (Fernández-García et al., 2010) (Odeh et al., 1998) (Kalogirou et al., 1997). On the other hand, the cost of such generated electricity is relatively higher than the other resources. So, there is a need to improve the optical properties

1 Corresponding author – e-mail address: abbaspl85@yahoo.com (A. AL-Rjoub)
and the thermal stability of the coatings’ materials to be competitive with the other resources (Cagnoli et al., 2019). This can be done by improving the coatings’ thermal stability such that operating at higher temperatures for longer terms (Rebouta et al., 2015), which can be achieved by smart selection of materials. Any design should have high solar absorbance (α) in the wavelength region of the solar radiation and very low thermal emittance in IR region (to minimize the energy losses by emission), good thermal stability and high oxidation resistance for long-term.

The current selective solar absorber coatings available in the market are two types: i) coatings based on metal-dielectric nanocomposite coatings (Cermet), which are multilayered coatings composed of a metal layer to improve the IR reflection as tungsten or molybdenum, interference absorber layers (high absorber (HA) and low absorber (LA)), finished with an anti-reflection (AR). As examples, the coatings based on Mo-Al$_2$O$_3$ (Zhang et al., 2006), Pt-Al$_2$O$_3$ (Nuru et al., 2012), WTi-Al$_2$O$_3$(Wang et al., 2017) and W-AlSiO$_x$ (Dias et al., 2017). ii) multi-layered designs based on transition metal nitrides and oxynitrides. This type showed a better thermal stability, oxidation resistance and perfect selectivity, which made them the most common recommended materials for the selective solar thermal absorbers used in CSP. The transition metal used in such coatings can be Ti (Barshilia et al., 2007) (Du et al., 2013) (Rebouta et al., 2012a) (Soum-glaude et al., 2017), Cr(Wang et al., 2019) (A AL-Rjoub et al., 2018), W (A. AL-Rjoub et al., 2018) (Dan et al., 2016), Nb (Y. Wu et al., 2015), and Al (Rebouta et al., 2015) or a combination between them. All of these optical stacks shared the designed structure as substrate\back-reflector metal\metal nitride\metal oxy-nitride\anti-reflection oxide layer.

In our previous work, designs of solar absorber coatings based on nitride/oxynitride layers (W/CrAlSiN$_x$/CrAlSiO$_x$N$_x$/SiAlO$_x$)(A. AL-Rjoub et al., 2018) and with structure (W/WSiAlN$_x$ /WSiAlO$_x$N$_x$/SiAlO$_x$) (A. AL-Rjoub et al., 2018) were studied. In this study we present a design of highly selective solar thermal absorber coating based on W/AlSiTiN$_x$/SiAlTiO$_x$N$_x$/SiAlO$_x$ for high temperature applications.

1. Methods and experimental details

1.1 Materials: the materials used in this coating include: a) Several targets of 10 cm in diameter with purity 99.99% as Ti50Al50 at% with 9 silicon pellets of 10 mm diameter added on the target erosion zone (used to obtain the AlSiTiN$_x$ and SiAlTiO$_x$N$_x$ layers), Si80Al20 at% (used to produce the oxide anti-reflection layer of the stacks) and W target which was used for the back-
reflector coating. b) Oxygen and nitrogen as reactive gases, and argon as sputtering gas. c) Glass, p-doped Boron Si (100) mirror polished wafer and well-polished stainless-steel (AISI304) substrates. d) Acetone and ethanol for substrate cleaning.

1.2 Experimental description: All coatings were produced at room temperature by dc-magnetron sputtering with argon working pressure of 0.37 Pa, applied current density of 6.4 mA/cm2, pulsed bias of -60 V and base pressure of 2×10^{-4} Pa), except the tungsten layer where the used current density was 12.7 mA/cm2. Glass substrates were cleaned by ethanol, whereas the silicon and stainless-steel substrates were cleaned in acetone by ultra-sound 10 min and by ionic etching. Several single layers of AlSiTiN$_x$ and SiAlTiO$_y$N$_x$ were deposited on substrates of glass with changing the nitrogen and oxygen gasses flow, which used in simulation of the optical constants and thickness. Thicker single samples similar to those in the final tandem were produced on silicon and on stainless-steel substrates to study their morphology, chemical composition and structural. The tandem was applied to annealing tests in air at 500 ºC for 350 h and in vacuum at 630 ºC for 220 h.

