
A fast algorithm for solving diagonally dominant symmetric
quasi-pentadiagonal Toeplitz linear systems

Skander Belhaja,1,∗, Fahd Hcinia, Maher Moakhera, Yulin Zhangb

aUniversity of Tunis El Manar, ENIT-LAMSIN, BP 37, 1002, Tunis, Tunisia
bCentro de MatemÃ¡tica, Universidade do Minho, 4710-057 Braga, Portugal

Abstract

In this paper, we develop a new algorithm for solving diagonally dominant symmetric quasi-pentadiagonal
Toeplitz linear systems. Numerical experiments are given in order to illustrate the validity and efficiency of
our algorithm.

Keywords: Quasi-pentadiagonal Toeplitz matrix, Diagonally dominant, LU decomposition.
2019 MSC: 15A23, 35L30

1. Introduction

In this paper, we will focus on the problem of solving

Tx = f (1)

where T is a quasi-pentadiagonal Toeplitz matrix.
An n×n matrix T = (tij) is said to be Toeplitz if ti,j = ti−j . T is said to be banded Toeplitz if there are

positive integers p and q such that p + q = k < n and tv = 0 if v > q or v < −p. A banded quasi-Toeplitz
matrix is defined to be a banded Toeplitz matrix where there are at most p altered rows among the first5

p rows and at most q altered rows among the last q rows. For example, when p = q = 1, and only the
first row and the last row of T are perturbed, then T is said to be quasi-tridiagonal Toeplitz matrix, the
numerical solution of Tx = f for this kind of linear equations was studied by [1], and more general, the
numerical solution of block quasi-tridiagonal Toeplitz matrix was studied by [2]. Here we will study the case
when p = q = 2, and only the first two rows and the last two rows of T are perturbed i.e., when T is a10

quasi-pentadiagonal Toeplitz matrix.
Pentadiagonal matrices and quasi-pentadiagonal matrices frequently arise in many application areas,

such as computational physics, scientific and engineering computings [3, 4, 5, 6], as well as in the wave-
function formalism [7] and density functional theory [8] in quantum chemistry. The importance of these
applications motivated an extensive theoretical study of these kinds of matrices, such as determinant evalu-15

ation, eigenvalues computing and pentadiagonal linear systems solving in the last decades, see for example
[9, 10] and a large literature therein.

In this work, we will present a fast algorithm for the numerical solution of an n × n, nonsingular,
diagonally dominant, symmetric quasi-pentadiagonal Toeplitz linear system. In other words, the cofficient
matrix of (1) is20

∗Corresponding author
Email address: skander.belhaj@lamsin.rnu.tn (Skander Belhaj)

Preprint submitted to Elsevier March 25, 2021

T =



x y z
p q r s
c b a b c

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

c b a b c
t w k e

g d h


.

and
|a| > 2(|b|+ |c|), c 6= 0. (2)

When x = q = k = h = a, s = z = t = g = c, and d = w = e = p = r = y = b, the matrix T becomes
a symmetric pentadiagonal Toeplitz matrix. This case was studied in [11, 12, 13]. For the general case of
nonsymmetric pentadiagonal linear systems, algorithms have been introduced in [14, 15].

In the following sections, we will introduce an algorithm for solving the diagonally dominant symmetric25

quasi-pentadiagonal Toeplitz linear systems (1). Then present the numerical results.

2. An algorithm for solving quasi-pentadiagonal Toeplitz linear systems

In general, we can deal with the quasi-pentadiagonal Toeplitz linear systems (1) as an usual linear
systems, and solve it by the LU decomposition without pivoting. Here we give an alterative choice, we
factor the quasi-pentadiagonal Toeplitz into the following form30

T = LU + SV + PQ (3)

where

L =



1
l2 1

l1 l2
. . .

. . .
. . .

. . .

. . .
. . .

. . .

l1 l2 1


, U =



u1 u2 c
u1 u2 c

. . .
. . .

. . .

. . .
. . . c
u1 u2

u1


, l1, l2, u1, u2 ∈ R,

S =
[
e1 e2

]
, P =

[
en−1 en

]
and ei is the ith column of the identity matrix In.

V =

[
x− u1 y − u2 z − c 0 0 . . . 0
p− l2u1 q − (l2u2 + u1) r − (cl2 + u2) s− c 0 . . . 0

]
, and

Q =

[
0 · · · 0 t− u1l1 w − (l1u2 + l2u1) k − (cl1 + l2u2 + u1) e− (u2 + cl2)
0 · · · 0 0 g − l1u1 d− (l1u2 + l2u1) h− (cl1 + l2u2 + u1)

]
.

