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Abstract

A central issue in the theory of extreme values focuses on suitable conditions such that the well-

known results for the limiting distributions of the maximum of i.i.d. sequences can be applied to

stationary ones. In this context, the extremal index appears as a key parameter to capture the

effect of temporal dependence on the limiting distribution of the maxima. The multivariate extremal

index corresponds to a generalization of this concept to a multivariate context and affects the tail

dependence structure within the marginal sequences and between them. As it is a function, the

inference becomes more difficult, and it is therefore important to obtain characterizations, namely

bounds based on the marginal dependence that are easier to estimate. In this work we present two

decompositions that emphasize different types of information contained in the multivariate extremal

index, an upper limit better than those found in the literature and we analyze its role in dependence

on the limiting model of the componentwise maxima of a stationary sequence. We will illustrate the

results with examples of recognized interest in applications.

keywords: multivariate extreme values, multivariate extremal index, tail dependence, extremal co-

efficients, madogram
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1 Introduction

Let F be a multivariate distribution function (df), with continuous marginal dfs, in the max-domain

of attraction of a multivariate extreme values (MEV) df Ĥ having unit Fréchet marginals, Ĥj(xj) ≡

Φj(xj) = exp(−x−1
j ), xj > 0, j = 1, . . . , d. Therefore, we have

Fn(un1(x1), . . . , und(xd))→ Ĥ(x1, . . . , xd), (1)

where unj(xj) = anjxj for some sequence {anj > 0}, j = 1, . . . , d.

Consider {Xn = (Xn1, . . . , Xnd)} a stationary sequence such that FXn = F and let {Mn =

(Mn1, . . . ,Mnd)} be the componentwise maxima sequence generated from X1, . . . ,Xn and therefore

Mnj =
∨n
i=1 Xij , j = 1, . . . , d. If

lim
n→∞

P (Mn1 ≤ un1(x1), . . . ,Mnd ≤ und(xd)) = H(x1, . . . , xd), (2)

for some MEV df H, we can relate H(x1, . . . , xd) and Ĥ(x1, . . . , xd) through the so called mul-

tivariate extremal index of {Xn}. This is possible, even if the marginals Ĥj are not unit Fréchet

distributed, as considered for simplicity and without loss of generality. Indeed, to have (1) or mutatis

mutandis (2), it is sufficient that, as n → ∞, the sequence of copulas CnF , with CF (u1, . . . , ud) =

F (F−1
1 (u1), . . . , F−1

1 (ud)), converges to CĤ , as well as, Fnj (unj(xj)) → Ĥj(xj), j = 1, . . . , d, which

can be reduced to the case of convergence to the Fréchet without affecting the convergence of CnF .

We recall the definition of multivariate extremal index of {Xn} and its role in the relation

between H and Ĥ (Nandagopalan [18] 1994). The sequence {Xn} has multivariate extremal in-

dex θ(τττ) ∈ (0, 1], τττ = (τ1, . . . , τd) ∈ Rd+, when for each τττ there is a sequence of real levels

{u(τττ)
n = (u

(τ1)
n1 , . . . , u

(τd)
nd )} satisfying

nP (X1j > u
(τj)

nj )→ τj , j ∈ D = {1, . . . , d}, (3)

P (M̂n ≤ u(τττ)
n )→ γ̂(τττ) and (4)

P (Mn ≤ u(τττ)
n )→ γ(τττ) = (γ̂(τττ))θ(τ

ττ),

where M̂n = (M̂n1, . . . , M̂nd), M̂nj =
∨n
i=1 X̂ij , j = 1, . . . , d, and {X̂n} is a sequence of independent

vectors such that FX̂n
= FXn .
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Observe that

γ̂(τττ) = exp
(
− lim
n→∞

nP (X1 6≤ un)
)

= exp (−Γ(τττ)) ,

with

Γ(τττ) = lim
n→∞

nP

(
d⋃
j=1

{Xij > u
(τj)

nj }

)

=
∑
∅6=J⊂D

(−1)|J|+1 lim
n→∞

nP

(⋂
j∈J

{Xij > u
(τj)

nj }

)

=
∑
∅6=J⊂D

(−1)|J|+1Γ∗J(τττJ),

where

Γ∗J(τττJ) ≡ Γ∗(τj , j ∈ J) = lim
n→∞

nP

(⋂
j∈J

{Xij > u
(τj)

nj }

)

and, in particular, Γ∗{j}(τj) = τj , j ∈ D. So, to say that Γ(τττ) exists is equivalent to say that γ̂(τττ)

exists and we have

γ(τττ) = exp (−θ(τττ)Γ(τττ)) = exp

−θ(τττ)
∑
∅6=J⊂D

(−1)|J|+1Γ∗J(τττJ)

 .

In a one-dimensional setting, (3) and (4) are equivalent and {Xnj} has extremal index θj ∈ [0, 1]

if, for all τj >, there exists u
(τj)

nj , such that nP (X1j > u
(τj)

nj )→ τj and P (Mnj ≤ u
(τj)

nj )→ exp(−θjτj).

For the sake of simplicity, we will take unj(xj) = nxj , j = 1, . . . , d. This assumption leads to

levels u(τj)

nj with τj = x−1
j and γ̂(τττ) = Ĥ(τ−1

1 , . . . , τ−1
d ).

If {Xn} has multivariate extremal index θ(τττ) then any sequence of subvectors {(Xn)A} with

indexes in A ⊂ {1, . . . , d} has multivariate extremal index θA(τττA), with

θA(τττA) = lim
τi→0+

i6∈A

θ(τ1, . . . , τd), τττA ∈ R|A|+ .

In particular, for each j = 1, . . . , d, {Xnj}n≥1 has extremal index θj .

