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Bioprocessamento de macroalgas para a produção de compostos bioativos com aplicações alimentares 

RESUMO 

A indústria de macroalgas atual baseia-se na produção de um único composto, como alginatos, agar ou 

corantes, sendo que os subprodutos são tratados como resíduo. Assim, esta indústria enfrenta o desafio 

de desenvolver processos que permitam obter vários produtos com atividade biológica. 

A fermentação em estado sólido (SSF) é um processo biotecnológico de baixo custo que pode produzir 

compostos bioativos, como enzimas e compostos antioxidantes. 

As macroalgas verdes como a Ulva rigida têm potencial para ser usadas como ingrediente em 

aquacultura. No entanto, estas são difíceis de digerir para muitas espécies de peixe. Neste sentido, a 

SSF pode alterar a estrutura de polissacarídeos para facilitar a digestão das macroalgas e pode ainda 

produzir uma grande variedade de produtos com aplicações alimentares como proteínas, enzimas e 

compostos antioxidantes. 

O principal objetivo deste projeto é o processamento sequencial da U. rigida por SSF e hidrólise 

enzimática (EH) para produzir produtos de valor acrescentado e aumentar o valor nutricional das 

macroalgas, promovendo assim uma economia circular. O passo da hidrólise enzimática foi otimizado 

pelo desenho experimental Box-Behnken.  

Durante a SSF da U. rigida produziram-se celulases (40 ± 1 U/g) e xilanases (160 ± 4 U/g). Após a SSF, 

foi adicionado tampão para iniciar a EH que durou 72h. A variável que teve um maior efeito na libertação 

de compostos fenólicos, açúcares, atividade antioxidante e aumento da concentração de proteína foi a 

temperatura. A concentração máxima de compostos fenólicos e atividade antioxidante atingiu-se a uma 

temperatura intermédia (40°C), a conversão máxima de celulose a glucose e aumento da concentração 

de proteína atingiram-se à temperatura mais elevada (44°C). As condições ótimas da hidrólise enzimática 

para maximizar em conjunto as 4 variáveis foram 44°C, carga de sólido 30% w/v e pH 4,1. Nestas 

condições, atinge-se teoricamente 929 μM de equivalentes de Trolox/g, 1,56 mg de compostos fenólicos 

totais/g, 231,04 g de proteína/kg e 61% de conversão de celulose para glucose. Em todas as 

experiências, verificou-se uma diminuição da atividade da xilanase durante a hidrólise enzimática (72h), 

sendo que a redução foi menor nas experiências realizadas a menor temperatura (35°C). 

O bioprocessamento da U. rigida por SSF e EH permitiu a obtenção de compostos antioxidantes, açúcares 

livres que podem ser fermentados noutros produtos de valor acrescentado ou energia e um sólido final 

enriquecido em proteína. No futuro, devem ser realizadas experiências de modo a aplicar estes produtos 

na aquacultura. 

Palavras-chave: Bioprocessos; Fermentação em estado sólido; Hidrólise Enzimática; Macroalgas 
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Bioprocessing of macroalgae for bioactive compounds production with food and feed applications 

ABSTRACT 

The current seaweed industry is based on a single compound production, as alginates, carrageenan, 

agars, or colorants, being the remaining seaweed byproduct treated as waste. Thus, macroalgae industry 

faces the challenge of developing processes allowing to obtain multi-products with biological activities. 

Solid-state fermentation (SSF) is a low-cost biotechnology process that can produce bioactive compounds 

as enzymes and antioxidant compounds. 

Green macroalgae as Ulva rigida have potential to be used as ingredient in aquaculture. However, they 

are difficult to digest by many species of fish. In this sense, SSF can alter the structure of polysaccharides 

to facilitate digestion of macroalgae, and it can also produce a wide variety of valuable products for feed 

applications, such as proteins, enzymes, and antioxidant compounds.  

The main aim of this project is the sequential bioprocessing of U. rigida by SSF and enzymatic hydrolysis 

(EH) to produce value-added products and increase the nutritional value of macroalgae, promoting a 

circular economy. The EH stage was optimized by Box-Behnken experimental design.  

During SSF were produced cellulases (40 ± 1 U/g) and xylanases (160 ± 4 U/g). After SSF, it was added 

the buffer to carry out EH during 72h. The variable that had a higher effect on release of phenolic 

compounds, sugars, antioxidant activity and increase the concentration of protein was the temperature. 

Maximum concentration of phenolic compounds and antioxidant activity was achieved with intermediate 

temperature (40°C), the maximum conversion of cellulose to glucose and increase of protein 

concentration were achieved with the higher temperature (44°C). The optimal conditions of EH to 

maximize jointly the 4 variables were 44°C, load of solid 30% w/v and pH 4,1. In these conditions, they 

were predicted an antioxidant activity of 929 μM of Trolox equivalents/g, 1,56 mg of total phenolic 

compounds U/g, 23,.04 g of crude protein/kg and 61% cellulose conversion to glucose. In all experiments 

it was observed a decrease of xylanase activity during EH, the reduction was lower in experiments 

performed with the lowest temperature (35°C).  

The bioprocessing of U. rigida by SSF and EH allowed to obtain antioxidant compounds, free sugars that 

can be fermented to other value-added products or energy, and the final solid was enriched in protein. 

Future works should be performed to apply these products in aquaculture. 

Key Words: Bioprocess; Enzymatic Hydrolysis; Macroalgae; Solid-state fermentation 
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CONTEXT AND MOTIVATION 

Macroalgae are photosynthetic organisms and they are more efficient in this process than 

terrestrial plants. Also, macroalgae grow at fast rates and can reach large sizes, which, along with the 

capacity to generate and store carbon resources causes that macroalgae are beginning to be regarded 

as an inexpensive and interesting biomass to be used as a substrate in biorefinery processes. Although 

there is yet a lot that can be studied with these plants, macroalgae have the potential to be refined into 

fractions, that can be used for a wide range of interesting bioactive compounds, for biofuel production 

and chemicals. 

Solid-state fermentation (SSF) is an underexplored process, in the presence of macroalgae. This 

technology can process biomass into a spectrum of value-added products and allows to exploit all the raw 

material without producing wastes or producing less than is usually produced in submerged fermentation.  

Thus, SSF with macroalgae as a substrate can be considered a biorefinery process, that will allow 

to produce and to extract value-added compounds and to use the remainder fermented macroalgae as 

fish feed, developing a circular economy. 

 

AIMS 

The global objective of this master’s project is to bioprocess green macroalga (U. rigida) by 

sequential SSF and EH to produce value-added products as antioxidant phenolic compounds, release free 

sugars and increase the nutritional value of macroalgae to be used as fish feed in aquaculture, promoting 

a circular economy. It is intended to determine the optimal conditions of EH stage by Box-Behnken 

experimental design, evaluating different conditions to maximize the extraction of antioxidant compounds, 

free sugars and to increase protein content of macroalgae. 

 

 

 

 

 

 

 

 

 



 
 

xiv 
 

  



1 
 

1. INTRODUCTION 

1.1. Macroalgae 

Macroalgae - also called seaweeds - have great potential, however, only recently have they been 

attracting more attention from researchers. This is mainly due to a number of favorable characteristics, 

such as their large biomass yields, fast growth rates and low needs of freshwater and terrestrial land for 

cultivation (Kostas, White and Cook, 2017; Fernandes et al., 2019). These are chlorophyll containing 

organisms, which means that they can photosynthetically convert atmospheric carbon dioxide into a 

variety of metabolites and organic molecules (Sambusiti et al., 2015). In contrast with terrestrial plants, 

macroalgae have, in average, a much higher photosynthetic efficiency (between 6 and 8 % for macroalgae, 

but only from 1.8 to 2.2% for terrestrial plants) (Chen et al., 2015). Another advantage of macroalgae 

when compared to terrestrial plants is the low quantity of lignin they have (most of the times, lignin is 

absent), which dispenses the need for intensive pre-treatments prior to fermentation, meaning reduced 

costs and less energy spent (Trivedi et al., 2015).  

Furthermore, they can grow in a wide variety of environments, including fresh, salt, temperate 

and municipal wastewater (Masri et al., 2018) and they constitute approximately 50% of biomass on Earth 

(Barbot, Al-Ghaili and Benz, 2016). As such, macroalgae potentially represent a significant source of 

renewable energy and a primary source of natural products (Ross et al., 2008; de Almeida et al., 2011), 

which makes this an interesting organism to exploit in biorefinery processes. 

Their metabolism can differ accordingly to certain parameters, such as the water temperature, 

salinity, light, or available nutrients. This forces macroalgae to quick adaptions to new environmental 

conditions, which makes them produce a wide variety of secondary metabolites with biological activity 

(Rodrigues et al., 2015). Some of the compounds that macroalgae might synthetize are carotenoids, 

terpenoids, vitamins, saturated and polyunsaturated fatty acids, antioxidants and polysaccharides, such 

as agar (de Almeida et al., 2011). Their growth is influenced by the presence of dissolved nutrients in 

water, specifically, nitrogen, phosphorous and iron and their optimal growth temperature ranges from 

below 15°C (Ascophyllum spp. found in Northern hemisphere) to 25°C (Ulva pertusa, found in Japanese 

coastline) (Barbot, Al-Ghaili and Benz, 2016). 

When it comes to structure, macroalgae are simple multicellular organisms, with simple 

reproductive structures, and they do not have advanced structures such as the ones present in most 

terrestrial plants like roots, stems, leaves or vascular tissue. Instead, they have a blade that is leaf-like, a 

stipe that is stem-like and a holdfast that matches roots in terrestrial plants (de Almeida et al., 2011). 
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Some species reproduce asexually by means of vegetative growth, which means that new individuals will 

be genetically identical to their parent (Sudhakar et al., 2018). However, the life cycles of macroalgae are 

diverse and they have combinations of sexual and asexual reproductive strategies (Roesijadi, Jones and 

Zhu, 2010). 

According to the Food and Agriculture Organization of the United Nations (FAO), the annual 

production, in 2010, of marine macroalgae was over 16 million tons and over 96% of that production is 

from aquaculture. This production is valued in USD 7 billion, corresponding to a little over 6 billion Euros, 

however, to obtain the total value of the seaweed industry, it is necessary to consider the added value 

products obtained after processing of macroalgae (aquaCase, no date). Five years later, by 2015, total 

production almost doubled, achieving 30.4 million tons (Ferdouse et al., 2018). By 2017, the commercial 

seaweeds market was valued at USD 13.07 billion - that is, 11.6 billion euros - and is expected to be 

above 18.5 billion euros by 2023 (Markets and Markets, no date). The Laminaria, Undaria, Porphyra, 

Eucheuma/Kappaphycus and Gracilaria genera account for approximately 98% of world seaweed 

production (Pereira and Yarish, 2008). The East Asian countries are world’s greatest contributors on algal 

biomass - they accounted for 95% of the world’s supply in 2010 (Jung et al., 2013). The more recent 

estimates suggest the existence of 72500 species worldwide (Guiry, 2012). 

