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Abstract. The evolution of less ductile layers embedded in a more ductile matrix under simple progressive shear in some 
geological structures, such as folding and asymmetric boudinage in the same direction, is a current trend in structural geology 
research. Aiming to study this subject, in this work a finite element method (FEM) is used to discretize a continuous medium 
as a point-mass model in which every node is subject to elastic and viscous forces. The dynamic equation of the present 
system takes into account both kinds of those forces driving the motion of each particle. In the herein developed model the 
system is subject to external shear forces applied to some nodes, resulting in a continuous flow of material. The balance 
between viscous and elastic constants is pursuit in order to characterize the evolution of the system. 

INTRODUCTION 

Geological processes in which materials with contrasting physical properties are in contact and subject to external 
stress generate interesting phenomena, namely folding and boudinage and the simultaneous occurrence of both of 
these structures have been attributed to different spatial directions [1]. Recently, a new interpretation proposes that 
they can occur in the same direction [2]. However, this trend still lacks a theoretical model, for which this work aims 
to be a contribution. 

In the following sections we present the model developed, for which we show a brief study of a small system of 
interconnected mass-points, either without friction (which results in a system of coupled harmonic oscillators) or 
with friction between each pair of interconnected particles (within some range of viscosity). Finally, we point out 
some improvements that may be implemented in the model as well as application to systems with different ductile 
layers of materials. 

 

THE MODEL 

We propose a 2-D model to predict the evolution of a ductile material subject to external shear stress. A continuous 
mass is discretized in a finite set of mass-points interconnected within a predefined range. Thus, each pair of points, 
which lay apart further than the predefined range are not connected. 
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A finite element method (FEM) is used to calculate ab initio the behavior of the whole system under the action 
of external forces and how it accommodates this strain. 

The set of mass-points are distributed more or less regularly over the XY plane. An algorithm is applied in order 
to establish all the connections of each mass-point with all the others within the predefined range (e.g., only 
neighbor mass-points are connected), as it is shown in Fig. 1 when we consider, for example, 16 nodes. 

This algorithm is to be applied whenever the program executes one step (by step we mean the application of an 
external force field), thus allowing the mass-points to reestablish or to cancel their connections according to the 
change of their positions relatively to their neighbors. 

 

FIGURE 1. Each node of the truss stands for each mass-point and the lines represent the connection between every two points. 
In this picture it can be seen a starting relaxed geometry (asterisks connected by solid lines) and the new geometry after the first 

displacement imposed into 4 mass-points (circles connected by dotted lines). 

 
Every pair of interconnected points is treated as an oscillator, and obeys Newton second law 𝐹 ൌ 𝑚 𝑎, where F 

is the total force applied on mass m, which is subject to acceleration a. 
Considering the starting geometry as a relaxed configuration of the system, we superimpose a first deformation 

corresponding to the external applied forces. Then, each oscillator will respond according to the physical parameters 
defined by the elasticity (k) and the viscosity (b) and, such that 

 
𝐹 ൌ  𝐹௘௟௔௦௧௜௖ ൅ 𝐹௩௜௦௖௢௦௜௧௬ ൌ  െ𝑘𝑢ሺ𝑡ሻ െ 𝑏𝑢ሶ ሺ𝑡ሻ, 

 
where u(t) is the displacement, and 𝑢ሶ (t) is the velocity as a function of time t. 

The balance between the elastic forces, governed by the elastic constant k, and the viscous forces, depending on 
the viscosity coefficient b, determines the regime of oscillation that can be observed for every mass-point. In real 
viscous materials flows the viscous forces opposing deformation overcome by large the elastic forces. Typically, the 
Young modulus for these materials ranges from 107 to 109 N/m2 [3] and the friction coefficient is of the order of 105 
to 109 Pa.s [4]. Thus, the approach to these kinds of materials as a set of coupled oscillators is better described by 
considering it in an overdamping regime [5]. 

 

CASE STUDY 

In this paper we present some tests made to the model concerning only the first step in order to verify its consistency 
and the convergence of the model considering it as a set of coupled oscillators. The ultimate test was to reduce the 
set of mass-points to only two, connected by a spring of stiffness k, either with or without damping driven by the 
viscosity coefficient b, related to the Stokes friction. 

In the set of 16 mass-points depicted in Fig. 1 the average distance between neighboring points, both in X and Y 
directions, is slightly randomly distorted from a perfect square geometry. This is the relaxed starting geometry. 

The application of a large displacement to some of the 16 mass-points, of the order of 1% relatively to the 
separation between mass-points (for the purpose of this study only), leads to oscillations of all points, as shown in 
Fig. 2 for one single mass. 
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FIGURE 2. The displacement along the X direction of one of the 16 mass-points as a function of time without friction (solid 
line); with moderate damping b/k=0.1 (dotted line); and for an overdamped regime when b/k=1 (dashed line). 

 
In particular, the selected mass-point has: (i) a time-modulated oscillatory motion when there is no damping 

(b=0) (solid line); (ii) a weak damping when b/k=0.1 (dotted line); (iii) a heavily damped movement for b/k=1 
(dashed line). Similar results are obtained for every other particle in any direction X or Y. 

In Fig. 3 it is shown the acceleration along the X direction for the same ratios b/k of the same particle.  
 

 

FIGURE 3. The acceleration along the X direction of one of the 16 mass-points as a function of time without friction (solid line); 
with moderate damping b/k=0.1 (dotted line); and for an overdamped regime when b/k=1 (dashed line). 

 
The comparison of the plots in Fig. 2 and Fig.3 also shows a phase difference of π between position and 

acceleration, as is expected for a harmonic oscillator, even under moderate damping. 
 
Reducing to a set of two mass-points, a pure oscillatory motion can be observed when b=0, which then turns to 

an exponential amplitude reduction, for a damping regime with b/k=0.1 (Fig. 4). 
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FIGURE 4. The displacement (dotted line) and the acceleration (solid line) along the X direction of one mass-point as a function 
of time for b/k=0.1. 

 

CONCLUSIONS AND FUTURE WORK 

The approach of a continuous mass system by a discrete set of point masses behaving as coupled oscillators seems to 
be reasonable and the reduction to a single pair of masses reproduces a harmonic oscillator. On the other hand, the 
extension to an arbitrarily large number of points is trivial.  

The results presented are for an homogeneous material, but the model is conceived so to deal with different 
materials, e.g. different parameter such as volumic mass, elasticity and viscosity, thus allowing to build up layered 
structures. 

This model has been working for only one step of external applied forces. The next evolution will make it work 
on a series of steps, for which the formulation as a Quadratic Eigenvalue Problem (QEP) [6,7] is to be explored in 
order to implement a feasible, robust and time saving algorithm able to process a system of thousands of particles. 
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