If θ(τττ), τττ ∈ Rd+, exists for {Xn} we have

H(x1, . . . , xd) = Ĥ(x1, . . . , xd)
θ(− log Ĥ1(x1),...,− log Ĥd(xd)) (5)

and Hj(xj) = Ĥj(xj)
θj , j ∈ D.
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From inequalities (Galambos [7] 1987; Marshall and Olkin[16] 1983)

d∏
j=1

Ĥj(xj)
θj ≤ Ĥ(x1, . . . , xd)

θ(τ1(x1),...,τd(xd)) ≤ min
j=1,...,d

Ĥj(xj)
θj ,

we obtain

∨d
j=1 θjτj

Γ(τττ)
≤ θ(τττ) ≤

∑d
j=1 θjτj

Γ(τττ)
. (6)

Besides the relation between H and Ĥ, θ(τττ) also informs about the existence of clustering of

events “at least some exceedance of u(τj)

nj by Xnj , for some j", since (Nandagopalan [17] 1990)

1

θ(τττ)
= lim
n→∞

E

(
rn∑
i=1

1{Xi 6≤u
(τττ)
n }
|
rn∑
i=1

1{Xi 6≤u
(τττ)
n }

> 0

)
, (7)

for sequences rn = [n/kn] and kn = o(n) provided that {Xn} satisfies condition strong-mixing.

The multivariate extremal index thus preserves, with the natural adaptations, the characteristics

that made famous the univariate extremal index. Additionally to these similar characteristics to the

univariate extremal index, it plays an unavoidable role in the tail dependence characterization of H.

If the tail dependence coefficients applied to F remain unchanged when applied to Ĥ (Li [14] 2009),

we can not guarantee the same for H, as will be seen in Section 3. The presence of serial dependence

within each marginal sequence and between marginal sequences, makes it impossible to approximate

the dependence coefficients in the tail of Mn to those of F .

The dependence modeling between the marginals of F has received considerably more attention

in literature than the dependence between the marginals of FMn , which differs from FM̂n
= Fn for

being affected by θ(τττ). The need to characterize this dependence appears, for instance, when we have

a random field {Xi,n, i ∈ Z2, n ≥ 1} and we consider random vectors (Xi1,n, . . . , Xis,n) corresponding

to locations (i1, . . . , is) at time instant n. The sequence {(Xi1,n, . . . , Xis,n)}n≥1 presents in general

a multivariate extremal index θi1,...,is(τττ) encompassing information about dependence in the space

of locations i1, . . . , is and when the time n varies (Pereira et al. [21] 2017). Relation (5) applied to

MEV distributions Ĥ and functions θ(x1, . . . , xd) compatible with the properties of a multivariate

extremal index, provide a means of constructing MEV distributions (Martins and Ferreira [15] 2005).

Notwithstanding all these challenges posed by and for the multivariate extremal index, the liter-

ature proves that it remained on the theoretical shelves of the study of extreme values.

The main difficulty of applying the multivariate extremal index lies in the fact that it is a func-

tion, unlike what happens with the marginal univariate extremal indexes, for which we have several

estimation methods in the literature (see, e.g., Hsing [9] 1993, Gomes et al. [8] 2008, Northrop [20]

2015, Ferreira and Ferreira [6] 2016 and references therein).

Since it remains present the need to estimate the tendency to form clusters in a context of

4



multivariate sequences, we propose in this work: (a) decompose it, highlighting different types of

information contained in it; (b) bound it in order to obtain a better upper limit than those available

in the literature; (c) enhance its role in the dependence of the tail of H; (d) apply it to models of

recognized interest in applications.

2 Co-movements point processes

Based on (7) the multivariate extremal index can be seen as the number of the limiting mean

dimension of clustering of events counted by the point process

Nn =

n∑
i=1

1{Xi 6≤u
(τττ)
n }

.

We are going to consider two point processes of more restricted events, corresponding to joint

exceedances for various marginals of Xi and enhance the contribution of the extremal indexes of

these events in the value of θ(τττ).

Let, for each ∅ 6= J ⊂ D = {1, . . . , d},

N∗n,J =

n∑
i=1

1{
⋂
j∈J{Xij>unj}}, n ≥ 1,

and

N∗∗n,J =

n∑
i=1

1{
∧
j∈J Xij>

∨
j∈J unj}, n ≥ 1,

where notations ∧ and ∨ stand for minimum and maximum, respectively.

We denote the respective limiting mean number of occurrences by

Γ∗J(τττJ) = lim
n→∞

nP

(⋂
j∈J

{Xij > unj}

)

and

Γ∗∗J (τττJ) = lim
n→∞

nP

(⋂
j∈J

{Xij >
∨
j∈J

unj}

)
.

Observe that

Γ∗∗J (τττJ) = lim
n→∞

nP

(⋂
j∈J

{
Xij >

n∧
j∈J τj

})
.

Thus

Γ∗∗J (τττJ) = τ∗∗J

(∧
j∈J

τj

)
,
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with τ∗∗J an increasing function in
∧
j∈J τj and homogeneous of order 1. Therefore, we have

τ∗∗J

(∧
j∈J τj

s

)
=
τ∗∗J

(∧
j∈J τj

)
s

, (8)

for all s 6= 0, a relation that will be fundamental for the independence of θ∗∗ from τ .

In case J = D, we will omit the index J in notation.

For each of these processes, we can define an index of clustering of occurrences, which we will

also call extremal indexes, θ∗J (τττJ) and θ∗∗J (τττJ), being the latter a constant independent of τττJ , as we

will see.

Let us assume that sequence {Xn}n≥1 satisfies the strong-mixing condition (Leadbetter et al. [12]

1983) and, as consequence, we have, as n→∞,

P
(
Nn,J = 0

)
− P kn

(
N[n/kn],J = 0

)
→ 0,

P
(
N∗n,J = 0

)
− P kn

(
N∗[n/kn],J = 0

)
→ 0

and

P
(
N∗∗n,J = 0

)
− P kn

(
N∗∗[n/kn],J = 0

)
→ 0,

for any integers sequence {kn}, such that, kn → ∞, knαn(ln) → 0 and knln/n → 0, as n → ∞,

where αn(·) and ln are the sequences of the strong-mixing condition. Thus

P
(
Nn,J = 0

)
→ exp (−θJ(τττJ)ΓJ(τττJ)) ,

P
(
N∗n,J = 0

)
→ exp (−θ∗J(τττJ)Γ∗J(τττJ))

and

P
(
N∗∗n,J = 0

)
→ exp

(
−θ∗∗J (τττJ)τ∗∗J

(∧
j∈J

τj

))
, (9)

with

θJ(τττJ) = lim
n→∞

knP
(
N[n/kn],J > 0

)
/ΓJ(τττJ),

θ∗J(τττJ) = lim
n→∞

knP
(
N∗[n/kn],J > 0

)
/Γ∗J(τττJ),
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θ∗∗J (τττJ) = lim
n→∞

knP
(
N∗∗[n/kn],J > 0

)
/τ∗∗J

(∧
j∈J

τj

)

and

θ∗∗J (τττJ)τ∗∗J

(∧
j∈J

τj

)
≤ θ∗J(τττJ)Γ∗J(τττJ) ≤

∨
j∈J

θjτj ≤ θJ(τττJ)ΓJ(τττJ).

