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ABSTRACT 

Although minimally invasive Nuss procedure is frequently performed to correct Pectus Excavatum, the successful 

aesthetical outcome is not always ensured. Using the computed tomography (CT) data of six patients, high-quality 

surfaces of the anterior chest wall were generated, alongside with a personalized corrective-bar. Through finite element 

method (FEM), replicating the surgical procedure, a simulation of the anterior chest wall correction was conducted. The 

assessment of this methodology was verified by comparing the metrics from the real meshes (3D scanned before and 

after surgery) and simulated meshes (obtained before and after FEM). Results show a mean difference of 2.85 ± 5.77 mm 

on the point of maximum correction between simulated and real outcomes. No statistical differences were found (p = 

0.281). High aesthetical similarity was observed concerning simulated and real outcomes. The proposed methodology 

presents a patient-specific simulation that may be used to plan, predict and improve the surgical outcome of the Nuss 

procedure. Further studies should continue to improve the presented methodology. 
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1. INTRODUCTION  

Pectus Excavatum (PE) is a common chest wall deformity, with an incidence of 1 in 400 to 1 in 1000 births and a male-

to-female prevalence of 3-5:1 1,2. This deformation is commonly characterized by the posterior depression of the sternum 

and adjacent thoracic structures 3. Frequently observed in infancy and slowly progressing with growth, PE is stated as 

congenital in 90% of cases 1,2. The deformity in the anterior chest wall may vary in depth, width, symmetry and sternum 

rotation, classified accordingly to the Haller index or the correction index for its severity 4. Some severe cases reported 

cardiopulmonary difficulties or loss of appetite and weight, caused by the compression in the chest and stomach. 

However, the psychological health and self-worth caused by the aesthetical appearance is the leading reason to perform 

the PE correction 5–7. 

Currently, the Nuss surgical technique is a well-established procedure for the PE correction 8–10. This technique involves 

the insertion of a prebent metal bar through two axillary incisions in the retrosternal space, elevating and remodeling the 



 

 
 

 

thoracic cage structures. The metal bar profile is defined according to the anatomical structures acquired from computed 

tomography (CT), including the degree and shape of the deformity of PE. The bar is removed after 2-4 years 6,11. 

Personalized simulation of surgical procedures has indisputable advantages in several fields of medicine and PE is no 

exception 12–14. Along the years, several studies explored the Nuss procedure using FEM to analyze the chest wall 

evolution where three-dimensional (3D) models were generated from the reconstruction of CT data. Briefly, these studies 

focused on the: i) comparison of stress distribution between adult and child patients 15; ii) analysis of the forces on the 

thoracic cage of asymmetric PE patients 16; iii) dynamic effects on the spine of patients with asymmetric chest17; iv) 

correction bar positioning simulation 18,19; v)  effect of additional bar application on the patient’s postoperative pain 20; 

vi) generation of parametric models to create a simplification of a 3D chest model using CT measurements and chest 

surface scans 21; vii) simultaneous correction of PE and scoliosis 22; and,  viii) methodologies to individually design and 

optimize the shape of the Nuss bar, advising the location of the incisions using CT data of the patient 23. Although the 

relevant advances of these studies, we considered that different drawbacks are presented in each one, namely: the limited 

sample size (most studies are limited to 1-2 cases); the neglection of the inherent variability, properties, and specificity of 

each anatomical structure during simulation; the disregard of the skin as a crucial structure to verify the aesthetical 

outcome; the neglection of the real shape of the bar; and, the fact that the real surgical outcome was frequently not 

considered as the ground truth. 

Therefore, this work proposes the introduction of an accurate patient-specific numerical simulation workflow to predict 

and improve the functional and visual outcome of the Nuss technique. In that sense, a methodology to numerically 

replicate the surgical procedure is carried out, using the data from six PE patients who underwent minimally invasive 

Nuss procedure. Real data acquired using 3D surface scanning is used to assess the simulated outcomes. 

 

2. MATERIALS AND METHODS 

The presented methodology was divided into three main steps: i) generation of the patient-specific biomechanical model; 

ii) FEM of the Nuss surgical procedure; and iii) comparison of simulated and real outcomes (see Figure 1). 

 
Figure 1 – Overview of the different stages of the proposed methodology to simulate the Nuss surgical procedure. 