 

1.1.1. Types of macroalgae 

There are three major groups of macroalgae, in a classification based on their photosynthetic 

pigmentation: Chlorophyta (green pigments), Rhodophyta (red pigments) and Phaeophyta (brown 

pigments) (Chen et al., 2015). Their distribution depends on environmental factors, with emphasis on 

the quantity and quality of the sunlight (Sudhakar et al., 2018). 

Starting with Chlorophyta, or green algae, there are around 700 to 7000 species and they occur 

mainly in bays, estuaries, and tide pools. Chlorophyta algae have simple thallus and are characterized by 

filamentous spongy fingers or paper-thin sheets. This group of macroalgae has, as major photosynthetic 

pigments, chlorophylls a and b – with the same ratio of chlorophyll a to b as land plants – and carotenoids, 

such as carotene and xanthophylls (Jung et al., 2013; Sudhakar et al., 2018; Leandro, Pereira and 

Gonçalves, 2020). Some of the most relevant species in this group are Halimeda, Ulva and Codium 

(Sudhakar et al., 2018). 

As for Rhodophyta, the group of red algae, they grow as filaments or sheets of cells. One 

interesting characteristic of Rhodophyta is that they can be parasites of other algae. This is the most 

abundant and most widespread group of algae, with records of 4000 species that can live either in deep 
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cold waters or warm shallow waters. The photosynthetic pigments that can be encountered in the 

Rhodophyta group are chlorophyll a and phycobilins (phycoerythrin and phycocyanin), which is 

responsible for their red color (Jung et al., 2013; Sudhakar et al., 2018; Leandro, Pereira and Gonçalves, 

2020). 

Lastly, the group of brown algae, Phaeophyta, comprises around 1500 species and they occur 

mainly in temperate and polar locations (North America, Europe, mid-Atlantic and Gulf of Mexico). Also, 

they can be found in rocky shores and this type of algae have preference for shallow and cold waters. 

These macroalgae species can grow up to 100 meters and are the ones that have the most complex 

thallus structure (Sudhakar et al., 2018). The main photosynthetic pigments present in this type of algae 

are chlorophyll a and c, β-carotene and other xanthophylls (Jung et al., 2013). Some of the most 

important species that belong to the Phaeophyta group are Laminaria and Saccharina (Sudhakar et al., 

2018). 

The Rhodophyta and the Phaeophyta groups seem to be more present in Portuguese seas than 

Chlorophyta (seaExpert, no date; Rodrigues et al., 2015). 

 

1.1.2. Chemical composition of macroalgae 

The chemical composition can vary between the different groups of macroalgae and it is 

influenced by seasonality and geographic locality (Wan et al., 2019). Also, it can be influenced by the 

conditions in their habitat such as light, temperature, salinity, nutrients, and pollution. However, in every 

case, they contain high amounts of carbohydrates (up to 60%) and lower amounts of protein (around 

10%) and even lower amounts of lipids (up to 3%).  

The composition of the three groups of macroalgae regarding water content, carbohydrates, 

proteins, and lipids is presented in Table 1. 
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Table 1 - Composition of macroalgae (green, red and brown). 

Compound Green algae Red algae Brown algae Reference 

Water content (fresh 

mass) 
70-85% 70-89% 79-90% 

(Barbot, Al-Ghaili 

and Benz, 2016) 

Carbohydrates (dry 

weight) 
25-50% 30-60% 30-50% 

(Jung et al., 

2013) 

Protein (dry weight) 10-26% 35-47% 7-12% 

(Miranda, Lopez-

Alonso and 

Garcia-Vaquero, 

2017) 

Lipids (dry weight) 2-3% 0-3% 0-2% (Jard et al., 2013) 

 

There is a large variety of carbohydrates present in macroalgae: alginate – that provides stability 

and flexibility - and cellulose are common in all types of macroalgae. Due to its abundance, easiness of 

processing and variety of applications, cellulose has been getting a lot of attention from researchers and 

macroalgae have been considered a potential source of cellulose (Siddhanta et al., 2009). Also, in green 

algae we can encounter mannan, starch and ulvan; red algae contain agar, carrageenan and lignin and 

brown algae contain agar, laminarin, cellulose and others (Barbot, Al-Ghaili and Benz, 2016; Miranda, 

Lopez-Alonso and Garcia-Vaquero, 2017). The quantity of lignin is generally lower in macroalgae in 

comparison with terrestrial plants and its absence is important to microbial decomposition (Barbot, Al-

Ghaili and Benz, 2016).  

Regarding lipids, macroalgae contain a significant amount of PUFAs (long-chain polyunsaturated 

fatty acids). The content of unsaturated fatty acids is proportional to the potential antioxidant activity, as 

shown in a study with lipophilic extracts from 16 species of seaweeds (Huang and Wang, 2004). However, 

phenolic compounds are usually claimed to be the major active constituents responsible for the 

antioxidant activity of macroalgae. These phenolic compounds are highly present in green and brown 

macroalgae, which could be the reason of lower content in protein comparing to red algae (Kumar et al., 

2008). 

Another major constituent of macroalgae are pigments, such as chlorophylls, carotenoids, 

phycobilins and xanthophylls and their abundance depends on the type of macroalgae as discussed in 

the above section.  
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As for micro-nutrients, macroalgae have high concentrations of minerals, such as calcium, 

magnesium and potassium, as well as glutamic acid (Barbot, Al-Ghaili and Benz, 2016). They also have 

high contents in iodine, being Laminaria spp. the best iodine accumulator among all living systems 

(Miranda, Lopez-Alonso and Garcia-Vaquero, 2017). Some heavy metals can also be found, such as 

arsenic and mercury, but the amount does not seem to pose any threat to the consumers’ health (Garcia-

Vaquero and Hayes, 2016).  

Seasonal environmental changes can influence macroalgae’s composition; during summer, they 

produce higher amounts of volatile solids – amount of organic substance in the solid fraction - and sugars 

whereas in spring they show higher content in proteins and minerals (Barbot, Al-Ghaili and Benz, 2016). 

Ulva species, a green type of macroalgae, are listed in FAO as one of the main macroalgae for 

commercial use. This macroalgae is very common and can be found in marine and brackish waters, 

being widely distributed across the world. Also, Ulva species can be successfully product in an aquaculture 

environment (Lopes et al., 2019).  

In what concerns its composition, Ulva species are a major source of polysaccharides and 

oligosaccharides and, despite the lipidic profile not being intensively studied, they also represent an 

important nutritional role with major importance for PUFAs (Satpati and Pal, 2011; Lopes et al., 2019). 

This species has also particular interest as a source of antioxidants and phenolic compounds and the 

amount of phenolic compounds positively correlates with the radical-scavenging activity, suggesting that 

phenolic compounds are the major contributor acting as free radical terminators (Mezghani et al., 2016). 

 

1.1.3. Biorefinery of macroalgae 

Biorefineries transform renewable biomass into biofuels, food, chemicals, and other bio-based 

products. On simple terms, biorefineries are the operating units of bio-economies (Zollmann et al., 2019). 

The main ideas in which a biorefinery process is based are the sustainable and renewable energy supply, 

saving foreign exchange reserves, reducing dependency on imported crude and other chemicals and the 

establishment of a circular economy. The final goal is to generate added value products, with benefits for 

the economy and the environment. While most researchers are focused on single-feedstock and single-

product, one more advantageous approach is the co-production of multiple products from the same 

biomass, because this type of process leads to complete use of the raw material, close to zero-waste and 

maximum material valorization (Kazir et al., 2019; Zahra et al., 2019). The use of all content to produce 

high-value products makes the biorefinery process more profitable and sustainable, since it is increasing 

the biorefinery’s global economic performance (Zahra et al., 2019).  
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Due to limited crop yields and land availability, the future development of the biomass sector is 

largely uncertain (Zahra et al., 2019). In this sense, macroalgae are excellent feedstocks [i.e., raw 

materials that are used in biorefineries (Cherubini, 2010)] since they have, not only high value 

components, but also compounds that are considered platform chemicals for the bio-based economy 

(Kostas, White and Cook, 2017). The fact that biorefineries based on terrestrial biomass are not 

sustainable at present due to environmental as well as economic issues enhances the potential of 

macroalgae (Jung et al., 2013). 

Several seaweed biorefinery processes have already been investigated. Sequential recovery of 

four fractions with economic interest – a liquid extract, containing nutrients suitable for use as food 

supplements, a lipid fraction, ulvan and finally a cellulose fraction – was reported by Trivedi et al. (Trivedi 

et al., 2016). In a study using Chaetomorpha linum, the authors demonstrated the feasibility of the co-

production of biogas and bioethanol, a process with low production of waste (Ben Yahmed et al., 2016). 

Kostas, White and Cook reported the use of Laminaria digitata, a brown seaweed, to successfully produce 

bioethanol from the residues which remained after the extraction of two valuable polysaccharides (Kostas, 

White and Cook, 2017). Also, a lot of different products can be obtained from the residual algal biomass 

including products with application in food/feed, pharmaceutical, nutraceutical and cosmeceutical 

industries (Suganya et al., 2016). 

 

1.1.4. Applications of macroalgae 

Seaweeds have a wide range of applications, being the more traditional ones the 

commercialization as food and soil fertilizer (van der Wal et al., 2013). Nowadays, they have a wide range 

of applications and the components extracted from the macroalgae can potentially be applied in the food, 

medical and pharmaceutical industries, in the environmental fields, among others. 