In the following we present relations between θ∗∗J (τττJ), θ∗J(τττJ) and θJ(τττJ), which will allow us a

detailed interpretation of the information contained in θ(τττ) and an upper bound better than the one

in (6). But first, we start by proving that θ∗∗J (τττJ) = θ∗∗J , i.e., these extremal indexes are independent

of τττ , which is already known for J = {j} (Leadbetter et al. [12] 1983), j = 1, . . . , d, since θ∗∗{j} = θj .

Indeed the proof runs along the same lines.

Proposition 2.1. For stationary sequences {Xn} satisfying the strong-mixing condition, if there

exists the limit (9) for some τττ , then it exists for any τττ > 0 and there exists a constant θ∗∗A ∈ [0, 1]

such that

P
(
N∗∗n,A = 0

)
→ exp

(
−θ∗∗A τ∗∗A

(∧
j∈A

τj

))
.

Proof. From the strong-mixing condition, we have

lim inf
n→∞

P
(
N∗∗n,A = 0

)
= lim inf

n→∞
P kn

(
N∗∗[n/kn],A = 0

)
= lim inf

n→∞

(
1−

knP
(
N∗∗[n/kn],A > 0

)
kn

)kn

≥ lim inf
n→∞

1−
nP
(∧

j∈AX1j >
∨
j∈A unj

)
kn

kn

=

1−
τ∗∗A

(∧
j∈A

)
kn

kn

.

Thus, if there exists Ψ(τ∗∗A ) = lim supn→∞ P
(
N∗∗n,A = 0

)
, we have Ψ

(
τ∗∗A

(∧
j∈A

))
≥ exp

(
−τ∗∗A

(∧
j∈A

))
,

and so Ψ(τ∗∗A ) is a strictly positive function.

We also have that function Ψ(τ∗∗A ) would have to satisfy Ψ(τ∗∗A /k) = Ψ1/k(τ∗∗A ), for all τ∗∗A > 0

and k = 1, 2, . . ., since, representing
∑n
i=1 1{

∧
j∈AXij>m/

∧
j∈A τj} by N∗∗n

(
u

(τ∗∗A (
∧
j∈A τj))

m

)
and

applying (9), it holds

∣∣∣∣P (N∗∗[n/kn],A

(
u

(τ∗∗A (
∧
j∈A τj))

n

)
= 0

)
− P

(
N∗∗[n/kn],A

(
u

(τ∗∗A (
∧
j∈A τj)/kn)

[n/kn]

)
= 0

)∣∣∣∣
≤

[
n

kn

] ∣∣∣∣∣P
(∧
j∈A

X1j >
n∧

j∈A τj

)
− P

(∧
j∈A

X1j >
[n/kn]∧
j∈A τj/kn

)∣∣∣∣∣
=

[
n

kn

] ∣∣∣∣∣
∧
j∈A τj

n
(1 + o(1))−

∧
j∈A τj/kn

[n/kn]
(1 + o(1))

∣∣∣∣∣ = o(1)
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and thus we would have

Ψ

(
τ∗∗A
kn

)
= lim sup

n→∞
P
(
N∗∗[n/kn],A

(
u

(τ∗∗A /kn)

[n/kn],A

)
= 0
)

= lim sup
n→∞

P
(
N∗∗n,A

(
u

(τ∗∗A )

n,A

)
= 0
)

= Ψ (τ∗∗A )
1/kn .

On the other hand, Ψ (τ∗∗A ) would have to be a non increasing function because if, for some τττ0 =

(τ0,1, . . . , τ0,d), we have

τ∗∗0,A

(∧
j∈A

τ0,j

)
= lim
n→∞

nP

(∧
j∈A

X1j >
n∧

j∈A τ0,j

)
> τ∗∗A

(∧
j∈A

τj

)
= lim
n→∞

nP

(∧
j∈A

X1j >
n∧

j∈A τj

)

and τ∗∗A
(∧

j∈A τj
)
is increasing in

∧
j∈A τj , then for all n large,

{∧
j∈A

X1j >
n∧

j∈A τj

}
⊂

{∧
j∈A

X1j >
n∧

j∈A τ0,j

}

and thus

{
N∗∗n,A

(
u

(τ∗∗0,A)
n

)
= 0

}
⊂
{
N∗∗n,A

(
u

(τ∗∗A )
n

)
= 0

}

and Ψ
(
τ∗∗0,A

)
≤ Ψ (τ∗∗A ). If Ψ (τ∗∗A ) is a strictly positive function, non increasing and such that

Ψ (τ∗∗A /k) = Ψ (τ∗∗A )1/k, then Ψ (τ∗∗A ) = exp (−θ∗∗A τ∗∗A ), with θ∗∗A a non negative constant. Since

Ψ (τ∗∗A ) > exp (−τ∗∗A ), it also comes θ∗∗A ≤ 1. For the lower limit, we can make the same reasoning

to obtain the result.

Let us start by emphasizing that, to θ(τττ)Γ(τττ), we have the contribution of the clustering of the

joint exceedances of all levels by the respective marginals, including the particular case of the cluster-

ing of exceedances of the largest level by the lower marginal, as well as, the clustering of exceedances

of one or more levels by the respective marginals without joint exceedances of all levels.

