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AABBSSTTRRAACCTT  

 

Breast cancer is the leading cause of death among women in developing countries. 

Approximately 10% of all cases of breast cancer are inherited, exhibiting a familial pattern of 

incidence, which have been attributable to mutations in high penetrance susceptibility genes, 

such as BRCA1 and BRCA2. However, these mutations only account to approximately 25% of the 

families with inherited breast cancer; therefore, identification of genes that are associated with a 

small or modest cancer risk is an important step to define breast cancer risk. It has been 

determined that different genetic backgrounds due to the combination of subtle sequence 

variants or polymorphisms, within low-penetrance genes, can explain the remaining familial and 

sporadic breast cancer risks.  

Many environmental factors have been associated with risk of breast cancer development, 

being sources of a wide range of DNA damage. The cellular response to DNA damage and its 

ability to maintain genomic integrity by DNA repair are crucial in preventing cancer initiation and 

progression. Previous studies have suggested an influence of gene variants in different DNA 

repair pathways regarding their capacity to repair. Therefore, polymorphisms in these genes may 

contribute to breast cancer susceptibility.  

The general aim of this thesis was to understand the association of different polymorphisms 

(XRCC1 Arg399Gln, XPD Lys751Gln, RAD51 G135C, XRCC3 Thr241Met, TP53 Arg72Pro and 

TP53 PIN3 Ins16bp) belonging to the DNA damage signalling and repair mechanisms with breast 

cancer susceptibility, in familial and sporadic breast cancer, in the Portuguese population. 

Furthermore, we intended to characterize the protein expression profiles of the most relevant 

polymorphisms found in breast cancer patients and human breast cancer cell lines, correlating 

the protein expression profile with the polymorphic status. 

Our findings identified RAD51 G135C polymorphism as a real risk modifier in familial breast 

cancer cases. Furthermore, we pointed out that XRCC1 Arg399Gln and XRCC3 Thr241Met 

polymorphisms as important biomarkers to sporadic breast cancer susceptibility. Moreover, our 

results also showed that TP53 PIN3 A2 allele in a haplotype combination confer increased breast 

cancer susceptibility among women carriers of FH of the disease.  

According to our findings from the association between the polymorphism and the clinical-

pathological parameters from breast cancer patients, we clearly underlined the role of XRCC1 
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Arg399Gln and RAD51 G135C polymorphisms in the prediction of breast tumor aggressiveness 

and patients’ survival. Furthermore, our results suggested TP53 Arg72Pro and PIN3 Ins16bp 

polymorphisms as predictive factors of presence of lymph node metastases. Additionally, we 

demonstrated that XRCC1, XRCC3 and P53 expressions did not correlate with the respective 

genetic polymorphisms analysed, in breast cancer patients and in human breast cancer cell 

lines.  
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RREESSUUMMOO  

 

O cancro da mama é a principal causa de morte por cancro em mulheres em todo o mundo. 

Aproximadamente 10% de todos os cancros da mama exibem um padrão de incidência familiar, 

tendo este sido atribuído a mutações em genes de susceptibilidade de elevada penetrância, tal 

como o BRCA1 e BRCA2. No entanto, dados mais recentes têm demonstrado que mutações 

nestes genes contribuem apenas para cerca de 25% das doentes com história familiar de cancro 

da mama. Assim, a identificação de genes que possam estar associados a um risco pequeno ou 

moderado para cancro torna-se uma etapa importante na determinação de mais factores de 

risco para cancro da mama. Com o conhecimento de que dispomos, é perceptível que a 

existência de diferentes padrões genéticos, devido à combinação de pequenas alterações em 

determinados genes, designados de genes de susceptibilidade de baixa penetrância, possa 

explicar a diferente susceptibilidade para os restantes casos de cancro familiar da mama e para 

os casos da mama esporádicos. Além disso, muitos factores ambientais têm também sido 

associados com uma maior risco de desenvolvimento de cancro da mama, produzindo uma 

vasta gama de lesões no DNA. A resposta das células aos danos no DNA e a sua capacidade 

para manter a integridade genómica, através da reparação de DNA, é crucial para prevenir a 

iniciação e progressão do cancro. Trabalhos prévios têm sugerido uma forte associação de níveis 

elevados de danos no DNA e menor capacidade de reparação. Deste modo, polimorfismos 

nestes genes podem contribuir para a susceptibilidade para cancro da mama. 

O objectivo geral desta tese foi compreender a associação de alguns polimorfismos genéticos 

em genes de reparação de DNA (XRCC1 Arg399Gln, XPD Lys751Gln, RAD51 G135C, XRCC3 

Thr241Met, TP53 Arg72Pro e TP53 PIN3 Ins16bp) e a susceptibilidade para cancro da mama, 

familiar e esporádico, na população Portuguesa. Além disso, caracterizou-se o perfil de 

expressão proteica dos polimorfismos identificados como relevantes para risco de cancro da 

mama, numa série de pacientes com a doença, bem como em linhas celulares humanas de 

cancro da mama, correlacionando com o respectivo perfil polimórfico.  

Os nossos resultados mostraram o polimorfismo RAD51 G135C como um importante 

modificador de risco para cancro da mama familiar. Adicionalmente, nós identificámos os 

polimorfismos XRCC1 Arg399Gln e XRCC3 Thr241Met como relevantes biomarcadores na 

susceptibilidade para cancro da mama esporádico. Este trabalho indicou também que uma 
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combinação haplotípica do alelo TP53 PIN3 A2 conduz a um aumento do risco para cancro da 

mama familiar. Quando se relacionaram a presença destes polimorfismos com parâmetros 

clínico-patológicos numa série de carcinomas da mama, verificou-se que os polimorfismos 

XRCC1 Arg399Gln e RAD51 G135C claramente desempenham um papel na previsão da 

agressividade do tumor e sobrevivência dos doentes. Além disso, este estudo sugeriu os 

polimorfismos no gene TP53, Arg72Pro e PIN3 Ins16bp, como factores na previsão de 

metástases nos gânglios linfáticos. Por ultimo, demonstrou-se ainda que a expressão proteica da 

XRCC1, XRCC3 e P53 não se correlacionava com o respectivo polimorfismo estudado, nem em 

pacientes com cancro da mama nem em linhas celulares humanas de cancro da mama.      
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HRT Hormone replacement therapy 
FH Family history 
BRCA Breast cancer protein 
TP53 Tumor protein 53 
ATM Ataxia telangiectasia mutated protein 
CHEK or CHK Checkpoint kinase   
DCIS Ductal carcinoma in situ 
LCIS Lobular carcinoma in situ 
ER Estrogen receptor  
IR Ionizing radiation 
PRG Progesterone receptor 

PPARGC 
Peroxisome proliferator-activated receptor-related estrogen receptor alpha 
coactivator 

EP300 E1A-binding protein 
COMT Catechol-O-methyl transferase 
CYP19 Aromatase (cytochrome P450 sub-family XIX) 
HSD17B2 Hydroxysteroid (17-beta) dehydrogenase 2 
EPHX Epoxide hydrolase protein 
UGT1A7 UDP glucuronosyltransferase 1 family, polypeptide A7 
GSTP1 Glutathione S-transferase pi 
Val Valine 
Leu Leucine 
His Histidine 
Gln Glutamine 
Gly Glycine 
Ser Serine 
Thr Threonine 
Met Methionine 
Ala Alanine 
Pro Proline 
Ile Isoleucine 
Arg Arginine 
Cys Cysteine 
C Cytosine 
T Thymine 
A Adenine 
G Guanine 
Tyr Tyrosine 
Lys Lysine 
UV Ultraviolet 
NER Nucleotide excision repair 
MMR Mismatch repair 
DSBR Double strand break repair 
HNPCC Hereditary non-polyposis colorectal cancer

http://www.clevelandclinic.org/registries/inherited/hnpcc.htm
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FA Fanconi anemia 
AT Ataxia telangiectasia 
LFS Li-Fraumeni syndrome 
BS Bloom’s syndrome 
WS Werner’s syndrome 
NBS Nijmegen breakage syndrome 
XP Xeroderma pigmentosum syndrome 
CS Cockayne syndrome 
TTD Trichothiodystrophy 
MLH1 Human MutL homolog protein 
MSH Human MutS homolog protein 
PMS Postmeiotic segregation increased protein  
HRR Homologous recombination repair 
NHEJ Non homologous end joining 
GGR Global genomic repair 
XPA to XPG Xeroderma pigmentosum group A to G proteins 
ATR ATM and Rad23-related protein 
RAD51 Recombination protein 51 
FANCA to M Fanconi anemia A to M proteins 
MRE11 Meiotic recombination 11 
RAD50 Recombination protein 50 
NBS1 Nijmegen breakage syndrome 1 protein 
BLM Bloom helicase protein 
RPA or C Replication protein A or C 
WRN Werner syndrome helicase protein 
DSB Double strand break 
H2AX Histone family member X protein 
BER Base excision repair 
PCNA Proliferating cell nuclear antigen 
MDC1 DNA damage checkpoint 1 
Cdc Cell division cycle protein 
AP Abasic site 
dRP Abasic sugar phosphate 
DNA Pol DNA polymerase protein 
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XRCC X-ray repair complementing protein 
PARP-1 Poly ADP-ribose) polymerase-1 
TCR Transcription-coupled repair 
hHR23B Human Rad23B homolog 
ERCC Excision repair cross-complementing protein 
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IPO Oncology Portuguese Institute 
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AAIIMMSS  

 

A number of risk factors have been associated with susceptibility to breast cancer 

development, including endogenous and exogenous factors responsible for the production of a 

wide range of DNA damage, causing genome instability. Furthermore, some studies have been 

demonstrated a strong association of higher levels of DNA damage and lower DNA repair 

capacity in breast cancer patients. Several reports showed the presence of polymorphic alleles in 

DNA damage signalling/repair genes. Previous studies suggested an influence of gene variants in 

different DNA sigannling/repair mechanisms, as well as in its capacity to promote DNA repair 

and/or fidelity, maintaining the original sequence. Therefore, polymorphisms in these genes may 

contribute to breast cancer susceptibility. 

  

GGEENNEERRAALL  AAIIMM  

 

The general aim of this thesis was to understand the role of DNA damage signalling and repair 

genetic polymorphisms in breast cancer susceptibility, in familial and sporadic breast cancer, 

from a Portuguese population. 

 

To achieve our research aim, the work was divided as follows: 

 

1. COLLECTION OF PERIPHERIC BLOOD AND DNA EXTRACTION FROM SEVERAL GROUPS OF WOMEN  

We collected peripheric blood from 3 different groups of women: 

 - 84 unrelated familial breast cancer cases were obtained from S. João Hospital at Porto 

and General Hospital at Vigo; 

- 201 unrelated sporadic breast cancer cases were recruited from IPO-Porto (Oncology 

Portuguese Institute); 

- 442 healthy women were randomly selected from blood banks during the same time 

period as the cases were collected.  

DNA used for genotyping was extracted from peripheric blood lymphocytes.  
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2. GENOTYPING OF XRCC1 ARG399GLN, XPD LYS751GLN, RAD51 G135C, XRCC3 THR241MET, TP53 

ARG72PRO AND TP53 PIN3 INS16BP 

Polymorphisms were chosen based on theoretical effects on biological function of the protein, 

and an allelic frequency higher than 0.1. We selected the following polymorphisms: XRCC1 

Arg399Gln, XPD Lys751Gln, RAD51 G135C, XRCC3 Thr241Met, TP53 Arg72Pro and TP53 PIN3 

Ins16bp, and evaluated their genotypic frequencies in previous groups: familial and sporadic 

breast cancer patients and healthy women with no breast cancer family history, in a Portuguese 

population. 

 

3. CORRELATION OF THE SELECTED POLYMORPHISMS WITH BREAST CANCER SUSCEPTIBILITY AND CLINICAL 

PATHOLOGICAL FEATURES OF PATIENTS 

We applied appropriate statistical analysis to assess correlations between the genotyped 

polymorphisms with breast cancer susceptibility. Furthermore, we analysed associations of these 

genotypes and breast cancer features, as histological type and grade, axillary lymph node status, 

estrogen receptor status and survival and recurrence at last follow-up. 

 

4. CHARACTERIZATION OF XRCC1, XRCC3 AND P53 PROTEIN EXPRESSIONS IN BREAST CANCER PATIENTS AND 

HUMAN BREAST CANCER CELL LINES 

The characterization of XRCC1, XRCC3 and P53 immunohistochemical expressions were 

performed in paraffin embedded tissue microarrays from normal breast, benign breast lesions, in 

situ and invasive breast carcinomas. 

 

5. CORRELATION BETWEEN XRCC1, XRCC3 AND P53 PROTEIN EXPRESSIONS IN BREAST CANCER PATIENTS AND 

HUMAN BREAST CANCER CELL LINES WITH THEIR POLYMORPHIC STATUS 

We compared the expression profiles from breast cancer patients and from a series of human 

breast cancer cell lines with its respective genetic polymorphic status. We also evaluated the 

association of its expression with clinical-pathological factors, such as family history, histological 

grade, lymph node status and estrogen receptor status, and correlations between expressions of 

the different proteins. 
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TTHHEESSIISS  PPLLAANNNNIINNGG  

  

The present thesis is organized in six different Chapters: 

- In Chapter 1, a general introduction to the thesis theme is presented, including a review 

of the literature focused in the breast cancer epidemiology, risk factors and 

carcinogenesis, as well as the importance of DNA damage signalling/repair pathways 

and polymorphisms within these mechanisms in breast cancer.  

- In Chapter 2, the work “DNA repair polymorphisms might contribute differentially on 

familial and sporadic breast cancer susceptibility: a study on a Portuguese population” is 

presented, showing the importance of XRCC1 Arg399Gln and XRCC3 Thr241Met DNA 

repair polymorphisms as biomarkers to sporadic breast cancer susceptibility, as well as, 

RAD51 G135C polymorphism in familial breast cancer cases. 

- In Chapter 3, the study “XRCC1 Arg399Gln and RAD51 5’UTR G135C polymorphisms 

and their outcome in tumor aggressiveness and survival of Portuguese breast cancer 

patients” clearly underling the role of the above mentioned polymorphisms in the 

prediction of breast tumor aggressiveness and patients’ survival. 

- In Chapter 4, our findings regarding TP53 Arg72Pro and PIN3 Ins16bp polymorphisms 

and association with breast cancer susceptibility and clinical-pathological features are 

shown in the work “Importance of TP53 codon 72 and intron 3 duplication 16bp 

polymorphisms in prediction of susceptibility on breast cancer and presence of lymph 

node metastases”. 

- In Chapter 5, a characterization of XRCC1, XRCC3 and P53 protein expression profiles is 

demonstrated in the study “Immunohistochemical expression profile of XRCC1, XRCC3 

and P53 proteins in breast cancer: correlation with genetic polymorphic status”. 

- In last chapter, Chapter 6 is presented the discussion outline of the present thesis, as 

well as main conclusions of this work. 
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11..11..  BBRREEAASSTT  CCAANNCCEERR 

 

Breast Cancer is an extraordinarily important disease all over the world. Over 1,2 million of 

women are diagnosed each year worldwide, and almost 411,000 of them will die of breast 

cancer (1). This disease affects not only the survival rate of these women but also their 

psychological and physical well-being, also influencing the people with close relation with them. 

Over the last 30 to 40 years, significant progress has been made in the diagnosis and 

treatment of this disease. Breast cancer presents a multifactor etiology, leading to a variety of 

genetic changes that result in variable biological behaviours from one patient to the other. 

Remarkable efforts have been developed to define the risk factors that help to identify those 

women expected to develop breast cancer and the genetic factors that contribute for this risk.  

 

11..11..11..  BBRREEAASSTT  NNOORRMMAALL  DDEEVVEELLOOPPMMEENNTT,,  AANNAATTOOMMYY  AANNDD  HHIISSTTOOLLOOGGYY 

 

In order to understand the changes that the human breast undergoes in normal and 

especially abnormal situations, it is important to know how its normal breast development 

occurs, its anatomy and histology. 

Breasts begin developing in the embryo about 7 to 8 weeks after conception. They are 

unrecognizable at this stage consisting only of a thickening or ridge of tissue. From weeks 12 to 

16, the various sub-components become more defined. Tiny groups of cells begin to branch out 

laying the foundation for future ducts and milk producing glands. Other tissues develop into 

muscle cells which will form the nipple (the protruding point of the breast) and areola (the 

darkened tissue surrounding the nipple). In the later stages of pregnancy, the mother's 

hormones, which cross the placenta into the fetus, cause breast cells to organize into branching 

tube-like structures, thus forming the ducts. In the last 8 weeks, lobules (milk producing glands) 

mature and actually begin to secrete a liquid substance called colostrum. In both female and 

male newborns, swellings underneath the nipples and areola can easily be felt and a clear liquid 

discharge, colostrum, can be seen. These represent the effect of the mother's hormones and 

collapse in the first few weeks of life (2,3). 

Up until the onset of puberty, the breasts are much the same in males and females and their 

internal structure is similar – a collection of branching ducts ending in terminal ducts, with 
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minimal lobule formation. With the beginning of female menarche, the breast tissue responds to 

the release of female sex hormones, estrogen and progesterone. These stimulate the formation 

of lobules from the pre-existing terminal ducts, designed terminal duct-lobular unit (Figure 1B), 

leading to an increase in volume and elasticity of the connective tissue, the deposition of adipose 

tissue and the increase in vascularity (Figure 1A) (3-5). 

 

 

Figure 1 – Normal female breast. Macroscopic diagram (A), a microscopic low magnification 
of a terminal duct-lobular unit (B) and a microscopic high magnification of a intralobular terminal 
duct showing clear separation of epithelial (arrows) and myoepithelial cells (arrow heads).  

 

Histologically, the epithelium of intralobular terminal ducts presents essentially 2 layers: an 

inner layer presenting a epithelium constituted by a continuous surface of epithelial cells with 

oval-like nuclei, and an outer discontinuous layer of prominent myoepithelial cells presenting a 

clear cytoplasm (Figure 1C) (5). 

 During each menstrual cycle there is a number of morphologic changes that happen in 

the breast. In the first half of the cycle, the lobules are relatively quiescent. After ovulation, under 

the enhancement of hormone levels, an increased cell proliferation and number of acini per 

lobule and vacuolization of epithelial cells take place. When menstruation occurs, falling hormone 

levels there are epithelial cells apoptosis, loss of the stromal edema and regression in lobules 

size (4).  

Complete maturation of the breast tissue only occurs with lactation. The morphological 

alterations during pregnancy include increase of lobules number and size, so that in the end of 

the phase almost all the breast is composed of lobules with a slight amount of stroma, increase 

of melanin pigmentation in areola and vascularization of the nipple. After birth, the breast first 

produce the colostrum, and, with the decrease of progesterone levels, change to milk. After 

 4 
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ending lactation, the breast size diminished and the lobules regress and atrophy, but never to the 

appearance of the nulliparous breast (3,5). 

As women age, especially with the loss of estrogen at menopause, the lobules involute and in 

some areas disappear, remaining only the ducts. The fibrous connective component of the 

stroma also diminishes, whereas stromal adipose tissue accumulation increases (2,3).  

  

11..11..22..  EEPPIIDDEEMMIIOOLLOOGGYY  AANNDD  RRIISSKK  FFAACCTTOORRSS   

 

Breast cancer is the leading cause of death among women in developing countries. According 

to the World Health Organization, more than 1.2 million people worldwide will be diagnosed with 

breast cancer each year and nearly 320.000 cases in Europe (31% of all cancers in women) 

(1,6) (Figure 2).  

 

 

Figure 2 – Incidence rates of female breast cancer worldwide (per 100,000; all ages), 
according to GLOBOCAN 2002 (1). 

 

In Portugal, it presents the highest incidence and mortality rates between the women diseases 

(1,7) (Figure 3). However, in the last decade, breast cancer mortality have been declined, in 

Portugal as well as in developing countries, due to multiple factors, including improvements in 

cancer screening and novel and more effective treatment regimens (3,8,9).  
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Figure 3 - Incidence and mortality rates of common cancer types in Portugal (per 100,000; all 
ages), according to GLOBOCAN 2002 (1). 

 

As result of numerous epidemiological studies, several risk factors have been pointed out as 

well-established and probable in breast cancer, both as harmful or protective factors (Table 1). 

 

Table 1 – Summary of breast cancer risk factors. 
Risk Factor Effect 
Increasing Age  ↑↑ 
Early menarche ↑ 
Late menopause ↑↑ 
Nulliparity ↑ 
Early age of first birth ↓↓ 
Breastfeeding ↓ 
High serum of sex hormones (oestradiol, 
prolatin and insulin-like growth factor-1) 

↑↑ 

Prolonged HRT ↑ 
History of benign breast disease ↑↑ 
High breast density ↑↑ 
Obesity postmenopausal ↑ 
Obesity premenopausal ↓ 
Physical activity ↓ 
Fat intake and well-done food ↑ 
Vegetables and fruit intake  ↓ 
Alcohol consumption  ↑ 
Radiation exposure (child and young adulthood) ↑↑ 
Family history  ↑↑ 
Mutations in high penetrance genes (BRCA1, 
BRCA2, TP53, ATM, CHEK2) 

↑↑ 

Polymorphism in low penetrance genes ↑↓ 
↑ - low to moderate increased risk; ↑↑ - moderate to high increased risk; ↓ - low to moderate decreased 
risk; ↓↓ - moderate to high decreased risk 
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Breast cancer incidence is very low before age 25, except in certain familial cases, but 

increases with age, doubling every 10 years until the menopause, reaching its highest incidence 

rates in women over 50 years old (3,9). In menopause women the incidence rates slows 

dramatically (9), which suggests the important involvement of reproductive hormones in breast 

cancer etiology. 