Macroalgae are valuable as a food resource as they are rich in vitamins, minerals, proteins, 

polysaccharides, and dietary fibers and are low in calories. Phycocolloids such as agar-agar, carrageenan 

and alginic acids that are present in brown and red algal cell walls are widely used in food industries (de 

Almeida et al., 2011). Both agar-agar and carrageenan have gelling, thickening, and stabilizing properties, 

which allows them to be used as substitutes for gelatin and in dairies, respectively (Pangestuti and Kim, 

2015). Also, algae can be applied in aquaculture, ruminant and swine feed industries (Miranda, Lopez-

Alonso and Garcia-Vaquero, 2017). 
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In the medical and pharmaceutical field, macroalgae have also demonstrated to be interesting, 

as has been proved that various macroalgae have antibacterial, antifungal, and antiviral activities (Smit, 

2004; de Souza Barros, Teixeira and Paixão, 2015). Besides that, some components present in 

macroalgae can be used for their antioxidant and anti-inflammatory potential, which is the case of some 

polysaccharides (Ananthi et al., 2010). Some other examples of compounds with potential to be used in 

the pharmaceutical field are fucoxanthin that could have applications in cancer treatment, because it can 

induce cell cycle arrest and apoptosis, and also laminarin, because for its nutritional value it can play a 

role in prevention (Fleurence and Levine, 2016).  

When it comes to the environmental field, besides being used as a fertilizer since ancient times, 

it can also be used to control pollution. It has even been developed a device, in 2011, called algal turf 

scrubber, which absorbs nutrients and is used to help filter aquaria and ponds (HydroMentia, no date).  

Lastly, macroalgae can also be applied to produce biofuels (Chen et al., 2015), in bioremediation 

processes (Sode et al., 2013) and cosmetics – moisturizing care, photoprotection – and additives for 

cosmetics – preservatives, essential oils, antioxidants, dyes (Guillerme, Couteau and Coiffard, 2017). 

 

1.1.5. Wastes from macroalgae processing  

In the many processes, which use macroalgae for the applications mentioned above, there are, 

often, residues or wastes produced in the course.  

For example, in the process of phycocolloid extraction there remains the cell wall as residue, in 

which can be found some impurities such as sand, salts and calcareous deposits, as well as sulfolipids, 

pigments, nucleic acids, other polysaccharides as cellulose, which can be used in chemical, 

pharmaceutical and fuel industries (López-Simeon et al., 2012). Studies have also shown that after the 

extraction of some polysaccharides, such as agar and alginates, there remains a pulp containing high 

amounts of carbohydrates, proteins, lipids, and ash (Zahra et al., 2019). 

Currently seaweed wastes are used to produce fiber, glycerol, biofertilizers and organic acids but 

not exclusively. The residues from the alginate industry have also been used for the elimination of toxic 

heavy metals and for biomethane conversion. Also, make use of seaweed wastes to produce biomethane 

has already been tested and the results were promising (Barbot, Al-Ghaili and Benz, 2016).  

In general, the quality of the wastes and, therefore, the application they can further have, depends 

on the initial composition of the macroalgal biomass and on processing done. For example, residues from 

phycobilin extraction have a high percentage of volatile solids and a lower percentage of ash (75% and 

21%, respectively) while the remains from industrial biomass processing of Laminaria japonica have 
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almost the same percentage of volatile solids and ash (50,9% and 49,1%, respectively) (Barbot, Al-Ghaili 

and Benz, 2016). 

However, it is possible to reduce the quantity of waste produced since one can co-extract 

additional valuable materials in the initial macroalgae processing, rather than treating them as waste 

(Kazir et al., 2019; Zahra et al., 2019).  

 

1.2. Solid-state fermentation 

Solid-state fermentation (SSF) is a cost-effective bioprocess technology, with potential 

applications in a variety of areas, such as the feed, food, fuel and chemical industries, but also the 

production of pharmaceutical products and biologically active secondary metabolites – for example, 

pigments and antibiotics (Thomas, Larroche and Pandey, 2013; Singhania et al., 2015). SSF systems 

seem to be promising to produce value-added products, such as biopharmaceuticals. Also, this 

technology has been used for the development of bioprocesses for instance bioremediation and 

biodegradation of hazardous compounds and biological detoxification of agro-industrial residues (Pandey, 

2003). 

SSF is a three-phase heterogeneous process, composed by solid, liquid and gaseous phases 

(Costa et al., 2018). It is a fermentation process that occurs in the absence, or near absence, of free 

water; however, the solid substrate must contain enough moisture to support the microorganism’s growth 

and metabolic activity (Hölker, Höfer and Lenz, 2004; Thomas, Larroche and Pandey, 2013; Cerda et 

al., 2019). The solid matrix where the process occurs can either be the source of carbon or an inert 

material to support the microorganisms’ growth (Salgado et al., 2014a; Oliveira et al., 2016; Costa et al., 

2018).  

SSF offers many advantages when compared with classic submerged fermentation (SmF), in 

which the microorganisms grow in liquid medium, with high contents of free water (Soccol et al., 2017; 

Wang et al., 2019). SSF has lower energy requirements and higher productivities, produces lesser 

wastewater, the products have extended stability, the production costs are lower, and it is less prone to 

problems with substrate inhibition, hence it allows higher final concentration of product (Pandey, 2003; 

Hölker, Höfer and Lenz, 2004; Hölker and Lenz, 2005; Barrios-González, 2012; Soccol et al., 2017; El-

Mansi et al., 2019; Wang et al., 2019). Also, when it comes to environmental related issues, the fact that 

SSF is conducted in near absence of free water results in minimum water consumption and a low 

production of effluent water in the process. The fact that SSF is performed at low water activities, reduces 



 
 

9 
 

the growth of contaminating bacteria and yeasts, thus, in certain cases, semi-sterile conditions may be 

applied, reducing the energy needed for sterilization (Hölker and Lenz, 2005; Soccol et al., 2017). Yet 

another benefit regarding the sustainability of the process is the utilization of low-cost agro-industrial 

residues as carbon and energy sources (Hölker and Lenz, 2005; Thomas, Larroche and Pandey, 2013). 

The advantages cited can bring direct economic advantages, therefore the economic efficiency is higher 

for SSF than SmF (Hölker and Lenz, 2005; Soccol et al., 2017). 

Several studies have been conducted comparing both types of fermentation. In a study conducted 

by Díaz-Godínez et al., 2001, the production of exopectinases by Aspergillus niger in SSF and SmF was 

reviewed, and the research concluded that the production of biomass in SSF was higher, independently 

of the variables tested. Also, the exopectinase production was enhanced by using SSF over SmF. The SSF 

process may offer advantages in terms of enzyme activity because of reduced proteolysis (Díaz-Godínez 

et al., 2001). 

One other interesting factor of SSF is that it provides the cultivated microorganisms an 

environment as close as possible to their natural habitat, from where they were isolated (Hölker, Höfer 

and Lenz, 2004; Thomas, Larroche and Pandey, 2013; Oliveira et al., 2017). This seems to be the main 

factor behind the higher productivity yields in SSF when compared with SmF, even if optimal conditions 

for growth are used (Thomas, Larroche and Pandey, 2013). 

Nevertheless, the SSF process has also some disadvantages, such as problems with heat build-

up, difficulties in controlling process parameters (like pH, temperature, moisture), difficulties on scale-up 

and higher impurity of the product (Hölker, Höfer and Lenz, 2004; Couto and Sanromán, 2006). 

 

1.2.1. Macroalgae as solid substrate in SSF 

In the beginning of this sector, it was mentioned that “the substrate for SSF must contain enough 

moisture to support the microorganism’s growth and metabolic activity”. As we have seen in section 

1.1.2, macroalgae’s water content is over 70%, almost in every type of algae, meaning that macroalgae 

are a suitable substrate for SSF (Barbot, Al-Ghaili and Benz, 2016). Besides that, the substrates 

commonly contain some macromolecular structure, such as cellulose, starch, lignocellulose, or fibers, so 

the algae’s composition is adequate as well (El-Mansi et al., 2019). Also, many other characteristics cited 

in this report for macroalgae make this an appropriate substrate, for example, fast growth rates, high 

photosynthetic efficiency and large quantity of carbohydrates, minerals, and amino acids. Macroalgae are 

a valuable feedstock as they serve as both physical support and nutritional source, allowing for biofuel, 

biochemical and biometabolites production (General et al., 2014; Fernandes et al., 2019). The fact that 
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algal biomass is scarcely used as food source and that it is rich in carbohydrates, proteins and lipids 

makes it a valuable source for the growth of fungal cultures (General et al., 2014).  

The microorganisms that have been used together with macroalgae in SSF, as well as products 

that have already been produced when using macroalgae as a substrate will be reported further ahead. 

 

1.2.2. Microorganisms used in SSF 

It was already mentioned before that not all microorganisms are suitable for use in SSF. This is 

because this process is performed in near absence of free water, which was reported as an advantage 

for this process because it diminishes contamination, however it limits the organisms that can be used. 

In this sense, fungi and yeast are usually considered suitable organisms for SSF while bacteria have not 

been so commonly used in this process. This is because fungi and yeast have lower water activity (αw) 

requirements, typically around 0,5-0,6 αw, whilst bacteria have water activity requirements around 0,8-

0,9 αw (Costa et al., 2018). However, several studies have proved that bacterial cells can be manipulated 

and managed for SSF processes (Gupta et al., 2008; Mukherjee, Adhikari and Rai, 2008). Besides that, 

in general, filamentous fungi adapt better to a solid substrate, because the hyphal growth allows the fungi 

to better penetrate the substrates (Graminha et al., 2008; El-Mansi et al., 2019). The choice of the 

microorganism seems to be apparently linked with the selection of the substrate and the product that is 

intended (Costa et al., 2018).  

Some of the bacterial genera that have been studied in SSF processes are Bacillus sp., 

Pseudomonas sp. and Streptococcus sp. For example, different strains of Burkholderia have been used 

to produce biodiesel, while Pseudomonas aeruginosa has already been used, having as final applications, 

flavor, and fragrance esters (Liu et al., 2014; Aguieiras et al., 2018). In the case of the fungi, many more 

species can be nominated, namely species of Rhizopus, Aspergillus, Penicillium, Yarrowia and Candida 

(Couto and Sanromán, 2006; Aguieiras et al., 2018).  

After choosing the microorganism, is important to consider the identification of the physiology of 

the microorganism and the physico-chemical factors it needs to grow, including temperature, pH, 

aeration, water, activity, moisture and so on. When it comes to moisture, for the reasons presented before, 

fungi have lower requirements and, generally, approximately 40 to 60 % is enough moisture to cultivate 

fungi (Costa et al., 2018).  

The microorganisms that have already been used together with macroalgae in this fermentation 

process are mainly fungi, for instance Aspergillus niger, Cladosporium sphaerospermum, Clostridium 
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acetobutylicum and Clostridium beijerinckii (van der Wal et al., 2013; Trivedi et al., 2015; Fernandes et 

al., 2019). 