Proposition 2.2. Let {Xn} be a stationary sequence satisfying the strong-mixing condition and

{u(τττ)
n = (u

(τ1)
n , . . . , u

(τd)
n )} a sequence of normalized real levels for which there exists Γ(τττ). Then

(a) θ(τττ)Γ(τττ) = θ∗∗τ∗∗
(∧d

j=1 τj
)

+ θ∗(τττ)Γ∗(τττ)β(1)(τττ) +
∑
∅6=J⊂D(−1)|J|+1ΘJ(τττJ), where

β(1)(τττ) = lim
n→∞

P (N∗∗rn = 0|N∗rn > 0)

and

ΘJ(τττJ) = lim
n→∞

knP

(⋂
j∈J

{Nrn,{j} > 0}|N∗rn = 0

)
;

(b)
∑
∅6=J⊂D(−1)|J|+1ΘJ(τττJ) ≤

∑d
j=1 θjτj .
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Proof. We have

knP (Nrn > 0) = knP (N∗∗rn > 0) + knP (N∗rn > 0, N∗∗rn = 0) + knP (Nrn > 0, N∗rn = 0)

= knP (N∗∗rn > 0) + knP (N∗rn > 0)P (N∗∗rn = 0|N∗rn > 0)

+knP
(⋃d

j=1{Nrn,{j} > 0}, N∗rn = 0
)

= knP (N∗∗rn > 0) + knP (N∗rn > 0)P (N∗∗rn = 0|N∗rn > 0)

+
∑
∅6=J⊂D

(−1)|J|+1knP

(⋂
j∈J

{Nrn,{j} > 0}, N∗rn = 0

)
.

In what concerns the last term, observe that

d∑
j=1

knP
(
Nrn,{j} > 0, N∗rn = 0

)
=

d∑
j=1

knP
(
Nrn,{j} > 0

)
−

d∑
j=1

knP
(
Nrn,{j} > 0, N∗rn > 0

)
and since limn→∞ P (N∗rn = 0) = 1, we have the result in (a).

Observe that β(1)(τττ) reduces θ∗(τττ) from the joint exceedances of
∨d
j=1 n/τj accounted for θ∗∗.

We can say that in the last term of representation of θ(τττ)Γ(τττ) we are accounting the tendency of

one or more marginals to form clusters, without joint exceedances of all the marginals.

We illustrate the previous result with a bivariate sequence with unit Fréchet marginals and such

that the joint tail is regularly varying at ∞ with index η ∈ (0, 1] measuring a penultimate tail

dependence, as the (sub)model presented in Ledford and Tawn ([11] 1996).

Example 2.1. Suppose that d = 2 and {(Xn1, Xn2)}n≥1 is a strong-mixing stationary sequence,

with unit Fréchet marginals and such that Xn1 and Xn2 are asymptotically independent, i.e.,

nP (Xn1 > nx,Xn2 > ny)→ 0, (10)

as n→∞, for x, y positive. Then

θ∗∗ = knP (N∗∗rn > 0) ≤ nP
(
Xn1 >

n

τ1 ∧ τ2
, Xn2 >

n

τ1 ∧ τ2

)
∼ n

(
n

τ1 ∧ τ2

)−1/η

L

(
n

τ1 ∧ τ2

)
→ 0,

θ∗(τ1, τ2) ≤ nP
(
Xn1 >

n

τ1
, Xn2 >

n

τ2

)
≤ nP

(
Xn1 >

n

τ1 ∧ τ2
, Xn2 >

n

τ1 ∧ τ2

)
→ 0.

Therefore, regardless of additional conditions on the serial dependence, the validity of (10) implies

θ(τττ)Γ(τττ) =
∑

∅6=J⊂{1,2}

(−1)|J|+1 lim
n→∞

knP

(⋂
j∈J

{Nrn,{j} > 0}, N∗rn = 0

)

9



and Γ(τττ) = τ1 + τ2. Since knP (N∗rn > 0)→ 0 we can thus write in this model

θ(τττ) =
1

τ1 + τ2
lim
n→∞

kn
(
P
(
Nrn,{1} > 0

)
+ P

(
Nrn,{2} > 0

)
− P

(
Nrn,{1} > 0, Nrn,{2} > 0

))
. (11)

We now consider several particular situations.

(a) In the case of independent vectors (Xn1, Xn2), n ≥ 1, we have

θ(τττ) =
1

τ1 + τ2

θ1τ1 + θ2τ2 − lim
n→∞

knP

 ⋃
1≤i<i′≤rn

{{
Xi1 >

n

τ1
, Xi2 ≤

n

τ2
, Xi′1 ≤

n

τ1
, Xi′2 >

n

τ2
,

}

⋃{
Xi1 ≤

n

τ1
, Xi2 >

n

τ2
, Xi′1 >

n

τ1
, Xi′2 ≤

n

τ2

}}))
=
τ1 + τ2
τ1 + τ2

= 1.

It will then come P (Mn1 ≤ n/τ1,Mn2 ≤ n/τ2) → exp(−Γ(τττ)) = exp(−τ1) exp(−τ2), that is, Mn1

and Mn2 are also asymptotically independent.

(b) Suppose that {(Xn1, Xn2)}n≥1, satisfies condition D(m)

{1,2} defined by

lim
n→∞

n

[n/kn]∑
j=m+1

P (X11 > n/τ1, Xj2 > n/τ2) = 0,

which extends D
′

{1,2} of Davis ([2] 1982), satisfied by i.i.d. sequences. Then

θ(τττ) =
1

τ1 + τ2

(
θ1τ1 + θ2τ2 − lim

n→∞
n

m∑
i=2

P (X11 > n/τ1, Xi2 > n/τ2)

)
,

where the last part reflects the cross dependence.

(c) If we assume an analogous hypothesis of (10) for (X11, Xi2) with different ηi, we will also

obtain asymptotic independence between Mn1 and Mn2, since the last term has null limit. We have

P (Mn1 ≤ n/τ1,Mn2 ≤ n/τ2)→ exp(−Γ(τττ)θ(τττ)) = exp(−θ1τ1) exp(−θ2τ2).