By (3), the system (1) becomes
(LU + SV + PQ)x = f. (4)

Multiplying (4) by (LU)−1, where it is assumed to be non-singular, we obtain the following system

(I + ZV +WQ)x = x′ (5)

where Z = (LU)−1S, W = (LU)−1P and x′ = (LU)−1f . The matricees Z,W and x′ can be calculated by
Algorithm 1.

2

From (5), the final solution of (1) is given by

x = (I + ZV +WQ)−1x′. (6)

Next step, we will use Sherman-Morrison-Woodbury inversion formula to give the inverse of (I + ZV +
WQ).

Let G =
[
Z W

]
and H =

[
V
Q

]
, then ZV + WQ = GH, now apply Sherman-Morrison-Woodbury

inversion formula directly to (I +GH)−1, we have that

(I +GH)−1 = I −G(I +HG)−1H = I −G(I +

[
V
Q

]
[Z,W])−1H = I − [Z,W]N−1

[
V
Q

]
where

N =

[
I + V Z VW
QZ I +QW

]
is a matrix of the order 4× 4, which is assumed to be non-singular and its inverse is very easy to get.35

Finally we can obtain the solution x of (1) as

x = x′ − [Z,W]N−1
[
V
Q

]
x′ (7)

Now all we need is to determine u1, u2, l1 and l2, once these values are determined, we may go to
Algorithm 2 to solve our equation.

2.1. Determination of parameters u1, u2, l1 and l2

In this section we discuss how to determine the parameters u1, u2, l2 and l2.
By (3) we have the four equations

l1u1 = c (8)

cl2 + u2 = b (9)

l1u2 + l2u1 = b (10)

cl1 + l2u2 + u1 = a. (11)

By (9), u1 = c
l1

, and by (10,) u2 = b− cl2. Replacing u1 and u2 into equations (11) and (12), respectively,
we obtain two quadratic equations

(b− l2c)l21 − bl1 + cl2 = 0 (12)

cl1l
2
2 − bl1l2 − (c− al1 + cl21) = 0. (13)

By solving equation (12) we have

l1 = 1 or l1 =
cl2

b− cl2
.

Case 1: When l1 = 1.40

In this case we have that u1 = c,

l2 =
b±

√
b2 − 4c(a− 2c)

2c
,

and

u2 =
b±

√
b2 − 4c(a− 2c)

2
.

3

These solutions are not stable in digital tests.

Case 2: When l1 = cl2
b−cl2 . (Here we assume that b 6= 0, if not l1 = 1.)

First we assume that b−cl2 6= 0. Replacing l1 = cl2
b−cl2 in (13), we obtain the following quadratic equation

l42 +m1l
3
2 +m2l

2
2 +m3l2 +m4 = 0, (14)

where m1 = − 2b
c , m2 = b2+ac+2c2

c2 , m3 = − 2bc+ab
c2 , m4 = (b

c)2.
Let l2 = γ − m1

4 , then (14) becomes

γ4 + ξγ2 + η = 0, (15)

with45

ξ = m2 −
3m2

1

8
=

1

2c2
(4c2 + 2ac− b2),

η = m4 −
3m4

1

256
+
m2

1m2

16
− m1m3

4
=

1

16c2
(b4 + 8b2c2 − 4acb2).

After a simple calculation, we get the solutions of (15). Furthermore, we get the four roots of (14), they
are50

l
(1)
2 =

1

2c

(
b−

√
−2c

√
4ac+ a2 − 4b2 + 4c2 − 2ac+ b2 − 4c2

)
l
(2)
2 =

1

2c

(
b−

√
2c
√

4ac+ a2 − 4b2 + 4c2 − 2ac+ b2 − 4c2
)

l
(3)
2 =

1

2c

(
b+

√
−2c

√
4ac+ a2 − 4b2 + 4c2 − 2ac+ b2 − 4c2

)
l
(4)
2 =

1

2c

(
b+

√
2c
√

4ac+ a2 − 4b2 + 4c2 − 2ac+ b2 − 4c2
)
.

Knowing l2, we may calculate l1, u1 and u2 easily.
When b− cl2 = 0, that is u2 = 0, we may get u1 = c, l1 = 1, and l2 = b

c .

2.2. Selection of l2
In this section, we will discuss the choice of l2. There are four l2s, the selected l2 must gaurantee the55

inverse of L and U exist. Let’s look at the structure of L−1 and U−1. (The inverse can be calculated by
A−1 = adj(A)/detA).