1.3 Optical constants and simulated thicknesses: the refractive index (n), extinction coefficient (k) and thicknesses of thin AlSiTiN$_x$ and SiAlTiO$_y$N$_x$ layers were obtained from SCOUT software (version 2.99, WTheiss Hardware and Software) simulation after measuring their transmittance (T) and reflectance (R), using a Shimadzu PC3100 spectrophotometer, in the wavelength range of 0.30 – 2.5 µm as completely described in our previous studies (A. AL-Rjoub et al., 2018) (A. AL-Rjoub et al., 2018).

1.4 Chemical composition, structural analysis and chemical-bonding of coatings: EDS with 10 keV accelerated voltage was used to evaluate the chemical composition of the coatings, and cross-section SEM images of the coatings was used to study the morphology and thicknesses calculations.

Structure and coatings’ thermal stability in as deposited and after annealing was studied by X-ray diffraction (XRD) and by the Rutherford Backscattering (RBS) (Barradas and Jeynes, 2008).
The chemical-bonding states of individual thick layers of AlSiTiNₓ and SiAlTiOᵧNₓ was investigated by using X-Ray Photoelectron Spectroscopy (XPS), taking in the account the C1s line at 285.0 eV to calibrate the binding energies and the spectra were fitted by CasaXPS software (version 2.3.19, Casa Softw. Ltd). The Ti 2p core level was fitted considering the peak doublets spin-orbit separation (ΔE_P) 2p_{1/2} – 2p_{3/2} as 5.7 eV, 6.0 eV and 6.1 eV for oxides, nitrides and metal states, respectively, with peaks’ intensity ratio \(\frac{I_{Ti 2p_{1/2}}}{I_{Ti 2p_{3/2}}} = 0.5 \) (Biesinger et al., 2010) (Rahman et al., 2016).

2. Results and discussion

2.1.1 Single layers

The back reflector tungsten and the antireflection SiAlOₓ layers were studied in detail in our previous studies (Dias et al., 2017) (A. AL-Rjoub et al., 2018) (A. AL-Rjoub et al., 2018). So, here only AlSiTiNₓ and SiAlTiOᵧNₓ are presented.

2.1.2 Optical properties of single layers AlSiTiNₓ and SiAlTiOᵧNₓ

Several AlSiTiNₓ and SiAlTiOᵧNₓ thin single layers were deposited on glass substrates with different nitrogen partial pressures ranged from 0.017 to 0.041 Pa, in the case of AlSiTiNₓ, and with oxygen and nitrogen partial pressures ranged from 0.053 to 0.085 Pa in the case of SiAlTiOᵧNₓ. The optical constants n and k of those layers were simulated from their experimental reflectance and transmittance measurements with the help of SCOUT software. As shown in Fig. 1, n and k decreased as the partial pressures of the gases increased in both nitrides and oxynitrides layers, due to the loss of their metallic behavior and due to the formation of transparent nitrides and oxides of Al and Si. Also, the refractive indices of AlSiTiNₓ increased in the wavelength range of 300 – 1000 nm, which improves the solar absorption thus enhancing through the interference effect (Yin and Collins, 1995). The refractive indices of SiAlTiOᵧNₓ layers behave similarly in lower gas partial pressure and become constant for higher gas partial pressures.
Fig. 1: n and k as a function of wavelength of: (a) AlSiTiN\textsubscript{x} and (b) SiAlTiO\textsubscript{y}N\textsubscript{x}, prepared with different reactive gases partial pressures.

2.1.3 Chemical-composition of single layers

The chemical composition of AlSiTiN\textsubscript{P= 0.038 Pa} and SiAlTiO\textsubscript{y}N\textsubscript{xP= 0.069 Pa} thick layers similar to the one used in the final absorber stack were evaluated by EDS and the results are presented in Table I. From nitride to oxynitride a strong increase of oxygen was found, as expected. A small decrease was found for aluminum and titanium at\%, but in contrast a small increase in Si content was found. This is due to the effect of the addition of oxygen as a reactive gas, which induced a stronger target poisoning effect on Al and Ti than on Si, decreasing the relative sputtering yield of Al and Ti in comparison to Si, resulted in an increase of Si content. These differences explain why AlSiTiN\textsubscript{P= 0.038 Pa} has higher optical constants than SiAlTiO\textsubscript{y}N\textsubscript{xP= 0.069 Pa} and as a result high and low solar thermal absorber layers, respectively.