(d) If θ(τττ) = θ, ∀τττ ∈ R2
+, then θ1 = θ2 = θ and, from (11),

θ = θ − lim
n→∞

knP
(
Nrn,{1} > 0, Nrn,{2} > 0

)
,

which implies that this limit is null and thus P (Mn1 ≤ n/τ1,Mn2 ≤ n/τ2) → exp(−θ(τ1 + τ2)) =

exp(−θτ1) exp(−θτ2).

We present below a relation between θ(τττ) and the extremal indexes θ∗∗{j,...,d} and θ
∗
{j,...,d}

(
τττ{j,...,d}

)
,

j = 1, . . . , d, which discriminates different informations contained in function θ(τττ) and provides an

upper bound for θ(τττ) better than the one in (6). In Example 2.2 we show that the proposed upper

bound for the M4 processes, can be better than the one presented in Ehlert and Schlather ([3] 2008).

10



The new upper bound has also the advantage of depending only on constant extremal indexes which

can be estimated by known methods of literature.

Proposition 2.3. Let {Xn} be a stationary sequence satisfying the strong-mixing condition and

{u(τττ)
n = (u

(τ1)
n , . . . , u

(τd)
n )} a sequence of normalized real levels for which there exists Γ(τττ). Then

(a)

θ(τττ)Γ(τττ) = lim
n→∞

knP (Nrn > 0) =

d∑
j=1

θjτj −
d−1∑
j=1

θ∗∗{j,...,d}τ
∗∗
{j,...,d}

(
d∧
i=j

τi

)

−
d−1∑
j=1

θ∗{j,...,d}
(
τττ{j,...,d}

)
Γ∗{j,...,d}

(
τττ{j,...,d}

)
β

(1)
j

(
τττ{j,...,d}

)

−
d−1∑
j=1

∑
J⊂{j+1....,d}

(−1)|J|+1β
(2)

{j}∪J
(
τττ{j}∪J

)
,

where β
(1)
j

(
τττ{j,...,d}

)
= limn→∞ P

(
N∗∗rn,{j,...,d} = 0|N∗rn,{j,...,d} > 0

)
and β

(2)

{j}∪J
(
τττ{j}∪J

)
=

limn→∞ knP
(⋂

i∈{j}∪J{Nrn,{i} > 0}|N∗rn,{j,...,d} = 0
)
, provided that the limiting constants ex-

ist.

(b) θ(τττ) ≤ 1
Γ(τττ)

(∑d
j=1 θjτj −

∑d−1
j=1 θ

∗∗
{j,...,d}τ

∗∗
{j,...,d}

(∧d
i=j τi

))
.

Proof. We have

knP (Nrn > 0) = knP

(
d⋃
j=1

{Nrn,{j} > 0}

)

=

d−1∑
j=1

knP

(
Nrn,{j} > 0,

d⋂
i=j+1

{Nrn,{i} = 0}

)
+ knP

(
Nrn,{d} > 0

)

=

d∑
j=1

knP
(
Nrn,{j} > 0

)
−
d−1∑
j=1

knP

(
Nrn,{j} > 0,

d⋃
i=j+1

{Nrn,{i} > 0}

)
.

11



Regarding the second term, we can also say that

d−1∑
j=1

knP

(
Nrn,{j} > 0,

d⋃
i=j+1

{Nrn,{i} > 0}

)

=

d−1∑
j=1

knP

(
Nrn,{j} > 0,

d⋃
i=j+1

{Nrn,{i} > 0}, N∗rn,{j,...,d} > 0

)

+

d−1∑
j=1

knP

(
Nrn,{j} > 0,

d⋃
i=j+1

{Nrn,{i} > 0}, N∗rn,{j,...,d} = 0

)

=

d−1∑
j=1

knP
(
N∗rn,{j,...,d} > 0, N∗∗rn,{j,...,d} > 0

)

+

d−1∑
j=1

knP
(
N∗rn,{j,...,d} > 0, N∗∗rn,{j,...,d} = 0

)

+

d−1∑
j=1

knP

(
Nrn,{j} > 0,

d⋃
i=j+1

{Nrn,{i} > 0}, N∗rn,{j,...,d} = 0

)

=

d−1∑
j=1

knP
(
N∗∗rn,{j,...,d} > 0

)

+

d−1∑
j=1

knP
(
N∗rn,{j,...,d} > 0, N∗∗rn,{j,...,d} = 0

)

+

d−1∑
j=1

knP

(
Nrn,{j} > 0,

d⋃
i=j+1

{Nrn,{i} > 0}, N∗rn,{j,...,d} = 0

)
.

Therefore,

θ(τττ)Γ(τττ) = lim
n→∞

knP (Nrn > 0) =

d∑
j=1

θjτj −
d−1∑
j=1

θ∗∗{j,...,d}τ
∗∗
{j,...,d}

(
d∧
i=j

τi

)

−
d−1∑
j=1

θ∗{j,...,d}
(
τττ{j,...,d}

)
Γ∗{j,...,d}

(
τττ{j,...,d}

)
lim
n→∞

P
(
N∗∗rn,{j,...,d} = 0|N∗rn,{j,...,d} > 0

)

−
d−1∑
j=1

lim
n→∞

knP

(
d⋃

i=j+1

{Nrn,{j} > 0, Nrn,{i} > 0}|N∗rn,{j,...,d} = 0

)
,

since P
(
N∗rn,{j,...,d} = 0

)
→ 1, as n→∞.

The above result means that, for each j ∈ {1, . . . , d}, the values θ∗{j,...,d}
(
τττ{j,...,d}

)
only contribute

to θ(τττ) if it is not asymptotically almost surely the local occurrence of some joint exceedances of the
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largest level u(τj)

ni , i ∈ {1, . . . , d}, among the joint exceedances of these levels. Otherwise, the joint

exceedances clustering is considered only through the clustering of the joint exceedances of the largest

level uni, i ∈ {j, . . . , d}, and measured by θ∗∗{j,...,d}, disappearing the third term. Therefore, the sec-

ond and third terms together account for the clustering of two situations of joint exceedances. The

fourth term measures the clustering of exceedances of unj and of one or more uni, i ∈ {j+ 1, . . . , d},

in the absence of joint exceedances of levels uni, i ∈ {j, . . . , d}, not accounted within the second and

third terms. All these clustering situations were accounted by excess in the first term.