Let

L =



1
l2 1

l1 l2
. . .

. . .
. . .

. . .

. . .
. . .

. . .

l1 l2 1


, then L−1 =



1
π1 1

π2 π1
. . .

...
. . .

. . .
. . .

...
. . .

. . .
. . .

πn π2 π1 1



where π1 = −l2, π2 =

∣∣∣∣ l2 1
l1 l2

∣∣∣∣ , · · · , πn = (−1)n−1

∣∣∣∣∣∣∣∣∣∣
l2 1 . . . 0

l1 l2
. . .

. . .
. . . 1

0 . . . l1 l2

∣∣∣∣∣∣∣∣∣∣
.

4

From here, we can see that, if |l2| > 1, with the increase of n, the down-left corner of L−1 will become60

larger and larger, and at the end, tends infinity. So |l2| < 1 is a sufficient condition to guarantee our process
going on. On the orther hand,

U =



u1 u2 c
u1 u2 c

. . .
. . .

. . .

. . .
. . .

. . .

u1 u2 c
u1 u2

u1


, then U−1 =



φ1 φ2 φn

φ2 φ2
. . .

...
. . .

. . .
. . .

...
. . .

. . .
. . .

...

φ1 φ2
...

φ1 φ2
φ1


.

where φ1 = 1
u1
, φ2 = −u2

u2
1
, · · · , φn =

(−1)n−1

∣∣∣∣∣∣∣∣∣∣∣∣

u2 c . . . 0
u1 u2 c

. . .
. . .

. . .

0 . . . u1 u2

∣∣∣∣∣∣∣∣∣∣∣∣
un
1

.

φn =(−1)n−1
∗+ · · ·+ (n− 1)cu1u

n−3
2 + un−12

un1

=(−1)n−1(∗+ · · ·+ (n− 1)c(
u2
u1

)n−3
1

u21
+ (

u2
u1

)n−1
1

u1
),

so if |u2

u1
| < 1, φn is convergent.

From u2 = b− cl2 and l1 = cl2
b−cl2 = cl2

u2 , then we have that

u1 =
c

l1
=
u2
l2
,

which gives

l2 =
u2
u1
,

so
|u2
u1
| < 1 is equivalent to |l2| < 1.

Therefore |l2| < 1 is sufficiently to guarantee that L−1 and U−1 converge.65

In the next, we take a, b, c all positive as an example to show that there exists an l2 which satisfies the
required conditions. For the other cases, the arguments are similar.

We take l
(2)
2 as an example to prove that l2 ∈ R.

Theorem 1. Suppose that a, b and c are all positive, and let l2 = l
(2)
2 , i.e.,

l2 =
1

2c
(b−

√
2c
√

4ac+ a2 − 4b2 + 4c2 − 2ac+ b2 − 4c2).

Then l2 is real.

Proof. We first show 4ac+a2− 4b2 + 4c2 > 0. By our hypothsis, the matrix T is diagonally dominant i.e.,
|a| > 2(|b|+ |c|), or |a| − 2|c| > |b|.
So

4ac+ a2 − 4b2 + 4c2 = (a+ 2c)2 − (2b)2 > (2b)2 − (2b)2 = 0.

5

Next, we will show

2c
√

4ac+ a2 − 4b2 + 4c2 − 2ac+ b2 − 4c2 ≥ 0.

When −2ac+ b2 − 4c2 ≥ 0, the inequality holds true. We consider only

2ac− b2 + 4c2 > 0.

In fact,70

2c
√

4ac+ a2 − 4b2 + 4c2 − 2ac+ b2 − 4c2 ≥ 0

⇔ 4c2(4ac+ a2 − 4b2 + 4c2) ≥ (2ac− b2 + 4c2)2

⇔ 4ac− 8c2 − b2 ≥ 0

By a > 2(b+ c), we have

4ac− 8c2 − b2 > 4(2(b+ c))c− 8c2 − b2 = 8bc− b2.

When c > b, then
8bc− b2 > 8b2 − b2 > 0,

the inequality holds true.

When c < b, we consider in two cases.

(i) c ≤ b ≤ 2c. In this case, a > 2(b+ c) ≥ 4c.75

Then we have b2 ≤ 4c2 , b2 + 8c2 ≤ 4c2 + 8c2 = 12c2 and 4ac > 4(4c)c = 16c2.