Table I: The chemical composition of AlSiTiN\textsubscript{P= 0.038 Pa}, SiAlTiO\textsubscript{y}N\textsubscript{xP= 0.069 Pa}, thick layers deposited on stainless-steel.

<table>
<thead>
<tr>
<th>Layer</th>
<th>N at%</th>
<th>O at%</th>
<th>Al at%</th>
<th>Si at%</th>
<th>Ti at%</th>
<th>Ar at%</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlSiTiN\textsubscript{P=0.038 Pa}</td>
<td>33</td>
<td>-</td>
<td>26</td>
<td>22</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>SiAlTi(ON)\textsubscript{P=0.069 Pa}</td>
<td>16</td>
<td>22</td>
<td>22</td>
<td>25</td>
<td>12</td>
<td>3</td>
</tr>
</tbody>
</table>
In order to evaluate the chemical bonding states, another individual samples of AlSiTiN\textsubscript{P= 0.038} Pa and SiAlTiO\textsubscript{x}N\textsubscript{y}P= 0.069 Pa similar to the used in the multilayered designs were surveyed by XPS. Fig. 2 shows the spectral core level of Ti 2p, N 1s, Si 2p and Al 2p. Fig. 2a shows the Ti 2p core level spectra, which show an evidence of the existence of different titanium oxidation states in both samples. These peaks were divided into three doublet components considered as Ti 2p\textsubscript{3/2} and Ti 2 p\textsubscript{1/2}. The Ti 2p\textsubscript{3/2} peaks centered at 455.4, 457.3 and 459.0 eV can be corresponded to Ti(Al)-N, Ti-O-N and Ti-O bonds (Zhang et al., 2017) (Zhao and Wackelgard, 2006) (Wainstein and Kovalev, 2018) (Chen et al., 2019) (Rahman et al., 2016) (Z. L. Wu et al., 2015), respectively. In the nitride sample (AlSiTi\textsubscript{N\textsubscript{P= 0.038} Pa}), the Ti 2p\textsubscript{3/2} peak at 453.9 eV corresponds to the Ti atoms in metallic oxidation state (Biesinger et al., 2010) (Z. L. Wu et al., 2015), which disappeared in the case of SiAlTiO\textsubscript{y}N\textsubscript{x}P= 0.069 Pa sample.

The core level of N 1s can be deconvoluted into three peaks in the two samples as shown in Fig. 2b. The peaks centered at energies 396.5, 397.5 and 399.0 eV associated to Ti(Al)-N, Si-N and Si-O\textsubscript{3}N compounds, respectively(Oliveira et al., 2015) (Zhang et al., 2017) (Rahman et al., 2016) (A. AL-Rjoub et al., 2018). Fig. 2c the Si 2p core-level, where the two specimens have the common three peaks located at 100.6, 101.7 and 102.6 eV, which they recognized as Si(Al)-Si\textsubscript{2}N\textsubscript{2}, Si\textsubscript{3}N\textsubscript{4} and Si-O-Al, respectively (Oliveira et al., 2015) (Costa et al., 2018)(Reboua et al., 2015) (AL-Rjoub et al., 2017). The fourth peak of nitride sample (AlSiTi\textsubscript{N\textsubscript{P= 0.038} Pa}) centered at 98.7 is considered as Si elemental bond (Z. L. Wu et al., 2015) (Oliveira et al., 2015).

Finally, Al 2p core level is shown in Fig. 2d, the two samples share the components centred at 73.9 and 74.8 eV related to Ti(Al)-N and Al-O, respectively(Z. L. Wu et al., 2015) (Wainstein and Kovalev, 2018) (Costa et al., 2018) (Rahman et al., 2016).
Fig. 3. XPS-spectra of: (a) Ti 2p, (b) N 1s, (c) Si 2p, (d) Al 2p core level of AlSiTiN$_x$ $P=0.038$ Pa and SiAlTiO$_{y}$N$_x$ $P=0.069$ Pa single layers. The green line in figures is the background correction.
2.1.4 Morphology and crystalline structure of single layers

Thick individual layers of AlSiTiN$_{P=0.038}$ Pa and SiAlTiO$_y$N$_x$$_{P=0.069}$ Pa deposited on stainless steel substrates were used to study their crystalline structure by X-ray diffraction (XRD). Both samples are amorphous as also no features appears in SEM as presented in Fig. 3.