The function θ(τττ) is homogeneous of order zero and thus θ(τ, . . . , τ) = θ(1, . . . , 1), ∀τ ∈ R. The

constant θ(1, . . . , 1) has been used as a dependence coefficient of the marginals ofH (see, e.g., Martins

and Ferreira [15] 2005, Ehlert and Schlather [3] 2008, Ferreira and Ferreira [5] 2015, and references

therein).

We are going to analyze the consequences of the decompositions presented for θ(τττ) in the calcu-

lation of θ(1).

If τ1 = . . . = τd = τ , thenN∗∗n = N∗n, β
(1)
J (τττ) = 0, Γ∗(τττ) = τ∗∗(τττ) and Γ(τττ) =

∑
∅6=J⊂D(−1)|J|+1τ∗∗J (τττJ).

The first decomposition

θ(1)Γ(1) = θ∗∗τ∗∗(1) + lim
n→∞

knP

(
d⋃
j=1

{Nrn,{j} > 0}, N∗rn = 0

)
,

separates once again the contribution of the clustering of exceedances across all marginals from the

contribution of the clustering of exceedances of one or more marginals without exceedances of all

marginals.

In the next section, we will give an important utility to the boundary of θ(τττ)Γ∗(τττ). It will serve

to delimitate the difference between the tail dependence coefficients of H and Ĥ.

The second decomposition allow us to obtain an upper bound for θ(1), which can be better than

the one presented in (6). From the previous result, we have

θ(1)Γ(1) ≤
d∑
j=1

θj −
d−1∑
j=1

θ∗∗{j,...,d}τ
∗∗
{j,...,d}(1). (12)

From the proof of Proposition 2.3 we found that, instead of following the order 1, . . . , d to decompose

initially the event {
⋃d
j=1 Nrn,{j} > 0} in a reunion of disjoint events {Nrn,{j} > 0,

⋂d
i=j+1{Nrn,{i} >

0}}, j = 1, . . . , d − 1 and {Nrn,{d} > 0}}, we can consider any other permutation (i1, . . . , id) from

(1, . . . , d) and repeat the process. Therefore the previous upper limit can be improved in the following

sense:

θ(1)Γ(1) ≤
d∑
j=1

θj −
∨

(i1,...,id)∈Pd

id−1∑
j=i1

θ∗∗{j,...,id}τ
∗∗
{j,...,id}(1),
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where Pd denotes the set of all permutations of (1, . . . , d).

Example 2.2. Consider the M4 process,

 Xn1 = 0.7Zn ∨ 0.3Zn−2

Xn2 = 0.7Zn−1 ∨ 0.1Zn−2 ∨ 0.5Zn−3,

with {Zn ≡ Z1,n}, where {Zl,n}, l ≥ 1, n ≥ 1, is an array of independent unit Fréchet random vari-

ables. We have θ1 = 0.7, θ2 = 0.5 and θ(1)Γ(1) = 0.7. Since {Xn}n≥1 is 4-dependent, representing

{Xi1 > n/τ,Xi2 > n/τ} by Ai,n and τ1 ∧ τ2 = τ , we have that

θ∗∗{1,2}τ
∗∗
{1,2}(τ) = lim

n→∞
nP
(
A3,n ∩A4,n ∩A5,n ∩A6,n

)

= lim
n→∞

nP
(
{0.1Z1 > n/τ} ∩A4,n ∩A5,n ∩A6,n

)
= lim
n→∞

nP
(
{0.1Z1 > n/τ} ∩A4,n

)

= lim
n→∞

nP ({0.1Z1 > n/τ, 0.5Z1 ≤ n/τ} ∪ {0.1Z1 > n/τ, 0.5Z1 > n/τ})

= 0.1τ = 0.1(τ1 ∧ τ2).

Therefore, Proposition 2.3 indicates that θ(1)Γ(1) ≤ 0.7 + 0.5 − 0.1 = 1.1. The upper limit in this

type of processes has no great interest since we have the theoretical expression for θ(τττ). However,

this example serves to show that our upper bound can be better than the one presented in Ehlert and

Schlather ([3] 2008) for M4 processes. Indeed, by applying their Corollary 3, we obtain

θ(1)Γ(1) ≤

(
Γ(1)−

2∨
j=1

(1− θj)

)
∧

d∑
j=1

θj = ((0.7 + 0.4 + 0.3 + 0.5)− (0.3 ∨ 0.5)) ∧ 1.2

= 1.4 ∧ 1.2 = 1.2.

In the cases where the number of non null signatures αlkj, l ≥ 1, −∞ < k <∞, j = 1, . . . , d, of

an M4 process (Smith and Weissman [23] 1996; Zhang [24] 2002) exceeds the number d of marginals,

examples are easily constructed in which the Ehlert and Schlather ([3] 2008) upper limit is reduced

to
∑d
j=1 θj, being in these cases the lower limit of (12) below this. Our upper bound still has the

advantage of being applied to processes outside the max-stable class.

3 Effect of the extremal index in the tail of a bivariate

extreme values distribution

For each pair (j, j′), j < j′ belonging to D, consider the bivariate (upper) tail dependence coefficient

χFjj′ ∈ [0, 1] for random pair (Xnj , Xnj′) with df Fjj′ , discussed in Sibuya ([22] 1960) and Joe ([10]
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1997), defined by

χFjj′ = lim
u↑1+

P (Fj(Xij) > u|Fj′(Xij′) > u)

and coefficient χFjj′ ∈ [−1, 1] of Coles et al. ([1] 1999), defined by

χFjj′ = lim
u↑1+

2 logP (Fj′(Xij′) > u)

logP (Fj(Xij) > u,Fj′(Xij′) > u)
− 1.

