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Abstract

We de�ne a multivariate medial correlation coe�cient that extends the proba-

bilistic interpretation and properties of Blomqvist's β coe�cient, incorporates mul-

tivariate marginal dependencies and it preserves a partial ordering stronger than

concordance relation. We illustrate the results in some models and provide an ap-

plication on real datasets.
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1 Introduction

Let us consider that X = (X1, X2) is a real random vector, over the probability

space (Ω,A, P ), with continuous marginal distribution functions FXi , i = 1, 2, and

let (U1, U2) represent the corresponding uniformized vector, that is, Ui = FXi(Xi),

i = 1, 2.

The medial correlation coe�cient of (X1, X2), which we will represent by β(X1, X2)

or β(X), is de�ned by

β(X1, X2) = P

((
U1 −

1

2

)(
U2 −

1

2

)
> 0

)
− P

((
U1 −

1

2

)(
U2 −

1

2

)
< 0

)
. (1)

The β coe�cient introduced by Blomqvist ([1]), has its value in [−1, 1] and

compares the propensity for the margins of (X1, X2) to take both values above or

both values below their respective medians, with the propensity for the occurrence

of the contrary event.

Since

β(X1, X2) = 2

(
P

(
U1 >

1

2
, U2 >

1

2

)
+ P

(
U1 <

1

2
, U2 <

1

2

))
− 1, (2)

and

β(X1, X2) = 4P

(
U1 <

1

2
, U2 <

1

2

)
− 1, (3)

if CX(u1, u2) and ĈX(u1, u2), (u1, u2) ∈ [0, 1]2, represent the copula and the survival

copula of X ( Nelsen [8]), respectively, we can say that

β(X1, X2) = 2

(
CX

(
1

2
,
1

2

)
+ ĈX

(
1

2
,
1

2

))
− 1, (4)

and

β(X1, X2) = 4CX

(
1

2
,
1

2

)
− 1. (5)

The bivariate medial correlation coe�cient β(X1, X2), which can also be denoted

by β (CX), enables to compare CX(u1, u2) on QL ∪ QU =
[
0, 1

2

]2 ∪ ]
1
2 , 1
]2

with

CX(u1, u2) on [0, 1]2 \ (QL ∪QU ) or to compare CX(u1, u2) on QL =
[
0, 1

2

]2
with
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CX(u1, u2) on [0, 1]2 \QL.

The medial correlation coe�cient can be related to other measures of global

dependence in (X1, X2), or in CX, such as Spearman's ρ or Kendall's τ ( Nelsen [8],

Joe [3], Lebedev [6] and references therein).

Two bivariate vectors X and Y, or their copulas, can be partially ordered by

punctually comparing their copulas. We say that X is less concordant than Y, and

we write for thatX≺cY, if CX(u1, u2) ≤ CY(u1, u2), (u1, u2) ∈ [0, 1]2, or equivalent,

if ĈX(u1, u2) ≤ ĈY(u1, u2), (u1, u2) ∈ [0, 1]2 (Nelsen [8]).

Thus, from the representations (4) or (5), we verify that

if X≺cY then β(X) ≤ β(Y). (6)

In addition to the increasing with concordance ordering, the bivariate medial cor-

relation coe�cient β satis�es other properties that shape the de�nition of measure

of concordance according to Scarsini ([9]).

Considering the countermonotonicity, independence and comonotonicity copu-

las, respectively, CW (u1, u2) = (u1+u2−1)∨0, CΠ(u1, u2) = u1u2 and CM (u1, u2) =

u1 ∧ u2, (u1, u2) ∈ [0, 1]2, we have CW ≺c CX ≺c CM , β(CW ) = −1, β(CΠ) = 0,

β(CM ) = 1 and we can also represent β(X1, X2) by

β(X1, X2) = 2

(
CX

(
1

2
,
1

2

)
− CΠ

(
1

2
,
1

2

)
+ ĈX

(
1

2
,
1

2

)
− ĈΠ

(
1

2
,
1

2

))
. (7)

For a random vector X = (X1, ..., Xd) with dimension d > 2, if we think about

generalizing (1) to P

(
d∏
i=1

(
Ui −

1

2

)
> 0

)
− P

(
d∏
i=1

(
Ui −

1

2

)
< 0

)
we de�nitely

loose:

(i) interpretation as a measure of propensity for all margins to exceed their respective

medians or all margins to be below their medians, and

(ii) information about the behaviour of CX on Qk =

d∏
j=1

Ij , k = 1, ..., d − 1, where

Ij =
[
0, 1

2

]
for k or d− k values of j and Ij =

]
1
2 , 1
]
for the others.