So that
4ac− 8c2 − b2 > 16c2 − (8c2 + b2) > 16c2 − 12c2 > 0

(ii) b > 2c. In this case, a > 2(b+c) ≥ 6c and 2ac > 2(6c)c = 12c2. Since we consider only 2ac > b2−4c2,
so we have b2 + 8c2 = b2 − 4c2 + 12c2 < 2ac+ 12c2

Then
4ac− 8c2 − b2 > 4ac− (2ac+ 12c2) = 2ac− 12c2 > 0.

So l2 is real, and we end the proof.80

Theorem 2. Under the assumption of Theorem 1, we have that |l2| < 1.

Proof. We first prove that |l2| < 1, i.e., −1 < l2 < 1. We begin by proving the left side, that is −1 < l2.

−2c < b−
√

2c
√

4ac+ a2 − 4b2 + 4c2 − 2ac+ b2 − 4c2

=⇒ (2c+ b)2 >
√

2c
√

4ac+ a2 − 4b2 + 4c2 − 2ac+ b2 − 4c2
2

85

=⇒ 2ac+ 4bc+ 8c2 > 2c
√

4ac+ a2 − 4b2 + 4c2

=⇒ 2a+ 4b+ 8c > 2
√

4ac+ a2 − 4b2 + 4c2

90

=⇒ (2a+ 4b+ 8c)2 > (2
√

4ac+ a2 − 4b2 + 4c2)2

=⇒ 4a2 + 16ab+ 32ac+ 16b2 + 64bc+ 64c2 > 4a2 + 16ac− 16b2 + 16c2

6

=⇒ 4a2 + 16ab+ 32ac+ 16b2 + 64bc+ 64c2 − (4a2 + 16ac− 16b2 + 16c2) > 095

=⇒ 32b2 + 64bc+ 16ab+ 48c2 + 16ac > 0

Since a, b, c are positive, so the left side holds true.
Now we prove the right side, that is l2 < 1.100

b−
√

2c
√

4ac+ a2 − 4b2 + 4c2 − 2ac+ b2 − 4c2 < 2c

gives

b− 2c <

√
2c
√

4ac+ a2 − 4b2 + 4c2 − 2ac+ b2 − 4c2.

If b− 2c < 0, then the inequality holds true. In the following, we suppose that b > 2c.

(b− 2c)2 < (
√

2c
√

4ac+ a2 − 4b2 + 4c2 − 2ac+ b2 − 4c2)2

105

=⇒ −4bc+ 4c2 < 2c
√
a2 + 4ac− 4b2 + 4c2 − 2ac − 4c2

=⇒ (2
√
a2 + 4ac− 4b2 + 4c2)2 > (−4b+ 8c+ 2a)2

=⇒ 4a2 + 16ac− 16b2 + 16c2 > 4a2 − 16ab+ 32ac+ 16b2 − 64bc+ 64c2110

=⇒ −2b2 + 4bc+ ab− 3c2 − ac > 0

Since b > 2c and a > 2(b+ c), so
−2b2 + 4bc+ ab− 3c2 − ac = −2b2 + 4bc− 3c2 + ab− ac = −2b2 + 4bc− 3c2 + a(b− c) >115

− 2b2 + 4bc− 3c2 + 2(b+ c)(b− c) = 4bc− 5c2 > 4(2c)c− 5c2 > 0.
Therefore |l2| < 1 is true. So the proof of this theorem is concluded.

According to the signs of a, b, c, we give the following table for the selection of l2.

a b c l2

+ + + l
(2)
2

− + + l
(1)
2

+ − + l
(2)
2

+ + − l
(2)
2

− − + l
(3)
2

+ − − l
(4)
2

− + − l
(1)
2

− − − l
(3)
2

2.3. Case b = 0120

In the previous section, we assume that b 6= 0. Here we study what happens when b = 0. By solving
equations (8)-(11), we get 6 solutions of the system.

7

(1) l1 = 1
c

(
1
2a+ 1

2

√
a2 − 4c2

)
, l2 = 0, u1 = 1

2a−
1
2

√
a2 − 4c2, u2 = 0.

(2) l1 = − 1
c

(
− 1

2a+ 1
2

√
a2 − 4c2

)
, l2 = 0, u1 = 1

2a+ 1
2

√
a2 − 4c2, u2 = 0.

(3) l1 = 1, l2 = − 1
c

√
−c(a− 2c), u1 = c, u2 =

√
−c(a− 2c).

(4) l1 = 1, l2 = 1
c

√
−c(a− 2c), u1 = c, u2 = −

√
−c(a− 2c).

(5) l1 = −1, l2 = − 1
c

√
c(a+ 2c), u1 = −c, u2 =

√
−c(a+ 2c).