We can say that χFjj′ corresponds to the probability of one variable being high given that the

other is high too. The case χFjj′ > 0 means asymptotic dependence between Xnj and Xnj′ and when-

ever χFjj′ = 0 the variables are said to be asymptotically independent. Assuming χFjj′ > 0 within

asymptotically independent data may carry to an over-estimation of probabilities of extreme joint

events (see, e.g., Ledford and Tawn [11, 13] 1996, 1997). Asymptotically independent models, i.e.,

having χFjj′ = 0, may exhibit a residual tail dependence rendering different degrees of dependence at

finite levels. Coefficient χFjj′ is a suitable tail measure within this class. Thus the pair (χFjj′ , χ
F
jj′)

is a useful tool in characterizing the extremal dependence: under asymptotic dependence we have

χFjj′ = 1 and 0 < χFjj′ ≤ 1 quantifies the strength of dependence between the variables (Xnj , Xnj′)

and, within the class of asymptotic independence, we have χFjj′ = 0 and −1 ≤ χFjj′ < 1 measures the

strength of dependence of the random pair.

Observe that, both measures can be calculated from the copula CF
jj′

(u, u) = Fjj′(F
−1
j (u), F−1

j′ (u)),

with

χFjj′ = 2− lim
u↑1+

logCF
jj′

(u, u)

log u

and

χFjj′ = lim
u↑1+

2 log(1− u)

log
(

1− 2u+ CF
jj′

(u, u)
) − 1.

If F belongs to the max-domain of attraction of Ĥ, then χFjj′ = χĤjj′ and χ
F
jj′ = χĤjj′ . This results

from the uniform convergence of CnF to CĤ and from C
Fn
jj′

(u, u) =
(
CF

jj′
(u1/n, u1/n)

)n
. We will

then have

lim
u↑1+

lim
n→∞

(
CF

jj′
(u1/n, u1/n)

)n
CF

jj′
(u, u)

= lim
n→∞

lim
u↑1+

(
CF

jj′
(u1/n, u1/n)

)n
CF

jj′
(u, u)

= 1,

which guarantees the constancy of χF
n

jj′ and χ
Fn

jj′ , as n→∞.

The presence of dependence among the variables of {Xn} expressed by a function θ(τττ) with values
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less than one, may affect the limiting behavior of χFnjj′ but not the limiting behavior of χFnjj′ , where

Fn denotes the df of Mn.

Proposition 3.1. For stationary sequences {Xn}, with multivariate extremal index θ(τττ), τττ ∈ Rd+,

for any choice j < j′ in D, we have, χHjj′ = χĤjj′ .

Proof. Based on the spectral representation of MEV copulas (see, e.g., Falk et al. [4] 2010) and

relation

CH
jj′

(uj , uj′) =

(
C
Ĥ
jj′

(
u

1/θj
j , u

1/θj′
j′

))θ(− log uj
θj

,−
log u

j′
θ
j′

)
, (13)

we have

χĤjj′ = lim
u↑1+

2 log(1− u)

log

(
1− 2u− C

Ĥ
jj′

(u, u)

) − 1

= lim
u↑1+

2 log(1− u)

log
(

1− 2u− exp
(
−
∫ 1

0
(w(− log u) ∨ (1− w)(− log u)) dŴ (w)

)) − 1

= lim
u↑1+

2 log(1− u)

log

(
1− 2u− u

− logC
Ĥ
jj′

(e−1,e−1)
) − 1

where Ŵ is the spectral measure of Ĥ. On the other hand

χHjj′ = lim
u↑1+

2 log(1− u)

log

1− 2u− u
θjj′

(
1
θj
, 1
θ
j′

)(
− logC

Ĥ
jj′

(
exp(−θ−1

j ),exp
(
−θ−1

j′
))) − 1

Therefore,

(1− χHjj′) = (1− χĤjj′)A

with

A = lim
u↑1+

log
(

1− 2u− uΓ(1,1)
)

log

(
1− 2u− u

θjj′

(
1
θj
, 1
θ
j′

)
Γ

(
1
θj
, 1
θ
j′

))

= lim
u↑1+

log (1− 2u− ua)

log (1− 2u− ub) = lim
u↑1+

−2 + aua−1

−2 + bub−1
lim
u↑1+

1− 2u+ ub

1− 2u+ ua
= 1,

with a = Γ(1, 1) and b = θjj′
(

1
θj
, 1
θj′

)
Γ
(

1
θj
, 1
θj′

)
.
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Proposition 3.2. For stationary sequences {Xn}, with multivariate extremal index θ(τττ), τττ ∈ Rd+,

we have, for any choice j < j′ in D,

(a) χHjj′ = 2− θjj′
(

1
θj
, 1
θj′

)
Γjj′

(
1
θj
, 1
θj′

)
;

(b) χHjj′ − χĤjj′ = Γjj′ (1, 1)− θjj′
(

1
θj
, 1
θj′

)
Γjj′

(
1
θj
, 1
θj′

)
.

Proof. Using the spectral representation of MEV copulas and relation (13), we have

χHjj′ = 2− θjj′
(

1

θj
,

1

θj′

)
lim
u↑1+

∫ 1

0

(
− log uw

θj
∨ − log u(1−w)

θj′

)
dŴ (w)

− log u

= 2− θjj′
(

1

θj
,

1

θj′

)∫ 1

0

(
w

θj
∨ 1− w

θj′

)
dŴ (w)

= 2−
(
−θjj′

(
1

θj
,

1

θj′

)
logC

Ĥ
jj′

(exp(−1/θj), exp(−1/θj′))

)

= 2− θjj′
(

1

θj
,

1

θj′

)
Γjj′

(
1

θj
,

1

θj′

)
,

where Ŵ is the spectral measure of Ĥ.