On the other hand, any generalization of β in the multivariate context must preserve

at least the property (i) and also verify

(iii) β(CΠ) = 0 and β(CM ) = 1.

The proposals of Nelsen ([7]), Úbeda-Flores ([13]) and Schmid and Schmidt ([10])
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manage to keep (i) and (iii) above.

Starting from the multivariate version of (5), 4CX(1
2 , ...,

1
2)− 1, rescaled by con-

sidering the quotient between its distance to the corresponding value for CΠ and

the maximum value of that distance,

β′(X1, ..., Xd) =
4CX

(
1
2 , ...,

1
2

)
− 1−

(
4
(

1
2

)d − 1
)

4CM
(

1
2 , ...,

1
2

)
− 1−

(
4
(

1
2

)d − 1
)

=
2dCX

(
1
2 , ...,

1
2

)
− 1

2d−1 − 1
,

(8)

we �nd Nelsen's generalization ([7]).

Úbeda-Flores ([13]) proposes the extension of (4) in

2
(
CX

(
1
2 , ...,

1
2

)
+ ĈX

(
1
2 , ...,

1
2

))
− 1, (9)

also rescaled by considering the quotient between its distance to the corresponding

value for CΠ and the maximum value of that distance. In this way, we obtain the

following generalization of β, which we will denote by β∗ and where 1
2 represents

the vector of suitable size and coordinates all equal to 1
2 :

β∗(X1, ..., Xd) =
2
(
CX

(
1
2 , ...,

1
2

)
+ ĈX

(
1
2 , ...,

1
2

))
− 1−

(
1

2d−2 − 1
)

2
(
CM

(
1
2 , ...,

1
2

)
+ ĈM

(
1
2 , ...,

1
2

))
− 1−

(
1

2d−2 − 1
)

=
2d−1

(
CX

(
1
2

)
+ ĈX

(
1
2

))
− 1

2d−1 − 1
,

(10)

which coincides with (8) when C = Ĉ.

Reasoning in an equivalent way about (7), Schmid and Schmidt ([10]) propose

2
(
CX

(
1
2

)
− CΠ

(
1
2

)
+ ĈX

(
1
2

)
− ĈΠ

(
1
2

))
2
(
CM

(
1
2

)
− CΠ

(
1
2

)
+ ĈM

(
1
2

)
− ĈΠ

(
1
2

)) =
2d−1

(
CX

(
1
2

)
+ ĈX

(
1
2

))
− 1

2d−1 − 1
,

�nding again the expression of Úbeda-Flores ([13]). In addition to this extension,

Schmid and Schmidt ([10]) make a detailed study of a function resulting from a

rescaling of CX(u) + ĈX(v), u,v ∈ [0, 1]d, putting emphasis on the tail regions of
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the copula which determine the degree of large co-movements between the marginal

random variables.

In order to keep (i), (ii) and (iii), we have Joe's sophisticated proposal ([4]) with

an axiomatic on linear combinations of Cσi1σi2 ...σikX

(
1

2

)
and Ĉσi1σi2 ...σikX

(
1

2

)
,

1 ≤ i1 < ... < iK ≤ d, k = [d+1
2 ], ..., d, where σjX denotes the j-th re�ection of X,

that is, the vector (X1, ...Xj−1,−Xj , Xj+1, ..., Xd). Joe's axiomatic de�nition allows

for various extensions of β, including those mentioned above and the arithmetic

mean of β(Xi, Xj), 1 ≤ i < j ≤ d.

The extensions referred for β increase with the multivariate concordance (Joe

[5]). We say that X = (X1, ..., Xd) is less concordant than Y = (Y1, ..., Yd), or CX

is less concordant than CY, and in this case we write X ≺c Y, when we have

CX(u) ≤ CY(u) and ĈX(u) ≤ ĈY(u), (11)

for u ∈ [0,1]d. In the case of d = 2 the two conditions are equivalent, as we have

already mentioned.