(6) l1 = −1, l2 = 1
c

√
c(a+ 2c), u1 = −c, u2 = −

√
−c(a+ 2c).

Let’s look at solution (1).

l1 =
1

c

(
1

2
a+

1

2

√
a2 − 4c2

)
, l2 = 0, u1 =

1

2
a− 1

2

√
a2 − 4c2, u2 = 0.

For l1, u1 to be real, we need a2 − 4c2 ≥ 0, since our cofficient matrix is diagonally dominant, so this125

condition is guaranteed.
When l2 = 0 and u2 = 0,

L−1 =



1
0 1

−l1 0
. . .

0 −l1
. . .

. . .

l21 0 −l1
. . .

. . .

0 l21 0 −l1
. . .

. . .
...

. . .
. . .

. . .
. . .

. . .
. . .

(−1)nl
(n−1

2)
1 . . . 0 l21 0 −l1 0 1


and

U−1 =



1
u1

0 − c
u2
1

0 (−1)n c(
n−1
2

)

un−1
1

1
u1

0 − c
u2
1

0
...

. . .
. . .

. . .
. . .

...
. . .

. . .
. . . 0

. . .
. . . − c

u2
1

. . . 0
1
u1


,

we need |l1| ≤ 1 and |u1| ≥ 1 to guarantee the convergence of L−1 and U−1. We consider first |l1| ≤ 1,
that is equivalent to

|a+
√
a2 − 4c2| ≤ 2|c|.

When c > 0,

|a+
√
a2 − 4c2| ≤ 2|c| ⇐⇒ −2c ≤ a+

√
a2 − 4c2 ≤ 2c.

8

When c < 0,

|a+
√
a2 − 4c2| ≤ 2|c| ⇐⇒ 2c ≤ a+

√
a2 − 4c2 ≤ −2c.

By a straightforward calculation, we get the solution for |l1| ≤ 1, which is a < 0.
Now we consider |u1| ≥ 1. Again, by a straightforward calculation, we get the solution for |u1| ≥ 1,130

which is a ≤ −2. So when a ≤ −2, we have that |l1| ≤ 1 and |u1| ≥ 1.
By analogous arguments, we get that when a ≥ 2, |l1| ≤ 1 and |u1| ≥ 1 are guaranteed by solution (2),

i.e., .

(2) l1 = −1

c

(
−1

2
a+

1

2

√
a2 − 4c2

)
, l2 = 0, u1 =

1

2
a+

1

2

√
a2 − 4c2, u2 = 0.

So when a ≤ −2, we choose solution (1) and when a ≥ 2 we choose solution (2). And when a ∈ (−2, 2),
we may simply solve the system 2

aTx = 2
af .

Remark 1. The other four solutions are not suitable for the case b = 0.

2.4. The algorithm135

In this subsection we give an algorithm for solving (1). We first give the Algorithm 1 to solve LUy = f ,
then Algorithm 2 to solve the equation (1), i.e., Tx = f .

Algorithm 1 An algorithm for solving LUy = f

Input: l1, l2, u1,u2, c and f
1. (solving Lz = f) z1 = f1, z2 = f2 − l1z1, zi = fi − l1zi−1 − l2zi−2, i = 3 to n
2. (solving Uy = z) yn = zn

u1 , yn−1 = zn−1−u2yn

u1
, yi = zi−u2yi+1−cyi+2

u1
, i = n− 2 to 1

Output: y = [y1, y2 . . . , yn]T .

Algorithm 2 : An algorithm for solving Tx = f

Input: a, b, c, d, e, x, y, z, p, q, r, s, h, w, k, g, t and f ;
1. Find the parameters li and ui (i = 1, 2);
2. Solve linear systems LUZ = S, LUW = P , and LUx′ = f by using Algorithm 1;

Output: Compute x by (7).

For the computational cost, when n is large this algorithm takes about ≈ 8n+O(1) flops.
An advantage of our algorithm is that it needs less data transmission since both the subdiagonal and
superdiagonal of L and U have constant values, respectively. It only reads one vector (the right-hand side140

vector) and writes one vector (the solution).
The stability of Algorithm 2 depends on the step that solves the upper and lower pentadiagonal linear systems
LDU [Z,W, f] = [S, P, x′]. More precisely, two recursive iteration steps such as zi = fi−1 − l1zi−1 − l2zi−2
and xn+1−i = zn+1−1 − u2yn+2−i − cyn+3−i for i = 2, . . . , n corresponding to the forward and backward
substitutions as in Algorithm 1 are essential for Algorithm 2. When using finite precision arithmetic, we145

should avoid roundoff error propagation. If all the roots of their characteristic equations λ2 + l1λ + l2 = 0
and λ2 + u2λ+ c = 0 are all less than unity in magnitude, errors of zi and xn+1−i will smaller than errors
of previous values zi−1 and xn+2−i, respectively, in which case the Algorithm 2 is stable.

