
Design and Power Consumption Analysis of a
NB-IoT End Device for Monitoring Applications

Sofia Paiva
DTx - Digital Transformation Colab

Campus de Azurém
Guimarães, Portugal

a78838@alunos.uminho.pt

Sérgio Branco
Department of Industrial Electronics

Algoritmi Center, University of Minho
Braga, Portugal

asergio.branco@gmail.com

Jorge Cabral
Department of Industrial Electronics

Algoritmi Center, University of Minho
Braga, Portugal

jcabral@dei.uminho.pt

Abstract—As the number of connected "things" increases at a
very fast pace, the Internet of Things (IoT) ecosystem expands
and nowadays covers a vast number of application domains,
providing a large portfolio of solutions that are based on an
evolving system, from the physical sensors (end devices) to
the Cloud. When designing battery-powered end devices, previ-
ous research has identified several challenges such as wireless
connectivity, battery lifetime, embedded intelligence, security
and privacy concerns, and costs (modem unit, communication
link and maintenance, among others). This paper focuses on
the design and development of battery-powered IoT devices
in which NarrowBand Internet of Things (NB-IoT) is used to
provide seamless wireless connection, reduce power consumption,
enhance communication coverage and minimize maintenance
costs. The paper describes a typical use case where an Arm®

Cortex®-M0+ and its low-power modes are exploited in order
to design a low-power end device. Two different approaches,
bare-metal and freeRTOS, for implementing the end device
firmware are compared. Additionally, performance tests prove
that increasing the clock frequency of the processor does not
bring any advantage to this kind of applications.

Keywords—IoT, low-power design, NB-IoT, power consump-
tion

I. INTRODUCTION

Nowadays Internet of Things (IoT) is a well known concept

that is even being associated with specific application domains

such as Industrial IoT (IIoT), Cellular IoT (CIoT), Internet

of Medical Things (IoMT), among others. IoT applications

are emerging at a fast pace, reflecting on the 26 billion of

connected devices in 2019, a number that is predicted to grow

by 178% in the next 5 years [1].

Some of these applications, such as remote utility metering

and agriculture monitoring, due to safety restrictions or limited

physical access, require a battery-powered end device. Thus,

it is necessary to have special attention to power consumption,

since it influences the device’s autonomy and may have high

impact on maintenance costs.

For long range coverage and low-power transmissions, the

Low Power Wide Area Network (LPWAN) technologies are

the right choice. There are two classes from two different

spectrum: unlicensed spectrum technologies and licensed spec-

trum technologies. The former can operate within a Industrial,

Scientific and Medical (ISM) frequency band and each oper-

ator must assure the infrastructure necessary to transmit the

information (e.g. LoRa, Sigfox). The latter is supported by

standards such the Long Term Evolution (LTE) and Global

System for Mobile Communications (GSM), and by the cur-

rent cellular infrastructure. There is even an effort to reduce

hardware costs and to simplify network access mechanisms,

targeting the embedding of the SIM card into the module

hardware itself [2].

Still, the communication link is one of the most power

consuming tasks of a wireless end device. On the licensed

spectrum technologies, specially with NarrowBand Internet

of Things (NB-IoT), the reduction of power consumption is

achieved by reducing the physical layer of the communication

link (when compared to the cellular physical layer), while

maintaining the security, scalability and link reliability pro-

vided by the LTE network.

NB-IoT was introduced by the Third Generation Partnership

Project (3GPP), being a LPWAN technology conceived to

use the existent cellular network for low data rate, low-cost

applications. It has three operation modes: in-band, guard-

band, and standalone, regarding the transmission carrier and

resource blocks. The mode used is determined by the service

provider based on the cell site and base station that supports

the end device. NB-IoT’s advantages are [3]:

• Power optimization features such as Power Saving Mode

(PSM) and extended idle-mode discontinuous reception

(eDRX);

• Deep indoor coverage mainly because of its 180 kHz

bandwidth;

• Low-cost NB-IoT radio modules (modem);

• LTE network security and scalability.

There are several research works on NB-IoT applications

in various application domains, taking advantage of its low-

power consumption and LTE network benefits [4]–[10]. How-

ever, the end devices designed used either Arm® Cortex®-M3

or M4 microcontrollers, or Arduino or Raspberry Pi boards as

control units.

