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The development of robust algorithms for human gait analysis are essential to evaluate the 

gait performance, and in many cases, crucial for diagnosing gait pathologies. This work 

proposes a new adaptive tool for human gait event detection in real-time, based on the 

angular velocity recorded from one gyroscope placed on the instep of the foot and in a 

finite state machine with adaptive decision rules. The signal was segmented to detect 6 

events: Heel Strike (HS), Foot Flat (FF), Middle Mid-Stance (MMST), Heel-Off (HO), 

Toe-Off (TO), and Middle Mid-Swing (MMSW). The tool was validated with healthy 

subjects in ground-level walking using a treadmill, for different speeds (1.5 to 4.5 km/h) 

and slopes (0 to 10%). The results show that the tool is highly accurate and versatile for 

the detection of all events, as indicated by the values of accuracy, average delays and 

advances (HS: 99.96%, -7.95 ms, and 9.85 ms; FF: 99.48%, -4.95 ms, and 9.35 ms; MMST: 

98.26%, -36.54 ms, and 16.38 ms; HO: 98.87%, -22.71 ms, and 18.62 ms; TO: 95.95%, -

6.80 ms, 14.38 ms; MMSW: 96.06%, -3.45 ms; 0.15 ms, respectively). These findings 

suggest that the proposed tool is suitable for the real-time gait analysis in real-life activities.  

1.   Introduction 

Accurate and efficient gait event detectors play an integral role in the design of 

controllers for many real-time therapies to restore lower limb progression [1]. 

Such therapies can be improved with devices capable of enhancing or restoring 

the lower limb motor function [2], such as orthoses or exoskeletons [3]. 

Many different sensors have been used for the human gait analysis. Most of 

them are embedded into the assistive devices and are directly used in advanced 

control algorithms (e.g., accelerometers, gyroscopes, and potentiometers) while 
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others are mounted in the user’s body to supplement the information available 

from the devices (e.g., foot-switches) [2]. Given the portability required by these 

systems [4], studies point out that the use of wearable inertial sensors which are 

considered an optimal solution for recording information, in real-time, correlated 

to locomotion [5]. Recent technological advances have made these sensors 

smaller, lighter, cheaper and with low-power consumption, making them suitable 

for long-term and outdoor ambulatory applications [6]. Additionally, inertial 

sensors have stood out by their versatility and accuracy, providing good trade-off 

between portability, cost and precision when compared with the golden standards. 

For gait event detection, recent studies have been using one or multiple 

inertial sensors [1], [3], [5]–[10], or a combination of inertial with foot-contact 

sensors [2], [4]. Also, the choice of algorithm goes through finite state machines 

(FSMs) based on the specification of a set of decision rules, which can be 

implemented through functional data analysis [11], and machine learning 

techniques [9]. Moreover, the performance relies on the appropriate and accurate 

placement of the sensors in the body. Foot-contact sensors are placed on the foot 

[4], [7] while inertial sensors can be mounted in different parts of the body, such 

as foot [2], [9], shank [3], [5], [6] tight, arms [9], and trunk [8].  

Studies have been focus on finding accurate solutions that describe the gait 

human pattern with a few number of sensor, easy to be mounted. Thus, this paper 

addresses a novel adaptive real-time tool for the gait event detection, suitable for 

distinct human walking conditions (speeds and slopes), based on a gyroscope 

placed in the instep of the foot, and in a FSM with adaptive decision rules to detect 

6 gait events: the 4 well-established gait events (Heel Strike – HS, Foot Flat – FF, 

Heel-Off – HO, and Toe-Off – TO), plus 2 moments in the middle of each gait 

phase (Middle Mid-Stance – MMST, and Middle Mid-Swing - MMSW). The 

proposed algorithm uses as input the angular velocity aligned with the sagittal 

plane. This work extends the one performed in [10], that proposes a similar 

method to detect HS and TO on a humanoid robot and a biped model. 