9

3. Numerical examples

In this section, numerical results are presented to confirm the effectiveness of our algorithm. All al-150

gorithms are implemented in MATLAB R2018a and the computations are done on an Intel PENTIUM
computer, (2.2 GHz), 6 GB memory. We fix the exact solution to be x∗ = [1, 1 . . . , 1]T and the right-hand
side vector is set to be f = Ax∗.

3.1. Experiment 1: Kuramoto Sivashinsky equation155

In this experiment, we will take the pentadiagonal matrices which appear in the numerical solution of
Kuramoto Sivashinsky (KS) equation as an example. KS equation is a nonlinear partial differential equation
first derived for the study of chemical reaction system, see [16, 17].

In paper [17], the initial vector is calculated by solving the following linear equations

12a− 3b+ c d− b e− a 0 0 0 0
b− 3a c− a d e 0 0 0
a b c d e 0 0
0 a b c d e 0

0 0
. . .

. . .
. . .

. . . 0
0 0 a b c d e
0 0 0 a b c− e d− 3e
0 0 0 0 a− e b− d c− 3d+ 12e





c0
c1
...
·
...
·

cN−1
cN


=



u (x0)
u (x1)
u (x2)

...

...
u (xN−2)
u (xN−1)
u (xN)


.

By appling von-Neumann boundary conditions [17], the coefficient matrix becomes

54 60 6 0 0 0 0 0
101/4 135/2 105/4 1 0 0 0 0

1 26 66 26 1 0 0 0
0 1 26 66 26 1 0 0

0 0 0
. . .

. . .
. . .

. . . 0
0 0 0 1 26 66 26 1
0 0 0 0 1 105/4 135/2 101/4
0 0 0 0 0 6 60 54


.

By appling second order mixed boundary conditions [16], the coefficient matrix becomes

121 −2 1 0 0 · · · · · · 0
28 65 26 1 0 · · · · · · 0
1 26 66 26 1 0 · · · 0
0 1 26 66 26 1 : 0

0 0
...

...
...

...
... 0

0 · · · 0 1 26 66 26 1
0 · · · · · · 0 1 26 65 28
0 · · · · · · · · · 0 1 −1 121


.

We first compare these two examples, then we arbitrary choose some b, c, d, e, x, y, z, p, q, r, s, t, w,
k, h, and g to test our algorithm.160

10

Table 1: Numerical resuls of Experiment 1 (with von-Neumann boundary conditions in [17])

Algorithm n = 104 n = 105 n = 106 n = 107

‖x∗ − x‖2 Algo. LU 1.7593e-14 5.5524e-14 1.7555e-13 5.5511e-13
Our algo. 4.4402e-14 1.4043e-13 4.4409e-13 1.4043e-12

CPU(s) Algo. LU 4.24e-3 6.97e-2 0.45 4.63
Our algo. 2.18e-3 2.49e-2 0.29 2.25

Table 2: Numerical resuls of Experiment 1 (with mixed boundary conditions in [16])

Algorithm n = 104 n = 105 n = 106 n = 107

‖x∗ − x‖2 Algo. LU 1.7579e-14 5.5519e-14 1.7554e-13 5.5511e-13
Our algo. 4.4382e-14 1.4042e-13 4.4409e-13 1.4043e-12

CPU(s) Algo. LU 5.57e-3 5.48e-2 0.53 5.87
Our algo. 3.61e-3 3.94e-2 0.39 2.69

In Figures 1, and 2 a comparison of our algorithm with LU method are presented.

0 1000 10000 100000 1e+06 1e+07

n

0

1

2

3

4

5

T
im

e
 (

s
)

Time comparison

New method

LU Method

Figure 1: CPU time [s] comparison for Experiment
1 with von-Neumann boundary conditions in [17]

0 1000 10000 100000 1e+06 1e+07

n

0

1

2

3

4

5

6
T

im
e

 (
s
)
Time comparison

New method

LU Method

Figure 2: CPU time [s] comparison for Experiment
1 with mixed boundary conditions in [16]

It can be seen that our proposed algorithm takes less CPU time than the LU method.