In this paper the design of an end device based on a

Cortex®-M0+ for low-power, low-cost, and low-performance

NB-IoT applications is presented, focusing on the impact of

the different firmware coding approaches and exposing the

various design choices towards a low-power end device.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 30,2021 at 23:07:27 UTC from IEEE Xplore. Restrictions apply.

The remaining of this paper is structured as follows. §II

focus on design principles for low-power NB-IoT applications.

In §III the end device structure and its functionalities are

described generally. Then there is an hardware description

and on the software the bare-metal firmware is opposed to

the RTOS-based one.

This paper concludes by presenting results from initial tests

to the end device (in §IV) and identifying future research

topics in §V.

II. SYSTEM DESIGN PRINCIPLE

Currently there are two ways of integrating NB-IoT tech-

nology into an end device:

• using only the NB-IoT modem, programming its em-

bedded application processor to establish the sensor’s

interface;

• using the NB-IoT modem exclusively for communication

and add a low-power Microcontroller Unit (MCU) to run

the application and establish interface with the end device

sensors.

The first option for NB-IoT integration is still very limited

and suitable solutions for custom low-power applications are

difficult to find. In [11], the Qualcomm solution using this

method was presented (MDM9206), which is supported by

two different chip manufacturers (Quectel [12] and SIMCom

[13]) and has integrated cloud device agents. The end device

is based on a Cortex®-A7 application processor and runs

ThreadX RTOS. Nordic Semiconductor also introduced a

System-in-Package (nRF9160) as the integrated modem solu-

tion. The SiP has a Cortex®-M33 application processor and has

its own development kit aiming to allow an easy and fast de-

velopment [14]. Although this approach has clear advantages

for fast prototyping, it has some disadvantages related to power

consumption and data link costs, since more processing power

is required from the module (one hardware solution fits all)

and property cloud agents and web micro-services are required

that leads to more maintenance and communication data link

costs. For custom, low-power and minimal costs, neither of

the above solutions seems flexible enough, so in this paper the

second option was chosen. There are a lot more offers on the

market for standalone NB-IoT modem solutions. This market

is mainly dominated by Quectel. Other manufacturers include

u-blox, Qualcomm, Nordic Semiconductors and SIMCom.

Although the use of a standalone modem requires an additional

microcontroller unit (MCU), it allows for more flexibility in

terms of peripherals and MCU selection, allowing a faster

custom design for development teams with a particular MCU

skills. The communication with the NB-IoT modem is done

via UART using standard AT commands, given by the modem

manufacturers.

For the design here presented, the Quectel BC66 module

was selected based on power consumption, accessibility and

documentation. Targeting low-power, the MCU selected was

the STM32L071K8 which uses a Cortex®-M0+. It is well

suited for small monitoring applications that do not require

intensive processing or high data rates.

Regarding the MCU’s peripherals, there are some design

considerations to have in mind when targeting develop-

ment time, reduced Bill-of-Materials (BoM), and low-power,

namely avoiding analog sensors. The ADC peripheral is one of

the most power consuming ones and can jeopardize the battery

lifetime if left continuously powered-on [15]. Even though

low-power MCUs such as the STM32L0 series are prepared

to reduce this power consumption to a minimum, it might still

be preferred to choose a sensor with digital output like I2C or

SPI, since it can help reduce the sensor’s energy consumption

as well as offering other functionalities, such as an interrupt

signal when the sensing value crosses a given threshold. In

order to respect this design choice, all sensors chosen for the

demonstration system have I2C interface, allowing the use of a

single I2C peripheral to interface all the end device integrated

sensors.
On MCU configuration there is also a relevant aspect

to consider: the MCU system clock. It is well known that

higher clock frequencies result in higher power consumption,

but faster execution. On the contrary, by slowing the clock

frequency, power consumption is reduced at the cost of slower

execution. With the system design here exposed, it is the

authors intention to test if, for a wake-up – execute – sleep –
repeat application, it is better to execute fast, sleep more or

execute slow, sleep less in terms of overall power consumption.
Another design constraint to have in mind is the approach

to develop the end device firmware. There are two approaches

for developing the code in the end device MCU (abstractly

speaking):

• Bare-metal approach – where the code runs directly on

top of the MCU, respecting the coding flow;

• RTOS-based approach – where there is a scheduling

mechanism that allows tasks to run in pseudo-parallelism.