Mortality and, mainly, incidence rates of breast cancer shows significantly differences between 

more developed countries, which present high rates, and less developed countries and Japan, 

with low rates (9). Studies of migrants from low to high risk countries have shown that women 

assume the rate of the host country within one or two generations, indicating the relevance of the 

environmental and lifestyle factors as breast cancer risks (8,9). 

The lifetime exposure to endogenous sex hormones has been described, for almost half a 

century, as the most well-established risk factor to breast cancer. This factor is determined by 

several variables, including age at menarche, age at first full-term pregnancy, breastfeeding and 

age at menopause. Women who start menstruating early in life (less than 12 years of age) or 

who have a late menopause (after the age of 55 years) present an increase risk to breast cancer 

(3,10). These findings could be explained by a prolonged exposure of mammary gland epithelium 

to estrogens and progesterone due to earlier or long-standing regular ovulatory menstrual cycles 

(11). The time and/or occurrence of pregnancy seem to have dual effect on breast cancer risk. 

On one hand, early age of first full-term pregnancy (less than 20 years versus more than 30 

years) is a protective factor to breast cancer, independently of the number of pregnancies. In 

contrast, nulliparity or late age of first full-term birth represents increased risk factor (9,10). 

These findings are contradictory with the fact that high and continuous levels of estrogen are 

associated with increased risk to breast cancer, since during pregnancy the oestradiol reach high 

levels. However, this could be counteracted by the fact that other hormones are secreted during 

pregnancy, inhibiting the effect of estrogen, and the breasts at this time reach the differentiation 

maximum, reducing the probability of cancer development (12). Breastfeeding effect on breast 

cancer risk has been controversial. Recent studies have proved that it represents a protective 

factor only in women that experiment a prolonged lactation period time (more than 24 months), 

probably due to diminishing of ovulatory frequency (9,10). 

During the last decade, several studies have looked to the effect of endogenous serum 

concentrations of hormones and breast cancer risk. It has been demonstrated that high serum 

oestradiol concentrations represent an increased risk to postmenopause women to develop 

7  
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breast cancer. Furthermore, other sex hormones, such as insulin-like growth factor-1 and 

prolactin, have been suggest also to contribute to an increased breast cancer risk (9,11). 

Recent studies aimed to elucidate the importance of hormone replacement therapy (HRT) in 

breast cancer risk. So far, it becomes clear that users of HRT (mainly, estrogen combined with 

progestin) have a higher increase risk of breast cancer after four to five years of therapy 

compared with women who never used HRT (9).   

The presence of history of benign breast disease is also known to increase the risk of 

developing breast cancer. The diagnosis of atypical hyperplasia or atypia in epithelial mammary 

cells has been correlated with an increased risk of breast cancer (9,10). 

Another consistent breast cancer risk factor is the breast density. Research studies have 

shown that higher breast density is linked with increased risk to breast cancer, both in pre- and 

postmenopausal women, especially nulliparious, where these two factors seem to act in synergy 

(10).  

Obesity and the weight gain seem to have contradictories effects on breast cancer risk 

depending on the menopause status of the women. Obese postmenopausal women present 

higher risk to breast cancer, in contrast to obese premenopausal women that have a decreased 

risk (13).  

Several studies have demonstrated that physical activity reduces breast cancer risk when 

performed during adolescence and young adulthood, since it could delay the age of menarche 

(10). 

Numerous epidemiological studies have tried to clarify the role of diet and lifestyle (i.e. 

smoking, alcohol) as breast cancer risks. High intake of fat in the diet seems to be weakly 

associated with breast cancer risk (14,15). Moreover, consumption of well-done meat also has 

been correlated with increased risk, since in overcooked food there is production of extremely 

mutagenic compounds, like heterocyclic aromatic amines, which can lead to DNA damage, 

mutation accumulation and cancer initiation (15,16). In contrast, the fruits and vegetables intake, 

rich sources of natural antioxidants, seems to have a protective effect in breast cancer, mainly in 

postmenopausal women (14,15). Furthermore, intake of soya or some other foods that presents 

high levels of phytoestrogens seems to have some protective effect in breast cancer, given that 

these substances may block the effects of endogenous estrogens. However, contradictory results 

have been shown, whereas these substances seems to have also breast cancer promoting effects 

(14). Concerning alcoholic habits, several studies have demonstrated that daily alcohol uptake 
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increases breast cancer risk (14,15). No association of smoking habit and breast cancer risk was 

obtained by the majority of the reports (14,15). 

Radiation exposed population has shown higher increase risk to breast cancer, mostly in 

women exposed before 40 years. However, low doses of radiation, including occupational and 

medical diagnostic exposures, remain uncertain in their effect to breast cancer risk (3).  

Approximately 10% of all breast cancer is inherited, exhibiting a familial pattern of incidence. 

Women with at least one affected first-degree relative have an increased risk to breast cancer. 

This risk enhance significantly when: a) there are more than one affected relative; b) the relatives 

are close; c) early age of onset of the disease; c) there are cases of bilateral disease in the 

affected women or among relatives (17).   

The family history (FH) as a risk factor to breast cancer indicates that genetic factors are 

important determinants of this disease risk. Mutations in BRCA1 and BRCA2 (Breast Cancer 1 

and 2), the most commonly implicated high-penetrance genes in hereditary breast cancer, 

account for around 25% of families with this disease (18). In addition to these genes, mutations 

in three others were considered to establish them as also high penetrance genes associated with 

a moderate breast cancer risk (10,17). TP53 mutations are rare events in breast cancer families; 

however, women carriers of them present significantly high risk of early onset breast cancer. 

Another gene that account to increased risk to hereditary breast cancer is ATM (Ataxia-

Telangiectasia), especially under the age of 50. More recently, a gene that has been associated 

with hereditary breast cancer is CHEK2, presenting a frequency of 0.5-2.0% in the European 

population (19,20).  

The high penetrance genes account for only 5-10% of all breast cancers. Therefore, the 

majority of breast cancer cases do not have any inherited or hereditary origin. In this way, 

identification of genes that are associated with a moderate or low cancer risk is an important step 

in defining breast cancer risk. It has been understandable that different genetic backgrounds due 

to the combination of subtle sequence variants or polymorphisms in the low-penetrance genes, in 

combination with endogenous and exogenous exposure, could explain the remaining familial and 

“sporadic” breast cancer risks. Numerous studies have been conducted to identify accurate low-

penetrance susceptibility genes in breast cancer, and promising results have been obtained in 

genes encoded proteins implicated in the DNA repair and cell signalling pathways and in the 

metabolism of estrogen or various carcinogens (21-25).    
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11..11..33..  PPAATTHHOOGGEENNEESSIISS  AANNDD  EETTIIOOLLOOGGYY 

 

Some years ago it was believed that breast cancer rose from mammary epithelium through a 

well-defined, but non-obligatory, sequence of histological changes, from normal epithelium 

through hyperplasia, atypical hyperplasia, in situ carcinoma and invasive malignant disease. 

However, new pathological findings and distinct genetic hereditary or somatic alterations have 

reflected a more complex, heterogenic and multi-step etiology for breast cancer. 

Nowadays, breast tumors classification are made concerning not only to the morphology of 

the lesion, but also to their molecular profile (8). A vast variety of benign and malignant breast 

diseases has been identified, reflecting the high complexity and heterogeneity of the disease. The 

most common breast tumors have an epithelial origin (nearly 95% of all breast diseases) (3), and 

could be divided in three main groups: benign lesions, in situ and invasive carcinomas.  

Benign tumors can be defined as well-differentiated tissue with similar origin morphology, 

usually with a slow growth rate and well demarcated areas of growth (3). The benign lesions may 

be divided in: a) nonproliferative lesions, including cysts, apocrine metaplasia and duct ectasia; 

b) proliferative lesions without atypia, such epithelial hyperplasia, sclerosing adenosis, complex 

sclerosing lesions, papillomas, and fibroadenoma; and c) proliferative lesions with atypia, as 

atypical lobular and ductal hyperplasia (3,8). Of the many types of benign lesions in human 

breast, only the atypical hyperplasias seem to present a pre-malignant phenotype, enclosing a 

relative loss of growth control, however, without the ability to invade and metastasize, features 

restricted to malignant lesions (3). Thus, malignant tumors are characterized by decreased levels 

of cellular differentiation presenting a loss of morphology regarding the origin tissue; with a 

disorganized growth and high proliferation rates, abnormal nuclei and several mitoses; with ability 

to invade adjacent tissues and metastasize to other organs (3).  

The in situ carcinomas are divided mainly in two types: ductal (DCIS) and lobular (LCIS). Both 

present proliferation of the epithelium combined with cellular features of malignancy but without 

the capacity to invade the adjacent tissue. These two types of carcinomas present similar cellular 

origins, such as origin in terminal duct-lobular unit and undistinguishable genetic alteration at 

various loci (26). However, only a minority of LCIS cases seem to progress to invasive disease, in 

contrast to DCIS, which represents a high risk factor for progression to invasive carcinomas (8). 



1.1. Breast Cancer 

The majority of the invasive carcinomas are referred as ductal (85-95%), encompassing a 

heterogeneous group of tumors with particular names, as tubular, medullary, mucinous, 

papillary, metaplastic, apocrine, secretory and lipid-rich, and others classified as “not otherwise 

specified” (3,8). The abundance of invasive lobular carcinomas varies from 5-15% and is a much 

more homogenous group.  

Recently, this morphological classification was totally remodelled using the expression profile 

analysis through cDNA microarrays. Perou et al (27) defined three groups of breast cancer that 

are related to different molecular features of mammary epithelial biology: the luminal (estrogen 

receptor (ER) positive), the epidermal growth factor-2 (HER-2) positive and the basal-like (ER and 

HER-2 negative). 

In the classical model of general tumorigenesis, genetic variation is provided primarily by 

genetic mutations, and natural selection acts on this variation to provide a net survival advantage 

to the phenotypes (and genotypes) that are best adapted to the environment. Tumour growth, by 

comparison, is initiated by one or more mutations that a selective growth advantage to a cell. The 

clone derived from that cell then expands. Successive useful mutations or epigenetic changes 

occur, and it is thought that each is followed by waves of clonal expansion. This model has been 

confirmed by numerous molecular studies (28-30), and it has been established that cells have to 

acquire several genetic changes to allow tumour growth, invasion and metastasis. However, the 

normal mutation rate is insufficient to provide the genetic variation that is required for tumour 

growth. So, it is often proposed that mutations causing genomic instability occur as the initiating 

events and driving force to tumorigenesis. In general, these theories assume that genomic 

instability is derived from mutations in genes that are involved in processes such as DNA repair 

and chromosomal segregation, and mutations in these genes have no direct selective advantage 

or disadvantage, only an effect on the mutation rates of other genes. Genomic instability may 

arise as an additional effect of a mutation that has a larger direct selective advantage. Similarly, 

mutagenic environments might favour cells that bypass slow DNA repair mechanisms and 

therefore speed up progress through the cell cycle (31). Under these conditions, selection for 

rapid cellular proliferation might again indirectly raise the mutation rate. Finally, genomic 

instability mutations might ‘hitch-hike’ with new advantageous mutations in the same genome, as 

long as the overall selective advantage for the tumour cell is maintained. 

The tumorigenesis model is also viable in breast organ. The transformation of normal breast 

epithelium into carcinoma is generally accepted as a multistep process, in which genetic changes 
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(either in tumour suppressor genes and oncogenes) (32), environmental factors, lifestyle and 

hormones exposure, may play a role (33), resulting in a very complicated picture (figure 4). 

However, most breast cancer encloses a complex, heterogenic and multifactorial origin. One 

consequence of this phenomenon implies that two or more groups of breast cancer cases may 

have been caused by different sets of events, or even different causes.  

 

 

Figure 4 – Schematic model of hypothetical multistep carcinogenesis in breast cancer. 
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Regarding epidemiological findings, it is clear that one of the hypotheses to breast cancer 

etiology is due to excessive and cumulative exposure to endogenous hormones at different stages 

of breast cancer development. Several evidences suggest the involvement of hormones through 

two distinct ways: as genotoxic estrogen metabolites, which are able to induce DNA damage and 

thus cause initiation and progression of breast carcinogenesis; and as estrogen receptor (ER) 

mediated genomic and non-genomic signalling, affecting cell proliferation and apoptosis in breast 

tissue (34-37).  

Importantly, estrogens by their mitotic effects on breast cells appear to control the growth of 

primary breast cancers by inducing estrogen-regulated proteins that function as autocrine and 

paracrine growth factors. Estrogens activate genes controlled by estrogen-responsive elements. In 

addition to these classical transcriptional effects, these ligands can also modulate other genes, 

not containing estrogen-responsive elements, via direct protein–protein interaction of ER with 

other transcription factors (35,37). The genes responsible for the mitogenic effect of estrogen 

probably include secreted growth factors, for example, epidermal growth factor and insulin-like 

growth factor-1 and their respective receptors (35,37). By contrast, the non-genomic effects of 

estrogens on signal transduction do not appear implicated in their mitogenic action, since all key 

events in cell cycle stimulation can occur in the presence of a mitogen-activated protein kinase-

activating inhibitor (38).  

Increasing evidences have suggested that estrogen metabolism produced mutagenic 

metabolites that may contribute to breast carcinogenesis. During the process of estrogen 

biotransformation and elimination several DNA damage, such as direct DNA adducts, lipids 

oxidative damage and production of reactive oxygen species, which can turn out multiple types of 

genetic insults contributing to the induction of genomic instability (39-41). In addition to the 

estrogen mutagenic potential, a number of environmental chemicals, resulting from lifestyle and 

environmental factors, are supposed to contribute to the initiation of breast cancer, through the 

accumulation of DNA mutations, arising presumably via DNA damage, in genes that normally 

function to guarantee genetic stability (15,42-44). Several studies have been performed to 

elucidate the role of DNA damage in breast cancer predisposition and initiation. Patel et al (45) 

showed that breast cancer patients and their first-degree relatives presented higher frequencies 

of chromatid breaks in peripheric blood lymphocytes compared with control women, following in 

vitro G2 phase X-irradiation. Regarding ionizing radiation (IR), various reports have demonstrated 

higher levels of DNA damage in breast cancer patients (with or without FH of breast cancer) 
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compared to healthy women, after in vitro and in vivo exposure to IR (46-48). Some studies have 

also demonstrated that familial breast cancer patients, as well as theirs relatives and the 

sporadic breast cancer patients presented higher cromatid break frequencies when compared 

with controls, using as mutagens bleomycin, doxorubicin and N-methyl N-nitro N-nitrosoguanidine 

(49-51). Another common type of DNA damage is the bulky DNA adducts, produced by a wide 

range of chemical, such as polycylic aromatic amines, heterocyclic aromatic amines and 

benzo(a)pyrene, commonly found in well-cooked food and cigarette smoke. Rundle et al (52) 

design a case-control study to analyse polycylic aromatic amines-DNA adducts in tumors and 

nontumoral breast tissue from patient cases and benign tissue from controls. They observed a 

mean adduct levels significantly higher for the tumour tissue samples when compared with 

benign tissue samples. Furthermore, DNA adduct levels was significantly associated with breast 

cancer risk. In resume, all these findings corroborate the important involvement of DNA damage, 

and, in consequence, all the cellular mechanisms unchain by it (such as DNA damage 

recognition, signalling and repair pathways), in breast cancer etiology. 

Some years ago, Adami et al (53) have proposed an etiological model with four key 

components. First, the probability of breast cancer occurrence depends on the number of 

proliferating cells, being supported by the evidence that breast density is a predictor of breast risk 

(10). Secondly, the number of target cells and their responsiveness to hormonal stimulation is 

determined early in life, since the prenatal period, the mammary gland is in an undifferentiated 

state that turns it to a “perfect place” for cancer initiation. Third, the occurrence of the first full-

term pregnancy leads to the generation of terminally differentiated glandular tissue, which 

presents a lower rate of proliferation conferring long-term protection. Fourth, exposure to sex 

hormones, like estrogens, progesterone, prolactin and insulin-like growth factor 1, affect breast 

cancer risk by increasing the cellular proliferation, influencing clonal expansion and modulating 

growth enhancement of sub-clinical tumors (53). 

A more recent theory to breast cancer etiology, gaining more and more recognition, is based 

on the stem cell concept (54). In summary, the epithelial stem cells are the primary targets of 

tumorigenesis in the adult mammary gland, are long-lived and have large replication potential, 

allowing them to accumulate the mutations required for malignant potential. According to Dontu 

et al (54), ER positive and negative stem cells or progenitor cells of normal breast epithelium are 

the founding cells of breast tumors. The transformed mutated cells become the cancer stem cells 

that maintain the functional properties of differentiation present in normal stem cell. This concept 
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would provide an explanation for the heterogeneity of breast cancer phenotypes. These last two 

theories could be consider to be linked, since the four components of the first one represent 

steps in a single biologic process that point the mammary gland stem cells as the core 

determinant of breast cancer risk (55).   

 

11..11..44..  GGEENNEETTIICC  PPOOLLYYMMOORRPPHHIISSMMSS  AASS  RRIISSKK  FFAACCTTOORR 

 

Polymorphisms have been historically classified as commonly occurring (>1%) genetic 

variations in the general population. Compared to mutations, polymorphisms have been 

perceived as functionally insignificant, however, current evidence emphasizes that a considerable 

fraction affects the intrinsic properties and proteins function to a variable degree (56,57).  

Low-penetrance susceptibility alleles are defined as polymorphic genes with specific alleles 

that are associated with an altered risk for disease susceptibility. Usually, the variants in these 

genes are common within general population. Therefore, although each variant may be 

associated with a small increased risk for breast cancer in an individual, the attributable risk in 

the population as a whole and the genetic effect of combinations of relevant polymorphisms may 

additively or synergistically be higher than for rare, high-penetrance susceptibility genes.  

Several reports have demonstrated the importance of polymorphisms in several cellular 

mechanisms, like estrogen and carcinogen detoxification metabolisms, cell cycle, apoptosis, cell 

signalling, growth factors and receptors molecules, cell adhesion, angiogenesis, DNA damage 

signalling and DNA repair, on breast cancer susceptibility (21,58-64). Polygenic models have also 

been proposed to explain the joint effect of many susceptibility alleles on breast cancer, but 

without considering specifically their possible interactions (65-68). Some examples of recent 

studies regarding this issue are shown in Table 2. Besides, these genetic variants might function 

through interactions with different genes and with behavioural, environmental and other external 

risk factors.   
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Table 2 – Studies of association of polymorphisms in different cellular mechanisms with 
breast cancer risk. 

 
Gene Name 

 

Polymorphism 
Name 

Breast cancer risk 
(OR; 95% CI)# 

Reference 

XbaI 2.61 (0.65-10.49) 
PvuII 0.95 (0.43-2.08) 

(69) 

XbaI 1.18 (0.73-1.89) 
PvuII 1.30 (0.86-1.97) 

(70) 

XbaI 0.69 (0.46-1.03) 

ER α 

PvuII 0.92 (0.69-1.21) 
(71) 

Val660Leu 1.69 (0.87-3.28) (72) 
Val660Leu 1.47 (0.06-37.5) 

H770H 1.43 (0.06-35.3) 
Q886Q 1.54 (0.20-11.8) 

(73) 
PRG 

 

Val660Leu 1.40 (0.90–2.00) (74) 
Gly482Ser 0.90 (0.65-1.24) PPARGC1A 

Thr612Met 3.02 (0.78-11.7) 
Ala203Pro 1.78 (0.61-5.15) PPARGC1B 

Pro388Pro 1.43 (0.76-2.68) 
EP300 Ile997Val 0.95 (0.65-1.38) 

(75) 

3.72 (0.99-13.9) (69) 
1.04 (0.76-1.44) (76) 
1.20 (0.90-1.40) (74) 

COMT Val158Met 

1.10 (0.93-1.30) (66) 
Arg264Cys 2.07 (0.18-23.3) (69) CYP19 
3’UTR C>T 0.90 (0.70-1.00) (74) 

HSD17B2 Met226Val 
1.06 (0.49-2.29)  

1.14 (0.47-2.77) a)  
1.26 (0.47-3.41) b) 

(77) 

0.60 (0.43-0.84) (78) EPHX  Tyr113His 
1.42 (0.94-2.17) (76) 
1.20 (1.00-1.50) (74) SOD2 Val16Ala 
0.92 (0.66-1.27) (76) 

UGT1A7 Lys131Arg 1.00 (0.80-1.20) (74) 
GSTP1 Ile105Val 0.90 (0.66-1.25) (78) 

# Homozygote variant genotype vs homozygote wild type genotype; * Study not realized; a) homozygote wild type 
vs heterozygote genotype between breast cancer patients with two close relatives with breast cancer vs healthy 
women; b) homozygote wild type vs heterozygote genotype between hereditary breast cancer patients vs healthy 
women. 
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11..22..  DDNNAA  DDAAMMAAGGEE  SSIIGGNNAALLLLIINNGG  AANNDD  RREEPPAAIIRR  

 

“DNA is, in fact, so precious and so fragile that we now know that the cell has evolved a whole 

variety of repair mechanisms to protect its DNA from assaults by radiation, chemicals and other 

hazards. This is exactly the sort of thing that the process of evolution by natural selection would 

lead us to expect.” (79). 