Computed tomography (CT), X-Ray, and 3D surface scanning data were acquired before and after surgery. While the 

CT data was used to create the patient-specific biomechanical model of patient’s chest structures and a personalized bar 

(same shape in simulation and surgery) (i), the X-ray data was used to detect the real position of the bar after the 

correction. Both are then inputted into the FEM of the Nuss surgical procedure (ii). Finally, the 3D surface scanning 

data was used to compare the outcomes of the FEM (iii). 



 

 
 

 

2.1 Generation of the patient-specific biomechanical model 

The generation of the anatomical models of the patient’s chest was divided into two main steps. First, the manual 

segmentation of the anatomical structures was performed using the CT data of each patient. Second, a 3D reconstruction 

of the chest was executed, and the mesh generation of the main thorax structures was accomplished. 

For simulation purposes, the segmented anatomical structures consisted of ribs (divided into cortical and trabecular 

bone), sternum and costal cartilages, disregarding internal soft tissues, such as intercostal muscles and organs. According 

to previous works16,24, these segmented structures were used due to their major contribution to the thoracic cage integrity. 

Furthermore, based on clinical observations, the spinal structure does not significantly change immediately after the Nuss 

procedure, and was therefore not included in the FEM. Despite having a smaller contribution to the simulation result 16, 

the skin was considered due to the main role in the final appearance of the anterior chest wall surface. 

Regarding the material properties of both ribs (cortical/trabecular) and sternum, there has been a consensus in the field 

that bone structures are considered isotropic, homogeneous and linear elastic materials 16,25. On the other hand, there is 

no agreement concerning the material properties of PE cartilages 21, where studies suggested that age and calcification 

can influence the biomechanical properties 26,27, which have the potential to affect its structural behavior 28. In this sense, 

material properties for the bone and cartilage were considered isotropic, homogeneous and linearly elastic. Table 1 

presents the elastic modulus (E) and the Poisson ratio (ν) of the materials properties considered in the simulation. 

The skin structure was defined as a single layer (including skin, muscles and other soft tissues), which contacts with the 

bone and cartilage structures. This structure assumes a passive role on FEM, where its motion is a consequence of the 

simulation outcome of other structures after the bar insertion. As proposed by Lapeer et al. 29, here we also defined the 

skin as a hyper elastic material, where a dynamic mesh was set to fit the skin stress-strain.  

The segmentation of the different structures from the CT images was performed manually using the 3D Slicer software 

(version 4.6) 30. Then, the chest model was generated using iso2mesh version 2.0 developed by Fang et al. 31. This 

toolbox enables the generation of 3D high-quality surface and volumetric mesh in MATLAB® (Mathworks Inc., Natick, 

Massachusetts). 

The personalized bar was modeled with the system developed by Vilaça et al. 32 using the CT data of each patient. The 

bar shape and size were used to bend the metal bar applied in the surgery and to create the virtual model of the bar used 

in the FEM simulation. The virtual bar was created in a computer-aided design software, i.e. Solidworks, (SolidWorks 

Corp., Concord, MA, USA) 33. The material properties of titanium alloy Ti-6Al-4V were considered for the bar 34.  

 

2.2 FEM of the Nuss surgical procedure 

FEM is a well-established technique in the field of biomechanics 17. This method enables the assessment of global or 

local strains and displacements, simulating the practical problem and providing useful information from the clinical 

point-of-view 16,18,35.  

The patient-specific chest model and the personalized bar were imported into the FEM software, i.e. ABAQUS/Explicit 

(Dassault Systèmes, Vélizy-Villacoublay, France). For the interaction between the bar and the chest model, two different 

coefficients of friction were used: 0.65 for titanium with cortical bone 36; and 0.15 for titanium with costal cartilage 18. 

Table 1 - Material properties used in the simulation 

  Cortical bone Trabecular bone Costal cartilage Ti-6Al-4V bar 

E (MPa) 11500.0 40.0 24.5 113764.0 

ν  0.300 0.450 0.400 0.342 

Reference Li et al.23 Li et al.23 Awrejcewicz et al. 22 Rack et al.31 

 



 

 
 

 

Besides, the displacement of the joints between the rib and spine was assumed to be constant 16, thus the ribs backend 

nodes were constrained as pinned (i.e. fixed translations). 

Specifically, the Nuss procedure consists in the insertion of a prebent metal bar through a transverse incision made at 

both sides of the midaxillary line in the retro-sternum space. The bar with expanding surgical forceps is pulled in and 

dragged across the sternum rear with the convexity facing towards the back. Then, when the bar reaches the location, it is 

turned over, starting to generate the reshaping of the sternum and adjacent structures. 