The first allows for a more controlled application flow and

optimization, at the cost of being inflexible when it comes

to design changes. The second allows for a more flexible

application and theoretical better use of resources, by intro-

ducing pseudo-parallelism into the execution. However, it adds

a considerable layer of overhead and may not be advantageous

for an application as simple as the one considered.
In order to get to the bottom of this question, two firmware

applications were developed for the end device design, one

as a bare-metal application and the other as a RTOS-based

application.
Lastly, it is equally important to choose the communication

protocol. Since the NB-IoT standard supports either Internet

Protocol (IP) or non-IP protocols, the choice of a commu-

nication protocol impacts both power consumption and data

security/reliability.
Non-IP protocols can be SMS or other NB-IoT Non-

IP Data Delivery (NIDD). User Datagram Protocol (UDP)

and Transmission Control Protocol (TCP) are the supported

communication protocols over IP communication. For an IoT

application, the UDP protocol assures more power savings

in comparison to TCP, but it can not guarantee the message

delivery.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 30,2021 at 23:07:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. System Diagram

On the application level, there is also compatibility with

the Constrained Application Protocol (CoAP) and Message

Queuing Telemetry Transport (MQTT) standards for Machine-

to-Machine (M2M) communications. The former can be de-

ployed seamlessly either with UDP transport layer or NIDD,

and is being recommended as the preferable standard to use

with NB-IoT [16]–[18].

III. SYSTEM STRUCTURE AND FUNCTION

The proposed end device is represented by the diagram in

figure 1. The end device conceived for working with 1.8V

sensors and MCU, has a NB-IoT modem that allows the direct

connection to a 3.6V battery.

The network architecture presented in figure 2 illustrates

the process of a simple application for monitoring some

environmental conditions with a NB-IoT end device, pre-

process the data and securely send the information to a Cloud

server, so that it can be available on access platforms.

Due to the fact that the data collected from the nodes is

being sent to a Cloud, it is essential to ensure that the com-

munication protocol provides security & privacy measures.

Moreover, communication protocols must create the minimum

overhead possible to ensure a reduced transmission time.

The ArchNet [19] protocol uses a symmetric-asymmetric

encryption process to ensure that the data is not readable

by any third-party. The data serialization step ensures that

the data is understandable by any programming language and

program. Furthermore, the use of decentralized microservices

and database (MongoDB), allows a more secure and efficient

way of storing data and process it. The communication NB-

IoT device – base station is guaranteed by the NB-IoT standard

which can use features from LTE if not working in standalone.

Fig. 2. NB-IoT Network Architecture

Then, from the base station to the server the communication

is done through the internet, using a IPSEC Tunnel to assure

data confidentiality, scalability and security.

A. Hardware Design

The end device has three main components: the MCU;

the NB-IoT modem; and the sensors. The MCU is a

STM32L071K8U6 (32 MHz Arm® Cortex®-M0+, 64 KB

Flash, and 20 KB RAM), chosen by its small footprint and

reduced number of peripherals, making it almost custom for

the proposed use case. It controls the whole system, gathering

the sensors’ data, pre-processing it and communicating the

monitored information through the NB-IoT modem.

The NB-IoT modem selected was the Quectel BC66 that

has a power supply range between 2.1V and 3.63V, allowing

direct connection to the battery. Additional hardware for the

NB-IoT modem includes a nano SIM card (since eSIM is not

yet available for deployment) and an antenna.

Regarding the sensors, four different sensors for humidity

and temperature, light/luminosity, methane gas (CH4), and

acceleration were selected. All sensors have low-power con-

sumption, low-power modes, and digital communication in-

terface (I2C). Some also have programmable interrupt signals

that allow to detect anomalies on monitored data without

requiring constant reading requests and processing from the

end device MCU.

For powering it all up, a 3.6V Lithium-Thionyl Chloride

(Li-SOC2) battery was chosen due to its pulse capability and

low self discharge. A Low-Dropout (LDO) regulator with low

quiescent current was included in order to regulate the voltage

to 1.8 V.

The hardware components selected can be found in table I.

B. Software Design

As mentioned before, in order to make a comparative

study of performance and consumption, two firmware coding

approaches were used to execute the functionality identified

in figure 3.

The purpose is to acquire data, pre-process it and send

the information about the monitored parameters to the Cloud

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 30,2021 at 23:07:27 UTC from IEEE Xplore. Restrictions apply.