 

As Crick postulated, multiple repair mechanisms have evolved in all organisms to minimize 

the consequences of cellular exposure to endogenous and exogenous agents that inflict 

deleterious alterations in DNA. 

DNA damage occurs spontaneously and constantly throughout the life of an organism and can 

be further enhanced by exogenous DNA damaging factors. Therefore, an efficient response to 

DNA damage is essential for cellular life. DNA damage results from exogenous factors, including 

chemical carcinogens, such as some presented in diet and environmental pollution, IR, ultraviolet 

(UV) rays, and chemotherapeutic drugs (15). Spontaneous errors in fundamental cellular 

processes, such as DNA replication, and DNA damage produced by endogenous metabolic 

processes together with exogenous factors induce a wide range of DNA lesions such as reactive 

oxygen species, oxidized bases, bulky DNA adducts and DNA strand breaks (41,80). 

The importance of DNA repair is underscored by DNA repair deficiency, that is associated with 

hypersensitivity to DNA-damaging agents leading to mutations accumulation in the genome (81), 

as well as with genomic instability syndromes, which dramatically increase cancer incidence 

(82). So far, several pathways that lead to genomic instability have been described, including the 

disruption of Nucleotide Excision Repair (NER), Double Strand Break Repair (DSBR), Mismatch 

Repair (MMR) and DNA damage signalling pathways. 

  

11..22..11..  SSYYNNDDRROOMMEESS  AANNDD  CCAANNCCEERRSS  AASSSSOOCCIIAATTEEDD  

 

The acquisition of some form of inherent genomic instability is a hallmark to several diseases, 

most notably cancer. The failure in the maintenance of genomic integrity and DNA repair can 

predispose humans to some well described malignancies (83). Several DNA repair genes are 

linked to hereditary predisposition diseases, such as Hereditary Nonpolyposis Colon Cancer 
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(HNPCC), Hereditary Breast Cancer, Fanconi Anemia (FA), Ataxia Telangiectasia (AT), Li-

Fraumeni syndrome (LFS), Bloom’s Syndrome (BS), Werner’s Syndrome (WS), Nijmegen 

Breakage Syndrome (NBS), Xeroderma Pigmentosum Syndrome (XP), Cockayne Syndrome (CS) 

and Trichothiodystrophy (TTD). 

HNPCC syndrome, also termed as Lynch Syndrome, is the most common form of hereditary 

colorectal cancer counting for 1-3% of all colorectal cancer cases. Other cancers seen in HNPCC 

include small intestine, pancreas, brain, hepatobiliary tract, and urinary tract. This hereditary 

disease is characterised by germline mutations in any of five DNA MMR genes (MLH1, MSH2, 

MSH6, PMS1 and PMS2) causing errors in DNA replication, known as microsatellite instability. 

These deficiencies in MMR instead of causing malignant transformation create the background 

that permits mutations to accumulate in other growth regulatory genes (84).  

Hereditary breast cancer syndrome is the most common form of inherited breast cancer and 

is caused by germline mutations in BRCA1 and BRCA2 (85). Although a great proportion of the 

familial risk cases is not explained by germ line mutations in BRCA1/2, no other susceptibility 

genes exclusively associated with increased risk of breast cancer have been identified so far, 

except CHEK2, whose variant allele 1100delC has been associated with a moderate increase in 

breast cancer risk in specific populations (86). BRCA1, BRCA2 and CHEK2 present important 

functions within the cellular network that responds to DNA damage and protects genomic 

integrity. BRCA1 protein seems to enclose multiple functions: acts directly in Homologous 

Recombination Repair (HRR), a sub-pathway of DSBR, through association and co-localization 

with RAD51 protein; promotes precise Non-Homologous End Joining (NHEJ) repair sub-pathway 

of DSBR, reducing the mutagenic potential of it; coordinates some roles of DNA replication; 

enhances Global Genome Repair (GGR) sub-pathway of NER by inducing genes of these 

machinery (Xeroderma Pigmentosum C (XPC) and others); is a phosphorylated downstream 

protein by protein kinases ATR (ATM- and Rad3-related) and ATM, having important roles in the 

various cell cycle checkpoints (87). The functions of BRCA2 protein are not well known, but it has 

an unquestionably role in HRR, since it interacts directly with the DNA recombination protein A 

(RAD51), being responsible for the transport of it to the nucleus and sites of DNA damage (87). 

Concerning CHEK2 protein, it has a role in DNA damage signalling, with direct impact on 

downstream effectors within cell cycle checkpoints, DNA repair and apoptosis machineries (86). 

  Fanconi Anemia is a rare recessive disorder characterized clinically by congenital defects, 

bone marrow failure, and cancer predisposition. Patients are diagnosed early in life by certain 
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clinical hallmarks, particularly hematological abnormalities such as aplastic anemia, 

myelodysplastic syndrome, and acute myeloid leukaemia (88). Abnormalities may also be 

present in many other organ systems, and the most notable features include radial and thumb 

hypoplasia, abnormal skin pigmentation, short stature, and infertility (89). Patients with FA are 

also susceptible to solid tumors, such as head and neck squamous cell carcinoma, gynaecologic 

squamous cell carcinoma, esophageal carcinoma, liver, brain, skin, and renal tumors (89). At the 

cellular level, a distint and diagnostic feature of FA is chromosomal instability and cellular 

sensitivity resulting from exposure to DNA interstrand crosslinkers, such as mitomycin C. Upon 

exposure to these genotoxins, cells from FA patient’s exhibit increased chromosomal aberrations, 

including chromosomal breaks and tri-radial formations (88,89). So far, twelve complementation 

groups and responsible genes, named FANCA-FANCM, have been identified. A general model has 

become known for the FA pathway as an arm of the DNA-damage response following interstrand 

crosslinkers. Eight FA proteins (FANCA, B, C, E, F, G, L, and M) form a nuclear core complex 

with a putative DNA helicase (FANCM) and an E3 ubiquitin ligase (FANCL) subunit. Following 

DNA damage, the core complex is required for mono-ubiquitination of FANCD2, a downstream FA 

protein. Following modification, FANCD2 co-localizes to DNA damage foci, presumably DNA-

repair complexes, with BRCA1, BRCA2 and the MRE11-RAD50-NBS1 complex (88,89). 

Ataxia Telangiectasia is characterized by cerebellar degeneration, immunodeficiency, cancer 

predisposition, and acute sensitivity to IR. The affected individual has been found to be prone to 

develop T cell prolymphocytic leukemia, B cell chronic lymphocytic leukemia, as well as sporadic 

colon cancer with microsatellite instability (90). The ATM protein enlarges a central role in the 

cellular response to DNA damage. ATM is a nuclear serine/threonine protein kinase involved in 

activation of several cell cycle checkpoints (G1–S, S and G2–M by autophosphorylation after 

exposure of cells to DNA damage, as IR, and through phosphorylation of several substrates, such 

as BRCA1, NBS1 and P53. ATM also has a role in phosphorylating proteins that are recruited to 

the sites of DNA double strand breaks and this results in enhanced cell survival (90). 

Li-Fraumeni syndrome originally was described as a familial cancer syndrome with an 

autosomal-dominant pattern of inheritance of early onset sarcomas of the soft tissues and bone, 

carcinomas of the breast and adrenal cortex, brain tumors, and leukemias. The underlying 

genetic defect in the majority of LFS families was identified as a germline mutation in the p53 

tumor-suppressor gene (91). 
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Bloom’s Syndrome is an autosomal recessive disorder characterized by growth retardation, 

sunlight sensitivity and a predisposition to the development of cancer. At the cellular level, BS is 

associated with inherent genomic instability. In comparison with cells isolated from unaffected 

individuals, BS cells show an increased frequency of several types of chromosomal aberrations, 

including breaks and translocations. BS is a result of mutations in a RecQ helicase gene, BLM. 

BLM seems to develop important roles to maintain the genomic stability. This protein interacts 

physically and functionally with a number of other nuclear factors in human cells. Most notably, 

BLM binds directly to topoisomerase IIIα, to RAD51 and to RPA (replication protein A), the major 

ssDNA (single-stranded DNA)-binding protein in human cells (92). 

Werner’s syndrome is an autosomal recessive disorder manifested by premature onset of age-

related phenotypes (such as short stature, premature greying of the hair, progressive hair loss, 

mild diabetes and cataract formation), including cancer. In WS cells, the genomic instability 

appears as spontaneous chromosomal abnormalities: chromosome breaks, complex 

rearrangements and deletions. A striking characteristic of WS cells is the expansion of different 

structural chromosome rearrangements in different clones from the same cell line. Another sign 

of genomic instability is abnormal fluctuation of telomere length. Along with spontaneous 

genomic instability, cells from WS individuals show a delayed S phase and a hypersensitivity to 

agents that interfere with DNA replication. The mutated gene responsible for WS is WRN, a RecQ 

helicase family member. WRN protein has been found to physically interact and/or co-localize 

with several proteins involved in DNA replication or control of genetic stability during S phase, 

enclosing an important role in recombinatorial repair and replication fork (93). 

NBS1 protein was the first component of the complex NBS1/MRE11/RAD50 to be associated 

with a genetic disease, the Nijmegen Breakage Syndrome. NBS is characterized by 

developmental defects, immune deficiency and a high incidence of cancer. NBS cells present 

genomic instability in the form of chromosome breaks and fail to arrest DNA synthesis following 

DNA damage. Furthermore, NBS cells are also sensitive to DNA-damaging agents causing 

replication fork stall. NBS1 protein forms a complex with MRE11/RAD50 and recruits them to 

sites of double strand breaks (DSBs). Recent knowledge showed that H2AX is phosphorylated by 

ATM in response to radiation and hence, ATM regulates this recruitment of the 

NBS1/MRE11/RAD50 complex through interaction of NBS1 with H2AX phosphorilated. 

Moreover, NBS1 is involved in signal transduction for cell-cycle checkpoints as a substrate of 
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ATM kinase and, when this mechanism is defective, induces impaired G2 checkpoint control and 

also allows continued DNA synthesis in the presence of DSBs (94). 

The presence of defects in some NER proteins is responsible for three rare recessive 

syndromes: Xeroderma Pigmentosum Syndrome, Cockayne Syndrome and Trichothiodystrophy. 

The more common clinical manifestations of XP are freckling in sun-exposed areas, followed by 

other pigmentation changes, loss of elasticity and multiple skin cancers including basal and 

squamous cell carcinomas and malignant melanomas. XP can result from defects in any of eight 

genes (XPA-XPG) (82). The clinical features of CS have little in common with XP. However, they 

share some mutated genes responsible for the diseases, which in the case of CS are XPB, XPD 

and XPG. CS patients have many developmental defects including severe physical and mental 

retardation, microcephaly, long limbs, bird-like face, pigmented retinopathy, gait defects and sun 

sensitivity (82). The defining feature of TTD is sulphur-deficient brittle hair caused by a reduced 

level of cysteine-rich matrix proteins. Associated features include small stature, mental 

retardation, ichthyotic skin, β-thalassaemia trait, unusual facial features, and in many cases 

photosensitivity. Most photosensitive patients have mutations in the XPD gene, but there are 

patients mutated in XPB and others in another group, TTD, which gene has not yet been 

identified (82).  

  

11..22..22..  PPAATTHHWWAAYYSS  

 

Approximately 150 human DNA repair genes were cloned and sequenced. DNA repair genes 

can be divided into 2 sub-groups: genes associated with signalling and regulation of DNA repair, 

and the genes associated with distinct repair mechanisms, such as Base Excision Repair (BER), 

NER, DSBR and MMR (95-97). 

Next we will focus on the DNA repair pathways more related with breast cancer initiation and 

progression, namely BER, NER and DSBR and DNA damage signalling and regulation. 

 

11..22..22..11..  DDNNAA  DDAAMMAAGGEE  SSIIGGNNAALLLLIINNGG  

 

The fidelity of eukaryotic genome is maintained by coordinated actions of cellular 

pathways, including DNA repair, chromatin remodelling, apoptosis, and cell cycle check-
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points. The checkpoint pathways are signal-transduction pathways, responsible mainly for the 

control of cell cycle arrest, control of the activation of DNA repair mechanisms, movement of 

DNA repair proteins to sites of DNA damage, activation of transcriptional programmes and 

induction of cell death by apoptosis (98). These DNA damage control mechanisms minimize 

the risk of DNA to be converted to inheritable mutations, and are believed to be of critical 

importance in the prevention of carcinogenesis.  

As in all signal-transduction processes, the DNA checkpoint pathways involve sensors, 

responsible for DNA damage recognition and signal initiation, transducers, being in charge of 

transmitting and amplifying the signal, and effectors molecules, that control the biological 

consequences of triggering the pathway. 

In Figure 5, we visualized a schematic diagram of DNA damage signalling. In mammalian 

systems, the proteins responsible for the sensing and initiation of DNA damage responses, 

caused by various genotoxic agents, are two protein kinases of the PI-3-kinase-like kinase 

family: ATM and ATR. The kinase activity of ATM is activated when DNA DSBs occur 

(99,100). A crucial sensor for the ATM pathway seems to be the MRE11-NBS1-RAD50 

complex. This complex is required for the damage-induced chromatin association of ATM and 

for efficient ATM autophosphorilation after damage (100). In contrast to ATM, the ATR 

responds to damage rather than DSB, such that caused by hydroxyurea and UV-light (98). 

Activation of the ATR kinase requires its associated protein ATR-interacting protein and two 

protein complexes, that seem to be the trimeric proliferating cell nuclear antigen (PCNA) and 

the replication factor C (RFC) (100).  

Some proteins, the transducers, are crucial to the activation of specific subsets of ATM or 

ATR substrates. ATR-dependent pathway requires the function of several proteins including 

BRCA1, Claspin and mediator of DNA damage checkpoint 1 (MDC1). In the case of ATM, 

P53 binding protein-1 and MDC1 also appear to be critical for the phosphorilation of many 

ATM substrates (100).  

With the help of mediators, checkpoint signals are transmitted, in the form of protein 

phosphorylation, to two major signal-transducing checkpoints kinases—CHK1 and CHK2. 

These two kinases in their turn regulate downstream targets, such as the phosphatases 

(Cdc25A, Cdc25C), and P53, controlling cell cycle progression and DNA synthesis. CHK2 

is the kinase target of ATM, and seems to phosphorilate P53 and BRCA1 (98,101). On the 
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other side, CHK1 is the target of ATR-dependent pathway and responsible for Cdc25 

phosphorilation (100,101). 

 

 

Figure 5 - Simplified scheme of DNA damage signalling. 
  

11..22..22..22..  BBAASSEE  EEXXCCIISSIIOONN  RREEPPAAIIRR  

 

Base excision repair pathway is the main mechanism to repair DNA damage with an 

endogenous origin, mainly DNA oxidation by reactive oxygen species which are generated by a 

wide range of normal metabolism and spontaneous deamination of DNA bases, and with an 

exogenous origin, including ionising radiation and long-wave UV light, as already mentioned 

(102). 

Briefly, BER is initiated by a DNA glycosylase that releases the target base to form an abasic 

site (AP) in the DNA (Figure 6). AP endonuclease (APE1) is the second enzyme in the pathway 

and hydrolyses the phosphosdiester bond 5’ to the abasic sugar phosphate (dRP) site to generate 

a nick. The insertion of the first nucleotide is performed by DNA polymerase β (DNA Polβ) (103). 

The removal of 5’dRP upon the insertion of the first nucleotide is the critical step in the decision 

between the two sub-pathways in BER: short-patch and long-patch. Besides polymerisation 

activity, DNA Polβ also exerts lyase activity in the hemiacetal form of 5’-dRP residues from 

incised AP sites. In contrast, oxidised or reduced AP sites are resistant to β elimination by DNA 

Polβ. Upon dissociation of DNA Polβ from damaged DNA, strand displacement and DNA 

synthesis is accomplished by DNA Polε and DNA Polδ together with PCNA and RFC, resulting in 

longer repair patches of up to 10 nucleotides. The removal of deoxyribosephosphate flap 
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structure is executed by flap endonuclease (FEN1) stimulated by PCNA. The ligation is performed 

by ligase I, in interaction with PCNA and Polβ, in long-patch BER, and by ligase III, that interact 

with X-ray repair complementing 1 (XRCC1), Polβ and PARP-1 [poly(ADP-ribose) polymerase-1], 

in short-patch BER (97,103). 

 

 

Figure 6 - Simplify diagram of BER pathway. 
  

11..22..22..33..  NNUUCCLLEEOOTTIIDDEE  EEXXCCIISSIIOONN  RREEPPAAIIRR  

  

The NER is the most versatile and flexible DNA repair pathway and is the major repair system 

for removing bulky DNA lesions, such as UV-light-induced photolesions and cyclobutane 

pyrimidine dimers, intrastrand cross-links, large chemical adducts, bulky adducts, generated 

from exposure to genotoxic agents and oxidative damage (104,105).  

This pathway consists of 2 distinct sub-pathways designated GGR and transcription-coupled 

repair (TCR) (Figure 7). GGR seems to be responsible for the repair of the non-transcribed 

domains of the genome. In contrast, TCR removes lesions from the transcribed strand of active 

genes. The first step involved in NER is the recognition of damaged residues and bubble 

formation, performed by XPC-hHR23B (human Rad23B homolog) and the nine subunits of 

transcription factor-IIH (TFIIH), XPA and RPA, respectively. The dual incision of the damaged DNA 

strands 5’ and 3’ to the lesion is executed by 2 endonucleases, XPG and ERCC1(excision repair 

cross-complementing)-XPF. DNA Polδ and Polε jointly with the sliding clamp PCNA, the 

pentameric clamp loader RFC and DNA ligase I (LIG I), are responsible for the release of an 

oligonucleotide containing the damage, synthesis and ligation of the resulting gap. With the 
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exception of XPC-hHR23B, all the genes involved in GGR are also required for TCR. In addition, 

TCR requires other genes, including CSA and CSB genes, also responsible for the Cockayne 

Syndrome (97,103). 

 

 

Figure 7 - Elementary illustration of NER pathway. 
 

11..22..22..44..  DDOOUUBBLLEE  SSTTRRAANNDD  BBRREEAAKK  RREEPPAAIIRR  

  

Double-strand break is the most dangerous type of DNA damage in the cells. DSB could result 

from exogenous agents, such as IR and certain chemotherapeutic agents, from endogenous 

origin, for instance reactive oxygen species, mechanical stress on chromosomes and replication 

errors (99). Several genes described as breast cancer susceptibility genes are important DSBR 

genes and for DSBR pathway, such as BRCA1, BRCA2, ATM, P53 and CHEK2 (99). 

The repair of DSB involves 2 types of pathways (Figure 8): HRR and NHEJ mechanisms, 

which are error-free and error-prone, respectively. The occurrence of HRR or NHEJ depends on 

the cell cycle phase. HRR occurs during the late S and G2 phases, whereas NHEJ occurs mainly 

in G0/G1 phases (97). 

HRR pathway uses extensive regions of DNA homology as coding information. The 

homologous DNA is usually the sister cromatid and may also be the homologous chromosome. 

The first step in HRR is the nucleolytic resection of the DSB in the 5’-3’ direction by the MRE11-
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Rad50-NBS1 complex. The resulting 3’ single-stranded DNA is bound by a heptameric ring 

complex formed by Rad52 proteins. The search for a homologous template and the formation of 

the joint molecules are performed by Rad51 nucleoprotein filament, which reunion is facilitated 

by five different paralogues of Rad51 (Rad51B, C and D, XRCC2 and XRCC3). The BRCA2 

interacts directly with RAD51, through its BRC repeats and through a domain in this carboxyl 

terminus (85,106). The interaction between these molecules is essential to RAD51 nucleoprotein 

filament formation (107). Furthermore, the BRCA1, having important functions in DNA damage 

checkpoints, seems to be important to RAD51 functions, but the nature of this interaction is still 

unknown. After strand exchange, the resulting structures are resolved according to the classical 

model of Holliday (108). 