3.2. Experiment 2165

Some artificial examples were used in this experiment. The values of a, b, c, d, e, x, y, z, p, q, r, s, t, w,
k, h, and g corresponding to each examples are presented in Table 3.

Table 3: a, b, c, d, e, x, y, z, p, q, r, s, t, w, k, h,and g corresponding to each examples

a b c d e x y z p q r s t w k h g

Example 1 -62 -10 -19 -2 -5 -2.3 4 3.5 10 2 -4 3 -1 -1.7 4.2 -3.5 10
Example 2 66 10 15 1 1 8 2 -1.5 -0.7 -1 -2.3 7 2.5 1.6 -4 -3.2 4
Example 3 2.5 -0.8 0.8 2.2 1 1.3 0.4 -0.2 3 1 -4 -3 2 -1.2 1 -1 1.3
Example 4 246 30 -56 -2 1.6 0.5 -2 2.4 2.6 -7.2 2 1 -1 2.6 5 1 1
Example 5 -5 0 2 1 2.4 1 2 1 -5 5 -26 -2 0.6 -25 -6.5 0.6 2
Example 6 6.5 0 1.3 1 4.5 1.5 -3.2 -1.3 -3.2 5 -19 -7 -1 -2 -1.5 0.7 1

11

From tables 4 to table 9 we show the absolute accuracy ∆x = ‖x∗ − x‖2 of the approximate solution
of (1) where x∗ = [1, 1 . . . , 1]T is the exact solution and x is the approximate solution computed by LU
method, and our algorithm, respectively. We display also, in the same tables the CPU time [s] of the170

computed solution of our algorithm.
Table 4: Numerical resuls of Example 1

Algorithm n = 104 n = 105 n = 106 n = 107

‖x∗ − x‖2 Algo. LU 2.2181e-14 7.0208e-14 2.2204e-13 7.0217e-13
Our algo. 6.0168e-15 6.0168e-15 6.0168e-15 6.0168e-15

CPU(s) Algo. LU 3.49e-3 8.1e-2 1.11 10.02
Our algo. 3.36e-3 3.2e-2 0.34 3.55

Table 5: Numerical resuls of Example 2

Algorithm n = 104 n = 105 n = 106 n = 107

‖x∗ − x‖2 Algo. LU 1.3038e-14 2.6820e-14 7.8182e-14 2.4847e-13
Our algo. 3.9339e-14 8.3841e-14 3.8316e-13 7.8512e-13

CPU(s) Algo. LU 4.66e-3 6.27e-2 0.87 9.80
Our algo. 4.49e-3 2.77e-2 0.35 3.38

Table 6: Numerical resuls of Example 3

Algorithm n = 104 n = 105 n = 106 n = 107

‖x∗ − x‖2 Algo. LU 3.5346e-14 1.1110e-13 3.5111e-13 1.1102e-12
Our algo. 2.3572e-14 7.0342e-14 2.2208e-13 7.0218e-13

CPU(s) Algo. LU 7.45e-3 4.46e-2 0.98 9.84
Our algo. 4.31e-3 2.84e-2 0.34 3.46

Table 7: Numerical resuls of Example 4

Algorithm n = 104 n = 105 n = 106 n = 107

‖x∗ − x‖2 Algo. LU 1.7668e-13 1.7668e-13 1.7668e-13 1.7668e-13
Our algo. 8.5199e-14 9.1478e-14 1.3950e-13 3.6110e-13

CPU(s) Algo. LU 8.0e-3 4.99e-2 0.99 9.95
Our algo. 4.69e-3 3.03e-2 0.34 3.48

175

Table 8: Numerical resuls of Example 5

Algorithm n = 104 n = 105 n = 106 n = 107

‖x∗ − x‖2 Algo. LU 1.7624e-14 5.5537e-14 1.7555e-13 5.5511e-13
Our algo. 2.0742e-14 3.9238e-14 1.1240e-13 3.5152e-13

CPU(s) Algo. LU 4.71e-3 6.31e-2 1.11 9.78
Our algo. 3.62e-3 2.79e-2 0.34 3.45

12

Table 9: Numerical resuls of Example 6

Algorithm n = 104 n = 105 n = 106 n = 107

‖x∗ − x‖2 Algo. LU 8.1259e-15 2.4914e-14 7.8533e-14 2.4826e-13
Our algo. 1.3822e-15 1.3822e-15 1.3822e-15 1.3822e-15

CPU(s) Algo. LU 5.36e-3 6.06e-2 1.11 10.03
Our algo. 4.30e-3 3.48e-2 0.36 3.52

Thus, comparing with the initial LU method for a sparse matrix , our algorithm improves the computational
cost of the numerical solution remarkably. For the accuracy, our algorithm is similar to the other well-known
existing methods.180

4. Conclusion

In this paper, we have proposed a new algorithm for solving diagonally dominant symmetric quasi-
pentadiagonal Toeplitz linear systems. We discussed possible choices for the parametres for each situation.
We implemented our method in Matlab with respect to computational costs. The numerical results show
the robustness of our method. The required memory and the computational time of our algorithm are185

lower than those of other well-known existing methods. The effectiveness of our algorithm is confirmed by
numerical experiments.