 

Aspergillus ibericus 

Aspergillus ibericus is a species form the black aspergilli group that was isolated from wine grapes 

from Portugal and Spain. It does not produce mycotoxins and has GRAS (generally regarded as safe) 

status (Serra et al., 2006; Oliveira et al., 2016; Fernandes et al., 2019). Its hyphal growth allows the 

fungi to effectively penetrate the substrate, thus allowing better growth conditions under SSF (Salgado et 

al., 2014b; Fernandes et al., 2019). The Aspergillus species are among the fungi species that have been 

reported as very efficient for different enzymes production (Serra et al., 2006; Oliveira et al., 2016).  

Aspergillus ibericus is a good producer of enzymes, such as cellulase and xylanase, under SSF 

processing and also oxidative phenolic compounds (Leite et al., 2016; Sousa et al., 2020; Treichel et al., 

2020). It has also been used to produce lipase and to improve the protein content in fermented solids 

(Salgado et al., 2014b; Oliveira et al., 2016; Sadh, Duhan and Duhan, 2018; Sousa et al., 2018). 

 

1.2.3. Products obtained by SSF 

Some applications of SSF have already been referred, such as in feed, food, fuel and chemicals 

industries, the production of biologically active secondary metabolites or pharmaceutical products and 

the development of bioprocesses. Numerous studies have already been published reporting a significant 

number of products that can be produced by SSF. Amongst them, we can encounter a large number of 

enzymes such as cellulase, phytase, amylase, protease, lipase and many more (Trivedi et al., 2015; 

Cerda et al., 2016; Leite et al., 2016; Novelli, Barros and Fleuri, 2016; Costa et al., 2018) and secondary 

metabolites and bioactive compounds, such as organic acids such as lactic acid, citric acid or bio-ethanol; 

antibiotics and other metabolites (Kumar et al., 2003; Barrios-González, 2012; Singhania et al., 2015; 

Costa et al., 2018). Also, the use of SSF to improve the nutritional value of agricultural residues, 

specifically protein enrichment, has been gaining attention, because it represents a potential solution to 

produce cheaper animal feed (Graminha et al., 2008). The enrichment of protein content by SSF, along 

with the increase of antioxidant activity, was achieved by Kupski et al. in rice bran (Kupski et al., 2012). 

There are many other studies that attained an increase of antioxidant activity by SSF and this may happen 

because of the release of phenolic compounds from macromolecules such as polysaccharides (Magro et 

al., 2019). 
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There are also several processes reported which use macroalgae as a substrate for SSF. General 

et al., used Laminaria japonica as a substrate for a fungus that can be isolated from indoor house dust 

(Villanueva-Lozano et al., 2017) in SSF and they were able to obtain natural red and yellow pigments, 

which can be used in the industries of food, cosmetics and pharmaceuticals with various applications 

(General et al., 2014). In a different sector, Trivedi et al. used a marine fungus in the process of SSF to 

obtain cellulases, which were then used for its saccharification potential with Ulva fasciata to finally 

produce bioethanol (Trivedi et al., 2015). Also using Ulva, but a different species – rigida – the process 

of SSF was used to produce lignocellulolytic enzymes, having as final goal the application has aquaculture 

feed (Fernandes et al., 2019). The use of one substrate in SSF process can lead to a wide variety of value-

added products, because it can be combined with different operational conditions and different strains of 

microorganisms (Marín, Sánchez and Artola, 2019). 

The studies mentioned show the large spectrum of applications that macroalgae and SSF can 

have, contributing, in most cases, to the development of a circular economy. 

 

Enzymes 

The SSF process is cost-effective and it requires low-cost substrates, and, because of that, it is 

becoming a more common choice for enzymes production for its several benefits such as enzyme titer, 

low labor cost and lower capital input (Singhania et al., 2015). Besides, the amount of microbial enzymes 

produced during SSF with filamentous fungi commonly exceeds that produced by SmF (Barrios-González, 

2012). 

One type of enzymes being, most commonly, produced by SSF are cellulases (Yoon et al., 2014; 

Singhania et al., 2015; Fernandes et al., 2019). This enzyme is involved in the hydrolysis reaction of the 

β-1,4-glycosidic linkage in cellulose, which is a dominant component of the plant cell wall and is 

commonly present together with hemicellulose and lignin. Cellulases are on top three of the most 

profitable enzymes, mainly due to a wide variety of applications in the industries of pulp and paper, textile, 

food and animal feed, beverages and detergents and can also be important in biofuels production (Yoon 

et al., 2014; Cerda et al., 2019; Marín, Sánchez and Artola, 2019). It was already reported that 

filamentous fungi are better producers of cellulase on SSF than on SmF and, additionally, a study 

conducted by Tewalt and Schilling that the cellulases produced on SSF by a specific species of fungi had 

better performance in hydrolysis efficiency, compared to those produced by SmF (Shrestha et al., 2010; 
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Tewalt and Schilling, 2010). Among the fungal strains that produce cellulases, Aspergillus, Trichoderma, 

Penicillium and Fusarium genera stand out (Brijwani, Oberoi and Vadlani, 2010). 

Another type of interesting enzymes are xylanases, which are glycosidases and catalyze the 

hydrolysis of 1,4-β-D-xylosidic linkages in xylan (Salgado et al., 2014b). These enzymes can have 

applications in food and beverage industries, feedstock improvement by improving animal feed 

digestibility and improvement of quality of lignocellulosic residues (Pal and Khanum, 2010). Xylanase 

production in SSF processes is mainly reported using Aspergillus species (Salgado et al., 2014b; Cerda 

et al., 2019). As reported for cellulase, the strains that are better producers of this enzyme, have better 

performances under SSF (Ang et al., 2013). 

Enzymatic preparations containing both these enzymes, with the main function being the use in 

pulp, paper, fuel, and other chemical industries, have also been used as food additives in ruminant feed 

to aid in feed digestion (Graminha et al., 2008). 

 

1.3.  Macroalgae in fish diets in aquaculture 

In aquaculture, nutrition is one of the most important parameters, because it usually represents 

about 50% of the production cost. Furthermore, protein is the most expensive component in fish feed 

(Craig, Kuhn and Schwarz, 2017). 

The inset of macroalgae as an ingredient for aquaculture derives from the current pursuit for new 

economically competitive ingredients (Tacon, Hasan and Metian, 2011). Because macroalgae have the 

capacity to produce a wide variety of secondary metabolites, which have a wide variety of biological 

properties - such as antioxidant, anti-bacterial or anti-tumoral and many more – they have great potential 

to be used in animal feed or to have their biologically active compounds extracted to be turn macroalgae 

species into potential novel feed ingredients in aquaculture. Some studies already reported the results for 

the incorporation of macroalgae in fish’s diet. Some of the benefits reported were improved growth rates, 

metabolic rates enhanced and was verified an increase in certain beneficial compounds, such as 

pigments or iodine (Miranda, Lopez-Alonso and Garcia-Vaquero, 2017). 

 

1.3.1. Nutritional components of macroalgae for aquafeeds 

As we have seen before, macroalgae’s composition varies accordingly to the type of macroalgae, 

the season of harvest, geographic location, and environmental conditions. The sampling methodology 

could also affect the results when determining macroalgae’s chemical composition (Patarra et al., 2011). 
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However, in every case, a macroalgae based diet has as main constituents’ carbohydrates, followed by 

proteins and lipids (Amaro et al., 2019).  

There are two possible types of diets that fish farmers use, however most of them use complete 

diets. These are typically made up of: 18-50% protein; 10-25% lipids; 15-20% carbohydrates; <8.5% ash; 

<1.5% phosphorus; <10 % water; and trace amounts of vitamins and minerals (Craig, Kuhn and Schwarz, 

2017), which is similar to the composition of macroalgae, in general. 

Macroalgae’s protein content is very high – red macroalgae have the highest amount, followed 

by green algae and lastly brown algae – being comparable to foods rich in protein such as soybean, eggs 

or fish (Miranda, Lopez-Alonso and Garcia-Vaquero, 2017). Also, in most cases, they are considered a 

rich source of essential amino acids and acidic amino acids, having higher content than terrestrial plants 

(Fleurence, 1999, 2004). Since proteins are one of the most expensive nutrients in animal feed, the high 

levels reported for macroalgae could suggest its incorporation into animal feed as a high-quality protein 

source (Miranda, Lopez-Alonso and Garcia-Vaquero, 2017). A seasonal study showed that there is an 

inverse relationship between protein content, which is higher in winter, and polysaccharide content, which 

is higher in summer (Wells et al., 2017). These polysaccharides are used in marine algae as energy 

storage and structural elements and the most complex polysaccharides, known as dietary fiber, cannot 

be digested easily as we will see later in this report (Wells et al., 2017). However, polysaccharides can 

influence the overall quality of the fish’s diet since they act as emulsifiers. The feed stability, viscosity and 

texture would vary accordingly to the amount of polysaccharides in the diet (Wan et al., 2019).  

Regarding lipids, their levels are low in every algae group, however the ones present can have an 

important role in fish’s diet. Seaweeds are mainly constituted by phospholipids and glycolipids, being 

long-chain polyunsaturated fatty acids (PUFAs) – omega 6 and omega 3 fatty acids –, alongside with 

carotenoids, the worthiest as elements in functional foods (Holdt and Kraan, 2011). For example, Ulva 

spp. has high levels of octadecatetraenoic acid, as well as essential dietary eicosapentaenoic and 

docosahexaenoic acids, which makes it unique since these lipids are generally absent in plants (Miranda, 

Lopez-Alonso and Garcia-Vaquero, 2017). As for carotenoids, they are also important components 

because they can possess a range of properties, such as antioxidant, antitumor and anti-inflammatory 

activity (Wan et al., 2019).  

Macroalgae are also a rich source of minerals, such as iodine, copper, iron, selenium and zinc 

and vitamins, such as vitamin C (Miranda, Lopez-Alonso and Garcia-Vaquero, 2017; Wells et al., 2017). 

Vitamins are essential micronutrients because they serve as precursors for enzyme cofactors, are needed 

in essential metabolic functions and animals have lost the capacity to produce them, so they must obtain 
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it from external sources (Wells et al., 2017). Also, they can play important roles in promoting 

immunological responses (Wan et al., 2019). Seaweeds are also a good source of other vitamins – B-

group, A and E – and the concentrations of some of them, such as β-carotene (pro-vitamin A) exceed the 

values found in conventional foods considered to be rich sources of these compounds, in this case, 

carrots (Wells et al., 2017). In aquaculture feed, vitamin E can be particularly important as it can serve 

as an antioxidant, preventing the macroalgal PUFAs from oxidation (Wan et al., 2019). 