The above proposed generalizations start from extensions of the representations

of bivariate β in terms of copulas, considering the corresponding multivariate cop-

ulas.

The proposal that we will make, in the next section, for a multivariate correla-

tion coe�cient β(X) starts from a generalization of the probabilistic interpretation

of the de�nition (1) and satis�es almost all the desirable properties for a multi-

variate concordance measure (Taylor [11],[12]). It preserves a multivariate partial

order relation that we introduce in section 4. We present several representations for

β(X), we demonstrate the main properties, relate it to the previously mentioned

coe�cients and illustrate with examples and applications.
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2 Motivation for the multivariate medial corre-

lation coe�cient

For d ≥ 2, D = {1, ..., d}, I ⊂ D, X = (X1, ..., Xd) with continuous marginal

distributions and U = (U1, ..., Ud) = (FX1(X1), ..., FXd(Xd)), we de�ne

M(I) =
∨
i∈I

Ui and W (I) =
∧
i∈I

Ui, (12)

where ∨ and ∧ are the notations for the maximum and minimum operators, respec-

tively.

When further clari�cation is needed, we write MX(I) and WX(I). Inequalities

between vectors are understood by corresponding inequalities between homologous

coordinates. By XI we understand the subvector of X with margins in I and

P(D) represents the family of subsets of D. When |I| = 1, where |A| denotes the

cardinality of A, we consider CXI

(
1
2

)
= ĈXI

(
1
2

)
= 1

2 .

Let's �x disjoint I and J in P(D). The propensity for margins ofXI and margins

of XJ simultaneously taking values below the respective medians or simultaneously

values above the respective medians is evaluated by CXI∪J (12) + ĈXI∪J (12), that

is, the probability of UI∪J taking values in
[
0, 1

2

]|I∪J | ∪ ]1
2 , 1
]|I∪J |

. If we want to

compare this probability with the probability of UI∪J taking values in [0, 1]|I∪J | \([
0, 1

2

]|I∪J | ∪ ]1
2 , 1
]|I∪J |)

, we can do it brie�y by calculating the coe�cients

β (M(I),M(J)) :=

:= P
((
M(I)− 1

2

) (
M(J)− 1

2

)
> 0
)
− P

((
M(I)− 1

2

) (
M(J)− 1

2

)
< 0
)

= 2
(
P
(
M(I) > 1

2 ,M(J) > 1
2

)
+ P

(
M(I) < 1

2 ,M(J) < 1
2

))
− 1

(13)

and

β(W (I),W (J)) :=

:= P
((
W (I)− 1

2

) (
W (J)− 1

2

)
> 0
)
− P

((
W (I)− 1

2

) (
W (J)− 1

2

)
< 0
)

= 2
(
P
(
W (I) > 1

2 ,W (J) > 1
2

)
+ P

(
W (I) < 1

2 ,W (J) < 1
2

))
− 1.

(14)
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Let us make some comments about

βI,J(X) :=
β(M(I),M(J)) + β(W (I),W (J))

2
. (15)

(i) The expressions (13), (14) and (15) have β(Xi, Xj) as a particular case, if we

take I = {i} and J = {j}.

If I = D, J = ∅ and we consider that M(∅) = −∞ and W (∅) = +∞, then (15) is

equal to CX

(
1
2

)
+ ĈX

(
1
2

)
−1, which can be rescaled in order to obtain the proposal

of Úbeda-Flores ([13]) and Schmid and Schmidt ([10]).

(ii) Despite the random variables M(I) and W (I), I ⊂ D, may fail to be uni-

formly distributed and therefore their medians may fail to be equal 1/2, we can say

from (13) and (14) that the value of βI,J(X) encompasses the behavior of all the

margins of XI and all the margins of XJ in relation to their medians, indicating a

multivariate medial information about X.

(iii) Since βI,J(X) is de�ned as an average of bivariate coe�cients, it can be

estimated by the methods available for the bivariate context (Blomqvist [1], Schmid

and Schmidt [10] and references therein).

(iv) If CX = CM we have βI,J(X) = 1 and if CX = CΠ then βI,J(X) =

22−|I|−|J | − 21−|I| − 21−|J | + 1 = (21−|I| − 1)(21−|J | − 1). This value becomes null if

and only if |I| = 1 or |J | = 1.