2.   System Overview 

To overcome the real-time and portability constraints, the proposed tool relies on 

a high-performance microcontroller (MCU) to run the algorithm 

(STM32F407VGT, STMicroelectronics) and in a wearable IMU to measure the 

kinematic data (Tech IMU v4, Technaid S.L.). The IMU integrates 3 distinct tri-

dimensional inertial sensors, including an accelerometer (range: ± 16 g), a 

gyroscope (range: ± 34.9 rad/s), and a magnetometer (range: ± 8.1 G). Moreover, 

this IMU constitutes an optimal solution given its small size (11x26x36 mm), 
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weight (10 g), admissible current consumption (70 mA) and its built-in 

calibration, only allowing communication through a control area network (CAN). 

The choice of the MCU was made regarding this protocol, since the STM32F4 

MCU is incorporated with CAN controllers. In this application, data were only 

recorded from the gyroscope at 100 Hz. We have mounted this sensor in the instep 

of the foot (Figure 1) to have access to the direct measurement of the orientation 

angles of the user’s foot, and restricted measurements of angular velocity to the 

sagittal plane, considering that previous studies have shown feasibility for real 

time event detection [12]. The gyroscope was chosen given its stability, low noise 

(accelerometers showed to be sensible to shocks, vibrations, gravity, and position) 

and immunity to magnetic environments (unlike magnetometers) [5], [9]. 

3.   Proposed algorithm 

3.1.   Adaptive Decision Rules 

Figure 1 shows the events detected throughout the angular velocity signal 

acquired by the gyroscope.  

Figure 1. Representation of angular velocity of instep of right foot (continuous line) and gait events 

(HS, FF, MMST, HO, TO, and TO) during one gait cycle on healthy subject; adaptive thresholds to 

detect minimum and maximum (MINthr and MAXthr); and a real image of IMU mounted in user. 

The criteria to define HS, HO and TO is based on foot plantar pressure 

measurements performed with force sensitive resistors (FSRs) placed on the heel 

and toe. Remaining events were defined based on simultaneous visualization of 

user’s limb movement and the angular velocity recorded. Thus, we defined the 
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decision rules, presented in Table 1, based on curve tracing techniques, such as 

thresholds crossing, local extrema detection and signal derivatives evaluation. 

Table 1. Proposed decision rules using adaptive thresholds to detect the human gait events. 

Condition Decision Rule State 

1 

(gyron > MAXthr) AND (derivativen < 0) AND  
(derivativen−1 > 0) AND  

(gyroindex − MAXindex ∈ [0.7 ∗ CADPrev; 1.3 ∗ CADPrev]) 

MAX / 

MMSW 

2 

((HS_thrmean − HS_thrstd < gyron <  HS_thrmean + HS_thrstd)  

OR 1st_gyro_min ) AND 1st_gyro_max  AND 

(gyroindex − MAXindex ∈ [0; 0.4 ∗ CADPrev]))  

HS 

3 

(derivativen  ≈ 0) AND |derivativen| ≤ 0.2 AND  

1st_gyro_min AND 

(gyroindex − MAXindex ∈ [0.15 ∗ CADPrev; 1.0 ∗ CADPrev]))  

FF 

4 MMST_counter > (HOindexPrev − FFindexPrev)/2  MMST 

5 

(gyron < 0) AND (derivativen < 0) AND (derivativen−1 < 0)  
AND (derivativen > 0.9 ∗ derivativen−1) AND 

(gyroindex − MAXindex ∈ [0.3 ∗ CADPrev; 1.0 ∗ CADPrev]))  

HO 

6 

(gyron < MINthr) AND (derivativen =

0) AND (derivativen−1 < 0) AND  

(gyroindex − MAXindex ∈ [0.5 ∗ CADPrev; 1.1 ∗ CADPrev])  

TO 

As pointed out in Figure 1 and Table 1, the gait events were defined as: MMSW, 

the local maximum detected above an adaptive threshold (MAXthr); HS, the 

angular velocity between a range empirically determined (HS_thrmean ± HS_thrstd) 

after occurring the maximum; FF, the angular velocity is approximately constant 

(n samples with 1st derivative almost null); MMST, n samples after FF occurred, 

where n corresponds to the duration of the last valid MMST; HO, the velocity 

becomes negative after a constant period; and TO, the 2nd minimum detected by 

an adaptive threshold (MINthr). The rules also have a condition dependent of the 

cadence (CAD) which establish adaptatively intervals where the events shall 

occur, allowing the algorithm to be sensible to changes in the pattern.  