In contrast to HRR, NHEJ is a conceptually simple pathway that involves the religation of 

broken ends and does not require a homologous template (109). NHEJ is initiated by the binding 

of a heterodimer complex consisting of the Ku (thyroid autoantigen) 70 and Ku80 proteins to the 

damaged DNA, protecting DNA from exonucleases digestion. The Ku heterodimer associates with 

the catalytic subunit of DNA protein kinase (DNA-PK). One of the targets of DNA-PKs is XRCC4 

which forms a stable complex with DNA ligase IV (LIG IV), which binds to the ends of DNA 

molecules and links duplex DNA molecules with complementary but non-ligatable ends. The 

XRCC4-LIG IV complex cannot directly re-ligate most DSB, being these processed first. The 

processing of DSB is mainly performed by MRE11-Rad50-NBS1 complex. Two other proteins that 

seem to be involved in the removal of 5’ and 3’ overhang are FEN1 and Artemis (109). 

 

 

Figure 8 - Simplified diagram of DSBR pathway. 
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11..22..33..  GGEENNEETTIICC  PPOOLLYYMMOORRPPHHIISSMMSS,,  DDNNAA  RREEPPAAIIRR  CCAAPPAACCIITTYY  AANNDD  BBRREEAASSTT  CCAANNCCEERR  RRIISSKK  

 

The DNA damage signalling and repair pathways are essential mechanism to the genome 

viability. The important role of DNA repair in the maintenance of a normal cellular genotype and a 

cancer-free state is obvious in cancer with family history, in which the presence of rare variant 

alleles but highly penetrance at a number of loci is associated with a high risk for cancer. 

A huge number of common polymorphisms have been described in DNA damage signalling 

and repair genes (110-112). Observations of inter-individual differences in measurements of DNA 

damage suggest that these polymorphisms may alter the functional properties of DNA repair 

enzymes. For all the evidences, it seems of great importance to define the meaning of DNA 

damage signalling and repair polymorphisms in the context of protein and pathway functions and 

their contribution to breast cancer risk. 

Several BER genes as been described to present polymorphic regions, namely, APE1, XRCC1, 

glycosylases (8-oxoguanine DNA glycosylase - OGG1), LIG I and LIG III (112). Several studies 

have been conducted with the aim of determine the influence of BER polymorphisms in breast 

cancer risk (Table 3). Until today, more than 200 polymorphisms have been identified in the NER 

pathway (111,112) and several studies have been performed to associate them with breast 

cancer risk. In Table 4, we show reports associating breast cancer susceptibility and NER 

polymorphisms. Cells evolved two sub-pathways to repair DSB lesions: NHEJ and HRR. Some 

polymorphisms have been demonstrated in some NHEJ and HRR genes (110), several of them 

have been examined in case-control studies for breast cancer risk (Table 5). An overview of the 

different studies associating breast cancer and DNA signalling polymorphic genes is presented in 

Table 6. From the analysis of the tables above, we can conclude that there are a lack of 

consistent findings between polymorphisms and breast cancer risk. Several points could be 

responsible for these differing reports. First of all, breast cancer is a heterogeneous disease, but 

the majority of the analysis treats it as one, using in the same analysis different types of tumors. 

Secondly, risk factors of breast cancer behind the genetic factors, such as environmental, 

lifestyle, endogenous metabolism, are very difficult to identify, and therefore so complicated to be 

included in case-control studies. Third, although it has been shown that >95% of genetic variation 

is shared across populations and that <10% is specific to a single population (113), it is also well 

known that prevalence of the allele variants differs across racial/ethnic groups (114). This is 
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phenomenon which adds considerable importance to studies that comprise a diverse group of 

racial/ethnic groups or populations with different ancestry. 

 
 
 
 
 
Table 3 – Studies of association of BER genetic polymorphisms with breast cancer risk and 

functional phenotype. 

Gene Name 
 

Polymorphism 
Name 

Breast cancer risk 
(OR; 95% CI)# 

DNA repair 
capacity/environment 
interaction 

Reference 

0.98 (0.52-1.86) * Vogel et al, 2003 (115) OGG1 
 

Ser326Cys 
1.3 (0.92-1.93) * Choi et al, 2003 (116) 

Arg194Trp 1.61 (0.10-26.1) No 
Arg399Gln 1.00 (0.57-1.76) No 

Moullan et al, 2003 
(117) 

Arg194Trp 
2.24 (0.91-5.53)a) 

2.46 (0.98-6.17)b) 

1.58 (0.39-6.39)c) 

* 

Arg399Gln 
0.92 (0.53-1.58)a) 

0.57 (0.32-1.02)b) 
0.74 (0.31-1.72)c) 

* 

Smith et al, 2003 (118) 

1.05 (0.59-1.87) * Smith et al, 2003 (119) 
1.20 (0.85-1.69) Yes Shu et al, 2003 (120) Arg399Gln 
1.03 (0.77-1.37) No 

Gln632Gln 0.90 (0.69-1.16) No 
Han et al, 2003 (121) 

0.89 (0.46-1.72) * Forsti et al, 2004 (122) 

0.88 (0.57-1.37) Yes 
Figueiredo et al, 2004 
(123) Arg399Gln 

1.27 (0.62-2.61) * 
Deligezer et al, 2004 
(124) 

Arg194Trp 2.78 (0.82-9.40) * 
Arg280His 1.69 (0.29-9.63) * 

2.69 (1.10-6.57) * 

Chacko et al, 2005 
(125) 

XRCC1 

Arg399Gln 
0.97 (0.73-1.29) Yes Shen et al, 2005 (126) 

Lys289Met 3.76 (1.87-7.56) * DNA Pol β 
Pro242Arg 1.96 (1.15-3.34) d) * 

Sliwinski e tal, 2007 
(127) 

# Homozygote variant genotype vs homozygote wild type genotype; * study not realized; ** visualized in the test; a) 
variant genotypes vs wild type genotype between healthy women with FH vs healthy women without FH; b) variant 
genotypes vs wild type genotype between breast cancer patients without FH vs healthy women without FH; c) variant 
genotypes vs wild type genotype between breast cancer patients with FH vs healthy women without FH; d) 
homozygote wild type genotype vs heterozygote genotype. 
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Table 4 – Studies of association of NER genetic polymorphisms with breast cancer risk and 

functional phenotype. 

Gene 
Name 

Polymorphism 
Name 

Breast cancer risk 
(OR; 95% CI)# 

DNA repair 
capacity/environment 

interaction 
Reference 

0.91 (0.47-1.73) * Försti et al, 2004 (122) XPC Lys939Gln 
0.91 (0.47-1.73) * Zhang et al, 2005 (128) 

XPG Asp1104His 1.19 (0.57-2.50) No Kumar et al, 2003 (129) 
Asp312Asn 0.51 (0.27-0.94) * 
Lys751Gln 1.00 (0.57-1.77) * 

Försti et al, 2004 (122) 

Asp312Asn 2.06 (0.63-6.69)a) Yes 
Lys751Gln 1.49 (0.46-4.86)a) Yes 

Shi et al, 2004 (130) 

Asp312Asn 2.06 (1.39-3.07)b) * 
1.32 (0.94-1.86)b) * 

Justenhoven et al, 2004 
(131) 

Lys751Gln 
1.18 (0.91-1.53)a) Yes Terry et al, 2004 (132) 
0.80 (0.12-3.23) * Lee et al, 2005 (133) 

Asp312Asn 
1.38 (1.11-1.73)b) * 

Lys751Gln 1.01 (0.82-1.25)b) * 
10.2 (0.77-1.36)b) * 

XPD 

Asp312Asn 
0.77 (0.54-1.10)b) * 

Kuschel et al, 2005 (134) 

3’UTR C8092A 0.58 (0.38-0.89)c) No 
ERCC1 

C354T 1.08 (0.84-1.39)a) Yes 
Lee et al, 2005 (135) 

 
XPF T835C 1.30 (0.57-2.74) * Lee et al, 2005 (133) 

# Homozygote variant genotype vs homozygote wild type genotype; * study not realized; a) Variant genotypes vs 
wild type genotype between breast cancer patients vs healthy women; b) homozygotes variant genotype vs wild type 
genotype between breast cancer patients vs healthy; c) homozygote variant genotype vs wild type and heterozygote 
genotypes between breast cancer patients vs healthy women. 
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Table 5 – Studies of association of DSBR genetic polymorphisms with breast cancer risk. 

Gene Name Polymorphism Name 
Breast cancer risk 
(OR; 95% CI)# 

Reference 

0.70 (0.39-1.28) Försti et al, 2004 (122) 
NBS1 Glu185Gln 

0.70 (0.39-1.28) Zhang et al, 2005 (128) 
0.69 (0.27-1.80) Webb et al, 2005 (136) 5’UTR G135C 
0.89 (0.67-1.17)a) RAD51 

5’UTR G172T 0.84 (0.56-1.26)a) 

RAD52  3’UTR C2259T 1.33 (1.02-1.75)a) 

Lee et al, 2005 (135) 

1.12 (0.88-1.44)a) Han et al, 2004 (23) 
XRCC2 Arg188His 

1.01 (0.77-1.33)a) Webb et al, 2005 (136) 
1.48 (0.64-3.43) Smith et al, 2003 (118) 
0.98 (0.67-1.41)a) Smith et al, 2003 (119) Thr241Met 
1.72 (0.94-3.15)b) 

0.74 (0.34-1.60)c) 
Försti et al, 2004 (122) 

5’UTR A4541G 1.10 (1.00-1.20)a) 

IVS5-14 A>G 1.04 (0.87-1.25) a) 
0.92 (0.76-1.11) a) 

Han et al, 2004 (23) 

1.47 (1.00-2.15)a) Figueiredo et al, 2004 (123) 
0.84 (0.64-1.09)a) Webb et al, 2005 (136) 

XRCC3 

Thr241Met 

1.79 (0.98-3.26) Zhang et al, 2005 (128) 
Asn372His 1.65 (0.36-7.58) 

Met784Val 2.03 (1.07-3.87)a) 
Ishitobi et al, 2003 (137) 

BRCA2 
Thr1915Met 

2.20 (0.20-23.7)d) 

5.40 (1.20-24.6)e) 
Górski et al, 2005 (138) 

# Homozygote variant genotype vs homozygote wild type genotype; a) Variant genotypes vs wild type genotype; b) 
Finish population; c) Polish population; d) under age 40 years; e) above age 41 years. 
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Table 6 – Studies of association between DNA damage signalling genetic polymorphisms with 
breast cancer risk.  

Gene Name Polymorphism Name 
Breast cancer risk 

(OR; 95% CI) 
Reference 

IVS22-77 T>C 1.67 (1.00-2.81) 

IVS48+238 C>G 1.66 (1.00-2.76) 

G5557A 1.07 (0.35-3.24) 

Angéle et al, 2003 (139) 

-5144 A>T 1.13 (0.92-1.39)a) 

IVS21+1049 T>C 1.39 (1.09-1.77)a) 

IVS33-55 T>C 1.19 (0.96-1.47) a) 
IVS34+60 G>A 1.29 (1.04-1.60) a) 

ATM 

3393 T>G 1.24 (1.00-1.54) a) 

Lee et al, 2005 (140) 

PIN3 Ins16bp 
5.30 (1.10-25.6)a)b) 
1.20 (0.90-1.60)a) 

Arg72Pro 
2.30 (0.70-7.60)a)b) 
1.10 (0.80-1.40)a) 

MspI Intron6 
2.80 (0.80-19.3)a)b) 
1.20 (0.90-1.50)a) 

Wang-Gohrke et al, 2002 (141) 

2.14 (1.21-3.79) Huang et al, 2003 (142) 

TP53 

Arg72Pro 
1.26 (0.96–1.67) Cox et al, 2007 (143) 

´# Homozygote variant genotype vs homozygote wild type genotype; a) Variant genotypes vs wild type genotype 
between breast cancer patients vs healthy women; b) breast cancer patients with FH. 
 

 

11..22..44..  XXRRCCCC11,,  XXPPDD,,  RRAADD5511,,  XXRRCCCC33  AANNDD  TTPP5533  PPOOLLYYMMOORRPPHHIICC  GGEENNEESS  AASS  GGOOOODD  

CCAANNDDIIDDAATTEESS  TTOO  EEVVAALLUUAATTEE  IINNDDIIVVIIDDUUAALL  BBRREEAASSTT  CCAANNCCEERR  SSUUSSCCEEPPTTIIBBIILLIITTYY 

 

XRCC1 protein is thought to act as scaffold protein for both single-strand break repair (SSBR) 

and BER activities (144). Three domains have been identified within its 633 amino acid protein: 

the NH2-terminal domain (residues 1–183), which interacts with DNA Pol-β and DNA containing 

a single-strand break; a central BRCA C-terminal (BRCT)-I domain (residues 315–403), which 

interacts with PARP-1; and the COOH-terminal BRCT-II (residues 538–633), which interacts with 

the COOH-terminal domain of DNA LIG III. XRCC1 is responsible for the assembly of these 

proteins in lesion area (144). Several polymorphisms have been found in XRCC1 gene and some 

have been linked with a variety of cancers (145). A common XRCC1 polymorphism, Arg399Gln, 

located in exon 10, results in an amino acid substitution from arginine to glutamine (Arg→Gln), 

within the BRCT-I domain, where PARP-1 binds, therefore affecting complex assembly and the 

repair efficiency of BER (146).  

XPD protein is a DNA helicase, being a subunit of the TFIIH complex and presenting important 

roles both in transcription and NER pathway. XPD participates in the locally unwind of DNA helix 
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allowing RNA transcription machinery to access the promoter and to permit the NER machinery 

access to the lesion (104). XPD is a highly polymorphic gene and correlation of its 

polymorphisms and cancer risk have been intensively studied (147,148). One of the most 

common XPD polymorphism, Lys751Gln, has been associated with a differential DNA repair 

capacity (149-151). This polymorphism, located in exon 23, is characterized by an A to T 

substitution causing a lysine to glutamine amino acid exchange (Lys→Gln) at codon 751. 

Lys751Gln is situated in the important domain of interaction between XPD protein and its 

helicase activator, inside the TFIIH complex, suggesting a biological importance in XPD function 

(152). 

In the HRR pathway, RAD51 is an important protein in DSBR pathway promoting DNA 

homologous pairing and strand exchange, in association with other proteins of the heterodimer 

complex with several other genes (such as XRCC2, XRCC3, BRCA2 and others) (153). In cultured 

mammalian cells, RAD51 is involved in spontaneous gene conversion as well as in HRR induced 

by radiation, alkylating agents and replication elongation inhibitors. More precisely, RAD51 

controls DSB repair via gene conversion associated or not with crossing over (154). RAD51 also 

partly participates in induced sister chromatid exchange in mammalian cells. RAD51 gene 

presents a low rate of polymorphisms and the majority of them are described in UTRs, such as 

5’UTR G135C polymorphism, occurring in the 5’UTR region at 135 position by a substitution of a 

guanine by a cytosine. The biological effect of this polymorphism is currently unknown. However, 

in two studies, an elevated breast cancer risk associated with RAD51 135C allele was reported in 

BRCA2 mutation carriers, but not in BRCA1 mutation carriers (155,156). 

Another important HRR protein is XRCC3, that interacts directly with RAD51, helping in the 

assembly of the nucleofilament protein and in the selection and interaction with appropriate 

recombination substrates (157), being required for genomic stability. The XRCC3 Thr241Met 

polymorphism, located in exon 7, is a very common variant in the general population, and results 

from the substitution of a C to a T, which induces in an amino acid substitution of a threonine by 

a methionine (Thr→Met) at codon 241. Some findings have demonstrated that this 

polymorphism may affect the enzyme’s function and/or its interaction with other proteins 

involved in DNA damage and repair (158). Some functional studies have shown that XRCC3 

241Met variant present a decreased DNA repair function and some deficiencies in mitotic events 

(158,159). Molecular epidemiological studies have linked this XRCC3 polymorphism to increased 

risk of some types of cancer, among them breast cancer (123,160). 
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The TP53 tumour suppressor gene, also designated the “guardian of the genome”, is 

essential in the preservation of genome integrity. From the numerous biological functions of p53 

protein, inhibition of cell cycle progression, DNA repair and apoptosis are the major cellular 

pathways where it is involved (161). TP53 gene mutations are widely detected in breast cancer, 

being correlated with specific clinical phenotypes (162,163).  Furthermore, several 

polymorphisms have been identified within TP53 gene, both in non-coding and coding regions 

(164). One of the most well studied TP53 gene polymorphism is Arg72Pro, located in codon 72 

on exon 4, leading to arginine-proline substitution (Arg→Pro), which in its turn results in a 

structural alteration of the protein giving rise to variants with distinct electrophoretic mobility 

(165). This polymorphism occurs in a proline-rich region of p53, which is known to be important 

for the growth suppression and apoptotic functions of this protein (165). Another common 

polymorphism is 16 base pair (bp) duplication in intron 3 of the TP53 gene (PIN3 Ins16bp). 

However, until now only a single report has shown an altered mRNA expression linked to the 

presence of this polymorphism (166). Consistent with this altered functional activity, several 

studies have correlated the intron 3 duplication with an increased risk of various cancers, 

including breast cancer (167-169). 
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AABBSSTTRRAACCTT  

 

The purpose of this study was to evaluate the role of polymorphisms in DNA repair genes as 

genetic indicators of susceptibility to familial and sporadic breast cancer. We analysed DNA 

samples from 285 breast cancer patients and 442 control subjects, for XRCC1 Arg399Gln, XPD 

Lys751Gln, RAD51 G135C and XRCC3 Thr241Met polymorphisms using PCR-RFLP. We 

observed that women carriers of XRCC1 399Gln genotypes and without FH of breast cancer have 

a protective effect concerning this disease (OR= 0.54 95% CI 0.35-0.84; p=0.006). Furthermore, 

we found that carriers of XRCC3 241Met genotypes without FH have an increased susceptibility 

of breast cancer (OR= 2.21 95% CI 1.42-3.44; p<0.001). Additionally, we verified an increased 

risk of breast cancer in women with FH and carrying RAD51 135C genotypes (OR= 2.17 95% CI 

1.19-3.98; p=0.012). Our results suggest XRCC1 Arg399Gln and XRCC3 Thr241Met DNA repair 

polymorphisms as important biomarkers to sporadic breast cancer susceptibility, as well as, 

RAD51 G135C polymorphism as a real risk modifier in familial breast cancer cases. 

 

22..11..  IINNTTRROODDUUCCTTIIOONN  

 

Breast cancer is the leading cause of death among women in developing countries. In 

Portugal, it presents the highest incidence and mortality rates among women diseases (1). It is a 

disease caused by a complex combination of genetic and environmental factors. Well-established 

risk factors have been described to breast cancer, such as early menarche, late menopause, age 

of first child’s birth, nulliparity and family history (2). Family history of breast cancer is a 

particularly important high risk factor for this disease. Two genes were identified as the major 

susceptibility genes in high risk families, namely BRCA1 and BRCA2. However, these genes 

account for only a minority of the overall family risk of breast cancer (3). Furthermore, 

approximately only 10% of all breast cancer cases exhibit a familial pattern of incidence (4). In 

this way, the identification of genetic susceptibility factors that account from low to moderate 

breast cancer risk is an important step in the definition of individual risk to this malignancy.  

Many environmental factors have been associated with risk of breast cancer development, 

such as ionized radiation and chemical carcinogens, such as some presented in diet and 

environment (5). These mutagens sources, together with endogenous and exogenous estrogens, 
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produce a wide range of DNA lesions such as reactive oxygen species, oxidized bases, bulky DNA 

adducts and DNA strand breaks (6,7). Mammalian cells have evolved distinct pathways to repair 

different types of DNA damage in order to maintain genome integrity. Therefore, DNA repair 

capacity determines cellular susceptibility to endogenous and exogenous substances. Some 

studies have demonstrated a strong association of higher levels of DNA damage and lower DNA 

repair capacity in breast cancer patients and in healthy women with a positive family history of 

breast cancer (8,9). Genetic polymorphisms in DNA repair genes are very common events (10-

12), and some studies have shown a significant effect of some of these polymorphisms in DNA 

repair capacity (13-15).  

XRCC1 protein is thought to act as scaffold protein for both single-strand break repair and 

BER activities (16). It has been shown that XRCC1 interacts with DNA Polβ, DNA LigIII and APE1, 

through a BRCT-I domain at the C-terminus (16). Several polymorphisms have been found in 

XRCC1 gene and some have been linked with a variety of cancers (17). One common XRCC1 

polymorphism, Arg399Gln, located in exon 10, lies within the BRCT-1 domain (18). 

Another important DNA repair protein is XPD protein is a subunit of the TFIIH complex and 

has important roles in transcription and NER pathway. XPD participates in the locally unwind of 

DNA helix to allow RNA transcription machinery to access the promoter and to permit the NER 

machinery to access the lesion (19). XPD is a highly polymorphic gene and correlation of its 

polymorphisms and cancer risk have been intensively studied (14,20). One common XPD 

polymorphism, Lys751Gln, has been associated with a differential DNA repair capacity (21-23). 

This polymorphism, located in exon 23, is situated in the important domain of interaction 

between XPD protein and its helicase activator, inside the TFIIH complex (24). 