Phenolic compounds, as known as polyphenols, are also interesting incorporations in the diet 

since they can have therapeutic functions, such as antioxidant, anticancer and antibacterial activities 

(Wan et al., 2019). 

 

1.3.2. Digestibility of macroalgae 

While simple carbohydrates are easily digested and absorbed by the gut wall, this may not be 

necessarily true for more complex carbohydrates as cellulose, xylan and phycocolloids. This may happen 

due to a lack or low presence of enzymes that degrade carbohydrates and this will make it more difficult 

for fish to fully consume all the nutrients within the algae (Wan et al., 2019).  

Also, proteins in most algae are digested less completely than reference proteins – such as 

casein, form milk - and it is probably due to inhibitory fibers (Wells et al., 2017). It is probable that the 

mild digestibility of proteins is due to the existence of network-like structure composed of proteins and 

polysaccharides (Jard et al., 2013). It is also important to consider the presence of anti-nutritional factors, 

as is the case with phlorotannins, that are present in brown macroalgae and can interfere with the 

bioavailability and digestibility of proteins (Garcia-Vaquero and Hayes, 2016).  

The digestibility of macroalgae can be increased by using a pretreatment method (Jard et al., 

2013). For example, SSF with fungi can increase the digestibility, since the enzymes produced can break 

the bonds between hemicellulose and cellulose with lignin (Sousa et al., 2018). 
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2. MATERIALS AND METHODS 

2.1. Raw material 

During this work, the green algae Ulva rigida was used. The macroalgae was provided dry and 

powder by Algaplus in 2020, a Portuguese company based in Aveiro. They were stored in a dry place, 

avoiding exposure to light. 

 

2.2. Reagents 

The reagents used during this work are described on Table 2, such as the companies that 

provided those reagents. 

 

Table 2 - List of reagents used during this study. 

Reagents Company 

3,5-dinitrosalicylic acid Acros Organics 

Agar Labkem 

Xylan (Beechwood) Megazyme 

CMC Sigma-Aldrich 

Folin-Ciocalteu reagent Panreac 

Gallic Acid Acros Organics 

Glacial acetic acid Fisher Scientific 

Glucose VWR 

Methanol Fisher Scientific 

Peptone Acros Organics 

Sulfuric acid Fluka 

Tween-80 Fisher Scientific 

 

2.3. Microorganisms 

The filamentous fungi Aspergillus ibericus MUM 03.49 was used during this study and it was 

obtained from Micoteca da Universidade do Minho (MUM) culture collection (Braga, Portugal). It was 

revived in slants with potato dextrose agar (PDA) medium (4 g/L potato extract, 20 g/L dextrose and 15 
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g/L agar). In order to use the fungus in SSF, it was incubated in PDA medium at 25°C for 7 days. During 

the experiment period, the species was preserved at 4°C.  

 

2.4. Ulva rigida characterization 

The macroalgae Ulva rigida used in this study was initially characterized and different analysis 

were performed, namely, phenolic compounds, protein, lipids, humidity, ashes, salt and cellulase. The 

methods used in the determination of each parameter are described in sectors further ahead. 

 

2.4.1. Phenolic compounds determination 

Phenolic compounds were determined by the Folin-Ciocalteu method (Benzie and Devaki, 2017). 

In order to analyze them in the macroalgae, a previous extraction was performed with distilled water using 

a ratio of 1:10 w/v. 

In tubes, 100 μL of sample was added (for the blank, 0,1 mL of distilled water), as well as 2 mL 

of Na2CO3 at 15%, 500 μL of Folin-Ciocalteu reagent and 7,4 mL of distilled water in duplicate. The tubes 

were placed in a bath at 50°C for 5 minutes and, after cooling at room temperature, the tubes were 

vortexed. Absorbance was read at 740 nm. 

The calibration curve was constructed with gallic acid standard solutions between 0 g/L and 2 

g/L. 

 

2.4.2. Protein quantification 

The Kjeldahl method was used to determine the total nitrogen in the solid sample. This method 

is used in the measurement of protein content of biological materials, as so in the determination of 

nitrogen in inorganic materials, solids, or liquids.  

Kjeldahl method can be divided in two steps - the first one a digestion and the second one a 

titration. In the first step, a digestion of the sample is performed by heating with concentrated sulfuric 

acid in the presence of a catalyzer, in this case, selenium (or red Hg, the second one more efficient than 

the first but also with more environmental implications). This step is responsible for the reduction of 

organic nitrogen to ammonia, which is recovered in solution in the form of ammonium sulfate:  

 

𝑁𝑜𝑟𝑔𝑎𝑛𝑖𝑐 + 𝐻2𝑆𝑂4 + 𝑐𝑎𝑡𝑎𝑙𝑖𝑠𝑒𝑟 → 𝐶𝑂2 + 𝐻2𝑂 + (𝑁𝐻4)2𝑆𝑂4 
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After digestion, the ammonium is displaced by a strong base in excess, being used aqueous 

NaOH at 400 g/L. This is, stoichiometrically: 

 

(𝑁𝐻4)2𝑆𝑂4 + 2𝑁𝑎𝑂𝐻 → 2𝑁𝐻3 +  𝑁𝑎2𝑆𝑂4 + 2𝐻2𝑂 

 

The resultant solution with NH3 is distillated with vapor that drags with it the NH3, being this 

recovered in a solution of boric acid:  

 

𝑁𝐻3 + 𝐻3𝐵𝑂3  →  𝑁𝐻4
+ +  𝐻2𝐵𝑂3

− 

 

The borate of the acidic solution is titrated (second step) with sulfuric acid to quantify the quantity 

of ammonium according to the reaction (Cole-Parmer Scientific Experts, no date; ExpotechUSA, no date; 

PanReac AppliChem, no date): 

 

2𝐻+ + 𝑆𝑂4
2− + 2𝐻2𝐵𝑂3

− + 2𝑁𝐻4
+ → 2𝐻3𝐵𝑂3 + (𝑁𝐻3)2𝑆𝑂3 +  𝐻2O  

 

The Kjeldahl method protocol consists in turning on the thermoblock (Tecator system 1007/6) 

which should achieve the 420°C. In each digestion tube, 0,5 g of the sample are placed and then it is 

added 10 mL of H2SO4 concentrated and a tablet of catalyzer selenium (Tecator S/3.5). The solution is 

carefully mixed and placed on the thermoblock previously heated to 420°C. After digestion, the titration 

is performed with the addition of an alkali solution. 

 

2.4.3. Cellulose, hemicellulose, and lignin quantification 

To determine the amounts of cellulose, hemicellulose, and lignin present on the fermented solid, 

a quantitative acid hydrolysis (QAH) was performed, based on Hoebler et al., 1989, with some 

modifications. This includes a first stage incubation with 72% wt H2SO4 at 30°C for 1 h and a second 

stage after dilution to 4% wt H2SO4 at 121°C for 1 h. 

A sample of about 0,5 g was weighted into a glass cup, 5 mL of 72 % H2SO4 were added to the 

cup and then they were placed in a water bath at 30°C during 1 hour with periodic agitation (every 10 

minutes) - first stage. After this period, the reaction was stopped with the addition of distilled water and 
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the glass cup’s content was transferred for flasks. The waste that stayed attached to the walls was dragged 

with distilled water, which was added to dilute the solution up at 4% (w/w) H2SO4. The flasks were closed 

and introduced in the autoclave during 1 hour at 121°C - second stage. Posteriorly, the flasks were cooled 

and was determined the losses originated during the second stage by weighting the flasks. The entire 

content of each flask was filtered through a Gooch crucible with known weight. The Gooch crucibles with 

insoluble fraction were placed on an oven at 105°C. After 24 h the crucibles were cooled on a desiccator 

containing silica gel and then weighted. This determination was performed in duplicate. The filtrate was 

analyzed by High Performance Liquid Chromatography (HPLC) system for measure of sugars (glucose, 

xylose, and arabinose) and acetic acid. Using a Jasco830-IR intelligent refractive-index detector and a 

Varian MetaCarb 87H column. The column was eluted with 0.005 M H2SO4 and the flux was 0,5 mL/min 

at 60°C. Calibration curves were constructed with glucose, xylose, arabinose, and acetic acid standard 

solutions between 0,1 g/L e 10 g/L. With the data of sugars concentrations (glucose, xylose, arabinose, 

and acetic acid) was calculated the content in polymers (CP). The CP, glucan (CGn), xylan (CXn), arabinan 

(CArn), and acetyl groups (CGA) were calculated according to Equation A and expressed as grams of 

polymer per 100 grams of dry waste. 

 

𝐶𝑃 (%) = 𝐹 ∗ 𝑆𝐶𝐹 ∗ 
[𝑆]

𝜌
∗  

𝑊 + 𝑊𝐻𝑆 ∗ 𝐻

𝑊𝐻𝑆 ∗ (1 − 𝐻)
∗ 100 

Equation A 

 

where F is a factor which corrects degradation of sugars (1,04 for CGn, 1,088 for CXn/CArn and 

1,00 for CGA), SCF is a stoichiometric correction factor to take in account the increase in molecular 

weight during hydrolysis (162/180 for CGn, 132/150 for CXn/CArn and 43/60 for CGA), S is the 

monomer concentration in g/L, ρ is the density of the analyzed dissolution in g/L (as the samples were 

diluted in water for HPLC analysis the value is about 1000 g/L), W is the weight of added water in grams 

and corrected to take account the losses during second stage of QHA, WHS is the total weight in grams 

of humid waste and H is the humidity in grams of water/grams of humid waste. Cellulose (grams of 

cellulose per 100 grams of dry waste) and hemicellulose (grams of hemicellulose per 100 grams of dry 

waste) content were determined according to Equation B and Equation C, respectively. 

 

𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 (%) = 𝐶𝐺𝑛 

Equation B 
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𝐻𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 (%) =  𝐶𝑋𝑛 +  𝐶𝐴𝑟𝑛 +  𝐶𝐺𝐴 

Equation C 

 

The increase weight of the Gooch container matches to Klason lignin, thus the content of lignin 

(grams of lignin per 100 grams of dry waste) was calculated according to Equation D. 

 

𝐿𝑖𝑔𝑛𝑖𝑛 (%) =  
(𝑊𝐶𝐷𝑆 − 𝑊𝐶) ∗ (1 − 𝐶𝐸)

𝑊𝐶𝐻𝑆 ∗ (1 − 𝐻)
∗ 100 

Equation D 

 

wherein WCDS is the weight of Gooch container with dry sample in grams, WC is the weight of 

Gooch container in grams, WCHS is the weight of Gooch container with humid initial sample who 

underwent to the QHA in grams and H is the humidity in grams of water/grams of humid waste. The 

parameter CE is added to remove the value of ashes and is calculated by Equation E. 