To reproduce the surgical procedure, the method was divided into two steps. First – bar set ‒ based on the post-surgical 

patient X-ray information, the axial location of the bar was determined and displayed with the concave side of the bar 

posteriorly to the sternum (Figure 2 - a)). Then, the bar is rotated 180º and pulled forward to promote the sternum and 

underlying structures displacement (Figure 2 - b) and c)). Second – release constrictions – once the bar is placed, forcing 

the structures to a new forward position, the displacement constraints are inactivated. At this point, due to the reaction 

forces and displacements generated from the intercostal introduction of the prosthesis, both bar and chest models adapt to 

the new position, achieving the post-surgical outcome. The output of this step is a pre-surgical (PreSIM) and a post-

surgical (PostSIM) simulated meshes. 

 

2.3 Comparison of simulated and real surgical outcome 

Using a 3D handheld laser scanner, the Polhemus FastSCAN™ Cobra (Polhemus, Colchester, VT), a cross-sectional 

depth profile of the patient’s chest wall surface was acquired before (PreREAL) and after (PostREAL) the surgical 

procedure 37. Following the methodology presented by Gomes-Fonseca et al., the acquired data was processed to 

improve the quality of the chest meshes, preserving the surface details with high accuracy 38. 

The assessment was performed comparing the 3D surfaces obtained from the FEM and 3D surface scanning. Thus, based 

on Gomes-Fonseca et al. as well, a registration technique was conducted (based on the iterative closest point method) to 

overlap the surfaces from different moments, and then the signed distance between surfaces was computed. The 

displacement analysis was performed and restricted to an area from the inter-mammary (between nipples) and 

mammillary lines to the end of the sternum (see Figure 1 and Figure 3), measuring the distance differences resulting 

from the bar insertion. Therefore, PreSIM vs. PostSIM (i.e. pre and post-simulation differences), PreREAL vs. 

PostREAL (i.e. pre and post-surgical differences), and PostSIM vs. PostREAL (post-simulation and post-surgical 

differences) were computed, and the maximum and mean distances were obtained. 

 

 

 
Figure 2 – Representation of bar rotation applied in minimally invasive Nuss procedure and simulated using FEM. a) 

Bar positioned at real axial location before rotation. b) Time point during 180º bar rotation. c) Bar position after rotation 

showing chest reshaping. 

 



 

 
 

 

2.4 Study sample 

Six male patients with symmetric or very light asymmetric deformation were considered for the methodology 

assessment. The mean age of these patients was 15 ± 1 years (range: 14 to 16) with a Haller Index of 3.29 ± 0.89 (range: 

2.45 to 4.97). CT image size was 512 × 512 pixels with a slice thickness of 3 mm. The pixel resolution ranged from 0.50 

to 0.73 mm and 0.46 to 0.84 mm, for both vertical and horizontal directions, respectively. 

 

2.5 Statistical analysis 

All statistical tests were conducted using MATLAB® (version R2016b, The Mathworks Inc., Natick, MA). The 

assumption of normality was assessed for all variables and, based on the results, parametric or nonparametric tests were 

applied accordingly. The effect size and statistical significance were reported. Correlation and regression analysis were 

 
Figure 3 – Representation of mean distances between PreSIM mesh vs. PostSIM mesh; PreREAL mesh vs. PostREAL 

mesh; and PostSIM mesh vs. PostREAL mesh. Mean and standard deviation are reported for the six cases and for all 

comparisons. Red means chest elevation, while blue means chest depression. 



 

 
 

 

also performed. All statistics were considered significant if p < 0.05. 

 

3. RESULTS 

The results are summarized in Figure 3.  Shape differences between pre- and post-surgical meshes were clearly visible in 

both simulated (i.e. PreSIM vs. PostSIM) and real ones (i.e. PreREAL vs. PostREAL), where the elevation of the internal 

structures (i.e. sternum and costal cartilages) were present after bar insertion. While the average distances of PreSIM vs. 

PostSIM and PreREAL vs. PostREAL presented differences, PostSIM vs. PostREAL were similar. Indeed, mean 

distances were closed to zero in most cases. 

The average value of the maximum distance obtained in PreSIM vs. PostSIM and PreREAL vs. PostREAL was 21.44 ± 

9.39 mm and 18.59 ± 6.22 mm, respectively, with a mean difference of 2.85 ± 5.77 mm (see Table 2). No statistical 

differences between measurements were found when a paired sample t-test was performed (p = 0.281), although a 

medium effect size was obtained (Cohen’s d = 0.490). 