Double strand break damage is the most injurious lesions observed because it causes cell 

death or loss of genetic material. HRR and NHEJ are two distinct mechanisms in the repair of 

DSB in mammalian cells. In the HRR pathway, RAD51 is an important protein in DSBR pathway 

that forms a heterodimer with several genes (such as XRCC2, XRCC3, BRCA2) playing central 

role in strand exchange (25). The majority of RAD51 polymorphisms described are in UTRs, such 

as 5’UTR G135C. Another HRR protein is XRCC3, that interact directly with RAD51, helping in 

the assembly of the nucleofilament protein and in the selection and interaction with appropriate 

recombination substrate (26). The XRCC3 Thr241Met polymorphism, located in exon 7, could 

affect the enzyme function and/or its interaction with other proteins involved in DNA damage and 

repair (15). 
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We hypothesize that those common polymorphisms of DNA repair genes could modify either 

DNA repair capacity or fidelity, which may contribute to familial and sporadic breast cancer 

susceptibility. In a case-control study, we analysed polymorphisms of genes involved in different 

DNA repair pathways, since the DNA damage produced by breast mutagens are repaired by 

different pathways (6,7): XRCC1 Arg399Gln in BER, XPD Lys751Gln in NER and RAD51 5’UTR 

G135C and XRCC3 Thr241Met in HRR. 
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Study Population 

We analysed a total of 727 DNA samples. From 285 breast cancer cases, 84 unrelated 

familial breast cancer cases were selected from S. João Hospital at Porto and General Hospital at 

Vigo, and 201 unrelated sporadic breast cancer cases were recruited from IPO-Porto (Oncology 

Portuguese Institute), during 1998-2003, form patients that were receiving treatment. All cases 

were histological confirmed at the Departments of Pathology. Familial case group presented a 

mean age of 41.05, with an age range of 21-77 years. The high-risk family history of breast 

cancer group included women with the follow features, based on the Breast Cancer Linkage 

Consortium criteria (27): early onset (≤40 years) and/or bilaterality; or more than three cases of 

breast cancer in the family; or more than one case of ovarian cancer in the family; or more than 

two first-degree relatives involved; or male breast cancer. Sporadic cases group presented a 

mean age of 53.56, with an age range of 41-88 years. Control women were randomly selected 

from blood banks in the same region during the same time period as the cases were collected. 

The selection criteria include no prior history of cancer, and controls were frequency matched to 

the cases by age (±5 years). 442 healthy women, presenting a median age of 42.29 and an age 

range of 21-85 years, were used as control group of familial breast cancer cases. 226 healthy 

women, with a median age of 53.05 and an age range of 41-85, were selected according to age 

of diagnosis higher than 40 years, and it was used as control group of sporadic breast cancer 

cases. All participants provided informed consent. 
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Genotyping  

Blood samples from all study participants were collected in tubes with EDTA as an 

anticoagulant. Genomic DNA was isolated from buffy coat using Puregene® DNA Purification Kit 

by Gentra Systems. All the polymorphisms were assessed by PCR-RFLP technique. The PCR and 

RFLP conditions to perform genotyping are presented in Table 1. 

 

Table 1 – Primers, amplification parameters and PCR product fragments weight used as PCR 
conditions, and specific restriction enzymes and corresponding digestion product fragments 
weight used as RFLP conditions, for the polymorphisms studied. 

Polymorphism 
PCR Conditions  

XRCC1 Arg399Gln XPD Lys751Gln RAD51 G135C XRCC3 Thr241Met 
Primers     

Forward 
5’-CAA GTA CAG CCA GGT 
CCT AG-3’ 

5’-CTG CTC AGC 
CTG GAG CAG CTA 
GAA TCA GAG GAG 
ACG CTG-3’ 

5’-TGG GAA CTG 
CAA CTC ATC 
TGG-3’ 

5’-GCC TGG TGG 
TCA TCG ACT C-3’ 

Reverse 
5’-CCT TCC CTC ATC TGG 
AGT AC-3’ 

5’-AAG ACC TTC TAG 
CAC CAC CG-3’ 

5’-GCG CTC CTC 
TCT CCA GCA G-3’ 

5’-ACA GGG CTC 
TGG AAG GCA CTG 
CTC AGC TCA 
CGC ACC-3’ 

Annealing 
temperature  

58ºC/30 seconds 60ºC/30 seconds 53ºC/30 seconds 60ºC/30 seconds 

Number of cycles 32 32 32 32 
PCR product (bp) 268 161 159 136 

RFLP Conditions     

Restriction enzyme  Bcn I (Fermentas) Pst I (Fermentas) 
Mva III 
(Fermentas) 

Nla III (New 
England Biolabs) 

         Digestion 
products (bp) 

    

W 91 and 177 161 71 and 88 136 
M 268 41 and 120 159 35 and 101 

 

Statistical Analysis 

Analysis of data was performed using the computer software SPSS version 14.0. Chi-square 

(χ2 test) analysis was used to compare categorical variables. A 5% level of significance was used 

in the analysis. The Odds Ratio (OR) and its 95% confidence interval (CI) were calculated to 

measure the association between polymorphic variants and breast cancer risk. Logistic 

regression analysis was used to calculate the adjusted OR and 95% CI for the influence of 

different genotypes in the risk of breast cancer, adjusted for age. Whenever appropriate, the 

observed number of each genotype in control groups were compared with that expected for a 

population in the Hardy-Weinberg Equilibrium by using a goodness of fit χ2 test. We hypothesized 

that DNA repair genotypes may alter the onset of disease in these cases, as performed before by 
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Medeiros et al (28). We therefore considered the waiting time for the onset of disease as the 

interval between the time of initial exposure to the risk factor (DNA repair genotypes) and the 

time of onset of disease. We estimated the cumulative probabilities for having disease 

(cumulative hazard function plots) by the Kaplan–Meier methodology. The primary analysis of 

time-to-event end points for waiting time for the onset of disease was performed with the use of a 

two-sided log-rank test at the 5% level of significance. 
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The genotypic and allelic frequencies of DNA repair polymorphisms studied for cases, familial 

and sporadic breast cancer, and controls are presented in Table 2.  

 

Table 2 – Allelic and genotype frequencies of polymorphisms in XRCC1, XPD, RAD51 and 
XRCC3 genes and familial and sporadic breast cancer cases and controls. 

Polymorphisms 
Genotype or 

Allele 
Familial Risk 
Cases n (%) 

Controls 
n (%) 

Sporadic 
Cases n (%) 

Controls 
n (%) 

XRCC1 Arg399Gln      
PHWE=0.781 Arg/Arg 28 (34.6) 153 (34.7) 84 (48.0) 75 (34.1) 
 Arg/Gln 42 (51.9) 222 (50.3) 67 (38.3) 116 (52.7) 
 Gln/Gln 11 (13.6) 66 (15.0) 24 (13.7) 29 (13.2) 
 Arg  98 (60.5) 528 (59.9) 235 (67.1) 266 (60.5) 
 Gln  64 (39.5) 354 (40.1) 115 (32.9) 174 (39.5) 
XPD Lys751Gln      
PHWE=0.415 Lys/Lys 34 (42.0) 216 (48.9) 93 (46.3) 115 (52.8) 
 Lys/Gln 41 (50.6) 179 (40.5) 84 (41.8) 81 (37.2) 
 Gln/Gln 6 (7.4) 47 (10.6) 24 (11.9) 22 (10.1) 
 Lys  109 (67.2) 611 (69.1) 270 (67.2) 311 (71.3) 
 Gln  53 (32.7) 273 (30.9) 132 (32.8) 125 (28.7) 
RAD51 5’UTR G135C      
PHWE=0.842 GG 64 (78.0) 381 (87.6) 152 (83.1) 177 (83.9) 
 GC 18 (22.0) 53 (12.2) 27 (14.8) 33 (15.6) 
 CC 0 (0.0) 1 (0.2) 4 (2.2) 1 (0.5) 
 G  146 (89.0) 815 (93.7) 331 (90.4) 387 (91.7) 
 C  18 (11.0) 55 (6.3) 35 (9.6) 35 (8.3) 
XRCC3 Thr241Met      
PHWE=0.002 Thr/Thr 40 (49.4) 225 (52.2) 68 (38.6) 121 (57.3) 
 Thr/Met 29 (35.8) 140 (32.5) 77 (43.8) 61 (28.9) 
 Met/Met 12 (14.8) 66 (15.3) 31 (17.6) 29 (13.7) 
 Thr  109 (67.3) 590 (68.4) 213 (60.5) 303 (71.8) 
 Met  53 (32.7) 272 (31.6) 139 (39.5) 119 (28.2) 

 

We tested each polymorphism for association with breast cancer risk in two breast cancer 

subgroups: negative presence of FH of breast cancer, designated as sporadic cancer, and 

positive FH of breast cancer, family risk cases, and the results are presented in Table 3. 
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Concerning XRCC1 Arg399Gln polymorphism, 399Gln genotypes were observed in lower 

frequency in all breast cancer cases (56.3%) and sporadic breast cancer cases (52.0%) 

compared with the respective control group (65.3% and 65.9%, respectively). The 399Gln 

genotypes showed a protective effect to sporadic breast cancer risk (p=0.006; OR= 0.54, 95% CI 

0.35-0.84). However, no statistically significant difference was observed regarding familial breast 

cancer risk (p=0.932; OR= 1.02, 95% CI 0.61-1.71). 

No statistically significant associations were found between the XPD Lys751Gln polymorphism 

and risk of familial and sporadic breast cancer risk (table 3). 

Regarding RAD51 G135C polymorphism, our results showed that carriers of variant 135C 

present an increased risk of familial breast cancer (p=0.012; OR=2.17, 95% CI 1.19-3.98), while 

no statistically significant correlation was observed with sporadic breast cancer risk (p= 0.477; 

OR= 1.22, 95% CI 0.70-2.14).  

The XRCC3 241Met genotypes carriers with negative FH were at a 2.21-fold (95% CI = 1.42–

3.44; p<0.001) increased risk of breast cancer compared with the respective control group. No 

statistically significant differences were observed in genotypes frequencies comparing positive FH 

breast cancer cases and respective control group. 

 

Table 3 – Polymorphisms in DNA repair genes as biomarkers of breast cancer susceptibility in 
presence or absence of family risk. 

Familial Risk Cases Sporadic Cases 
Polymorphism 

OR (95% CI)* P value OR (95% CI)* P value 
XRCC1 Arg399Gln 1.02 (0.61-1.71) 0.932 0.54 (0.35-0.84) 0.006 

Gln carriers     
XPD Lys751Gln 1.31 (0.80-2.15) 0.278 1.45 (0.95-2.19) 0.082 

Gln carriers     
RAD51 G135C 2.17 (1.19-3.98) 0.012 1.22 (0.70-2.14) 0.477 

C carriers     
XRCC3 Thr241Met 1.16 (0.71-1.89) 0.558 2.21 (1.42-3.44) <0.001 

Met carriers     
* OR adjusted for age among variant carriers vs wild type carriers (logistic regression analysis) 

 

Regarding the waiting time-to-onset of disease, the cumulative probabilities of having familial 

and sporadic breast cancer according to the presence or absence of the variants genotypes are 

shown in Figure 1 and 2. We observed statistically significant differences in the mean waiting 

time-to-onset of sporadic breast cancer for carriers of the 399Gln genotypes (Figure 2 (a)) and for 

carriers of the 241Met genotypes (Figure 2 (d)) in comparison for non-carriers (log-rank test: 

p=0.028 and p<0.001, respectively). 
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Figure 1 - Association between XRCC1 Arg399Gln (a), XPD Lys751Gln (b), RAD51 G135C (c) 
and XRCC3 Thr241Met (d) polymorphisms and the waiting time-to-onset on familial breast 
cancer cases. Cumulative hazard function plots by the Kaplan–Meier methodology and Log-rank 
test. 

 

 
Figure 2 - Association between XRCC1 Arg399Gln (a), XPD Lys751Gln (b), RAD51 G135C (c) 

and XRCC3 Thr241Met (d) polymorphisms and the waiting time-to-onset on sporadic breast 
cancer cases. Cumulative hazard function plots by the Kaplan–Meier methodology and Log-rank 
test. 
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22..44..  DDIISSCCUUSSSSIIOONN 
 

The individual susceptibility to the development of cancer may be influenced by several 

factors. Increasing evidences suggest that genetic polymorphisms may have an important 

contribution on cancer susceptibility and tumour behaviour, particularly in hormone related 

cancers (28-31). 

Maintenance of the genomic integrity by DNA repair genes is an essential step in normal 

cellular growth and differentiation (32). There is increasing data supporting the hypothesis that 

genetic polymorphisms in various DNA repair genes result in reduced DNA repair capacity, in this 

way, being associated with increased susceptibility to various human solid tumours (13-

15,17,20-23).  

In our study, the allelic frequencies for the different polymorphisms were in accordance with 

earlier reports from European populations (33,34). The genotype frequencies in the controls are 

in agreement with those expected under Hardy-Weinberg equilibrium, except for XRCC3 

Thr241Met polymorphism genotypes. Hardy-Weinberg equilibrium depends on a series of 

features about the tested population, including, for example, the sample population size, random 

mating, no migration, no genetic drift and no selection taking place (35). As the discrimination of 

the other genotypes for this assay was good, this deviation could be due to chance or violation of 

these assumptions, rather than to genotyping errors. 

In this case-control study we investigated the role of polymorphisms of DNA repair genes 

involved in BER, NER and HRR. Our findings suggest a protective effect of the 399Gln genotypes 

of XRCC1 polymorphism to development of breast cancer in women with no FH.  These results 

are consistent with those from previous studies of XRCC1 polymorphisms and cancer risk, that 

reported a protective association between the 399Gln carriers and cancer (34,36,37). However, 

previous studies, performed in breast cancer, observed a positive, specially when gene-exposure 

interactions were considered (38-40), or no association (41,42) between the 399Gln carriers and 

breast cancer risk, also concerning in some studies the presence of FH of breast cancer (43-46). 

Functional studies of XRCC1 suggest that the 399Gln allele may be associated with higher levels 

of different types of DNA damage in some cancers (15,47,48). These contradictory effects of 

399Gln genotypes could be explained by two points. First, the gene variants could independently 

confer particular function to XRCC1 protein, since the effects of XRCC1 alleles could potentially 

depend upon competing biochemical pathways operating in the tissue being analyzed (49), as 
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well as the effects of any given genetic variant will depend upon other genetic and environmental 

factors that interact with that variant (50). Secondly, these variants could diminish the efficiency 

of the protein but still provide decreased cancer risk, since, in the presence of excessive damage, 

cells carriers of these variants would have decreased ability to repair and might be more likely to 

undergo apoptosis. 

In this study, we did not find an association between the XPD Lys751Gln polymorphism and 

breast cancer. To date, the results evaluating XPD Lys751Gln polymorphism are controversial. 

Our results are in agreement with other studies where no correlation was found between this 

polymorphism and breast cancer risk, among women without FH (38,51,52) and with FH of 

breast cancer (43,44). In contrast, significant association between XPD 751Gln allele and breast 

cancer risk was seen in recent studies (53). Furthermore, the functional significance of XPD 

polymorphism seems to be dependent from environmental factors that interact with that variant. 

Some studies showed that 751Gln allele was associated with reduced DNA repair efficiency of 

UV-light DNA damage, while others showed a suboptimal repair of X-ray-induced DNA damage 

related with 751Lys allele (47,54). 

Regarding RAD51 5’UTR G135C polymorphism, our results showed an association of RAD51 

135C genotypes and increased breast cancer risk only among women with FH of breast cancer, 

suggesting that this polymorphism contributed to the familial breast cancer in the Portuguese 

population, in opposition to reported results in the Brazilian population (44). Other studies have 

reported an association of RAD51 genotypes with familial breast cancer risk, only in women 

carriers of BRCA2 mutations (55-57). Since the number of BRCA1 and/or BRCA2 mutations 

detected in our familial breast cancer cases were too small (58), it was not possible to perform a 

separate analysis. The biological effect of the RAD51 G135C polymorphism is currently unknown. 

This polymorphism could affect mRNA splicing, regulation of transcription, translation or mRNA 

stability by association of 5’UTR region with regulatory elements (59). Furthermore, linkage 

disequilibrium could occur between RAD51 gene with another sequence change in a regulatory 

region of the gene or with another nearby gene affecting the incidence of breast cancer in familial 

breast cancer. Concerning sporadic breast cancer risk, similar results to our findings were 

obtained by others studies in the Australian women (60) and in the Anglo-Saxon population(10), 

where no association was obtained.  

Our results demonstrate a strong association of increased breast cancer susceptibility in 

women carriers of XRCC3 241Met genotypes and negative FH of breast cancer. This is 
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consistent with an earlier report in the United Kingdom (10). Functional data supporting the 

hypothesis of damaging consequences due to XRCC3 Thr241Met polymorphism supports our 

results. The 241Met variant has been associated with higher levels of bulky DNA adducts, mitotic 

defects and lower DNA repair capacities of X-ray-induced DNA damage (15,61). However, other 

studies report no risk association (44,45,60,62-64).  

The variance in results of association in different case-control studies on XRCC1, XPD, RAD51 

and XRCC3 polymorphisms may be connected to variation in genetic/ethnic origin and different 

carcinogenic exposures of the studied populations. Too small sample size and/or the inadequate 

controlling for certain confounders such as age and family history of breast cancer may also 

contribute to differing results. 

The natural history of breast cancer can be influenced by several factors. We hypothesize that 

under the influence of genetic polymorphisms, chronic exposure to higher levels of several 

endogenous (e.g. estrogens) and exogenous breast carcinogens resulting in consequent higher 

accumulation of DNA damage during an individual’s lifetime, may alter the waiting-time-to onset 

of disease. Moreover, it has been suggested that DNA repair genes are associated to age related 

disease (65). Our results are consistent with this hypothesis that XRCC1 Arg399Gln and XRCC3 

Thr241Met polymorphisms seem to influence directly the waiting time-to-onset of sporadic breast 

cancer.  

In conclusion, our findings suggest the RAD51 G135C polymorphism as a real risk modifier in 

familial breast cancer cases. Furthermore, we point out that XRCC1 Arg399Gln and XRCC3 

Thr241Met polymorphisms as important biomarkers to sporadic breast cancer susceptibility. A 

possible interpretation for different associations depending on presence of FH may be that FH 

broadly represents shared genes and environmental factors, and the presence of a single 

polymorphism, with likely weak effects on the individual phenotype, may not be measurable 

except in the context of these supporting factors. Among individuals without a familial 

predisposition, the effect may be hidden by sum effects of other unidentified genetic and 

environmental factors (45). Further evidence from other studies and functional data is required to 

confirm the real significance of the results observed by us in breast cancer risk. 
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3.1. Letter 
 

33..  LLEETTTTEERR  TTOO  TTHHEE  EEDDIITTOORR  

 

Breast cancer is the most common type of cancer in female, including Portugal, where this 

disease presents the highest incidence and mortality rates (1). Breast cancer risk factors, like 

prolonged exposure to estrogen and/or IR, BRCA1, BRCA2, TP53, ATM and CHEK2 mutations 

(2,3), are related with an increased chance of DNA damage, acting as initiators of cellular 

alterations. DNA repair pathways are critical processes in order to maintain genome integrity. 

Therefore, genetic polymorphisms in DNA repair genes are common events (4). We previously 

showed correlations of some of these genetic variations, as XRCC1 Arg399Gln, RAD51 5’UTR 

G135C and XRCC3 Thr241Met, with changeable breast cancer susceptibility (5). 

In the present study, we aimed to investigate the possible correlations between DNA repair 

polymorphisms with breast cancer clinical-pathological phenotypes, identifying subgroups of 

patients according to their genetic background. 

We analysed DNA from 165 breast cancer patients, including 33 unrelated FH and 132 

sporadic breast cancer cases from Surgical Departments of S. João Hospital and the IPO, at 

Porto. All participants provided informed consent. Patients presented a mean age of 51.01 years 

(standard deviation (SD) ±12.68).  

We determined XRCC1 Arg399Gln, RAD51 5’UTR G135C and XRCC3 Thr241Met genotypes 

by PCR-RFLP technique, as previously described (6). 

Chi-square (χ2 test) analysis was used to compare different variables. Logistic regression 

analysis was applied to calculate the adjusted p value for age and FH in identification of 

subgroups of patients according to genotypes. The Kaplan-Meier method was used to estimate 

overall survival (OS). OS was defined as minimal 60 months follow-up, from clinical diagnosis 

until death or censorship (were alive at the end of the follow-up time period). Differences on OS 

were obtained by Log Rank test.  

The correlation of the analysed DNA repair polymorphisms with some clinical-pathological 

features is presented in Table 1. According to our results, XRCC1 Gln/Gln genotype seems to be 

associated with less aggressive tumors, since this genotype was correlated with well 

differentiated tumors (p=0.022 adjusted for age and breast cancer FH, using logistic regression 

analysis). Deficient efficiency of the XRCC1 protein has been described in XRCC1 Gln variant 

(7,8). Furthermore, repair of more complex base lesions (9-11) by BER pathway can potentially 
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convert non-lethal lesion into lethal DSBs (12,13). Thus, deficiency in BER, by low efficiency of 

XRCC1, may actually reflect a well differentiated nature of the tumor cells in less aggressive 

tumors, since less lethal lesions are produced.  