(v) A linear combination of β{i},{j}(X), 1 ≤ i < j ≤ d, takes into account the

bivariate dependencies in X, but if we consider some function of the coe�cients

βI,J(X), with I, J ∈ F , for some family F ⊂ P(D) containing sets with more than

one element, then we will be incorporating multivariate marginal dependencies.

The de�nition we propose, in the next section, for a multivariate medial correla-

tion coe�cient, will be based on the bivariate coe�cients β{i},D\{i}(X), 1 ≤ i ≤ d,

incorporating the dependency between each margin Xi and XD\{i}, 1 ≤ i ≤ d.

Our proposal contains, as a particular case, the Blomqvist bivariate coe�cient,

extends the probabilistic interpretation (1), takes values in [−1, 1], becoming null

naturally when CX = CΠ and taking the maximum value when CX = CM . The

rest of the properties we proved allow us to consider it a measure for a multivariate

concordance relation stronger than concordance order.
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3 A multivariate medial correlation coe�cient

We will propose to evaluate the multivariate medial correlation by comparing the

propensity for all margins of X simultaneously taking values below the respective

medians or all margins to exceed their respective medians with the propensity of

each margin Xi to contradicts this behavior. That is, we will take into account the

coe�cients βI,J with the particular choice of I = {i} and J = D \ {i}, i = 1, ..., d.

De�nition 3.1. The multivariate medial correlation coe�cient of the vector X with

dimension d, or of its copula CX, is de�ned as

β(X) =
1

d

d∑
i=1

β{i},D\{i}(X), (16)

where

β{i},D\{i}(X) =
β (Ui,M(D \ {i})) + β (Ui,W (D \ {i}))

2
, i = 1, ..., d. (17)

We remark that, from comment (i), it can be concluded that β(X) coincides

with the Blomqvist coe�cient when d = 2.

Below we present some representations of β(X) that will be useful to clarify their

properties and interpretation.

The following

β{i},D\{i}(X) = 2
(
P
(
Ui <

1
2 ,M (D \ {i}) < 1

2

)
+ P

(
Ui >

1
2 ,W (D \ {i}) > 1

2

))
−P

(
M (D \ {i}) < 1

2)− P (W (D \ {i}) > 1
2

)
,

(18)

holds, generalizing (2). We also have

β{i},D\{i}(X) = 2
(
CX

(
1
2

)
+ ĈX

(
1
2

))
− CXD\{i}

(
1
2

)
− ĈXD\{i}

(
1
2

)
, (19)

generalizing (4). From the previous relation, it follows that

β{i},D\{i}(X) = CX

(
1
2

)
+ ĈX

(
1
2

)
− CσiX

(
1
2

)
− ĈσiX

(
1
2

)
, (20)

where σiX is the i-th re�ection ofX, that is, σiX = (X1, ...., Xi−1,−Xi, Xi+1, ..., Xd)

and therefore CσiX(12) = C(U1,...,Ui−1,1−Ui,Ui+1,....,Ud)(
1
2). We then obtain the follow-
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ing ways of representing the coe�cient β.

Proposition 3.1. The multivariate medial correlation coe�cient of the vector X

with dimension d, admits the following representations:

β(X) = 2
(
P
(
U ≤ 1

2

)
+ P

(
U > 1

2

))
−1

d

d∑
i=1

(
P

(
UD\{i} ≤

1

2

)
+ P

(
UD\{i} >

1

2

))
,

(21)

β(X) = 2

(
CX

(
1

2

)
+ ĈX

(
1

2

))
− 1

d

d∑
i=1

(
CXD\{i}

(
1

2

)
+ ĈXD\{i}

(
1

2

))
, (22)

β(X) = CX

(
1

2

)
+ ĈX

(
1

2

)
− 1

d

d∑
i=1

(
CσiX

(
1

2

)
+ ĈσiX

(
1

2

))
. (23)

The relation (23) rewritten in the form

β(X) =
1

d

d∑
i=1

(
CX

(
1

2

)
− CσiX

(
1

2

)
+ ĈX

(
1

2

)
− ĈσiX

(
1

2

))
, (24)

reinforces the idea that β(X) compares the propensity of each margin Xi to agree

with the remaining margins together, XD\{i}, and the propensity to disagree with

them, when they are all above or all below their respective medians.