 

𝐶𝐸 = (𝑊𝐶𝐷𝑆 − 𝑊𝐶 ) − ((𝑊𝐶𝐷𝑆 − 𝑊𝐶) ∗
𝐴𝑠ℎ

100
) 

Equation E 

 

2.4.4. Ashes determination 

After drying the Gooch crucible at 105°C during 24 h, its content was added to a porcelain 

container (previously dried at 105°C for 24 hours). The container was weighted before and after the 

content of the Gooch crucible was added. The porcelain container with the solid was placed in the muffle 

furnace at 550°C for 2 hours, until constant weight. After cooling in the desiccator containing silica gel 

for about 15 minutes, it was weighed. Ash percentage (grams of ash per 100 grams of dry solid) is given 

by Equation F. 

 

𝐴𝑠ℎ (%) =  
𝑊𝐶𝐴 − 𝑊𝐶

(𝑊𝐶𝐻𝑆 − 𝑊𝐶) × (1 − 𝐻)
× 100 

Equation F 
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where WCA is the weight of porcelain container with ash in grams, WC is the weight of porcelain container 

in grams, WCHS is the weight of porcelain container with humid waste in grams and H is the humidity in 

grams of water/grams of humid waste. 

 

2.4.5. Antioxidant activity determination 

Directly on an Elisa plate, 200 μL of sample were pipetted and 100 μL of 2,2-Diphenyl-1-

picrylhydrazyl (DPPH) were added to the same well (Benzie and Devaki, 2017). For the blank, 100 μL of 

water were added, instead of DPPH. For the control, 200 μL of water were added, instead of the sample. 

The calibration curve was constructed with Trolox standard solutions with, concentrations 

between 3,125 and 100 microM. 

The final result is expressed in millimoles of Trolox equivalent per gram of dry solid substrate. To 

achieve this result, firstly the scavenging activity (%) is calculated with Equation G. 

 

𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%) =  
1 − 𝐴𝑏𝑠𝑐

𝑀𝑒𝑎𝑛 𝑜𝑓 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒𝑠
× 100 

Equation G 

 

where Absc represents absorbance corrected, or, in other words, the absorbance read minus the blank. 

Finally, with this result and using the calibration curve constructed, the final result is reached. 

 

2.4.6. Salt determination 

Salt content was determined by adding 100 mL of water to 5 g of algae and it was stirred for 

24h. After that time, the mixture was filtered, and the liquid retrieved. The liquid was added to a previously 

weighed cup and left to dry in an oven at 55°C for 48h.  

 

2.4.7. Lipids quantification 

Total lipids were determined by Soxhlet extraction, using petroleum ether as a solvent, at 70°C 

using a FOSS Soxtec 8000 apparatus. 
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2.5. Sequential SSF and enzymatic hydrolysis (EH)  

SSF and EH were performed sequentially and it was only added a citrate buffer on the beginning 

of EH, following the methodology described by Fernandes et al. (Fernandes et al., 2019). SSF by 

Aspergillus ibericus was conducted in Erlenmeyer flasks of 500 mL, where 10 g of U. rigida were weighted 

and water was added to reach a humidity of 75% (wet basis). The flasks were sterilized at 121°C during 

15 min. After sterilization, in the laminar flow hood, the Erlenmeyer flasks were inoculated with 2 mL of 

a spore solution prepared by adding peptone (0,1% w/v) and Tween 80 (0,001% w/v), the concentration 

was adjusted to 1*106 cells/mL. The fermentation process was conducted for 5 days at 25°C.  

EH with enzymes produced by fungus were performed. Three parameters of EH were optimized 

using a Box-Behnken experimental design (temperature, load of solid and pH). After SSF, sequentially 

different quantities of citrate buffer were added to the fermented solid, to adjust the load of solid and pH, 

according to Table 3. The EH was carried out in orbital shaker at 150 rpm and the temperatures defined 

for each experiment (Table 3). These values were obtained using experimental Box-Behnken design, which 

is an incomplete factorial design, combined in blocks, and its main advantage is the reduction of the 

number of experiments, when comparing to other experimental designs (Czyrski and Sznura, 2019). It 

was also added thymol, which works as an antifungal to prevent the consumption of released sugars 

during EH (Salehi et al., 2018).  
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Table 3 – Matrix of experiments obtained by Box-Behnken experimental design. 

Runs Temperature 

(oC) 

Load of solid (% 

w/v) 

pH buffer 

1 44 20 4 

2 39,5 20 4,6 

3 39,5 20 4,6 

4 35 20 4 

5 44 10 4,6 

6 39,5 10 4 

7 44 20 5,2 

8 35 20 5,2 

9 39,5 10 5,2 

10 35 10 4,6 

11 39,5 20 4,6 

12 35 30 4,6 

13 39,5 30 5,2 

14 44 30 4,6 

15 39,5 30 4 

 

 

Samples were collected at time 0, 4h, 8h, 24h, 32h, 48h and 72h. The samples collected were 

centrifuged at 8000 rpm for 5 minutes and stored at -20°C until analysis. By the end of the EH time, the 

resulting mixture was centrifuged at 9000 rpm for 10 minutes and the solid was dried at 60°C during 

the weekend. Afterwards, the resulting solid and the samples collected were used in different analysis 

described in the next sectors and the sectors before (phenolic compounds, protein, hemicellulose, 

cellulose, lignin, ashes, and antioxidant activity). 

 

2.6. Reducing sugars determination 

Free reducing sugars were measured by the DNS method (Miller, 1959). 

To each tube 0,1 mL of the sample was added and 0,1 mL of DNS reagent in duplicate (for the 

blank measurement 0,1 mL of distilled water was used). The tubes were placed in a bath at 100°C for 5 

minutes. After cooling, 1 mL of water was added to the mixture and the absorbance was read at 540 nm.  
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The calibration curve for this method was constructed with glucose standard solutions, with 

concentrations between 0 g/L and 4 g/L. 

The maximum conversion of cellulose to glucose (CGCmax) during EH was calculated following the 

equation described in Romani et al. (Romaní et al., 2011) using the values of glucose analyzed by HPLC: 

 

𝐶𝐺𝐶𝑡  = 𝐶𝐺𝐶𝑚𝑎𝑥

𝑡

𝑡 + 𝑡1/2
 

Equation H 

where CGCt is the cellulose-to-glucose conversion achieved at time t, calculated as: 

𝐶𝐺𝐶𝑡  = 100 
𝐺𝑡 −  𝐺𝑡0

𝐺𝑝𝑜𝑡
 

Equation I 

whereas CGCmax is the cellulose-to-glucose conversion predicted for an infinite reaction time, t is 

the EH time (h), t1/2 (h) is the time needed to achieve CGC= CGCmax/2, Gt is the glucose concentration 

(g/L) achieved at time t, Gt0 is the glucose concentration at the beginning of the experiments, and Gpot 

represents the potential glucose concentration (calculated assuming total cellulose conversion into 

glucose).  

 

2.7. Cellulase and xylanase quantification 

The quantification of cellulase and xylanase was performed according to the method described 

by Sousa et al., 2020.The procedure for determination of cellulases activity was to add 250 µL of cellulase 

substrate (CMC 1% in 0.1 M sodium acetate buffer, pH 4.6) to test tubes and then, 250 µL of diluted 

sample in buffer. The test tubes were placed on a bath at 50°C for 30 minutes. After 30 minutes it was 

added 500 µL of DNS and then the test tubes were placed on a bath at 100°C for 5 minutes. Finally, 5 

mL of distilled water was added to each tube and the absorbance was read at 540 nm. The blank was 

performed with sodium acetate buffer and the addition of the sample after the 30 minutes incubation. A 

calibration curve was constructed with glucose standard solutions in buffer between 0 g/L and 2 g/L.  

The procedure to determine the xylanases activity was the same as for the determination of 

cellulases activity but the duration of the reaction was only 15 minutes instead of 30 minutes and the 

substrate solution was beechwood xylan (2%). 
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2.8. Statistical analysis 

Results are presented as the mean ± standard deviation (SD) of at least two replicates. The 

analyses were performed using Microsoft Office Excel software. Statistically significant differences of the 

several assays were evaluated by a one-way ANOVA. A significant difference was considered if p <0.05 

applying the Tukey multiple-comparisons test. Statistical analyses were performed using GraphPad Prism 

9 software. Statistical analysis of Box-Behnken experimental design was performed by Statistica 10 

software. 
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3. RESULTS AND DISCUSSION 

During the research work was studied a sequential biological treatment of a green macroalgae 

(U. rigida). A sequential solid-state fermentation (SSF) and enzymatic hydrolysis (EH) were performed to 

upgrade their nutritional value as aquaculture feed and produce value added products, following 

biorefinery concept. For that, the macroalgae was fermented by A. ibericus for 5 days, followed by EH 

using the enzymes produced by fungus. The EH stage was optimized using a Box-Behnken experimental 

design. Three variables (temperature, load of solid and pH of the buffer) were tested to determine the 

optimal conditions to extract phenolic and antioxidant compounds, release of sugars and to increase the 

protein content of U. rigida. In addition, the stability of enzymes during EH and reduction of non-starch 

polysaccharides were studied. 

 

3.1. Characterization of Ulva rigida 

The Ulva rigida was firstly characterized to have a control of the composition of the macroalgae 

and so that further on it could allow us to know how the compound variated in each condition after 

fermentation and EH. It was determined the amount of phenolic compounds, crude protein, lipids, ashes, 

salt and lignocellulosic composition. The results are shown in Table 4. 

 

Table 4 – Characterization of Ulva rigida. Results expressed in g per kg of dry matter. 

Analysis Result (g/kg) 

Phenolic compounds 0.72 ± 0.06  

Crude protein 169.1 ± 0.7  

Lipids 10.7 ± 0.2  

Ashes  379 ± 5 

Salt 415 ± 9  

Cellulose 95 ± 14 

Hemicellulose 117 ± 8 

Lignin 2.2 ± 0.1 

 

It was observed that U. rigida is have a higher protein content than lipids. These results agree 

with previous studies, such as the one conducted by Taboada, Millán and Míguez, that also used U. rigida 
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and where the amount of protein was 178 g/kg and fat content was approximately 9 g/kg. Furthermore, 

the work performed by Taboada, Millán and Míguez determined that most of the fat content was 

unsaturated, with a larger percentage of polyunsaturated fats. In what concerns protein, the study 

determined that the content in essential amino acids was generally high, which indicated proteins of good 

quality. The amino acids present in higher quantity in U. rigida were glutamic acid, arginine, and aspartic 

acid (Taboada, Millán and Míguez, 2010). As it was already stated in Chapter 1, the amount of protein is 

usually higher in red algae, while the amount of fats is low in all types of algae. 