![Fig. 3: XRD-pattern and cross-section SEM images of: a) AlSiTiN$_{P=0.038}$ Pa and b) SiAlTiO$_y$N$_x$$_{P=0.069}$ Pa thick single layers.](image)

2.2 Multilayer Design

The multilayer stack coatings were previously modelled by SCOUT-software depending on their single layers’ information, that allows the calculation of their optical constants n and extinction k as a function of wavelength, together with their thicknesses. Then the structure and the reflectance curve of the final stack was simulated, and deposited on 304 stainless-steel substrates. The experimental total reflectance of the stack was also measured and as shown in Fig. 4a.
As it is also displayed in Fig. 4a, the tandem is a multilayer composed of four layers: i) the tungsten layer, with thickness ~ 131 nm as back-reflector to improve the whole reflectance in IR wavelength region. ii) AlSiTiN_{x}/SiAlTiO_{y} two absorption structural layers, which they are undistinguishable in the SEM image. iii) SiAlO_{x} as antireflection protective layer, which is protect the inner layers and allow the light to pass through. The reflectance of as deposited tandem is in agreement of the simulated one and has a thickness of ~ 301 nm, and it shows a very high solar absorptance, $\alpha = 95.5\%$ with very low emissivity, $\varepsilon = 9.6\%$ (calculated for 500 ºC using the IR reflectance measurements) and $\varepsilon = 7.8\%$, when calculated for 400 ºC, simultaneously.

2.3 Thermal stability

The thermal stability and oxidation resistance of the tandems were tested by subjecting them to annealing tests in air, at 500 ºC, and in vacuum, at 630 ºC, for 350 h and 220 h, respectively. After each step of annealing, the absorptance (α) and the thermal emittance (ε) were calculated from the reflectance curves. Fig. 5a shows the reflectance curves of as deposited, after 50 h and after 350 h air annealing, with their solar absorptance and thermal emittance at 500 ºC after each step shown in the legend. As seen in the figure, the coatings show an excellent thermal stability and no changes reported in the reflectance curve, solar absorptance and thermal emittance values in the second annealing step (of 350 h), which reflect a very good thermal stability. However, after the first step of annealing, small changes in the reflectance curve especially for wavelengths greater than 2000 nm, and it shows an excellent thermal stability and no changes reported in the reflectance curve, solar absorptance and thermal emittance values in the second annealing step (of 350 h), which reflect a very good thermal stability. However, after the first step of annealing, small changes in the reflectance curve especially for wavelengths greater than 2000
nm due to tungsten phase structure change (α and β phases), which is normal and fully studied in
the previous studies (AL-Rjoub et al., 2019) (Chen et al., 2005) (O’Keefe and Grant, 1996)
(Antoniaia et al., 2010). The vacuum annealing was performed in two steps, 20 h and 220 h, as
shown in Fig. 5b, the tests insure a very good thermal stability. Although those results were
obtained at higher testing annealing temperatures in air and in vacuum than the one of the coating
based on AlSiOx:W(Dias et al., 2017), WSiAlN x/WSiAlOyNx(A. AL-Rjoub et al., 2018) and/or
CrAlSiN x/CrAlSiO y N x(A AL-Rjoub et al., 2018) (Al-rjoub et al., 2019), they showed better
thermal stability. Moreover, the emittance values calculated at 400 °C of this design is lower than
the later.

Fig. 5: the reflectance curves of as deposited tandems and after annealing (a) in air at 500 °C (b) in vacuum
at 630 °C, with measured values of the solar absorptance (α) and the thermal emittance (ε) (calculated for
500 °C).

Rutherford back scattering (RBS) was also used to study the elemental depth profiles of the absorbers,
as shown in Fig. 6. It shows three optical stack coatings deposited in same run and subjected to different
thermal annealing, namely as deposited, after air annealing at 500 °C for 350 h and after vacuum annealing
at 630 °C for 220 h. The composition of elements was determined from their front edges because of the
signals can overlap as indicated in the figure. The analysis shows that the three as deposited samples have
a small difference in the thickness of W layer. The relative heights of these front edges are correlated due
to the relative concentrations of the different elements, and the position of the different elements, if located
at surface sample, are indicated in the graph. It is difficult to distinguish between silicon and aluminum
because they have very close atomic masses. Nevertheless, the analysis shows a small difference between as deposited and vacuum annealed samples. After air annealing no changes were recorded for the coating reflecting an excellent thermal stability against diffusion and oxidation. For annealing in vacuum, a small changes of W depth profile were seen due to its small elemental diffusion to the stainless-steel substrate, which can be easily solved by adding a barrier layer as shown in the previous study (AL-Rjoub et al., 2019).