TABLE I
HARDWARE SPECIFICATION

MCU Core Power Supply Consumption

STM32
L071K8

Arm®

Cortex®

-M0+
1.8V - 3.6V

140 μA/MHz @ run
0.8 μA @ stop mode
(w/ RTC)
0.65 μA @ standby
(w/ RTC)

Modem Core Power Supply Consumption

Quectel
BC66

Mediatek
MT2625

2.1V - 3.63V

3.5 μA @ PSM
240 μA @ Idle
(eDRX = 81.92 s)
110 mA @ LTE
Cat NB1

Sensor Interface Power Supply Low Power Modes
Hum.Temp. SPI; I2C 1.71V - 3.6V yes

Light I2C 1.6V - 3.6V yes
CH4 I2C 1.75V - 3.6V yes
Accel. SPI; I2C 1.72V - 3.6V yes

Battery Type Nominal Voltage Capacity
LSH14 Li-SOC2 3.6V 5.8 Ah

server periodically, while taking advantage of low-power

modes to reduce average power consumption. If it is not

possible to send the information at a given time, the end

device shall try to reconnect to the base station at a latter time

(minutes). If it can not connect at all, the end device enters

in standby, a deep sleep state, waiting for some time (hours)

before rebooting and retry to communicate again. This gives

time to detect, on the Cloud server side, that this particular

end device is inactive and possibly requires attention.

1) Bare-Metal approach: The bare-metal application fol-

lowed the flow exactly as exposed in figure 3, having three

main layers: the hardware of the STM32L071K8U6, a hard-

ware abstraction layer (HAL), and the application, as depicted

in figure 4.

The hardware comprises the registers for interaction with

peripherals and memory. Instead of writing directly to registers

on the application layer, STMicroelectronics (ST) offers a

HAL with functions that allow a more fluid manipulation of

the hardware resources. In order to provide even more porta-

bility to the application, a low level module was developed so

that the application doesn’t get restricted to the HAL offered

by ST.

The application layer has its own levels, depicted in figure 4

schematic. The bottom level comprises the system interaction,

the modem and the specific sensors interaction. The system

controls the Real-Time Clock (RTC) configuration and read-

ing, and the power control. The modem module deals with the

specificity of the NB-IoT modem selected (Quectel BC66),

such as AT commands, and flow of execution for initialization

and configuration. Each sensor specific module deals with the

initialization, configuration and reading of the specified sensor,

since their working mechanisms are different (proprietary for

each sensor). The top level allows a certain level of abstraction,

where the transmission and sensors modules are included.

The former deals with transmission protocol, gathering the

required information and requesting the modem module to

Fig. 3. System Flowchart

send it in the correct format. The latter, centralizes the sensors

information, allowing mass initialization and configuration, as

well as unified organization of information from each sensor.

In this way, the main module can control the application

flow in an abstracted way, so that its only concern is the correct

execution of application procedures.

2) RTOS approach: There are several RTOSs available

for IoT applications, both open-source as well as propriety.

After analyzing some of the most known RTOSs, such as

ThreadX and embOS (proprietary), and μC/OS-III, mbedOS

and freeRTOS (open-source), the authors selected freeRTOS.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 30,2021 at 23:07:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. System Architecture

Fig. 5. Graphic Tasks Abstraction

According to [20], freeRTOS is not the fastest RTOS in most

bench marked parameters, but its performance is comparable

with the other open-source RTOSs analyzed. The choice of

freeRTOS can be easily justified by its community support,

previous development experience and seamless porting to the

selected MCU using the ST Cube tool.

The freeRTOS application developed respects the same

layers depicted in figure 4, except that it introduces a new

layer, close to the hardware, representative of the freeRTOS

kernel, that manages scheduling and context switching of

tasks.

The functionalities offered by the end device firmware and

its synchronization are depicted in figure 5, where a graphic

tasks abstraction of the implementation in the RTOS context

is provided. There are tasks and functions responsible for con-

figuring and collect data from the sensors (left side of figure),

which in turn are accessed by a manager using synchronization

mechanisms such as semaphores. On the communication scope

(right side of figure) there are also tasks responsible for

initializing and configuring the NB-IoT connection to the base

station and Cloud server, allowing the manager task to request

configuration information and sending datagrams with respect

to the appropriate synchronization mechanisms (semaphores

and queues in this case).