A strong and positive Pearson’s correlation was found (r(6) = 0.801), being almost significant (p = 0.055). The 

regression analysis revealed that the maximum elevation point of the chest was approximately 21% higher in simulated 

meshes than in real ones (Figure 4). 

 

4. DISCUSSION 

In this work, we presented a new methodology based on a patient-specific simulation that may be used to plan, predict 

and improve the surgical outcome of the Nuss procedure. To the best of our knowledge, this was the first study that 

performed a numerical simulation of the Nuss surgical procedure using a personalized bar, with the same shape as the 

one that was inserted during the surgery. Beyond that, this study also validated the simulation outcomes using real data 

from the patients. 

We collected data from six PE patients who underwent minimally invasive Nuss procedure. For all cases the same 

Table 2 - Maximum distance computed between simulated (PreSIM vs PostSIM) and real outcomes (PreREAL vs 

PostREAL) for the six PE cases. 

 Maximum distance (mm) 

Case Age (Y) Haler 

Index 

∆ (PreSIM vs. 

PostSIM) 

∆ (PreREAL vs. 

PostREAL) 

Differences  

1 15 2.75 23.91 16.62 7.29 

2 14 3.90 13.16 20.64 -7.48 

3 16 2.45 23.62 17.74 5.88 

4 14 4.97 37.58 29.55 8.03 

5 15 3.10 18.55 16.04 2.51 

6 16 2.55 11.80 10.96 0.84  

Mean ± SD 15 ± 0.82 3.29 ± 0.89 21.44 ± 9.39 18.59 ± 6.22 2.85 ± 5.77 

Paired sample t-test t(5) = 1.207, p = 0.281, Cohen’s d = 0.490  

 



 

 
 

 

gender was considered, low age variability and low asymmetry, being the degree of depression the main variable. 

3D shape differences before and after surgery were observed in both simulated and real surfaces outcomes, which means 

that the displacement induced by the bar insertion was observed in both. Magnitude differences between simulated and 

real outcomes were present, where the simulation showed superior values in most cases. Despite no statistical differences 

were found, the effect size and, particularly, the regression analysis revealed that simulations were approximately 21% 

higher than real outcomes. However, when the post-surgical meshes (PostSIM vs. PostREAL) were aligned and 

compared, the mean differences were approximately zero (Figure 3). These results indicate that the displacement values 

present differences, but the chest shape was similar after the numerical simulation and surgery, as it is visible in Figure 5. 

From the visualization perspective, it can be observed that small defects and features of the real correction were present 

in the simulation outcome. Furthermore, the points where the maximum displacement was observed were approximately 

coincident in all comparisons. 

A limitation of this assessment was to establish the best mesh alignment. An evident 3D shape difference is observed 

between pre-surgical and post-surgical meshes, which may hamper the exact alignment, and consequently the computed 

values. Besides, differences between meshes can be caused by the position and orientation changes between acquisition 

moments, due to chest wall height and width increase during bar insertion, and respiratory movements during data 

acquisition. Thus, the used methodology tried to minimize the errors of these alignments. However, it must be mentioned 

that other alignment techniques could achieve different results. 

  

The goal of this work was to submit non-parametric 3D models to the real effects of the bar insertion. However, to 

accomplish the simulation, since the application of FEM is computationally demanding, this work proposed a set of 

simplifications which may entail an error to the analyzed outcome. Even though, the proposed strategy for FEM, where 

different materials properties for the bone, costal cartilages, and skin were considered leading to independent structures 

during simulation, brought benefits to the final outcomes. 

 

5. CONCLUSIONS 

A patient-specific simulation that might be used to plan, predict and improve the surgical outcome of the Nuss procedure 

was presented and preliminarily assessed. The morphological similarity observed in the post-surgical meshes indicated 

the reliability of the aesthetical outcome prediction of the presented methodology. Thus, being the PE correction 

different for each patient, the chest deformity appearance had specific characteristics that were differently simulated in 

the outcome. Therefore, the proposed methodology allowed the pre-visualization of the outcome which may distinctively 

improve the patient confidence in the Nuss surgical procedure. Further studies should continue to improve the presented 

methodology. 
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Figure 4 – Correlation and regression analysis using maximum distance between simulated (i.e. PreSIM vs. PostSIM) 

and real (PreREAL vs. PostREAL) outcomes. 



 

 
 

 

 

 
Figure 5 - Isometric views of PreSIM, PostSIM, PostREAL meshes for all patients. 
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