Fig. 6: The spectra of RBS of the stacks as deposited and after air thermal annealing at 500 ºC and vacuum thermal annealing at 630 ºC for 350h and 220 h, respectively.

Further structural tests were applied on the coatings after the thermal treatments using XRD to analyze if it whether or not it has some changes due oxidation. Fig. 7 shows the XRD diffractograms of the three samples (as deposited, after air and vacuum annealing). As shown in the figure, no changes have been recorded after the thermal treatment, except small differences in the stainless-steel peaks and in the intensity of W peaks, which reflecting that the coatings showed a very good oxidation resistance and its thermally stable after annealing in air and vacuum at 500
°C and 630 °C, respectively. The W recrystallization induced by the thermal annealing also
contribute to the tungsten phase structure change (AL-Rjoub et al., 2019) (Chen et al., 2005)
(O’Keefe and Grant, 1996) (Antonaia et al., 2010), which is related with the reflectance increase
in the infrared wavelength range resulting in a consequent emissivity decrease. The W grain sizes
were calculated from the full width at half maximum (FWHM) of (110) tungsten peak and using
the Scherrer equation, in as deposited state and after annealing. The grain size of as deposited
sample was 21.4 nm, and a slight increase was found, 24.6 nm and 26.4 nm after the annealing in
air, at 500 °C, and in vacuum, at 630 °C, respectively.

Fig. 7: X-ray diffraction of tandems before and after thermal annealing.

The structure based on AlSiTiNₓ/SiAlTiOᵧNₓ showed better performance than the structure based on
TiAlNₓ/TiAlOᵧNₓ (Barshilia et al., 2007) (Rebouta et al., 2012b) (Du et al., 2013). In general the structure
based on Me₁(Me₂)SiN/Me₁(Me₂)SiON, where Me₁ is a transition metal element and Me₂ is Al or another
transition metal, revealed better performance than those based on Me₁(Me₂)N/Me₁(Me₂)ON. This
behaviour was also reported for CrAl (A AL-Rjoub et al., 2018) (Al-rajoub et al., 2019), Cr (Zou et al.,
Silicon usually assumes fourfold coordination and transition metal in respective nitrides (fcc lattice) are six fold coordinated, and with high surface mobility during the deposition, Si atoms are segregated, allowing the nucleation of the SiN$_x$ phase, which forms a layer on the growth surface covering the nitride nanocrystallites and limiting their growth, resulting in a two phase material with improved properties (Vepfek and Reiprich, 1995) (Veprek and Veprek-heijman, 2008). Thus, the oxidation resistance and barrier diffusion properties of transition metal nitrides and transition metal oxynitride films can be improved by the addition of Si (Vepfek and Reiprich, 1995) (Thobor-keck et al., 2005) (Kim et al., 2006) (Najafi et al., 2013)

Silicon in low concentration and with low surface mobility can be incorporated in solid solution phase (Traverse et al., 2001) (Eriksson et al., 2014), but with increasing concentrations, the Si segregation already occurs with the formation of an amorphous phase of either silicon nitride or free silicon. With N deficiency and with relatively high Si content, metal silicides can be formed, which are stable at high temperature due to their low vapour pressure and refractory nature. The presence of free Si has been proved to be efficient in the oxidation resistance improvement, as reported by Llauro et al (Llauro et al., 1998) demonstrating that TiNSi codeposits improves the oxidation resistance as compared to CVD TiN, and for greater amount of titanium silicide, it has better improvement of oxidation behavior. The tested samples had 2, 13 and 17 at. % of Si and 45, 35 and 32 at. % of nitrogen, respectively. The amorphous phases are usually better to prevent the layer further oxidation than a polycrystalline layer, where grain boundaries provide a number of diffusion paths for oxygen. With the formation of an amorphous layer the number of diffusion paths decrease considerably leading to the passivation regime (Llauro et al., 1998).