The above representations for β show that by considering β as a mapping on copulas

it is linear with respect to convex combinations.

In the following, we establish relationships between β(X) and the generalizations

referred to in the introduction. By applying the de�nition (10) of β∗, we conclude

from the representation (23) that

β(X) =
(2d−1 − 1)β∗(X) + 1

2d−1
− 1

d

d∑
i=1

(2d−1 − 1)β∗(σiX) + 1

2d−1

=
(2d−1 − 1)

2d−1

(
β∗(X)− 1

d

d∑
i=1

β∗(σiX)

)
.

(25)
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By de�ning N̄ =
d∑
i=1

1{Ui> 1
2
}, the representation (23) of β leads to

β(X) = P (N̄ = 0) + P (N̄ = d)− 1

d

(
P (N̄ = 1) + P (N̄ = d− 1)

)
. (26)

That �ts Joe's representation (3.1.1) ([4]) with wd = 1, wd−1 = −1
d and the remain-

ing weights wi equal to zero.

Note that in the 3-dimensional case, the multivariate medial correlation coe�-

cient β satis�es

β(X) = 4
3CX

(
1
2

)
+ 4

3 ĈX

(
1
2

)
− 1

3 = β∗(X) =
β(X1, X2) + β(X1, X3) + β(X2, X3)

3
.

Thus, in the 3-dimensional case β equals β∗ and hence allows a di�erent view on

Blomqvist's β discussed in Úbeda-Flores ([13]).

We refer the properties of β(X) in the next section and end this one with three

examples.

Example 3.1. Consider CX(u1, ..., u4) =
(
uδ1 ∧ u2

)
u1−δ

1 (uα3 ∧ u4)u1−α
3 , with 0 ≤

δ, α ≤ 1, that is, CX is the product of two Marshall-Olkin survival copulas ([5]). It

holds that

CX

(
1

2

)
= ĈX

(
1

2

)
=

(
1

2

)4−δ−α
,

CXD\{1}

(
1

2

)
= ĈXD\{1}

(
1

2

)
= CXD\{2}

(
1

2

)
= ĈXD\{2}

(
1

2

)
=

(
1

2

)3−α
,

CXD\{3}

(
1

2

)
= ĈXD\{3}

(
1

2

)
= CXD\{4}

(
1

2

)
= ĈXD\{4}

(
1

2

)
=

(
1

2

)3−δ
.

Therefore,

β(X) = 2δ+α−2 − 2α−3 − 2δ−3.

In the case of δ = α = 0 the result agrees with what we expect, since in this case the

margins of X are independent. The expression obtained can be related to β(X1, X2)

10



and β(X3, X4) through

β(X) = 2× 2δ+α−3 − 2α−3 − 2δ−3 =
(
2δ+α−3 − 2α−3

)
+
(
2δ+α−3 − 2δ−3

)
= 2α−3

(
2δ − 1

)
+ 2δ−3 (2α − 1)

= 2α−3β(X1, X2) + 2δ−3β(X3, X4),

We verify that β(X) increases with δ and α, generalizing what we already knew to

β(X1, X2) and β(X3, X4). Therefore β(X) increases with the concordance of X.

Example 3.2. Let us consider that X has a Gumbel copula

CX(u1, ..., ud) = exp

−
(

d∑
i=1

(− lnui)
1/δ

)δ , (27)

with 0 < δ ≤ 1. For d = 3 we obtain β(X) = 22−2δ − 1, coincident with β(Xi, Xj),

1 ≤ i < j ≤ 3, as expected, since in this case β(X) = β∗(X).

With simple calculations we can also conclude that

β(−X1, X2, X3) =
−22−2δ + 1

3

and that

β(X1, X2, X3) + β(−X1, X2, X3) =
2

2 + 1
β(X2, X3),

which corresponds to the veri�cation in this example of a transition property that

we present in the next section. Before we present the general expression of the

multivariate correlation coe�cient for a Gumbel distribution of dimension d ≥ 1,

let's also calculate it speci�cally for d = 4.