 The amounts of cellulose and hemicellulose are also high, with a total of both above 200 g/kg. 

As for lignin, its content is low, as expected. 

It was also determined that the amount of ashes and salt was much higher than the rest of the 

parameters. This is because the macroalgae were not washed after harvesting. In other studies, the 

content of ashes in Ulva species were between 170 to 310 g/kg (Plaza, Cifuentes and Ibáñez, 2008; 

Taboada, Millán and Míguez, 2010). These differences can be linked to washing stages of the macroalgae. 

 

3.2. Sequential SSF and EH 

3.2.1. Production of biocompounds during SSF 

The first stage was the fermentation of the macroalgae by A. ibericus over 5 days. Then, to carry 

out the second stage (EH), a buffer was added to fermented solid. The production of enzymes by the 

filamentous fungi was analyzed after 5 days of SSF. Figure 1 shows the production of xylanase and 

cellulase during the five-day fermentation with Ulva rigida and Aspergillus ibericus. 

The production of cellulase by SSF of green macroalgae (Ulva fasciata) was also performed by 

(Trivedi et al., 2015). They achieved a production of 10 U/g using a marine fungus Cladosporium 

sphaerospermum. The production of xylanase and cellulase by SSF of U. rigida using A. ibericus was 

already studied achieving 350 U xylanase/g and 50 U cellulase/g after 7 days of SSF. They observed a 

reduction of enzyme production (200 and 10 U/g, respectively) when seaweed was washed (Fernandes 

et al., 2019). Thus, this process related to harvesting of seaweeds have a high influence in enzyme 

production. 

In this case, it was verified a higher production of xylanase than cellulase, which was also verified 

in the study referred above. In this work, the production of xylanase achieved (160 ± 4) U/g, as for 

cellulase it was achieved (40 ± 1) U/g. These values are below those achieved by Fernandes et al., 

however the fermentation was only performed during 5 days in this work. 
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It was also determined the amount of phenolic compounds and antioxidant activity after 

fermentation and these values were determined for the extraction with 50 mL of buffer. Phenolic 

compounds increased after fermentation (1,711±0,005 mg/g), when compared to the amount present 

in Ulva rigida [(0,72±0,06) mg/g]. SSF has already been used in different studies to improve the content 

in phenolic compounds, for example in the study performed by Leite et al. (Martins et al., 2011; Leite et 

al., 2019). As for antioxidant activity, it was determined to be (4,294±0,042) µmol of Trolox equivalents/g 

of dry solid. 

 

3.3. Optimization of EH stage by Box-Behnken Experimental Design 

3.3.1. Release of phenolic and antioxidant compounds 

Phenolic compounds increased during EH stage, being that, in most rounds performed the higher 

quantity was achieved in the last time quantified, at 72h. Table 5 shows the difference between final 

and initial amounts of phenolic compounds antioxidant compounds detected in each round and compares 

the values observed with the values predicted by the model. It can be observed that there is a good 

adjustment between the values obtained experimentally and the values predicted, being that the biggest 

differences in antioxidant activity were in rounds 1 and 8 and in phenolic compounds were verified very 

low differences. 
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Figure 1 - Production of cellulase and xylanase by SSF. The results represent the average of two independent experiments and 
error bars represent SD. 
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Table 5 - Results of antioxidant activity and total phenolic compounds studied in Box-Behnken experimental design. 

Runs Antioxidant activity 

(μmol TE/g) 

Phenolic compounds 

(mg/mL) 

Observed Predicted Observed Predicted 

1 269 ± 1 284 0.32 ± 0.03 0.34 

2 288 ± 44 284 0.47 ± 0.06 0.48 

3 286 ± 8 284 0.48 ± 0.03 0.48 

4 124 ± 23 123 0.25 ± 0.01 0.25 

5 185 ± 42 176 0.39 ± 0.20 0.34 

6 308.07 ± 6.31 301.60 0.36 ± 0.02 0.38 

7 21.04 ± 18.82 22.97 0.32 ± 0.04 0.31 

8 115.05 ± 41.28 100.13 0.28 ± 0.04 0.26 

9 -64 ± 8 -58 0.39 ± 0.04 0.44 

10 139 ± 19 148 0.14 ± 0.02 0.12 

11 279 ± 10 284 0.48 ± 0.04 0.48 

12 247 ± 20 256 0.38 ± 0.20 0.42 

13 275.07 ± 19.43 281.54 0.53 ± 0.03 0.52 

14 320 ± 22 311 0.32 ± 0.03 0.33 

15 212 ± 14 206 0.64 ± 0.01 0.59 

 

 

In Table 5, the values of antioxidant activity and phenolic compounds are the variation between 

the initial and the maximum value achieved. The higher variation was verified in round 15 (conditions: 

39,5°C; load of solid 30% w/v; pH 4), where it was also achieved the highest content in phenolic 

compounds (0,825±0,004 mg/mL). The increase that was verified in all rounds performed may be 

related with the presence of carbohydrate hydrolyzing enzymes produced by the fungi in SSF, because it 

causes the hydrolysis of the phenolic conjugates (Sousa et al., 2020).  

As for antioxidants, the differences verified were higher in rounds 6 and 14, however the higher 

content in antioxidants was achieved in round 4 (conditions: 35°C; load of solid 20% w/v; pH 4), being 

that value 398,18±6,07 μM of Trolox equivalents. On the other hand, round 7 showed a lower variation 

of antioxidant activity, however it can be explained by a high initial concentration. In round 9 a negative 

value is obtained, however it can be explained by a higher initial value for activity than on the other rounds. 

Furthermore, this round was performed with pH 5,2 and load of solid of 10% and, as will be further 
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shown, these conditions negatively affect the antioxidant activity. The liberation of phenolic compounds 

and increase in antioxidant activity after EH was also observed by Fernandes et al., 2019. 

Figures 2 and 3 are three-dimensional response surface curve plots that allow to determine the 

interaction of independent variables and the optimum levels that have the most significant effect on the 

dependent variable. It can be observed that the amount of phenolics extracted increases with the increase 

of temperature, until it reaches an intermediate temperature and then it slightly decreases. As for the 

load of solid, an increase in this parameter translates into an increase on total phenols. As for antioxidant 

activity, it increases with the decrease of pH and it increases with an increment on the load of solid. 

However, a slight decrease is noted in the antioxidant activity after a certain value of pH. 

 

 

Figure 2 - Response surface for total phenolic compounds as a function of temperature and load of solid. 
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Figure 3 -- Response surface for antioxidant activity as a function of pH and load of solid. 

 

 Table 6 lists regression coefficients and their statistical significance, as well as the statistical 

parameters that measure the suitability of the model. The determination coefficient (R2) was 0.995 for 

antioxidant activity and 0.953 for total phenolic compounds, which demonstrates a satisfactory 

adjustment of the model. 
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Table 6 - Regression coefficients of model parameters antioxidant activity and phenolic compounds. 

Coefficients 
Antioxidant 

activity 
TPC 

Constant 284.13*** 0.475*** 

X1 21.10*** 0.034*** 

X1 · X1 -55.94*** -0.180*** 

X2 60.82*** 0.074*** 

X2 · X2 -5.44 0.010** 

X3 -70.84*** -0.004** 

X3 · X3 -95.79*** -0.005** 

X1 · X2 6.77 -0.079*** 

X1 · X3 -59.68*** -0.007** 

X2 · X3 108.68*** -0.033*** 

Coefficients of determination 

R2 0.995 0.953 

R2 adj 0.985 0.868 

X1: Temperature; X2: Load of solid; X3: pH; ***significant at 99%; 

**significant at 95%; *significant at 90%; TPC: total phenolic 

compounds; CGCmax: conversion cellulose to glucose maximum 
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3.3.2. Release of sugars during EH 

The sugar release during EH was evaluated on samples collected during EH. The results are 

presented in terms of maximum conversion of glucose to cellulose (Table 7). 

 

Table 7 - Results observed and predicted of sugar release during EH. 

Runs 
CGCmax (%) 

Observed Predicted 

1 71 74 

2 22 19 

3 15 19 

4 14 16 

5 62 61 

6 15 14 

7 61 59 

8 38 35 

9 12 16 

10 23 22 

11 21 19 

12 22 23 

13 18 20 

14 66 67 

15 22 18 

 

The values observed were, in all rounds, similar to the values predicted, being that the biggest 

difference was verified in round 3 (it was observed 14,85% when it was predicted 19%). According to 

Table 7, the highest value was predicted to appear in round 1 (conditions: 44°C; load of solid 20% w/v; 

pH 4,6) and the observed value confirmed this tendency. On the other hand, the lowest rate of conversion 

from cellulose to glucose was expected in round 6 (conditions: 39,5°C; load of solid 10% w/v; pH 4), 

however it was verified in round 9 (conditions: 39,5°C; load of solid 10% w/v; pH 5,2), that has the same 

temperature and load of solid as round 6 but was performed with buffer with a different pH. It can be 

also verified that the rounds performed at 44°C allowed a higher conversion of cellulose to glucose that 
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others performed at lower temperatures. A study performed by Liu et al. also achieved a greater degree 

of conversion with an increase of the temperature (Liu et al., 2012). In another study, conducted by 

Harun and Danquah, the optimal temperature for the conversion of cellulose to glucose on EH was 

determined to be 40°C so, although in this study the conversion increases with the increase of 

temperature until 44°C, it could be expected that the conversion would soon decrease if higher 

temperatures were tested (Harun and Danquah, 2011). 

Figure 4 shows the effect of temperature and load of solid in the conversion of cellulose to 

glucose. The load of solid used in EH step did not interfere with the conversion of cellulose to glucose, 

however, an increase in the temperature at which the EH was performed correlates to an increase on the 

conversion of cellulose to glucose. Regression coefficients and their statistical significance, as well as the 

statistical parameters that measure the suitability of the model for the conversion of cellulose to glucose 

are presented in Annex 1. 

 

 

Figure 4 - Response surface for conversion of cellulose to glucose as a function of temperature and load of solid. 
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3.4. Stability of lignocellulolytic enzymes during EH 

In all the runs tested, the stability of xylanase decreased during the 72 hours of EH. The results 

are presented in Figure 5. 