5. Acknowledgement

The authors would like to thank the supports of the Portuguese Funds through FCT–Fundacão para a
Ciência e a Tecnologia, within the Project UID/MAT/00013/2013.190

[1] Lei Du, Tomohiro Sogabe, and Shao-Liang Zhang. A fast algorithm for solving tridiagonal quasi-toeplitz linear systems.
Applied Mathematics Latters, 75:74–81, 2018.

[2] Skander Belhaj, Fahd Hcini, and Yulin Zhang. A fast method for solving a block tridiagonal quasi-toeplitz linear system.
Portugaliae Mathematica, 76(3):287–299, 2020.

[3] J M Sanz-Serna and I Christie. A simple adaptive technique for nonlinear wave problems. Journal of Computational195

Physics, 67(2):348–360, 1986.
[4] SS Nemani and Lawrence E Garey. An efficient method for second order boundary value problems with two point boundary

conditions. International journal of computer mathematics, 79(9):1001–1008, 2002.
[5] Richard M Beam and Robert F Warming. The asymptotic spectra of banded toeplitz and quasi-toeplitz matrices. SIAM

Journal on Scientific Computing, 14(4):971–1006, 1993.200

[6] Miloslav Znojil. Perturbation method with triangular propagators and anharmonicities of intermediate strength. Journal
of Mathematical Chemistry, 28(1-3):139–167, 2000.

[7] Stephen J Wright. Stable parallel algorithms for two-point boundary value problems. SIAM Journal on Scientific and
Statistical Computing, 13(3):742–764, 1992.

[8] WR Briley and H McDonald. Solution of the multidimensional compressible navier-stokes equations by a generalized205

implicit method. Journal of Computational Physics, 24(4):372–397, 1977.
[9] ME Kanal. Parallel algorithm on inversion for adjacent pentadiagonal matrices with mpi. The Journal of Supercomputing,

59(2):1071–1078, 2012.
[10] Tomohiro Sogabe. New algorithms for solving periodic tridiagonal and periodic pentadiagonal linear systems. Applied

Mathematics and Computation, 202(2):850–856, 2008.210

[11] Jeffrey Mark McNally. A fast algorithm for solving diagonally dominant symmetric pentadiagonal toeplitz systems. Journal
of computational and applied mathematics, 234(4):995–1005, 2010.

[12] SS Nemani. A fast algorithm for solving toeplitz penta-diagonal systems. Applied mathematics and computation,
215(11):3830–3838, 2010.

[13] Tomohiro Sogabe. A fast numerical algorithm for the determinant of a pentadiagonal matrix. Applied mathematics and215

computation, 196(2):835–841, 2008.
[14] Zubeyir Cinkir. An elementary algorithm for computing the determinant of pentadiagonal toeplitz matrices. Journal of

Computational and Applied Mathematics, 236(9):2298–2305, 2012.
[15] Jiteng Jia, Qiongxiang Kong, and Tomohiro Sogabe. A new algorithm for solving nearly penta-diagonal toeplitz linear

systems. Computers & Mathematics with Applications, 63(7):1238–1243, 2012.220

[16] Neeraj Dhiman and Mohammad Tamsir. Re-modified quintic b-spline collocation method for the solution of kuramoto–
sivashinsky type equations. Multidiscipline Modeling in Materials and Structures, pages 1573–6105, 2018.

13

[17] RC Mittal and Geeta Arora. Quintic b-spline collocation method for numerical solution of the kuramoto–sivashinsky
equation. Communications in Nonlinear Science and Numerical Simulation, 15(10):2798–2808, 2010.

14

	Introduction
	An algorithm for solving quasi-pentadiagonal Toeplitz linear systems
	Determination of parameters u1, u2, l1 and l2
	Selection of l2
	Case b=0
	The algorithm

	Numerical examples
	Experiment 1: Kuramoto Sivashinsky equation
	Experiment 2

	Conclusion
	Acknowledgement