We have

CX

(
1
2

)
= 2−4δ , ĈX

(
1
2

)
= −1 + 6× 2−2δ − 4× 2−3δ + 2−4δ ,

and

CXD\{i}

(
1
2

)
= 2−3δ , ĈXD\{i}

(
1
2

)
= 3× 2−2δ − 2−3δ − 2−1, for i = 1, 2, 3, 4.

11



Then

β(X1, X2, X3, X4) = 4× 2−4δ − 8× 2−3δ + 9× 2−2δ − 3

2
.

These results for d = 2, 3, 4, calculated directly, can also be obtained from the fol-

lowing general result.

If d is even, we have

β(X) =
1− d

2
+

d−2∑
k=1

((
d−1
k

)
+
(
d
k+1

))
(−1)k+12−(k+1)δ +4×2−d

δ
+(−1)d−12−(d−1)δ ,

(considering that a sum with the initial value of the counter greater than the �nal

one is null) and if d is odd, we have

β(X) =
1− d

2
+

d−2∑
k=1

((
d−1
k

)
+
(
d
k+1

))
(−1)k+12−(k+1)δ − 2−(d−1)δ .

Example 3.3. Consider X of dimension d ≥ 3 such that U = (U, 1−U,U3, ..., Ud).

Then

β(X) = 2× (0 + 0)

−1

d

(
CXD\{1}

(
1

2

)
+ ĈXD\{1}

(
1

2

)
+ CXD\{2}

(
1

2

)
+ ĈXD\{2}

(
1

2

)
+ 0

)

= −1

d

(
CXD\{1}

(
1

2

)
+ CXD\{2}

(
1

2

)
+ ĈXD\{1}

(
1

2

)
+ ĈXD\{2}

(
1

2

))

= −1

d

(
CXD\{1,2}

(
1

2

)
+ ĈXD\{1,2}

(
1

2

))
.

It follows that, in this example we have β(X) ≥ −1
d and if, in particular (U3, ..., Ud) =

(V, ..., V ), then β(X) = −1
d .
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4 Properties of the multivariate medial correla-

tion coe�cient

Since the coe�cients β{i},D\{i}(X), i = 1, ..., d, take values in [−1, 1], the proposed

coe�cient takes values in the same range, being null for CX = CΠ. The maximum

value is attainable when CX = CM = 1.

The value of β(X) may not increase with the concordance of X. We can verify

this with an example proposed by an anonymous referee.

Consider X and Y 4-dimensional vetors with copulas, respectively,

CX (u1, u2, u3, u4) = CW (u1, u2)CΠ(u3, u4)

and

CY (u1, u2, u3, u4) = CW (u1, u2)CM (u3, u4).

We have X≺cY and however β(X) = −1
8 > −

1
4 = β(Y).

If X≺cY and, for each i ∈ D, CσiY
(
1
2

)
≤ CσiX

(
1
2

)
ĈσiY

(
1
2

)
≤ ĈσiX

(
1
2

)
,

(28)

then, from proposition 3.1, (23), we can conclude that β(X) ≤ β(Y).

The veri�cation of condition (28) together with X≺cY, which can be illustrated

with example 3.2, tells us that, in addition to the propensity for all margins to

exceed their respective medians or all margins to be below their medians to be

higher in Y, also the propensity for each margin to disagree with the remaining, in

this sense, is lower in Y, reinforcing the relation X≺cY.

When we have X≺cY and (28) we denote this type of relation by X≺≺Y.

The relation ≺≺ is a point-wise partial ordering on the set of d-dimensional

copulas that implies the concordance relation. For d = 2 both relations coincide.

13



If CY = CM then we have X≺cY, CσiY
(
1
2

)
= 0 ≤ CσiX

(
1
2

)
and ĈσiY

(
1
2

)
= 0 ≤

ĈσiX
(
1
2

)
. Therefore CM is the maximal copula.

In particular copula classes, the relation ≺≺ can induce a total order, as for example

in the family of 3-dimensional copulas of example 3.2. In this class we can also see,

from (27), that CΠ is the least element and ≺≺ is a well order.

A weaker relation, although not so informative, could be considered in this work by

replacing (28) with

∑
i∈D

(
CσiY

(
1

2

)
+ ĈσiY

(
1

2

))
≤
∑
i∈D

(
CσiX

(
1

2

)
+ ĈσiX

(
1

2

))
.