The use of freeRTOS enables the mentioned pseudo-

parallelism, making it possible to initialize the sensors "at

the same time" the modem is being initialized, since there

is a standstill between the transmission of an AT command

and the modem response. In this time, modem tasks are

Fig. 6. NB-IoT Custom PCB

blocked waiting for the response and other tasks can execute,

or the MCU can be put into a shallow sleep mode for power

consumption reduction.

IV. PRELIMINARY RESULTS

Based on the diagram depicted in figure 1, a NB-IoT end

device custom Printed Circuit Board (PCB) was designed and

fabricated (figure 6). The design of the PCB allows to measure

current consumption at five different circuitry test points:

1) All modules, from the point of view of the battery,

overall end device power consumption (dark blue in

figure 6);

2) MCU and sensors, from the point of view of the battery

(including the LDO) (blue in figure 6);

3) NB-IoT modem only (communications power consump-

tion) (light blue in figure 6);

4) Sensors only, from the point of view of the LDO (red

in figure 6);

5) MCU only, from the point of view of the LDO (orange

in figure 6).

The measurements were taken on subsystems 2 and 3

separately for better analysis. For this measurements, a Digital

Multimeter (DMM) was used, the modem was supplied from

an external power supply (3.5 V) when not being measured

its consumption.

The comparison in figure 7 opposes the current consumption

of the end device with a bare-metal firmware to the current

consumption of the end device with a RTOS-based firmware.

Both ran at the same clock frequency, in the same hardware

conditions, the application has identical timings for execution,

except between the two dashed lines showed in both graphs.

This time is variable and depends on how fast the modem is

able to connect to the network. When the energy consumption

drops it means that the MCU has been put into stop mode and

is waiting for a RTC wakeup. For tests purposes, this wakeup

time was set to 10 seconds.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 30,2021 at 23:07:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Current Consumption of Bare-Metal (left) and RTOS-based (right)
Firmware @ 1.048 MHz

Fig. 8. Current Consumption at Different Clock Frequencies

From the results, there are two important phases to analyze:

the use of the RTOS compensates at the initialization phase,

having less 20 μA of average current consumption than the

bare-metal implementation, but at the cyclic repetition, the

bare-metal firmware achieves less 5 μA of average current con-

sumption than the RTOS-based one. Measurements for other

clock frequencies sustain these results, the higher the clock

frequency, the larger the difference of current consumption

between the two implementations at both phases.

The current consumption difference between the four clock

frequencies selected for experimental measurements can be

seen in figure 8. The average execution time and current

consumption per peak (active time after wakeup) are listed

in table II. It shows that using the MCU’s maximum clock

frequency (32 MHz) only decreases execution time by 10%

while the power consumption is increased by 2900%, when

compared to the values obtained at a lower clock frequency

of 1.048 MHz.

One of the STM32L071K8’s low-power features is the

option to select the core supply voltage. For clock frequencies

below 4.194 MHz it is possible to run the core with a 1.2V

supply voltage instead of the 1.8V. The impact on current

consumption of using this feature in lower clock frequencies

can be observed in figure 9. It can represent savings of more

than 345 μA on the average consumption, which for low-power

TABLE II
AVERAGE EXECUTION TIME AND CURRENT CONSUMPTION AT

DIFFERENT CLOCK FREQUENCIES

1.048 MHz 4.194 MHz 16 MHz 32 MHz

Execution
Time (s) 2.2427 2.1110 2.0711 2.0691

Current
Consumption (mA) 0.2751 1.0538 4.9571 8.3573

Fig. 9. Current Consumption with (left) and without (right) Low Power
Configurations

sensitive applications is significant.

Table III presents the code and RAM size in bytes for

each firmware. This is the necessary allocation of memory in

order to implement the same application using different coding

approaches. As expected, the RTOS-based firmware requires

more memory, this is directly related to the initialization of

tasks, queues and kernel.

During the experimental assessment, a problem was identi-

fied in the design related to the quiescent current consumption

of the selected LDO. On an isolated measurement, it was found

that the sensors have an average consumption of 2 μA and the

MCU in stop mode has an average consumption below 1 μA,

thus the verified 24 μA average current consumption when the

system is in standby was attributed mainly to the quiescent

current of the selected LDO.