We also observed that RAD51 C135 genotypes show a relationship with more aggressive 

tumors and also with a poorer OS, since we found a significant association of RAD51 C135 

genotypes with moderate to poor differentiated grade (p=0.011, adjusted for age and breast 

cancer FH, using logistic regression analysis).  

 

Table 1 – Correlation between DNA repair polymorphisms and clinical-pathological 
parameters in Portuguese breast cancer patients. 

XRCC1 Arg399Gln RAD51 G135C XRCC3 Thr241Met 
Parameters 

Gln/Gln Others GC or CC GG Met/Met Others 
Histological Type       

Invasive ductal  23 (92.0) 115 (86.5) 32 (91.4) 113 (86.9) 23 (88.5) 120 (88.2) 
Invasive lobular  0 (0.0) 3 (2.3) 0 (0.0) 3 (2.3) 1 (3.8) 2 (1.5) 

Others 2 (8.0) 15 (11.3) 3 (8.6) 14 (2.3) 2 (7.7) 14 (10.3) 
P value 0.654  0.606  0.665  

Histological Grade       
I 5 (23.8) 8 (7.1) 6 (18.2) 9 (8.3) 1 (4.0) 14 (12.4) 
II 6 (28.6) 61 (54.0) 21 (63.6) 51 (47.2) 11 (44.0) 57 (50.4) 
III 10 (47.6) 44 (38.9) 6 (18.2) 48 (44.4) 13 (52.0) 42 (37.2) 

P value 0.021*  0.017**  0.269  
Axillary lymph node 
status 

      

Negative 10 (41.7) 52 (40.0) 12 (40.0) 54 (41.5) 8 (32.0) 57 (43.5) 
Positive 14 (58.3) 78 (60.0) 18 (60.0) 76 (58.5) 17 (68.0) 74 (56.5) 
P value 0.878  0.877  0.285  

Estrogen receptor 
status 

      

Negative 1 (33.3) 9 (31.0) 2 (28.6) 7 (25.9) 1 (33.3) 8 (27.6) 
Positive 2 (66.7) 20 (69.0) 5 (71.4) 20 (74.1) 2 (66.7) 21 (72.4) 
P value 0.935  0.888  0.833  

Survival status at  
last follow-up 

      

Death 3 (15.0) 13 (12.5) 2 (8.3) 15 (14.0) 1 (4.0) 16 (15.4) 
Alive 17 (85.0) 91 (87.5) 22 (91.7) 92 (86.0) 24 (96.0) 88 (84.6) 

P value 0.760  0.454  0.131  
Recurrence at last 
follow-up 

      

No 14 (77.8) 74 (82.2) 19 (86.4) 74 (80.4) 20 (87.0) 72 (80.0) 
Yes 4 (22.2) 16 (17.8) 3 (13.6) 18 (19.6) 3 (13.0) 18 (20.0) 

P value 0.658  0.519  0.444  
* p value= 0.022, adjusted for age and history family of breast cancer to compare the influence of different 

genotypes in histological grade (I vs II/III grade), using logistic regression analysis. ** p value= 0.011, adjusted for 
age and history family of breast cancer to compare the influence of different genotypes in histological grade (I/II vs 
III grade), using logistic regression analysis. 
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Additionally, assessment of OS demonstrated that patients with RAD51 C135 genotypes 

(102.87 months mean OS) presented a poorer survival compared with others genotypes (136.36 

months mean OS) (Figure 1). These results can be explained by the location of this 

polymorphism in the UTRs, may be affecting mRNA stability and/or translation efficiency, leading 

to altered RAD51 protein levels (14). Thus, RAD51, the key factor of homologous recombination 

process, can disturb the activity of the multi protein DNA repair complex, including BRCA1, 

BRCA2 and XRCC3, contributing to high levels of genetic instability (15), and as a result, being 

correlated with more aggressive breast tumors and poor survival.  

 

 

Figure 1 – Kaplan-Meier overall survival curve in breast cancer patients relating with RAD51 
G135C polymorphism. Log-rank test for statistical analysis. 

 

We had previously showed XRCC1 Arg399Gln and RAD51 5’UTR G135C as important 

polymorphism to predict breast cancer risk (16). According to the present results, we clearly 

underlie the role of these same polymorphisms in the prediction of breast tumor aggressiveness 

and patients’ survival. 
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AABBSSTTRRAACCTT  

 

TP53 is one of major tumour suppressor genes, also known as the guardian of the genome, 

being essential in preservation of genome integrity. Two very common polymorphisms have been 

demonstrated to contribute to cancer susceptibility and tumour behaviour. The purpose of this 

study was to evaluate the role of Arg72Pro and PIN3 Ins16bp polymorphisms in TP53 gene as 

genetic susceptibility and predictive markers to breast cancer. We analysed DNA samples from 

264 breast cancer patients and 440 controls. We observed that women with A2A2 genotype have 

increased risk for developing breast cancer, either in women with or without FH of the disease 

(OR=4.40, 95% CI 1.60-12.0; p=0.004; OR=3.88, 95% CI 1.18-12.8; p=0.026, respectively). In 

haplotype analysis, statistically significant differences were found betweenTP53 Arg-A2 haplotype 

frequencies and familial breast cancer cases and the respective control group (OR=2.10, 95% CI 

1.08-4.06; p=0.028). Furthermore, both TP53 polymorphisms are associated with higher 

incidence of lymph node metastases. Our findings suggest PIN3 Ins16bp polymorphism as a risk 

modifier in breast cancer disease, with evidence for relative differential effect by family history. 

Moreover, Arg72Pro and PIN3 Ins16bp polymorphisms are suggested as predictive factors of 

lymph node metastases. 

 

44..11..  IINNTTRROODDUUCCTTIIOONN  

 

Breast cancer disease have been associated with well-established risk factors, such as high 

estrogen exposure, many environmental factors (e. g. diet and ionizing radiation) and family 

history (1,2). Family history of breast cancer is a particularly important high risk factor for this 

disease. Two genes were identified as the major susceptibility genes in high risk families, namely 

BRCA1 and BRCA2. However, these genes account for only a minority of the overall family risk of 

breast cancer (3). Furthermore, approximately only 10% of all breast cancer cases exhibit a 

familial pattern of incidence (4,5). In this way, the remaining familial and sporadic risk may be 

due to common low to moderate penetrance genetic variants, which are also referred as genetic 

polymorphisms. One strong candidate for genetic susceptibility factor to familial and/or sporadic 

breast cancer is the TP53 gene. This gene is frequently somatically mutated in breast cancer 

(6,7) and TP53 germline mutations are associated with increased risk for developing diverse 
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malignancies, including 25–30% of hereditary breast cancer cases (8). Furthermore, based on its 

pivotal role in DNA damage repair and its physical and functional interactions with BRCA1 and 

BRCA2 proteins (9,10), TP53 seems to be a strong candidate breast cancer predisposition. 

The TP53 tumour suppressor gene, also designated the guardian of the genome, is essential 

in preservation of genome integrity. From the numerous biological functions of p53 protein, 

inhibition of cell cycle progression, DNA repair and apoptosis are the major cellular pathways 

where it is involved (6).  

TP53 gene mutations are widely detected in breast cancer, being correlated with specific 

clinical phenotypes (11,12).  

Predisposition to several human cancers has been associated with genetic polymorphisms, 

which may represent an important contribution to cancer susceptibility and tumour behaviour 

(13-16). Several polymorphisms have been identified within TP53 gene, both in non-coding and 

coding regions (17). One of the most well studied TP53 gene polymorphism is Arg72Pro, located 

in codon 72 on exon 4, leading to arginine-proline substitution, which in its turn results in a 

structural alteration of the protein (18). Another common polymorphism is 16 base pair (bp) 

duplication in intron 3 of the TP53 gene (PIN3 Ins16bp).  

In this case-control study, we hypothesize that the two common polymorphisms of TP53 gene 

play a role either apoptosis, cell cycle control efficiency, as well as DNA repair capacity, which 

ultimately may contribute to an increase of breast cancer susceptibility within familial and/or 

sporadic cases, as well as represent an additional tool for prognosis prediction. 

 

44..22..  MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS  

 

Study Population 

We analysed a total of 264 DNA breast cancer cases: 73 unrelated familial breast cancer 

cases were selected from the Oncology and Surgical Departments from S. João Hospital at Porto 

and Vigo Hospital, and 191 unrelated sporadic breast cancer cases were recruited from IPO-

Porto, during 1998-2003, from patients that were receiving treatment. All cases were histological 

confirmed at the Department of Pathology. Clinical-pathological parameters were obtained when 

possible from hospital clinical records. Familial case group presented a mean age of 42.07 

years, with an age range of 24-77 years. The high-risk familial breast cancer group, also 
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designated by us as family history (FH) breast cancer cases, included women with the follow 

features, based on the Breast Cancer Linkage Consortium criteria (19): early onset (≤40 years) 

and/or bilaterality; or more than three cases of breast cancer in the family; or more than one 

case of ovarian cancer in the family; or more than two first-degree relatives involved; or male 

breast cancer. These high-risk breast cancer cases are BRCA1/BRCA2 mutations non-carriers 

(20). Sporadic cases group (with no presence of FH) presented a mean age of 53.41 years, with 

an age range of 41-88 years. Control women were randomly selected from blood banks in the 

same region during the same time period as the cases were collected. The selection criteria 

include no prior history of cancer, and controls were frequency matched to the cases by age (±5 

years). A total of 440 healthy women presenting a median age of 42.29 years and an age range 

of 21-85 years, were used as control group of familial breast cancer cases. From the above 

control group 216 healthy women were selected according to age of diagnosis higher than 40 

years, with a median age of 53.05 and an age range of 41-85, being used as control group of 

sporadic breast cancer cases. All participants provided informed consent. 

 

Laboratory Methods 

Genomic DNA was isolated from lymphocytes of peripherical blood using Puregene® DNA 

Purification Kit (Gentra Systems, Minneapolis, USA). All the polymorphisms were assessed by 

PCR-RFLP technique. TP53 Arg72Pro polymorphism (rs1042522) was detected by amplifying 

genomic DNA with the forward primer 5’-GAA GAC CCA GGT CCA GAT GA-3’ and the reverse 

primer 5’-CTG CCC TGG TAG GTT TTC TG-3’. The PCR amplification parameters were 32 cycles 

each of 30 sec at 94°C, 30 sec at 54°C, and 30 sec at 72°C. The 152bp PCR product was 

digested with Bsh1236I (Fermentas, Ontario, Canada) at 37°C overnight. Digested products 

were separated by electrophoresis in a 3% agarose gel (Seakem® LE Agarose, Rockland, USA) 

and visualized by ethidium bromide staining. Wild type alleles resulted in 50 and 102bp 

fragments and the variant alleles resulted in 152bp fragment following restriction enzyme 

digestion. TP53 PIN3 Ins16bp polymorphism (rs17878362) was detected by amplifying genomic 

DNA with the forward primer 5’-CTG AAA ACA ACG TTC TGG TA-3’ and the reverse primer 5’-AAG 

GGG GAC TGT AGA TGG GTG-3’. The PCR amplification parameters were 32 cycles each of 30 

sec at 94°C, 30 sec at 60°C, and 30 sec at 72°C. The PCR product was separated by 

electrophoresis in a 4% agarose gel (Seakem® LE Agarose, Rockland, USA) and visualized by 

ethidium bromide staining. Wild type alleles, designated A1 allele (no duplication) resulted in 
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119bp fragment and the variant alleles, designated A2 allele (with 16bp duplication) resulted in 

135bp fragment.  

To ensure quality control of all genotyping results, one percent of the samples was randomly 

selected and sequenced using an ABI automated sequencer. 

    

Statistical Analysis 

Analysis of data was performed using the computer software SPSS version 14.0 (SPSS Inc., 

Chicago, USA). Chi-square (χ2 test) analysis was used to compare categorical variables. 

Whenever necessary, the Fisher test was used when number of samples was equal or inferior to 

5. A 5% level of significance was used in the analysis. The OR and its 95% CI were calculated to 

measure the association between TP53 polymorphic genotypes and breast cancer risk. Logistic 

regression analysis was used to calculate the adjusted OR and 95% CI for the influence of TP53 

genotypes in the risk of breast cancer, adjusted for age and/or FH. Whenever appropriate, the 

observed number of each genotype in control groups were compared with that expected for a 

population in the Hardy-Weinberg Equilibrium by using a goodness of fit χ2 test. The frequencies 

of expected haplotypes were estimated by using the statistical methodologies implemented by 

HPlus software (21). The nonparametric test, Kruskal-Wallis test, was used to compare mean age 

of diagnostic between the different genotype polymorphisms. The Kaplan-Meier method was also 

used to estimate OS. OS was defined as time (months) from clinical registration until death or 

censorship (were alive at the end of the follow-up time period). A follow-up period of at least 60 

months was considered. The Log rank test was applied to evaluate effect of the TP53 

polymorphisms on OS. The OS analysis was conducted only in a group of sporadic breast cancer 

patients were it was possible to get these data. 

 

44..33..  RREESSUULLTTSS  

 

The distribution of the genotype frequencies in both Arg72Pro and PIN3 Ins16bp 

polymorphisms among control group and subgroup (Table 1) is in agreement with those 

expected under Hardy-Weinberg equilibrium, excepted for Arg72Pro in the control group.  
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Table 1 – TP53 Arg72Pro and PIN3 Ins16bp genotypic and allelic frequencies. Association 

with familial and sporadic breast cancer risk. 

TP53 
Polymorphism 

Genotype 
Positive 

FH Cases 
Controls OR* (95% CI) 

Negative 
FH Cases 

Controls OR* (95% CI) 

Arg72Pro        

PHWE=0.223 Arg/Arg 39 (53.4) 256 (59.0) Reference 98 (56.0) 
124 

(58.5) 
Reference 

 Arg/Pro 25 (34.2) 142 (32.7) 1.19 (0.68-2.08) 61 (34.9) 70 (33.0) 1.26 (0.79-2.02) 
 Pro/Pro 9 (12.3) 36 (8.3) 1.58 (0.68-3.67) 16 (9.1) 18 (8.5) 1.35 (0.63-2.88) 

Alleles        

 Arg  103 (70.5) 654 (75.3) Reference 257 (73.4) 
318 

(75.0) 
Reference 

 Pro  43 (29.5) 214 (24.7) 1.28 (0.85-1.91) 93 (26.6) 
106 

(25.0) 
1.09 (0.78-1.52) 

PIN3 Ins16bp        

PHWE=0.889 A1A1 46 (65.7) 299 (68.0) Reference 122 (63.9) 
147 

(68.1) 
Reference 

 A1A2 15 (21.4) 130 (29.5) 0.80 (0.43-1.49) 56 (29.3) 65 (30.1) 1.07 (0.67-1.70) 
 A2A2 9 (12.9) 11 (2.5) 4.40 (1.60-12.0) 13 (6.8) 4 (1.9) 3.88 (1.18-12.8) 

Alleles        

 A1  107 (76.4) 728 (82.7) Reference 300 (78.5) 
359 

(83.1) 
Reference 

 A2  33 (23.6) 152 (17.3) 1.48 (0.94-2.31) 82 (21.5) 73 (16.9) 1.34 (0.93-1.94) 
* OR adjusted for age (logistic regression analysis); FH – family history; OR – odds ratio; CI-confidence interval. 

 

Concerning TP53 Arg72Pro polymorphism in the familial breast cancer cases, frequencies of 

Arg72Arg, Arg72Pro and Pro72Pro were 53.4%, 34.2% and 12.3%, respectively. In sporadic 

breast cancer, 56.0%, 34.9% and 9.1% were homozygous to 72Arg allele, heterozygous and 

homozygous to 72Pro allele, respectively. No statistically significant associations were found 

between the TP53 Arg72Pro polymorphism and risk of familial and sporadic breast cancer risk 

(Table 1).  

Frequencies of TP53 PIN3 Ins16bp polymorphism genotypes were 65.7% to A1A1, 21.4% to 

A1A2 and 12.9% to A2A2, in familial breast cancer cases. Regarding sporadic breast cancer 

group, we observed 63.9%, 29.3% and 6.8% frequencies for homozygous to A1 allele, 

heterozygous and homozygous to A2 allele, respectively. We observed that A2A2 genotype 

carriers with positive FH were at a 4.40-fold (95% CI = 1.60-12.0; p=0.004) increased risk of 

breast cancer compared with the respective control group. Moreover, statistically significant 

differences were observed in A2A2 genotype frequencies comparing negative FH breast cancer 

cases and respective control group (p=0.026). Our results showed that carriers of A2A2 genotype 

with no FH present an increased risk of breast cancer (OR=3.88, 95% CI 1.18-12.8). 
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We investigated haplotype effects of the two polymorphisms studied in breast cancer risk 

(Table 2). Compared the common TP53 Arg-A1 haplotype with the other expected haplotypes; we 

only observed statistically significant differences regarding TP53 Arg-A2 haplotype between the 

familial breast cancer cases and respective control group (p=0.028). Carriers of TP53 Arg-A2 

haplotype and presence of FH of breast cancer presented an increased risk of develop breast 

cancer (OR= 2.10; 95% CI 1.08-4.06).  

 

Table 2 – Expected haplotype frequencies between Arg72Pro and PIN3 Ins16bp 
polymorphisms. Association with familial and sporadic breast cancer risk. 

Haplotypes 
Positive 

FH Cases 
Controls OR (95% CI) 

Negative 
FH Cases 

Controls OR (95% CI) 

Arg-A1 0.607 0.711 Reference 0.695 0.705 Reference 
Arg-A2 0.091 0.041 2.10 (1.08-4.06) 0.048 0.045 1.06 (0.53-2.12) 
Pro-A1 0.150 0.111 1.49 (0.86-2.58) 0.098 0.119 0.80 (0.49-1.32) 
Pro-A2 0.151 0.137 1.27 (0.72-2.24) 0.160 0.131 1.27 (0.83-1.95) 

FH – family history; OR – odds ratio; CI- confidence interval 

 

We examined the relationship between age at onset and genotypes and found a positive 

correlation in the FH group. The mean age of FH patients group with A2A2 genotype was 33.43 

(±8.08) years, whereas the mean age of patients with A1A1 and A1A2 genotypes was 42.44 

(±12.14) and 44.80 (±10.85) years, respectively (Kruskal Wallis test p=0.056; Figure 1 b). 

Therefore, the carrier’s status of A2A2 genotype was associated with an earlier age at onset 

cancer with respect to the patients with A1 genotypes. However, this difference was in the 

frontier of statistically significant, possibly because of the smaller size of the group (7 patients to 

Pro/Pro genotype). No association was observed relating age at onset and Arg72Pro 

polymorphism (Kruskal Wallis test p=0.747; Figure 1 a). 

The analysis of the TP53 polymorphisms with respect to some clinical-pathological factors is 

presented in Table 3. No significant statistically association was found concerning histological 

type and grade and hormone receptor status. However, we found a significant association of Pro 

or A2 genotypes with the presence of lymph node metastases (p=0.009 and p<0.001, 

respectively, adjusted for age and breast cancer family history, using logistic regression 

analysis.). Patient carriers of Pro or A2 genotypes (69.7% and 78.6%, respectively) shown higher 

incidence of lymph node metastases than carriers of Arg/Arg or A1A1 genotypes (50.6% and 

50.5%, respectively).  
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Figure 1 - Association of age of familial and sporadic breast cancer age at onset with TP53 
Arg72Pro (a) and PIN3 Ins16bp (b) polymorphisms. 

 

Table 3 – Correlation between TP53 Arg72Pro and PIN3 Ins16bp polymorphisms and clinical-
pathological parameters in breast cancer patients. 

TP53 Arg72Pro TP53 PIN3 Ins16bp 
Parameters 

Arg/Arg Arg/Pro or Pro/Pro A1A1 A1A2 or A2A2 
Histological Type     

Invasive ductal carcinoma 68 (85.0%) 70 (92.1%) 88 (86.3%) 58 (90.6%) 
Invasive lobular carcinoma 3 (3.8%) 2 (2.6%) 5 (4.9%) 1 (1.6%) 

Others 9 (11.3%) 4 (5.3%) 9 (8.8%) 5 (7.8%) 
P value 0.359  0.510  

Histological Grade     
I 8 (12.1%) 6 (9.1%) 11 (12.6%) 4 (7.4%) 
II 33 (50.0%) 34 (51.5%) 45 (51.7%) 27 (50.0%) 
III 25 (37.9%) 26 (39.4%) 31 (35.6%) 23 (42.6%) 

P value 0.852  0.522  
Axillary lymph node status     

Negative 43 (49.4%) 20 (30.3%) 53 (49.5%) 12 (21.4%) 
Positive 44 (50.6%) 46 (69.7%) 54 (50.5%) 44 (78.6%) 
P value 0.017*  0.001**  

Oestrogen receptor status     
Negative 14 (18.7%) 14 (21.9%) 20 (21.3%) 9 (16.1%) 
Positive 61 (81.3%) 50 (78.1%) 74 (78.7%) 47 (83.9%) 
P value 0.638  0.435  

urvival status at last follow-up     
Alive 59 (86.8%) 52 (88.1%) 8 (88.9%) 114 (87.0%) 

Death 9 (13.2%) 7 (11.9%) 1 (11.1%) 17 (13.0%) 
P value 0.816  0.871  

ecurrence at last follow-up     
Yes  8 (13.3%) 12 (23.5%) 3 (37.5%) 21 (18.4%) 
No 52 (86.7%) 39 (76.5%) 5 (62.5%) 93 (81.6%) 

P value 0.164  0.189  
 * p value=0.009, adjusted for age and breast cancer family history, using logistic regression analysis; ** p 
value<0.001, adjusted for age and breast cancer family history, using logistic regression analysis. 
 