In the design with two absorption layers (high and low absorption layers), it is necessary to adjust the nitrogen content to obtain the desired optical properties. This usually means that the nitride layer is not stoichiometric, having some nitrogen deficiency, resulting that part of the metals atoms are in the metallic oxidation state. In the AlSiTiN$_x$ layer, as shown in section 2.1.3, part of Ti and Si atoms are in metallic oxidation state. In the structure based on WSiAlNx/ WSiAlOyNx layers (A. AL-Rjoub et al., 2018) , the nitride layer exhibited some W atoms in the metallic oxidation state and in the case of absorber stack based on CrAlSiNx/CrAlSiNxy(Al-Rjoub et al., 2019) absorption layers, the nitride also revealed some Cr and Si atoms in the metallic oxidation state.

The Si content can also play an important role in the performance of this type of coatings. In case of Si addition to CrN, Kim et al (Kim et al., 2006) reported that Cr$_{0.67}$Si$_{0.33}$N revealed better oxidation resistance than Cr$_{0.78}$Si$_{0.22}$N (Kim et al., 2006). The performance of an absorber coating
based on CrAlSiNx/CrAlSiNxOy exhibited a dependence with Si content (A. AL-Rjoub et al., 2018) (Al-rjoub et al., 2019) with the best performance for a Si content close to 20 at. % in a nitride with about 27 at.% of nitrogen. The AlSiTiN_x/SiAlTiO_yN_x layers have 22 and 25 at.% of Si, respectively, but with the nitride with 33 at. % of nitrogen. The Si and N contents can justify why this design has a better performance than the one based on CrAlSiNx/CrAlSiNxOy. The structure based on WSiAlNx/WSiAlOyNx layers also exhibited excellent performance. The WSiAlNx layer had 20 at. % of Si and 29 at. % of nitrogen, while the WSiAlOyNx layer had 20 at% of Si. These samples have excellent thermal and chemical stability and have in common a Si content of about 20 at. % the nitride with around 30 at. % of nitrogen (A. AL-Rjoub et al., 2018).

3. Conclusions

A multilayered tandem coating of selective solar radiation absorption for high temperature applications was designed and deposited by dc magnetron sputtering. The stack is based on four layers of structure (W/AlSiTiN_x/SiAlTiO_yN_x/SiAlO_x); back reflector/high absorber/low absorber/antireflection layer, respectively. The structural, optical and chemical properties of their single layers were studied. With increasing nitrogen and oxygen partial pressures during deposition, AlSiTiN_x and SiAlTiO_yN_x layers lost their metallic behavior and become more transparent. The increase of the nitrogen and the oxygen contents, induced the formation of Si and Al nitrides and oxynitrides, resulting in a decrement of their optical constants n and k. The two absorbing layers AlSiTiN_x and SiAlTiO_yN_x are amorphous, as confirmed by the XRD analysis. The XPS analyses confirm the formation of metals nitrides, oxynitrides, and oxides bonding. However, the AlSiTiN_x layer has some Ti and Si atoms in metallic oxidation state. The multilayer coating was theoretically designed based on the obtained data from the single layers and then deposited on stainless-steel substrates. The total thickness of as deposited coating is about 302 nm, and shows simultaneously high average solar absorptance, α=95.5 %, and very low emissivity, ε=9.6 % (calculated for 500 °C), together with high thermal stability at 500 °C, in air and at 630 °C, in vacuum, for 350 h and 220 h, respectively. The thermal emissivity improved for all samples, ensuring that the W back reflector layer maintained its reflectivity and it is well protected by the other top layers. With these excellent results, we strongly recommend this choice of design and materials for high temperature thermal applications, especially for CSP coating for electricity production.
ACKNOWLEDGMENTS

The authors acknowledge the support of FCT in the framework of the Strategic Funding UID/FIS/04650/2013 and the financial support of FCT, POCI and PORL operational programs through the project POCI-01-0145-FEDER-016907 (PTDC/CTM-ENE/2892/2014), co-financed by European community fund FEDER.

The authors are so thankful to Saja Darwish for the English corrections.

References

coatings deposited by modulated pulsed power magnetron sputtering with controllable peak power.

https://doi.org/10.1016/S0038-092X(96)00131-4

https://doi.org/10.1016/j.surfcoat.2005.10.004