The previous proposition can be rewritten in terms of the extremal coefficients εHjj′ and ε
Ĥ
jj′ , such

that, C
Ĥ
jj′

(u, u) = u
εĤ
jj′ and CH

jj′
(u, u) = u

εH
jj′ , since these satisfy the relations χHjj′ = 2− εHjj′ and

χĤjj′ = 2− εĤjj′ . From (a) we conclude that εHjj′ = θjj′
(

1
θj
, 1
θj′

)
Γjj′

(
1
θj
, 1
θj′

)
. Consequently, for the

measure of asymptotic independence called madogram (Naveau et al. [19] 2009), defined by

νFjj′ =
1

2
E |Fj(Xnj)− Fj′(Xnj′)|

and satisfying

νFjj′ =
1

2

εFjj′ − 1

εFjj′ + 1
,

we have

(a) νFjj′ = νĤjj′ = 1
2

Γjj′ (1,1)−1

Γjj′ (1,1)+1
;

(b) νHjj′ = 1
2

θjj′

(
1
θj
, 1
θ
j′

)
Γjj′

(
1
θj
, 1
θ
j′

)
−1

θjj′

(
1
θj
, 1
θ
j′

)
Γjj′

(
1
θj
, 1
θ
j′

)
+1
.

Therefore, for large n, the madogram of (Mnj ,Mnj′) can not be taken by the madogram of

(M̂nj , M̂nj′).
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From relation (b) in Proposition 2.3, we conclude that

χHjj′ ≥ θ∗∗jj′τ∗∗jj′
(

1

θj ∨ θj′

)
(14)

and we can establish the following consequence about the value of the difference between χHjj′ and

χĤjj′ .

Corollary 3.3. For stationary sequences {Xn} satisfying the strong-mixing condition, with multi-

variate extremal index θ(τττ), τττ ∈ Rd+, we have, for any choice j < j′ in D,

(a) θ(τττ) = θ, ∀τττ ∈ Rd+ implies χHjj′ = χĤjj′ ;

(b)
∣∣∣χHjj′ − χĤjj′ ∣∣∣ ≥ max

{
θ∗∗jj′τ

∗∗
jj′

(
1

θj∨θj′

)
− 2 + Γjj′ (1, 1) , 1− Γjj′ (1, 1)

}
.

Proof. (a) If θ(τττ) is constant equal to θ, then θj = θj′ = θ and, since Γ is homogeneous of order 1,

from (b) of Proposition 3.2, we have χHjj′ − χĤjj′ = Γjj′ (1, 1)− Γjj′
(
θ
θ
, θ
θ

)
= 0;

(b) The inequality follows from (b) of Proposition 3.2 and from (14).

We emphasize that the quantity θ∗∗jj′τ
∗∗
jj′

(
1

θj∨θj′

)
that we find in (14) and in (b) of the previous

proposition reflects a tendency to the appearance of clusters within Xnj ∧Xnj′ through the extremal

index θ∗∗jj′ and

τ∗∗jj′

(
1

θj ∨ θj′

)
= lim
n→∞

nP (Xnj > n(θj ∨ θj′), Xnj′ > n(θj ∨ θj′)) .

From this discussion we conclude that:

(i) The tail dependencies of
(
M̂n1, M̂n2

)
and of (Mn1,Mn2), for large n, evaluated through coef-

ficient χ, can be considered equal when the multivariate extremal index is constant, otherwise

they differ in at least max
{
θ∗∗jj′τ

∗∗
jj′

(
1

θj∨θj′

)
− 2 + Γjj′ (1, 1) , 1− Γjj′ (1, 1)

}
, where the previ-

ous quantities can be estimated from the existing methods in literature.

(ii) If we estimate the dependence χFjj′ on the tail of (Xnj , Xnj′), we do not obtain the depen-

dence on the tail of (Mn1,Mn2), unless we correct the result with an estimate of Γjj′ (1, 1) −

θjj′
(

1
θj
, 1
θj′

)
Γjj′

(
1
θj
, 1
θj′

)
.

In cases where Ĥ has totally dependent marginals (χĤjj′ = 1) or has independent marginals

(χĤjj′ = 0), the previous lower limit loses interest by triviality. We underline the expression of χHjj′

in these two cases in the next result, which is derived from (a) of Proposition 3.2.

Corollary 3.4. For stationary sequences {Xn}, with multivariate extremal index θ(τττ), τττ ∈ Rd+, we

have, for any choice j < j′ in D,

(a) If H has independent marginals, then χHjj′ = 2−
(

1
θj

+ 1
θj′

)
θjj′

(
1
θj
, 1
θj′

)
;
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(b) If H has totally dependent marginals, then χHjj′ = 2−
(

1
θj
∨ 1
θj′

)
θjj′

(
1
θj
, 1
θj′

)
.

Now we construct some examples that illustrate the cases χHjj′ > χĤjj′ and χ
H
jj′ < χĤjj′ .

Example 3.1. We first consider the following bivariate M4 process with one moving pattern,

 Xn1 = 1
8
Zn−1 ∨ 1

8
Zn ∨ 6

8
Zn+1

Xn2 = 2
8
Zn−1 ∨ 1

8
Zn ∨ 5

8
Zn+1,

where Zn ≡ Z1,n, ∀n ≥ 1. We have in this case

CF (u1, u2) =
(
u

1/8
1 ∧ u2/8

2

)(
u

1/8
1 ∧ u1/8

2

)(
u

6/8
1 ∧ u5/8

2

)

and

χF = χĤ = 2−
(

2

8
+

1

8
+

6

8

)
=

7

8
.

Otherwise

H(x1, x2) = exp

(
−
(

6x−1
1

8
∨ 5x−1

2

8

))
.

Therefore, CH(u1, u2) = u1 ∧ u2 and χH = 1 > χĤ .

Example 3.2. Now consider a modification in the above example through the introduction of one

more pattern,  Xn1 = 1
8
Z1,n ∨ 6

8
Z1,n+1 ∨ 1

8
Z2,n

Xn2 = 1
8
Z1,n ∨ 5

8
Z1,n+1 ∨ 2

8
Z2,n .

We have the same CF and χF = 7
8
as in the previous example, but here

H(x1, x2) = exp

(
−
(

6x−1
1

8
∨ 5x−1

2

8

))
exp

(
−
(
x−1

1

8
∨ 2x−1

2

8

))

and therefore,

CH(u1, u2) =
(
u

6/7
1 ∧ u5/7

2

)(
u

1/7
1 ∧ u2/7

2

)
.

Then χH = 2−
(

6
7

+ 2
7

)
= 6

7
< χĤ .
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