The overall survival analysis was performed in the patients where was possible to get follow-up 

of at least 60 months (Figure 2). The comparison of survival in patients with Pro/Pro vs Arg/Pro 
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vs Arg/Arg genotypes and A2A2 vs A1A2 vs A1A1 genotypes suggested a poorer survival in the 

first ones. However, these differences were not statistically significant, possibly because of the 

smaller size of the groups (7 patients to Pro/Pro and 5 patients to A2A2). 

 

 

Figure 2 – Kaplan-Meier overall survival curves in breast cancer patients relating with TP53 
Arg72Pro (a) and PIN3 Ins16bp (b) polymorphisms. Log-rank test for statistical analysis. 
 

44..44..  DDIISSCCUUSSSSIIOONN  

 

Breast cancer is an heterogeneous disease, as sustained by wide variable morphological 

appearance, many risks factors and distinct gene expression profile (2,22). Common genetic 

alterations (e.g. polymorphisms), with possible effects on function and/or protein expression, 

within genes involved in essential cellular pathways, such as carcinogen metabolism, DNA repair, 

cell cycle control and cell proliferation, could predispose individuals to cancer (15,23-25), 

including  breast cancer (15,26-29).  

The TP53 is one of the major tumour suppressor genes which carry out essential functions in 

preservation of genome integrity. Thus, when the cell is under stress, particularly stress which 

will involve DNA damage, p53 promotes growth arrest, allowing the cell to repair the DNA lesions. 

If the damage is excessively hazardous, then p53 will lead to cell apoptosis. Several genetic 

polymorphisms have been described in TP53 gene (18) and some of these variants seem to 

confer different  functions among the p53 (30-32).  

In the present study, we evaluated two separate TP53 polymorphisms, Arg72Pro and PIN3 

Ins16bp, in two groups of breast cancer, familial and sporadic cases, as well as in matching 
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control groups. The allelic frequencies of our control group for the different polymorphisms are in 

accordance with earlier reports from European populations (16,33). 

Concerning the codon 72 TP53 polymorphism (Arg72Pro), we did not find any association 

between this polymorphism and breast cancer. Our results are in agreement with other studies 

(33-35), however, the literature remains highly controversial regarding the role of this 

polymorphism in breast cancer risk (36-41). One study showed that TP53 72Pro variant induces 

transcription activation more efficiently than TP53 72Arg variant (39).  On the other hand, other 

authors revealed that TP53 72Pro variant induce cell cycle arrest better than 72Arg (31). Other 

studies have showed that TP53 72Arg variant is more efficient in inducing apoptosis (32,41). 

Beside apoptosis and cell cycle control, p53 protein seems to be crucial in the regulation of the 

different DNA repair pathways (42). A recent study demonstrated the influence of TP53 Arg72Pro 

in DNA repair capacity, showing that TP53 72Pro variant activates several TP53 dependent target 

genes involved in DNA repair and DNA damage repair much more efficiently than the 72Arg 

variant expressing cells (30). These contradictory results could be explained by the differential 

effects of this alteration in p53 function. Several in vitro evidences have demonstrated that both 

TP53 Arg72Pro variants may selectively regulate specific cellular functions. 

In TP53 PIN3 polymorphism, our findings suggest an association of A2A2 genotype and 

increased breast cancer risk among women with FH and sporadic breast cancer, suggesting that 

this polymorphism contributed to enhance susceptibility for breast cancer among Portuguese 

population, regardless of the presence of FH. Our results are supported by previously reported 

studies suggesting an association of PIN3 A2 genotypes with breast cancer risk (43). Although, 

the biological effect of the TP53 PIN3 Ins16bp polymorphism is currently unclear, theoretically, 

this polymorphism could affect mRNA splicing, altering the coding regions and therefore being 

implicated in regulation of gene expression and DNA-protein interactions, resulting in a defective 

protein (44,45). Until now, just a single study  had show PIN3 A2 allele presents reduced mRNA 

stability (46).  

The linkage disequilibrium between TP53 polymorphisms region could be an important factor 

affecting the incidence of cancer in general (47,48), and breast cancer, in particular (41,43,49). 

Thus, haplotype analysis would be important to confirm the significance of this variant on breast 

cancer susceptibility. A statistical significant association was found between Arg-A2 haplotype and 

breast cancer susceptibility among women with FH of breast cancer. On the other hand, a recent 

study has found that Pro-A1 haplotype individuals present increased breast cancer risk, however, 
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in women BRCA2 mutation carriers (41). Nevertheless, other reports have also demonstrated a 

positive association of Arg-A2 haplotype with cancer (43,47). Moreover, functional studies have 

shown that, in a specific haplotype combination, A2 allele is associated with decreased apoptotic 

and DNA repair capacity (33,47).  

Our findings suggest the Pro/Pro and A2A2 TP53 genotypes as predictor factors for the 

presence of lymph node metastases, being in agreement with previously functional studies in the 

biological consequences of these variations in P53 protein functions (39,46) 

The natural history of breast cancer can be influenced by several factors. We hypothesize that 

under the influence of TP53 genetic polymorphisms, chronic exposure to higher levels of several 

endogenous (e.g. estrogens) and exogenous breast carcinogens resulting in consequent higher 

accumulation of DNA damage during an individual’s lifetime, may alter the age at onset of 

disease. Moreover, it has been suggested that TP53 polymorphisms are associated to familial 

breast cancer by the age of 50 years (33). Our results are consistent with this hypothesis, since 

TP53 PIN3 Ins16bp polymorphism seems to influence directly the age to onset of familial breast 

cancer.  

In conclusion, our findings suggest TP53 PIN3 Ins16bp polymorphism as a real risk modifier 

in breast cancer disease, with evidence for relative differential effect by family history of breast 

cancer. Moreover, our results also suggest that PIN3 A2 allele in a haplotype combination confer 

increased breast cancer susceptibility among women carriers of FH of the disease. Subsequently, 

these results will be crucial in the characterization of the genetic breast cancer susceptibility 

profile, within familial breast cancer cases non-carriers of BRCA1/BRCA2 mutations. 

Furthermore, our findings suggest TP53 Arg72Pro and PIN3 Ins16bp polymorphisms as 

predictive factors of presence of lymph node metastases. 
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NNOOTTEE  

 

In our previous results, we showed that XRCC1 399Gln genotypes conferred a protective 

effect to the development of sporadic breast cancer. Furthermore, we also showed a strong 

association between increased breast cancer susceptibility in women carriers of XRCC3 241Met 

genotypes and sporadic breast cancer. Additionally, we demonstrated an association of RAD51 

135C genotypes and increased breast cancer risk among women with FH of breast cancer, 

suggesting that this polymorphism contributes to familial breast cancer in the Portuguese 

population. Moreover, our findings suggested that PIN3 A2 allele in a haplotype combination 

confer increased breast cancer susceptibility among women carriers of FH of the disease.  In 

order to understand the role of these polymorphisms, we decided to evaluate XRCC1, XRCC3, 

RAD51 and P53 protein expression profiles in a series of invasive ductal breast carcinoma and in 

a panel of human breast cancer cell lines, assessing the possible correlations between the 

different expression profiles and the genetic polymorphic status. 

The expression profiles were evaluated by immunohistochemical and western blot techniques 

and were studied to XRCC1, XRCC3 and P53 proteins. We excluded from this analysis the 

RAD51 protein screening due to technical reasons. After several attempts, using different 

antibodies and technical conditions, we did not find a RAD51 antibody that gives feasible results.  
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AABBSSTTRRAACCTT  

 

The important role of DNA repair in the maintenance of a normal cellular genotype and a 

cancer-free state is obvious in familial hereditary breast cancer, demonstrated by increase risk 

related to important genes involved in DNA repair pathways, such as BRCA1, BRCA2, TP53, 

ATM, and NBS1 genes. Although, several DNA repair polymorphisms have been associated with 

differential DNA repair capacity and risk to breast cancer, such as XRCC1 Arg399Gln, XRCC3 

Thr241Met and TP53 PIN3 Ins16bp, nothing is known concerning the correlation between 

protein expression in breast cancer and their polymorphic status. Our aim was to evaluate 

XRCC1, XRCC3 and P53 protein expression profiles in a series of invasive ductal breast 

carcinoma and in a panel of human breast cancer cell lines and to assess the possible 

correlations between their respective genetic polymorphic status and clinical-pathological 

features. Our results showed that XRCC1 nuclear expression is a common event in human breast 

tissues, either in normal-like, benign lesions, DCIS and invasive carcinomas. Moreover, we 

showed that XRCC3 expression may be associated with the regulation of P53 and XRCC1 

expression in breast tumors and possibly an important factor in prediction of less aggressive 

breast tumors. Furthermore, we demonstrated that XRCC1, XRCC3 and P53 protein expressions 

do not correlate with their genetic polymorphisms status either in breast cancer patients or 

human breast cancer cell lines.  

 

55..11..  IINNTTRROODDUUCCTTIIOONN  

 

Breast cancer is the leading cause of death among women in developing countries. In 

Portugal, it presents the highest incidence and mortality rates in women diseases (1). Well-

established risk factors have been described to breast cancer, such as early menarche, late 

menopause, age of first child’s birth and nulliparity (2), most of them reflecting a prolonged 

exposure to estrogen (3). However, these factors account for only half of the breast cancer cases. 

Several environmental factors have been associated with risk for breast cancer development, 

such as ionized radiation and chemical carcinogens (diet and environment) (4-6). These 

mutagens sources, together with endogenous and/or exogenous estrogens, produce a wide 

range of DNA lesions, such as reactive oxygen species, abasic sites, oxidized bases, bulky DNA 
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adducts and DNA strand breaks (7-9). However, during evolution, mammalian cells have 

developed distinct pathways to repair different types of DNA damage, in order to maintain the 

genome integrity. Therefore, DNA repair capacity determines cellular susceptibility to endogenous 

and exogenous substances and factors.  The crucial role of DNA repair in the maintenance of a 

normal cellular genotype and a “cancer-free” state is obvious in familiar hereditary breast cancer, 

demonstrated by the increased risk related to mutations in important genes involved in DNA 

repair pathways, such as BRCA1, BRCA2, TP53, ATM, and NBS1 genes (10). Interestingly, 

several DNA repair polymorphisms have been associated with differential risk to breast cancer 

and with differential DNA repair capacity (11,12). 

The XRCC1 and XRCC3 carry important functions in DNA repair; however, they work through 

distinct pathways. XRCC1 plays a central role in the BER mechanism, which is responsible for 

lesions repair from distinct origin, like oxidative and IR (13). On the other hand, XRCC3, another 

member of this family, is a HRR crucial player repairing DSBs produced by endogenous sources, 

like oxidative stress, mechanical stress on chromosomes and replication errors, and exogenous 

sources, such as IR and some chemicals. It has been shown that XRCC1 interacts with DNA 

Polβ, DNA Lig III and APE1, through a BRCT-I at the C-terminus (14). Several polymorphisms 

have been found in XRCC1 gene and some have been linked with a variety of cancers (15). 

Interestingly the most common XRCC1 polymorphism, Arg399Gln, located in exon 10, is known 

to lay within the BRCT-I domain (16). XRCC3 interacts directly with RAD51, helping in the 

assembly of the nucleofilament protein, as well as in the selection and interaction with 

appropriate recombination substrate (17). The XRCC3 Thr241Met polymorphism, located in exon 

7, is very common and seems to be responsible for a lower DNA repair capacity in healthy 

individuals, probably affecting the enzyme function and/or its interaction with other proteins 

involved in DNA damage and repair (18,19).   

An important protein interacting with DNA repair processes, such as BER and HRR, is P53 

(20-22). P53 is activated in response to a large range of stress, such as genotoxic damages (UV 

and IR radiation, chemical carcinogenesis and oxidative stress) and non-genotoxic damage, 

including hypoxia and oncogene activation (23). Its activation abolishes a wide variety of 

biological activities, including cell-cycle checkpoints, induction of apoptosis, DNA recombination, 

chromosomal segregation, cellular senescence and enhancement of DNA repair (20). Several 

polymorphisms have been identified within TP53 gene, both in non-coding and coding regions 

113 



5. Correlation of DNA repair genetic polymorphisms and protein expression profiles 

114 

(24), as the common polymorphism resulted from a 16 bp duplication in intron 3 (PIN3 

Ins16bp). However, information about its biological consequences is still scarce. 

Our previous results showed the importance of some DNA repair polymorphisms in breast 

cancer susceptibility (25). Although it is well established the crucial role of XRCC1 and XRCC3 

proteins in the maintenance of genomic integrity, there is no studies revealing their expression 

profile in normal and tumor tissues and its correlation with other DNA repair proteins, such as 

P53. 

Thus, the aim of the present work was to determine the XRCC1, XRCC3 and P53 expression 

profile in breast tissues, analysing normal, benign and neoplastic lesions (in situ and invasive 

ductal carcinomas) by immunohistochemistry (IHC) in tissue microarrays (TMA). We evaluated 

the correlation of their expression profiles and the respective genotypes and clinical-pathological 

features, such as family history, histological grade, nodal and ER status, as well as correlations 

between their expressions. We further performed a XRCC1, XRCC3 and P53 expression 

screening in a set of human breast cancer cell lines correlating it with the respective genetic 

polymorphic status. 

 

55..22..  MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS  

 

Study Population 

One hundred and eighty one breast tissue samples were obtained from the Hospital São João 

and Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 

Porto, Portugal. Eight out of these were normal-like parenchima samples adjacent to the tumor, 

seven samples were classified as benign breast disease (such as fibroadenoma, adenosis, and 

typical ductal hyperplasia); thirteen samples were identified as DCIS and one hundred and fifty 

three samples were invasive ductal carcinomas. Patients with invasive breast carcinoma 

presented a mean age of 51.79 years (SD ± 14.08), ranging from 19 to 83 years. Clinical-

pathological features were obtained from hospital records when it was available. From the 

invasive ductal carcinomas, thirty nine presented clinical features of familial breast cancer based 

on the Breast Cancer Linkage Consortium criteria (26): early onset (≤40 years) and/or 

bilaterality; or more than three cases of breast cancer in the family; or more than one case of 
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ovarian cancer in the family; or more than two first-degree relatives involved; or male breast 

cancer. The remaining cases were considered sporadic breast cancer.  

From all invasive breast carcinoma, it was possible to obtain DNA from peripheric blood and 

tumor tissue samples for 49 patients, who were genotyped for the different polymorphisms in 

study.  

 

Cell lines and paraffin cell blocks 

The breast carcinoma cell lines, MDA-MB-231, MDA-MB-468, SKBr-3, BT-474, BT549, T47D, 

MCF-7, ZR-75-1, Hs578-T and MDA-MB-435 were kindly supplied by Elena P. Moiseeva (Cancer 

Biomarkers and Prevention Group, Leicester University, Leicester, United Kingdom); Eric W.-F. 

Lam (Cancer Research-United Kingdom Laboratories, Imperial College London, London, United 

Kingdom); and Mark Mareel (Laboratory of Experimental Cancerology, Department of 

Radiotherapy and Nuclear Medicine, VIB-Ghent University, Ghent, Belgium). All cell lines were 

cultured in Dulbecco’s Modified Eagles’ Medium supplemented with 10% (v/v) fetal bovine 

serum, 100 units/ml penicillin and 100 μg/ml streptomycin, at 37°C in humidified 5% CO2. To 

produce paraffin cell blocks, cell pellets from all cell lines were washed in phosphate buffer 

solution (PBS) 1x, fixed with 10% formalin during 20 min and then treated with 22% bovine 

serum albumin (BSA) solution and then incubated with ethanol 95%. The final pellets were then 

fixed overnight in 10% formalin, and then histologically processed. 

 

Genotyping 

Blood samples from all the study participants were collected in tubes with EDTA as an 

anticoagulant. Genomic DNA was isolated from buffy coat using Puregene® DNA Purification Kit 

from Gentra Systems. XRCC1 Arg399Gln, XRCC3 Thr241Met and TP53 PIN3 Ins16bp 

polymorphisms were assessed by PCR-RFLP technique, as already described (25). Briefly, 

fragments containing the specific polymorphisms were amplified by PCR, which were then 

digested with specific restriction endonuclease enzymes.  The results were obtained comparing 

different pattern fragments corresponding to specific genotypes, after fragment separation by 

electrophoresis in a 3% agarose gel. 
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Tissue Microarrays construction 

The TMA construction was conducted as previously described (27). Briefly, representative 

areas of different lesions/normal breast tissue were carefully selected on hematoxylin and eosin 

(H&E)-stained sections. Tissue cores (2 mm in diameter) were obtained from each selected area 

in the corresponding paraffin block and deposited into a recipient paraffin block using a TMA 

workstation (TMA builder ab1802, Abcam, Cambridge, United Kingdom). The H&E-stained slide 

from each block was performed to confirm the presence of the morphological representative 

area. 

 

Immunohistochemical analysis 

Immunostaining was carried out using the streptavidin-biotin-peroxidase technique in each set 

of glass slides containing the TMAs. Briefly, slides were deparaffinised and rehydrated and 

antigen retrieval was done incubating TMA slides in boiling (98ºC) 10 mM citrate buffer, pH 6.0, 

for 20 min followed by cooling at room temperature (RT) for 20 min. After washes in PBS, 

endogenous peroxidase activity was inactivated by incubation for 10 min in 3% (v/v) 

H2O2/methanol. Slides were then incubated with a blocking serum (LabVision Corporation, 

Fremont, USA) for 10 min, for blockage of non-specific protein binding, and then incubated with 

the primary antibody: XRCC1 monoclonal mouse antibody (clone 144, LabVision) diluted 1:150 

for 2 hours at RT; XRCC3 epitope specific rabbit antibody (LabVision) diluted 1:100 for 2 hours at 

RT; and P53 monoclonal mouse antibody (clone DO-7, Novocastra) diluted 1:100 for 2 hours at 

RT. After washes, the slides were incubated with biotinylated secondary antibody, following by 

streptavidin-conjugated peroxidase (LabVision Corporation, Fremont, USA). Diaminobenzidine 

was used as chromogen. Tissues were then counterstained with hematoxylin and covered with a 

mounting solution.  

The IHC staining was assessed independently by at least two of the authors, including one 

pathologist. In each run, a positive control was included (normal testis for XRCC1 and XRCC3, 

and breast carcinoma for P53). A negative control for each antibody was also included by 

replacing the primary antibody by PBS. 

The expression of XRCC1 and XRCC3 was classified by the absence (negative, 0) or presence 

of nuclear staining (positive, 1). XRCC3 was also evaluated by the intensity of its cytoplasmic 

stain, being graded as negative (0), low (1+), moderate (2+) or strong (3+). The cases 0/1+ were 

considered as negative and the 2+/3+ as positive. P53 nuclear expression was classified 
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according to a score already described (28): moderate or strong diffuse staining in more than 

50% of the neoplastic cells was considered positive. 

The same protocol was used to perform and evaluate IHC expression in paraffin cell block 

slides.  

 

Western-blot (WB) analysis 

All lysates were made from cell monolayers at 90% of confluence, which were washed twice 

with PBS. Cells were lysed with PBS containing 1% Triton X-100 (Sigma-Aldrich, St. Louis, USA), 

1% Nonidet P-40 (Sigma-Aldrich, St. Louis, USA), and 1:7 protease inhibitor cocktail (Roche 

Applied Science, Penzberg, Germany). After clearing the lysates, protein concentration was 

determined using the Rc Dc protein assay (BioRad, Richmond, USA). Total protein samples (75 

μg) were resolved by 10% sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE), transferred to a nitrocellulose membrane (Hybond C) (Amersham Pharmacia Biotech, 

Piscataway, USA) and immunoblotted for 2 hours at RT using anti-XRCC1 monoclonal antibody 

(1:1000) (clone 144, Labvision, Fremont, USA), XRCC3 epitope specific rabbit antibody (1:250) 

(Labvision, Fremont, USA), P53 monoclonal antibody (1:10000) (clone DO-1, Novocastra, 

Newcastle, England), and goat anti-rabbit or anti-mouse antibodies (1:10000) (Santa Cruz 

Biotechnology, Santa Cruz, USA). Immunoreactive bands were then visualized by 

chemiluminescence (SuperSignal West Femto Maximun Sensitivity Substrate®, Pierce, Rockford, 

USA), following manufacturer’s instructions. The membrane was then stripped and re-probed 

with monoclonal mouse α-tubulin (1:10000) (Sigma-Aldrich, St. Louis, USA). Each immunoblot 

was done at least three times, and the selected are representative experiments. Protein 

expression was quantified using the AlphaImager analysing software (Alpha Innotech, San 

Leandro, USA. The final Intensity Density Value (IDV) for each cell line was normalised to the α-

tubulin levels. Protein expressions were classified based on IDV score established, being graded 

as negative (0) with an IDV range of 0-1000, low (1+) with an IDV range of 1001-5000, moderate 

(2+) with an IDV range of 5001-10000 or strong (3+) with an IDV range of >10000. The cases 

0/1+ were considered as negative and the cases 2+/3+ as positive. 
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Statistical analysis 

Data analysis was performed using the computer software SPSS version 14.0. Pearson’s Chi-

square test (χ2) test or Fisher’s exact test (when n<5) was used to analyse the relationship of 

protein expressions with genetic polymorphic status and with clinical-pathological parameters. A 

5% level of significance was used in the analysis. Logistic regression analysis was applied to 

calculate the adjusted p value for mean age in the identification of subgroups of disease patients 

according to clinical-pathological features. The Pearson Correlation test was used to analyse 

expression correlations between the different proteins. 