The above properties on the values of the multivariate medial correlation coef-

�cient are arranged in the following proposition.

Proposition 4.1. The values of the multivariate medial correlation coe�cient for

vectors of dimension d satisfy the following properties:

(i) If X≺≺Y then β(X) ≤ β(Y).

(ii) β(X) ∈ [−1, 1].

(iii) If CX = CΠ then β(X) = 0.

(iv) If CX = CM then β(X) = 1.

Proof. Representation (23) leads to (i) and representation (21) leads to (ii).

Relations (iii) and (iv) may be obtained, for example, from (24).

In the proposition below we present the properties of continuity, permutation

invariance, duality, re�ection symmetry and transition, which together with (i)-

(iii) of the previous proposition and following Taylor [11], [12], justi�es calling the

proposed coe�cient a measure for the relation ≺≺.

Proposition 4.2. The values of the multivariate medial correlation coe�cient for

vectors of dimension d satisfy the following properties:

(i) If {CXn}n≥1 converges uniformly to CX, n→ +∞, then lim
n→+∞

β(Xn) = β(X).

(ii) The value of β(X) is invariant for permutations of the margins of X.

(iii) β(X) = β(−X).

(iv)
∑

(ε1,...,εd)∈{−1,1}d
β(ε1X1, ..., εdXd) = 0.

14



(v) IfY is a (d+1)-dimensional random vector such that CY(u1, ..., ui−1, 1, ui+1, ..., ud) =

CX(u1, ..., ui−1, ui+1, ..., ud) then
d

d+ 1
β(X) = β(Y) + β(σiY).

Proof. The statement of (i) can be obtained, for example, from (22). From the

representation (26) we can conclude (ii). The representation (23) leads to (iii) and

(iv). Finally to obtain (v), let us note that, by (23), we have

β(Y) + β(σiY)

= CY

(
1
2

)
+ CσiY

(
1
2

)
+ ĈY

(
1
2

)
+ ĈσiY

(
1
2

)
− 1

d+ 1

(
CσiY

(
1

2

)
+ ĈσiY

(
1

2

)
+ CσiσiY

(
1

2

)
+ ĈσiσiY

(
1

2

))

− 1

d+ 1

d+1∑
j=1,j 6=i

(
CσjY

(
1

2

)
+ CσjσiY

(
1

2

)
+ ĈσjY

(
1

2

)
+ ĈσjσiY

(
1

2

))

= CX

(
1
2

)
+ ĈX

(
1
2

)
− 1

d+ 1

(
CX

(
1

2

)
+ ĈX

(
1

2

))

− 1

d+ 1

d∑
j=1

(
CσjX

(
1

2

)
+ ĈσjX

(
1

2

))

=
d

d+ 1

(
CX

(
1

2

)
+ ĈX

(
1

2

))
− d

d+ 1

1

d

d∑
j=1

(
CσjX

(
1

2

)
+ ĈσjX

(
1

2

))
,

that matches
d

d+ 1
β(X), applying again (23).

5 Application to real data

The multivariate medial correlation coe�cient in (16) can be estimated through the

bivariate coe�cients in (17). Here we consider the respective empirical counterparts.

This estimation procedure has already been addressed in literature (Blomqvist [1],

Schmid and Schmidt [10] and references therein).

Let (X1,j , ..., Xd,j), j = 1, ..., n, be a random sample generated from (X1, ..., Xd).

Consider

Ûi,j = F̂Xi(Xi,j) =
1

n+ 1

n∑
l=1

1{Xi,l≤Xi,j}, i = 1, ..., d, j = 1, ..., n ,
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as well as, M̂j (D \ {i}) =
∨
r∈D\{i} Ûr,j and Ŵj (D \ {i}) =

∧
r∈D\{i} Ûr,j . Based

on (16) we de�ne

β̂ =
1

d

d∑
i=1

β̂{i},D\{i}, (29)

where, according to (17), we take

β̂{i},D\{i} =
β̂
(
Ûi, M̂ (D \ {i})

)
+ β̂

(
Ûi, Ŵ (D \ {i})

)
2

,

with

β̂
(
Ûi, M̂ (D \ {i})

)
= 2

 1

n

n∑
j=1

(
1{Ûi,j≤1/2}1{M̂j(D\{i})≤1/2} + 1{Ûi,j>1/2}1{M̂j(D\{i})>1/2}

)− 1

and

β̂
(
Ûi, Ŵ (D \ {i})

)
= 2

 1

n

n∑
j=1

(
1{Ûi,j≤1/2}1{Ŵj(D\{i})≤1/2} + 1{Ûi,j>1/2}1{Ŵj(D\{i})>1/2}

)− 1.