3.2.   Finite State Machine  

To increase the robustness of the algorithm, our approach stands out by using 

adaptability given by the previous steps performed. This allows the continuous 

monitoring of the gait pattern to detect variations of step (duration of gait cycle) 

and speed (amplitude of angular velocity). This information is used to define 

intervals where the events must occur (conditions dependent of CAD) and to 

adjust the thresholds of the decision rules (MAXthr and MINthr). Figure 2 shows the 

flow chart of the algorithm, which is composed by 5 steps executed sequentially 

in each iteration (100 Hz). The developed FSM, also depicted in Figure 2, presents 

6 states, one for each gait event (MAX/MMSW, HS, FF, MMST, HO, TO), and 
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2 additional states (default state - DEF, and a reset state - R). The decision rules 

defined in Table 1 (1-6) and an exit condition (E) are used to trigger transitions. 

As indicated in Figure 2, the algorithm starts by measuring and filtering (1st order 

exponential Low-Pass filter) the angular velocity. The filtered sample is analyzed 

in 4 different stages in order to make the FSM adaptable for different walking 

conditions. First stage determines the 1st derivative, detecting when the velocity 

increases (positive signal), decreases (negative signal) or becomes constant 

(approximately zero). To deal with noise, the derivatives below a threshold (near 

zero) are set to zero. This allows to detect only the major variations, that usually 

are associated with the local peaks. The minimum/maximum calculation stage (2nd 

stage) is used to detected HS, MMSW, FF and TO, given their dependency to the 

local extrema. This stage also updates the MAXthr and MINthr based on the current 

and previous peaks (60% of mean of 3 previous valid peaks). The 3rd stage, step 

calculation, computes adaptively the cadence, using the last 3 valid steps. For the 

first steps, initial conditions are used until a valid CAD is obtained. As referred, 

CAD is used in the algorithm to establish statistic decision limits where the events 

must occur. This strategy tailors the algorithm to work for distinct speeds, also 

allowing the FSM to restart in situations where an event was not detected (E 

condition). At final, the last stage implements the FSM by means of a switch case 

statement, which changes the states in accordance with the decision rules. As 

disclosed in Figure 2, the 1st state to run is the R state. Here, all variables are reset 

and the initial conditions (empirically tuned) are set. It follows a transition to DEF 

state. The FSM only leaves this state when the decision rule 1 is true (local 

maximum), transiting to MAX/MMSW. Note that the rule 1 only allows the 

transition to MAX state in the 1st detection. In the remaining situation, it detects 

the MMSW since the maximum corresponds to this event. The FSM is also 

Figure 2. Flow chart of the proposed algorithm (left) and FSM (right) used to detect the gait events. 
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adaptive in the calculation of the threshold for MMST (MMST_counter), which 

occurs approximately in the middle of the previous valid FF and HO, as showed 

in Table 1. We applied this strategy due to the unpredictability of MMST event.    

At last, the tool is able to manage situations in which a user stands for a period 

of time without walking. In this case, the algorithm resets after a period without 

state changes (5*CAD).  

4.   Validation 

The validation of the proposed adaptive tool involved 11 healthy volunteers (7 

males and 4 females), 6 in barefoot and 5 wearing shoes. The subjects present age 

of 28.27 ±4.17 years old, height of 1.70 ±0.08 m, and weight of 69 ±12.02 kg. 

The participants conducted walking experiments in a treadmill at different speeds 

(1.5, 2.5, 3.5, and 4.5 km/h; variable speed) and slopes (0, 5, and 10%). For each 

speed and slope, we asked the participants to perform 3 trials during 30 seconds. 