 

 

Figure 5 - Kinetics of xylanase activity during 72 hours of EH. 

 

 

Although all rounds present a reduction in xylanase activity, it is clear that the decrease is less 

significative in some rounds than others. For instance, round 11 (conditions: 39,5°C; load of solid 20% 

w/v; pH 4,6) has the lower decay of activity, while round 5 (conditions: 44°C; load of solid 10% w/v; pH 

4,6) has the higher decay of activity. Furthermore, all the five rounds that had a higher decay rate (Rounds 

1, 4, 5, 9 and 14) were performed under at least one of these conditions: 44°C and pH 4. On the 

contrary, in the five rounds that had a slower decay of activity (2, 8, 11, 12 and 13) none of these 

conditions was implemented. In what concerns the load of solid, it was not possible to correlate with the 

enzyme activity, which means that the enzyme stability was mainly affected by temperature and pH. 

In what concerns cellulase, its activity did not have a clear behavior, which hinders the analysis 

of the results, presented in Figure 6. 
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Figure 6 - Kinetics of cellulase activity between 0h and 72h of EH. 
 

 

In some rounds, the enzyme activity increases from time 0 to time 24 and then decreases. On 

the other hand, in round 11 (conditions: 39,5°C; load of solid 20% w/v; pH 4,6) the cellulase activity 

continuously increased from 0 to 72h. Additionally, in round 10 (conditions: 35°C; load of solid 10% w/v; 

pH 4,6) the final value is also higher than the value at 24h, however, there is an increase between 24h 

and 48h and a decrease between 48h and 72h. 

When comparing the rounds with higher and lower decay of activity during time, the rounds with 

a bigger decay of activity (1, 7, 12, 14 and 15) were mainly performed at higher temperatures except for 

round 12. These rounds also did not have a pH in common, but all of them were performed with a load 

of solid of 20% or 30%. By contrast, in rounds 2,4,5,6 and 9, the decline of activity was slower than in 

the other rounds. Similarly, these rounds have neither temperature or pH in common, being that these 

rounds were performed at all three temperatures and pH. In what concerns load of solid, all five rounds 

that had a slower decline of cellulase activity were performed either with 10 or 20% of load of solid. The 

main conclusion that can be withdrawn from these results is than cellulase is more stable than xylanase. 

 

 

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

0 10 20 30 40 50 60 70

En
zy

m
e 

ac
ti

vi
ty

 (
U

/m
L)

Time (h)

R2

R1

R3

R4

R5

R6

R7

R8

R9

R11

R12

R13

R14

R15

R10



 
 

38 
 

3.5. Characterization of solid after sequential SSF and EH 

The resulting solids were analyzed to determine the amount of lignin, ashes, and protein. The 

results are presented in Table 8 and Figures 7 and 8, respectively. 

 

Table 8 - Results observed and predicted by the model of the content in protein in the solid after SSF+HE. 

Runs 

Protein 

(mg/g) 

Observed Predicted 

1 206.07 ± 0.51 215.4 

2 234 ± 11 235 

3 230 ± 4 235 

4 242 ± 4 274 

5 226 ± 15 208 

6 249 ± 18 225 

7 203 ± 0 218 

8 236 ± 3 271 

9 267 ± 24 253 

10 256 ± 4 288 

11 231 ± 0 235 

12 235 ± 7 227 

13 229 ± 1 188 

14 230 ± 1 195 

15 239 ± 12 216 

 

The lowest value of protein was in round 7 (conditions: 44°C; load of solid 20% w/v; pH 5,2) and 

the maximum value was achieved in round 9 (conditions: 39,5°C; load of solid 10% w/v; pH 5,2). The 

mean of the values is 234 and it can be observed that all the rounds performed at 35°C are above the 

mean, as well as two of the rounds performed at 39,5°C, with pH 4. 

In what concerns ashes quantification, bigger differences are presented between rounds 

performed. The lowest value (142,08±57,19 g/kg) was obtained in round 6 (conditions: 39,5°C; load of 

solid 10% w/v; pH 4), while the highest values ( 464,07±146,30 and 491,70±77,13 g/kg) were achieved 
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in rounds 3 (conditions: 39,5°C; load of solid 20% w/v; pH 4,6) and 14 (conditions: 44°C; load of solid 

30% w/v; pH 4,6), respectively. Regression coefficients and their statistical significance, as well as the 

statistical parameters that measure the suitability of the model for protein quantification are presented in 

Annex 1. 

 

 

The quantification of lignin had maximum values (335,98±29,32 and 305,87±33,82 g/kg) in 

rounds 9 (conditions: 39,5°C; load of solid 10% w/v; pH 5,2) and 10 (conditions: 35°C; load of solid 

10% w/v; pH 4,6), respectively. The lowest amount of lignin (205,58±18,18) was determined in round 7 

(conditions: 44°C; load of solid 20% w/v; pH 5,2). 

 

Figure 7 - Ashes quantification on the resulting solid after sequential SSF and EH. The results represent the average of two independent 
experiments and error bars represent SD. Letters above each bar indicate the results of Tukey’s test (P < 0.05); values with shared letters 

in the same graph are not significantly different. 
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Figure 8 - Lignin quantification on the resulting solid after sequential SSF and EH. The results represent the average of two independent 
experiments and error bars represent SD. Letters above each bar indicate the results of Tukey’s test (P < 0.05); values with shared letters 

in the same graph are not significantly different. 

 

Figure 9 shows the comparison between the maximum value obtained in each determination 

and the initial amount present in Ulva rigida. In comparison with the results obtained for U. rigida before 

fermentation (169,08±0,66 g/kg), protein always increased, with a maximum increment of 57,8%, which 

is a significant difference. The difference between lignin concentration after SSF+HE and initial amount 

in algae is also significative and it was more than 10 times higher than the initial amount present in Ulva 

rigida. On the other hand, the quantification of ashes shows that the difference between the amount 

already present in Ulva rigida is not significantly different from the values presented after SSF+HE. 

Protein in the final solid increases due to the presence of protein from the fungal biomass. Also, 

the increase of ashes and lignin, as well as proteins, may be due to an effect of concentration in the final 

solid after EH.  
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Figure 9 - Comparison between the initial values present in Ulva rigida and the maximum values obtained after SSF+HE. The results 
represent the average of two independent experiments and error bars represent SD. Letters above each bar indicate the results of Tukey’s 

test (P < 0.05); values with shared letters in the same graph are not significantly different. 

 

3.6. Optimal conditions of sequential SSF and EH 

The optimal conditions are presented in Table 9 for each variable separately in specific and also 

a multiple optimization for all variables at once. 

 

Table 9 - Optimum conditions for each variable predicted by the model. 

 Dependent variables 

 
Temperature 

(°C) 

Load of 

solid 

(% w/v) 

pH 

Antioxidant 

activity 

(μmol TE/g) 

TPC 

(mg/mL) 

Protein 

(mg/g) 

CGCmax 

(%) 

Single 

optimization 

41 30 4.7 345    

39 30 4.0  0.59   

35 10 5.2   301  

45 27 4.0    75 

Multiple 

optimization 
44 30 4.1 279 0.47 231 61 

 

b 

a 

a

’ 

a

’ 

a

’’ 

b

’’ 
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As such, a new round of sequential SSF and EH must be performed, with the optimal conditions 

described in Table 9: 44°C; load of solid 30% w/v; pH 4,1. These conditions allow an increase in protein 

content in the final solid of around 37%, when comparing to the initial concentration present in Ulva rigida. 

The future work must comprise the analysis of antioxidant activity, phenolic compounds, 

conversion of cellulose to glucose, protein, and the analysis of enzyme stability from EH in the optimal 

conditions determined in this work. 

Additionally, the fermented solid obtained must be added to fish feed to determine the response 

of fish to the new form of food.
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CONCLUSION AND FUTURE PERSPECTIVES   

The initial part of this study allowed to characterize the Ulva rigida used during all experiments 

performed in this work. It was verified that Ulva rigida contained high amounts of protein, salt, and organic 

matter and, on the contrary, a small quantity of lipids and phenolic compounds. 

Sequential SSF and EH of U. rigida allowed to produce antioxidant compounds, releases 

fermentable sugars, and increase the protein content of macroalgae. Different parameters of enzymatic 

hydrolysis were optimized by Box-Behnken experimental design. 

The phenolic compounds showed an increase from 0 to 72h in almost every round and the highest 

content in phenolic compounds was verified at 39,5°C, with a load of solid of 30% and pH 4. As for 

antioxidant activity, only in seven of the rounds performed the highest value was obtained at 72h. Despite 

the higher variations were verified in rounds 6 and 14, the highest antioxidant activity was verified in 

round 4, where the conditions were 35°C, load of solid of 20% and pH 4. During EH was also quantified 

the release of sugars. The values obtained were similar to the values predicted by the model and it was 

verified that the rounds performed at a higher temperature, 44°C, allowed a higher conversion of cellulose 

to glucose, when compared to the other temperatures tested. During the EH is also clear a decrease in 

xylanase activity and it was concluded that its stability was mainly affected by high temperature and lower 

pH. As for cellulase, the results did not allow a clear interpretation, however from 24h of EH until 72h, 

the most common evolution was a decrease of activity. The conditions that maximized all variables 

dependents jointly were 44°C, 30% load of solid and pH 4,1. 

After the EH, the remaining solid showed an increase in protein and ashes when compared to 

initial unfermented Ulva rigida but not significative, however lignin concentration increased significatively. 

 Further investigation is necessary, including the use of the fermented solid as fish feed and the 

response of fish to that kind of food and also determine the use of other biocompounds produced in the 

process.
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ANNEXES 

 

Annex 1 - Regression coefficients of model parameters of protein and conversion of cellulose to 

glucose. 

Coefficients Protein CGCmax 

Constant 234.65*** 19.00*** 

X1 -27.96*** 20.53*** 

X1 · X1 9.66** 26.60*** 

X2 -18.59*** 1.86 

X2 · X2 -14.53*** -2.37 

X3 -0.09 0.96 

X3 · X3 0.40 0.38 

X1 · X2 12.00 1.32 

X1 · X3 1.43 -8.38** 

X2 · X3 -13.75* -0.24 

R2 0.954 0.985 

R2 adj 0.872 0.959 

X1: Temperature; X2: Load of solid; X3: pH; ***significant at 

99%; **significant at 95%; *significant at 90%; TPC: total 

phenolic compounds; CGCmax: conversion cellulose to 

glucose maximum 

 
 