As for the NB-IoT modem current consumption measure-

ments, figure 10 presents one execution cycle from the start of

the flowchart in figure 3. The modem was configured with no

eDRX and PSM set to 2 hours with active-time of 10 seconds

(time in which it is idle). However, for tests purposes, the

MCU wakeup time was set to 5 minutes, so that a data package

could be sent within the measurement time. The results show

the drastic change in current consumption, dropping from an

average of 17 mA in full functioning to an average of 560 μA

in idle and mere 5 μA average when in PSM.

When testing the responsiveness of the modem, a problem

with the previous selected battery was found, as it could

not suffice the peak currents observed when establishing

communication. This motivated to change from a LS17500

3.6 Ah battery to a LSH14 5.8 Ah battery, not because of the

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 30,2021 at 23:07:27 UTC from IEEE Xplore. Restrictions apply.

TABLE III
CODE SIZE IN BYTES FOR EACH FIRMWARE

Code RO RW ZI

Bare-Metal 30184 324 24 4304

RTOS 39452 364 216 14816

Fig. 10. NB-IoT Modem’s Current Consumption with 20 Seconds Idle Time.
Full measured cycle on the right and transition from idle to PSM close-up on
the left

increased capacity, which theoretical allows for a longer life

time, but because of its pulse capability, supporting up to 2 A

peak of current for 0.1 seconds.

V. CONCLUSION

In this paper the design and development of a low power IoT

end device with seamless wireless communications supported

by NB-IoT was presented. The preliminary experimental re-

sults obtained allowed to conclude that selecting a lower

clock frequency, for the end device MCU, is a better solution

for reducing power consumption in the proposed IoT use

case. The main reason for this to happen is because the

application is much more dependent on the time taken by other

hardware modules (sensors’ measurement time and modem’s

communication link) than on exhaustive computations during

a given task. So faster code throughput won’t result in a

significant decrease of the time required to return the end

device to sleep mode.

Based on the results, it is also possible to conclude that the

bare-metal application can offer a better energy consumption

profile than the RTOS-based one. Besides allowing a better

memory management, the bare-metal firmware has a coding

flow more straightforward than the RTOS, thus making it bet-

ter for troubleshooting when in development phase. However,

code maintenance is more difficult, it is less flexible to change

parts of the application and it is more difficult to include more

power savings mechanisms, such as entering shallow sleep

when waiting for external responses, which could translate on

extending the end device battery lifetime even further.

Regarding battery lifetime, considering the LDO quiescent

current of 24 μA previously explained, the end device reaches

a 576 μAh per day, on a two-times-a-day update of the

sensor values at 1.048 MHz clock frequency. When adding the

communications contribution, based on the measured NB-IoT

modem current consumption and with the same two-times-a-

day update frequency, which gives a rough average of 483

μAh per day, the overall battery lifetime is 15 years.

Although these results are already promising for the per-

spective of a 10-year battery life target, they can be further

optimized by means of software and hardware changes. A

change to a nano-quiescent current LDO would significantly

reduce the current consumption during the sleep phase of the

system. On the software level, some changes to the application

could also help reduce power consumption while increasing

measurements resolution, by waking up just the MCU and

the sensors more frequently, and wake up more sporadically

just to send the data collected. Further analysis on current

consumption between using the LSI or the LSE to drive the

RTC clock need to be made, as well as using UDP or TCP

for data communication.

So far, it is plausible for a NB-IoT design to achieve the

announced 10-year battery life, provided that both software

and hardware are power consumption aware, and identified

high consumption modules within the system can be further

improved in order to minimize their impact.

VI. ACKNOWLEDGMENT

This work has been supported by NORTE-06-3559-FSE-

000018, integrated in the invitation NORTE-59-2018-41, aim-

ing the Hiring of Highly Qualified Human Resources, co-

financed by the Regional Operational Programme of the North

2020, thematic area of Competitiveness and Employment,

through the European Social Fund (ESF).

This work has been supported by FCT – Fundação para a

Ciência e Tecnologia within the R&D Units Project Scope:

UIDB/00319/2020.

The authors would like to thank the support team of NOS

Comunicações for providing the NB-IoT connection and server

service, and for technical support throughout the installation.