Globally, 3922 steps were analyzed and each gait event was evaluated regarding 

its accuracy, % of occurrence and duration of earlier and delayed detections. As 

ground truths, we used 2 FSR sensors placed on the heel and toe. This strategy 

was very effective to determine the performance parameters for HS, HO and TO. 

The remaining events were identified manually.  

5.   Results and Discussion  

The versatility and robustness of the algorithm for different walking conditions is 

highlighted by the results shown in Table 2, which indicate how much the 

proposed toll is accurate and time-effective in the real-time detection. 

Table 2. Algorithm performance in terms of accuracy, % of occurrence and duration 

of delays (delayed detection) and advances (earlier detection) for each gait event. 

 
Accuracy 

(%) 

Delay Advance 

% ms % ms 

HS 99.96 15.78 7.95 ±7.13 14.36 9.85 ±11.21 

FF 99.48 5.71 4.95 ±5.16 7.99 9.35 ±11.83 

MMST 98.26 29.35 36.54 ±13.25 8.97 16.38 ±4.04 

HO 98.87 30.80 22.71 ±21.07 15.38 18.62 ±9.63 

TO 95.95 10.58 6.80 ±17.83 21.65 14.38 ±12.83 

MMSW 95.06 5.95 3.45 ±3.36 0.15 0.90 ±2.42 

By analyzing Table 2, we concluded that the proposed tool is accurate in the 

detection of all events for different speeds and slopes (accuracy > 95.06%). TO 

and MMSW constitute the events with less accuracy (95.95% and 95.06%, 

respectively) due to the existence of local maximums and minimums, 

respectively. Regarding the % occurrence and average duration of Delays (D) and 
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Advances (A), MMST (D: 29.35% and 36.54 ms; A: 8.97% and 16.38 ms) and 

HO (D: 30.80% and 22.71 ms; A: 15.38% and 18.62 ms) presented the worst 

results. For MMST, the prediction method is susceptible to the variations of the 

cadence, causing delays and advances when the cadence decreases or increases, 

respectively. For HO, instabilities of the signal during stance (not completely 

constant) can lead to delayed and earlier detections. Table 2 also points out high 

occurrence of early delays for TO. This results from the local minimums that 

occur very close to the global local minimum that truly identified the event. 

Moreover, the algorithm shows to be robust in barefoot and footwear conditions, 

even when different shoes types were worn. However, the IMU presents a better 

attachment when placed on the shoe (tends to slide in barefoot).     

Regarding the adaptability provided to the algorithm, Figure 3 shows 

calculation of the adaptive thresholds (varies with previous global peaks) and the 

ranges that establish the limits where the events can occur (varies with cadence), 

for 2 steps of walking in an acceleration period. As disclosed, MAXthr and MINthr 

are recalculated in each step (thresholds decrease in both cases). Additionally, the 

limits of each event (different between up and down limit defined in Table 1) 

varies with the cadence (all increase when the cadence increases).  

Figure 3. Representation (two steps) of gait events detection throughout the angular velocity and FSRs’ 

output, value (points) of cadence, range (points) defined for each event, and value of MINthr and MAXthr. 

Lastly, these findings support that the proposed tool is a robust, adaptive, and 

effective strategy for the real-time gait analysis demanded either in assistive or 

diagnostic tasks.  

6.   Conclusion  

The development of a real-time adaptive tool for human gait detection was 

described. The proposed algorithm stands out from the existing approaches since 
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it uses a robust FSM triggered by adaptive decision rules and only one-axis from 

a gyroscope mounted in the instep of the foot. The algorithm, validated with 

healthy subjects, has shown to be very accurate and time-effective. Adaptability 

points enhanced the robustness of the proposed strategy, allowing its application 

at distinct walking conditions. Thus, the gyroscope has been valued to be a 

plausible device for gait monitoring systems, since it provides sufficient 

information for the segmentation and detection of human gait events. Future 

challenges include the validation of this algorithm with neurological subjects 

wearing assistive devices, such as orthoses and powered exoskeletons. Predictive 

techniques will also be a focus to tune the assistance with the user’s gait pattern.  
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