We are going to apply the multivariate medial correlation coe�cient estimator

β̂ in (29) on two datasets.

First, we consider the main GDP aggregates per capita in the European Union

(EU), Germany and Portugal, available in https://ec.europa.eu/eurostat/data/

database. We consider annual data from 2008 to 2019. The respective scatterplots

are in Figure 1. Germany and EU seem the most correlated. The estimates of the

bivariate coe�cients β{i},D\{i} and of the multivariate medial correlation coe�cient

β are in Table 1. The propensity of each country's annual GNP to agree with the

remaining when compared to the propensity to disagree with them, in the sense of

being all above or all below their respective medians, is estimated at 0.778. We can

see that the bivariate medial correlation between Portugal and the remaining EU

and Germany presents the lowest contribution to the estimated multivariate medial

correlation.
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Figure 1: Annual main GDP aggregates per capita in the European Union versus Ger-
many (left), European Union versus Portugal (center) and Germany versus Portugal
(right).

Table 1: Estimates of the bivariate coe�cients β{i},D\{i} and of the multivariate medial
correlation coe�cient β of the annual main GDP aggregates per capita in the European
Union, Germany and Portugal, from 2008 to 2019.

{i} D \ {i} β̂{i},D\{i} β̂
{EU} {Germany, Portugal} 0.833

{Germany} {EU, Portugal} 0.833 0.778
{Portugal} {EU, Germany} 0.667

Now we consider a dataset related to white variants of the Portuguese �Vinho

Verde" wine, available in http://archive.ics.uci.edu/ml/datasets/Wine+Quality.

See also Cortez et al. ([2]). Our analysis focuses on variables residual sugar, total

sulfur dioxide, density and alcohol, whose respective scatterplots are plotted in Fig-

ure 2. It is visible some negative association with variable alcohol. The estimates of

the bivariate coe�cients β{i},D\{i} and of the multivariate medial correlation coef-

�cient β (Table 2) re�ect this lack of concordance, with a larger negative bivariate

coe�cient between alcohol and the remaining variables. Indeed, the propensity

for all variables simultaneously taking values below the respective medians or all

of them to exceed their respective medians in comparison with the propensity of

each variable to contradict this behavior is estimated at −0.063, i.e., an almost null

multivariate medial correlation coe�cient.
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Figure 2: Scatterplots of the variables within the wine dataset: residual sugar versus
density (top-left), residual sugar versus alcohol (top-center) and density versus alcohol

(top-right); density versus total sulfur dioxide (bottom-left), residual sugar versus total

sulfur dioxide (bottom-center) and total sulfur dioxide versus alcohol (bottom-right).

Table 2: Estimates of the bivariate coe�cients β{i},D\{i} and of the multivariate medial
correlation coe�cient β for the variables residual sugar, total sulfur dioxide, density and
alcohol within the wine dataset.

{i} D \ {i} β̂{i},D\{i} β̂
{residual sugar} {total sulfur dioxide, density, alcohol} 0.088 -0.063

{total sulfur dioxide} {residual sugar, density, alcohol} 0.027
{density} {residual sugar, total sulfur dioxide, alcohol} 0.046
{alcohol} {residual sugar, total sulfur dioxide, density} -0.415

6 Conclusion

The multivariate medial correlation coe�cient that we propose extends the proba-

bilistic interpretation and properties of the Blomqvist β coe�cient, it is calculable

from the copula, incorporates the dependence between each margin of the vector

and the vector of the remaining margins and is a measure of a strong mode of

multivariate concordance.
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The estimation is addressed based on bivariate inferential methodology existing

in literature and we illustrate its application using real data.

The adopted approach envisages the possibility of considering other functions of

bivariate coe�cients involving extremes of subvectors of X, as well as the possibility

of adapting the method to generalize other coe�cients of bivariate dependence.
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