REFERENCES

[1] A. Bera, “80 Insightful Internet of Things Statistics - 2020 Edition,” feb
2019. [Online]. Available: https://safeatlast.co/blog/iot-statistics/#gref

[2] Huawei, “Huawei demonstrates world-first nuSIM implementation,”
nov 2019. [Online]. Available: https://www.huawei.com/uk/press-events/
news/uk/2019/huawei-demonstrates-world-first-nusim-implementation

[3] Deutsche Telekom AG, “NarrowBand IoT The Game Changer for The
Internet of Things,” Tech. Rep. October, 2017.

[4] K. Changyun, “Design of Safety System for Kitchen Based on NB-
IOT,” 2019 3rd International Conference on Robotics and Automation
Sciences (ICRAS), pp. 74–78, 2019.

[5] Y. Cheng, “Design of Air Quality Monitoring System Based on,” 2019
IEEE International Conference on Power, Intelligent Computing and
Systems (ICPICS), pp. 385–388, 2019.

[6] W. Jianxin, S. Junpan, and H. Ruyuan, “Design of a Smart Independent
Smoke Sense System Based on NB-IoT Technology,” 2019 International
Conference on Intelligent Transportation, Big Data & Smart City
(ICITBS), pp. 397–400, 2019.

[7] D. Xiong, Y. Chen, X. Chen, M. Yang, and X. Liu, “Design of Power
Failure Event Reporting System Based on NB-IoT Smart Meter,” 2018
International Conference on Power System Technology, POWERCON
2018 - Proceedings, no. 201804270000855, pp. 1770–1774, 2019.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 30,2021 at 23:07:27 UTC from IEEE Xplore. Restrictions apply.

[8] S. Duangsuwan, A. Takarn, and P. Jamjareegulgarn, “A Development on
Air Pollution Detection Sensors based on NB-IoT Network for Smart
Cities,” ISCIT 2018 - 18th International Symposium on Communication
and Information Technology, no. Iscit, pp. 313–317, 2018.

[9] S. Yang, S. Khan, X. Chuanxi, Z. Yifeng, and P. Shengchun, “Design
and Realization of a Buoy for Ocean Acoustic Tomography in Coastal
Sea based on NB-IoT Technology,” OCEANS 2019 - Marseille, pp. 1–4,
2019.

[10] W. Manatarinat, S. Poomrittigul, and P. Tantatsanawong, “Narrowband-
Internet of Things (NB-IoT) System for Elderly Healthcare Services,”
2019 5th International Conference on Engineering, Applied Sciences
and Technology (ICEAST), pp. 1–4, 2019.

[11] N. Naik, “Cellular IoT — MDM9206 Modem and New LTE for
IoT SDK - Qualcomm Developer Network,” jul 2018. [Online].
Available: https://developer.qualcomm.com/blog/cellular-iot-mdm9206-
modem-and-new-lte-iot-sdk

[12] Quectel, “Quectel QuecOpen.” [Online]. Available: https://www.quectel.
com/technology/quecopen.htm

[13] SIMCom, “9206 IOT SDK.” [Online]. Available: https://www.simcom.
com/service-2.html

[14] Nordic Semiconductor, “nRF9160 - Nordic Semiconductor,” 2018.
[Online]. Available: https://www.nordicsemi.com/Products/Low-power-
cellular-IoT/nRF9160#infotabs

[15] STMicroelectronics, “Ultra low power Application note STM32L0,”
STMicroelectronics, Tech. Rep., 2014.

[16] T-Mobile, “Narrowband IoT Solution Developer Protocols,” Tech. Rep.,
2019.

[17] M. Stusek, K. Zeman, P. Masek, J. Sedova, and J. Hosek, “IoT Protocols
for Low-power Massive IoT: A Communication Perspective,” Inter-
national Congress on Ultra Modern Telecommunications and Control
Systems and Workshops, vol. 2019-October, no. November, 2019.

[18] K. K. Nair, A. M. Abu-Mahfouz, and S. Lefophane, “Analysis of the
narrow band internet of things (NB-IoT) technology,” 2019 Conference
on Information Communications Technology and Society, ICTAS 2019,
pp. 1–6, 2019.

[19] S. Branco, “Archnet,” Apr. 2020. [Online]. Available: https://doi.org/
10.5281/zenodo.3763813

[20] R. R. Belleza and E. P. De Freitas, “Performance study of real-time
operating systems for internet of things devices,” IET Software, vol. 12,
no. 3, pp. 176–182, 2018.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 30,2021 at 23:07:27 UTC from IEEE Xplore. Restrictions apply.