 

55..33..  RREESSUULLTTSS  

  

55..33..11..  XXRRCCCC11,,  XXRRCCCC33  aanndd  PP5533  pprrootteeiinn  eexxpprreessssiioonnss  iinn  nnoorrmmaall,,  bbeenniiggnn  aanndd  mmaalliiggnnaanntt  bbrreeaasstt  

ttiissssuueess  ssaammpplleess  aanndd  iinn  hhuummaann  bbrreeaasstt  ccaanncceerr  cceellll  lliinneess  

The predominant pattern for XRCC1, XRCC3 and P53 protein expression observed in all 

breast tissue samples was nuclear; although, XRCC3 expression was also detected in the 

cytoplasm. XRCC1 nuclear staining was observed in 66.7% epithelial cells from normal-like 

tissues, in 85.7% of BBD lesions, 66.7% of DCIS and 61.3% of invasive carcinomas (Figure 1 A-

G). Regarding XRCC3 nuclear expression, we detected a positive staining in 25.0% of normal-like 

breast tissues, 28.6% of benign lesions, 30.8% of DCIS and 31.9% of invasive breast carcinomas. 

Cytoplasmic expression of XRCC3 was found in 75.0% of breast normal-like tissues, 42.9% of 

BBD, 53.8% of DCIS and 61.3% of invasive breast carcinomas (Figure 1 H-Q). About P53 nuclear 

expression, all normal-like breast tissues and BBD lesions were negative (Figure 1 R-S). In 

contrast, DCIS cases showed 27.3% of P53 positivity, whereas the invasive carcinomas showed 

12.4% (Figure 1 T-Y). 

We also assessed the correlation between XRCC1, XRCC3 and P53 IHC protein expression, 

where we found a statistically significant correlation between XRCC1 (Pearson p=0.023) and P53 

(Pearson p=0.022) with XRCC3 cytoplasmic expression. 
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Figure 1 – Immunohistochemistry expression of XRCC1, XRCC3 and P53 protein in breast 
tissue samples. XRCC1 expression (A-G): (A) normal tissue (original magnification 200x); (B) – 
benign lesion (original magnification 200x); (C) – DCIS (original magnification 200x); (D-E) – 
negative staining of invasive ductal carcinomas (original magnification 200x); (F-G) - positive stain 
of invasive ductal carcinomas (original magnification 200x). XRCC3 expression (H-Q): (H) normal 
tissue (original magnification 200x); (I) – benign lesion (original magnification 200x); (J) – DCIS 
(original magnification 200x); (K-N) negative nuclear stain and low (L), moderate (M) and high (N) 
cytoplasmic intensity of invasive ductal carcinomas (original magnification 200x); (O-Q) – positive 
nuclear stain and low (O), moderate (P) and high (Q) cytoplasmic intensity of invasive ductal 
carcinomas (original magnification 200x). P53 expression (R-Y): (R) - normal tissue (original 
magnification 200x); (S) – benign lesion (original magnification 100x); (T) – DCIS (original 
magnification 100x); (U-W) – negative stain of invasive ductal carcinomas (original magnification 
100x); (X-Y) - positive stain of invasive ductal carcinomas (original magnification 100x). 

 

The XRCC1, XRCC3 and P53 expression levels in the 10 different breast cancer cell lines 

studied were determined by IHC and WB. A representative positive and negative nuclear IHC 

staining of the three proteins studied are revealed in Figure 2 and all the results are presented in 

Table1. Almost all cell lines presented a positive XRCC1 expression, except the BT-549 and MDA-

MB-231 cell lines. Regarding XRCC3 expression, only MDA-MB-231 and MDA-MB-468 cell lines 
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showed a negative pattern to this protein. MCF7, BT-549, ZR-75-1 and MDA-MB-435 cell lines 

were negative for P53 expression. 

 

 

Figure 2 – Representative IHC expression of XRCC1, XRCC3 and P53 proteins in human 
breast cancer cell lines. XRCC1 negative (A) and nuclear staining expression (B) (original 
magnification 200x). XRCC3 negative nuclear and positive cytoplasmic expression (C) (original 
magnification 400x) and nuclear expression (with lack of cytoplasmatic expression) (D) (original 
magnification 200x). P53 negative (E) and positive (F) nuclear expression (original magnification 
200x). 
 

Table 1 – XRCC1, XRCC3 and P53 protein expression analysed by IHC and WB in a panel of 
10 human breast cancer cell lines. 

XRCC1 XRCC3 P53 Human Breast 
Cancer Cell Line IHC WB IHC WB IHC WB 

MCF7 1 2+ 1 2+ 0 1+ 
ZR-75-1 1 3+ 1 3+ 0 0 
SkBr3 1 3+ 1 2+ 1 2+ 
T47D 1 3+ ND 2+ 1 3+ 

BT-474 1 0 1 2+ 1 1+ 
BT-549 0 2+ 1 2+ 0 2+ 
Hs598T 1 2+ 1 3+ 1 2+ 

MDA-MB-231 1 2+ 1 3+ 1 3+ 
MDA-MB-435 1 3+ 1 3+ 0 3+ 
MDA-MB-468 1 2+ 1 3+ 1 3+ 

1- positive expression; 0 – negative expression; ND – not possible to determine. 
 

The immunoblot expression pattern observed was presented in Figure 3. All the human breast 

cancer cell lines demonstrated moderate to strong expression levels of XRCC1 protein, except, 

BT-474 that expressed negative levels (Figure 3 – upper panel and Table 1). In relation to P53 
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expression, we observed moderate to strong levels in SkBr-3, T47D, BT-549, Hs578T, MDA-MB-

231, MDA-MB-435 and MDA-MB-468 cell lines. In the other hand, MCF7, ZR-75-1 and BT-474 

cell lines showed negative to low P53 expression (Figure 3 – middle panel and Table 1). XRCC3 

protein was expressed in moderate to a strong manner in all the cell lines analysed (Figure 3 – 

lower panel and Table 1).  

IHC analysis demonstrated expression patterns similar to WB analysis in almost all human 

breast cancer cell lines studied (correlation in 70 to 90%). 

 

 
Figure 3 – Western blotting for XRCC1, P53 and XRCC3 expression protein analysis, from cell 

lysates derived from 10 human breast cancer cell lines used in this study. Protein expression 
levels were determined, intensity of the bands was measured, and normalised to an internal 
control. 
  

  

55..33..22..  CCoorrrreellaattiioonn  ooff  XXRRCCCC11,,  XXRRCCCC33  aanndd  PP5533  pprrootteeiinn  eexxpprreessssiioonnss  iinn  bbrreeaasstt  ccaanncceerr  ppaattiieennttss  aanndd  

hhuummaann  bbrreeaasstt  ccaanncceerr  cceellll  lliinneess  wwiitthh  ggeenneettiicc  ppoollyymmoorrpphhiicc  ssttaattuuss  

The correlation analysis of XRCC1, XRCC3 and P53 IHC expression with their respective 

polymorphisms were performed in patients where we had both information. No correlation was 

found considering XRCC1, XRCC3 or P53 nuclear staining or XRCC3 cytoplasmic staining with 

respective genotypes (Table 2).  

Next, we decided to use the WB results to see whether there was any correlation between the 

protein levels, expressed in the different cell lines, and their respective polymorphic status (Table 

3). No correlation was found between XRCC1, XRCC3 and P53 protein levels and the respective 

polymorphic status. 
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Table 2 – Correlation between XRCC1, XRCC3 and P53 proteins IHC expression and XRCC1 
Arg399Gln, XRCC3 Thr241Met and TP53 PIN3 Ins16bp polymorphisms. 

Positive Nuclear 
staining (%) 

Positive Cytoplasmic 
staining (%) Genotypes 

Negative Positive 

P  
value 

Negative Positive 

P  
Value 

XRCC1 Arg399Gln       

Arg/Arg  10 (58.8) 15 (53.6) 

Arg/Gln 5 (29.9) 11 (39.3) 
 

Gln/Gln 2 (11.8) 2 (7.1) 

0.742 NA 

 

XRCC3 Thr241Met       
Thr/Thr  22 (55.0) 6 (66.7) 9 (56.3) 19 (57.6) 

Thr/Met 12 (30.0) 2 (22.2) 4 (25.0) 10 (30.3) 

Met/Met 6 (15.0) 1 (11.1) 

0.815 

3 (18.8) 4 (12.1) 

0.802 

P53 PIN3 Ins16bp       

A1A1  13 (48.1) 4 (80.0) 

A1A2 11 (40.7) 0 (0.0) 

A2A2 3 (11.1) 1 (20.0) 

0.211 NA  

NA: not applicable. 
 

Table 3 – XRCC1 Arg399Gln, XRCC3 Thr241Met and TP53 PIN3 Ins16bp polymorphisms 
genotypes and protein expression in human breast cancer cell lines. 

XRCC1 Arg399Gln XRCC3 Thr241Met TP53 PIN3 Ins16bp Human Breast 
Cancer Cell 

Line 
Genotypes WB 

P 
value Genotypes WB 

P 
value Genotypes WB 

P 
value 

MCF7 Arg/Arg 1  Thr/Thr 1  A1A1 0  
ZR-75-1 Arg/Arg 1  Met/Met 1  A1A1 

 
 

 
 
 
 
 

0  
SkBr3 Arg/Arg 1  Met/Met 1  A1A1 1  
T47D Arg/Arg 1  Thr/Met ND  A2A2 1  

BT-474 Gln/Gln 0 0.200 Met/Met 1 ND A1A1 0 0.301 
BT-549 Gln/Gln 1  Thr/Thr 1  A2A2 1  
Hs598T Arg/Arg 1  Thr/Met 1  A1A1 1  

MDA-MB-231 Arg/Arg 1  Thr/Thr 1  A1A1 1  
MDA-MB-435 Arg/Arg 1  Met/Met 1  A1A1 1  
MDA-MB-468 Arg/Arg 1  Thr/Thr 1  A1A1 1  

1- positive expression; 0 – negative expression; ND – not possible to determine. 
 

 

55..33..33..  CCoorrrreellaattiioonn  ooff  XXRRCCCC11,,  XXRRCCCC33  aanndd  PP5533  pprrootteeiinn  eexxpprreessssiioonnss  iinn  bbrreeaasstt  ccaanncceerr  ppaattiieennttss  aanndd  

cclliinniiccaall--ppaatthhoollooggiiccaall  ffeeaattuurreess  

The correlation between protein expression and genetic polymorphisms was performed by 

logistic regression analysis, adjusted for age. As shown in Table 4, there is no statistical 

significant relationship between XRCC1 nuclear staining and any of the clinical-pathological 

parameters considered. Likewise, no association was obtained between P53 nuclear staining or 

XRCC3 cytoplasmic expression with clinical-pathological features (Table 4). On the other hand, 
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positive XRCC3 nuclear staining showed correlation with lower tumor grade (grade I and II) 

(p=0.070), as well as estrogen receptor (ER) positivity status in the tumor (p=0.060) (Table 4), 

with relative statistically significant differences. No correlation was found between XRCC3 nuclear 

expression and any other of the clinical-pathological parameters analysed. 

 

Table 4 – Correlation between XRCC1, XRCC3 and P53 proteins IHC expression and clinical-
pathological features of invasive breast carcinomas. 

XRCC1  
Nuclear Staining 

XRCC3 
Nuclear Staining 

XRCC3  
Cytoplasmic Staining 

P53 
Nuclear Staining 

Features 

Negative Positive 

P  
value 

Negative Positive 

P  
value 

Negative Positive 

P 
value 

Negative Positive 

P  
value 

Family  
History 

            

Negative  27 (71.1)  75 (75.0) 71 (68.9) 45 (86.5) 43 (78.2) 73 (73.0) 91 (79.1) 18 (85.7) 
Positive  11 (28.9) 26 (25.0) 

0.920 
32 (31.1) 7 (13.5) 

0.141 

12 (21.8) 27 (27.0) 
0.371 

24 (20.9) 3 (14.3) 
0.797 

Histological 
Grade 

            

I 5 (20.0) 10 (16.7) 11 (17.2) 6 (23.1) 7 (21.9) 10 (17.2) 15 (20.8) 1 (11.1) 
II 14 (56.0) 28 (46.7) 26 (40.6) 15 (57.7) 16 (50.0) 25 (43.1) 37 (51.4) 4 (44.4) 
III 6 (24.0) 22 (36.7) 

0.426 
27 (42.2) 5 (19.2)a 

0.156 

9 (28.1) 23 (39.6) 
0.239 

20 (27.8) 4 (44.4) 
0.358 

Lymph 
Nodes 

            

Negative 8 (61.5) 17 (48.6) 23 (63.9) 7 (41.2) 15 (71.4) 15 (46.9) 25 (53.2) 1 (25.0) 
Positive 5 (38.5) 18 (51.4) 

0.436 
13 (36.1) 10 (58.8) 

0.221 
6 (28.6) 17 (53.1) 

0.080 
22 (46.8) 3 (75.0) 

0.407 

ER status             
Negative 4 (20.0) 10 (19.6) 15 (27.3) 1 (4.5) 5 (17.9) 11 (22.4) 11 (18.0) 2 (33.3) 
Positive 16 (80.0) 41 (80.4) 

0.892 

40 (72.7) 21 (95.5) 
0.060 

23 (82.1) 38 (77.6) 
0.574 

50 (82.0) 4 (66.7) 
0.417 

a – comparison grade I/II vs III, p=0.007, p value adjusted for mean age, using logistic regression analysis. 
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Breast cancer cells, as most of the cancer cells, have high genomic instability, representing a 

critical feature to enable tumor initiation and progression (29). In this way, it is of extremely 

importance to maintain a DNA damage/repair balance, through the perfect function of DNA 

damage signalling pathways and cell cycle checkpoints, such as those regulated by P53, BER, 

NER and HRR DNA repair pathways. In breast cancer, the importance of these systems is 

evident, since TP53, ATM, BRCA1 and BRCA2 genes, with a direct or indirect role in DNA repair 

processes, present mutations highly correlated with breast cancer development (30,31). 

Furthermore, several molecular epidemiological studies had shown that polymorphisms in genes 

involved in these pathways result in differential susceptibility to breast cancer (25,32-35). In 

previous studies (25), we showed that XRCC1 399Gln genotypes conferred a protective effect to 

development of sporadic breast cancer. Furthermore, we demonstrated a strong association of 

increased breast cancer susceptibility in women carriers of XRCC3 241Met genotypes and 
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negative FH of breast cancer. In addition, other study performed by us suggested that PIN3 A2 

allele in a haplotype combination confer increased breast cancer susceptibility among women 

carriers of FH of the disease.  Therefore, we decided to evaluate the XRCC1, XRCC3 and P53 

proteins expression profiles in a series of invasive ductal breast carcinoma and in a panel of 

human breast cancer cell lines assessing the possible correlations between their respective 

genetic polymorphic status. 

To the best of our knowledge, this study represents the first report where XRCC1 expression 

profile in breast tissues was evaluated. Our results showed that XRCC1 nuclear expression is a 

common event in human breast tissues, either in normal-like, benign lesions, DCIS and invasive 

carcinomas. Similar results where obtained in other types of human cancer. Crnogorac-Jurcevic 

et al (36) described positive nuclear XRCC1 IHC expression in 100% of normal pancreatic tissues 

evaluated, whereas just 77% of the neoplastic pancreatic samples presented moderate/strong 

expression. In invasive bladder carcinoma, a mean percentage of positive nuclear staining of near 

95% was observed (37). No correlation of XRCC1 expression was found with clinical-pathological 

features. 

Regarding XRCC3 expression, the frequency of cytoplasmic positive breast cancer cases is 

comparable to what has been previously reported (38). However, XRCC3 nuclear expression 

frequency differs from that obtained by Honrado et al (38), mainly in the sporadic breast cancer 

patients. These differences could be explained by clinical features heterogeneity in sporadic 

cases used in both studies. Moreover, our study demonstrated that XRCC3 nuclear expression 

correlates with well/moderate differentiated tumors and with positivity to estrogen receptors. 

XRCC3 expression reveals an operational protein, working in order to achieve a state of relative 

genomic stability. Thus, cancer cells with active XRCC3 can exist in less aggressive tumors, 

traduced in more differentiated tumors and positive estrogens receptors. 

The frequency of P53 positive nuclear expression in invasive breast carcinoma samples 

(12.4%) was similar to other studies (39-41). Additionally, we did not obtain any association 

between P53 IHC expression and clinical-pathological characteristics, which is in agreement with 

other studies, demonstrating the weak value of P53 IHC in the prognostic and prediction of 

breast cancer (42). 

XRCC3 gene is required for several functions, like repair of double strand breaks through the 

HRR pathway (43), DNA cross-linking repair (44), and chromosomal segregation (45). During 

HRR, the XRCC3 protein interacts with the RAD51 protein, enabling RAD51 protein multimers to 
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assemble at the site of damage (44,46). Furthermore, RAD51 has also been found to colocalize 

with the XRCC1 protein after base damage, suggesting coordination between XRCC1-dependent 

single strand break repair and recombination events during DNA replication (47). This is in 

agreement to our results, since we found a great correlation between XRCC1 positive and XRCC3 

cytoplasmic positive expression in breast cancer tissues. Furthermore, we also observed a 

correlation between P53 positive expression and XRCC3 cytoplasmic positive expression. As 

already mentioned, P53 takes part directly or indirectly in several DNA repair pathways, such as 

HRR. Several studies demonstrated that P53 wild-type downregulates HRR through interaction 

with RAD51 or it paralogs, like XRCC3 (22). Since P53 expression suggests a deregulation of P53 

function, thus upregulation of HRR players, like XRCC3, can occur. The biologic meaning of 

cytoplasmic XRCC3 protein localization is unknown. However, evidences from in vitro studies 

have shown XRCC3 staining increased in the cytoplasm region after DNA damage (48,49), 

suggesting a biological role of this protein in the cytoplasmatic compartment. 

No association was found concerning the XRCC1, XRCC3 and P53 protein expression in 

breast cancer and their polymorphic status, either in case group and cell lines. The reason for it 

can be due to the high genetic heterogeneity within tumors, so that polymorphisms in these 

genes produce only subtle alterations in protein activity and effectiveness, which were not 

perceptible in IHC analysis. Furthermore, interpretation of IHC is a subjective issue, depending 

on the experience of the interpreter. 

In summary, our study was the first to describe XRCC1 IHC expression profile in breast 

tissues. We showed that XRCC3 expression may be associated with P53 regulation and XRCC1 

expression in breast tumors and XRCC3 positivity expression may be an important factor in 

prediction of less aggressive breast tumor. Moreover, we demonstrated that XRCC1, XRCC3 and 

P53 expressions do not correlate with the respective genetic polymorphisms analysed, in breast 

cancer patients and human breast cancer cell lines.  
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Breast cancer is a heterogeneous disease, sustained by a wide variable morphological 

appearance, many risks factors and distinct gene expression profiles (1,2). Common genetic 

alterations (e.g. polymorphisms), with possible effects on function and/or protein expression, 

within genes involved in essential cellular pathways, such as carcinogen metabolism, DNA repair, 

cell cycle control and cell proliferation, could predispose individuals to cancer (3-6), including  

breast cancer (4,7-10). 

Breast cancer cells, like all cancer cells, exhibit high genomic instability, representing a critical 

feature to enable tumor initiation and progression (11). In this way, it is of extremely important 

the maintenance of DNA damage/repair balance, through the perfect functions of DNA damage 

signalling/repair pathways and cell cycle checkpoints, such as those regulated by P53, and the 

BER, NER and HRR DNA repair pathways. In breast cancer, the importance of these systems is 

evident, since TP53, ATM, BRCA1 and BRCA2 genes, with a direct or indirect role in DNA repair 

processes, present mutations highly correlated with breast cancer development (12,13). 

Moreover, there is increasing data supporting the hypothesis that genetic polymorphisms in 

various DNA repair genes result in reduced DNA repair capacity (14-21). Furthermore, several 

molecular epidemiological studies have shown that polymorphisms in genes involved in these 

pathways result in differential susceptibility to breast cancer (22-26). 

In our Portuguese case-control study, we investigated the role of some of these DNA repair 

genes polymorphisms involved in BER, NER and HRR pathways (XRCC1 Arg399Gln, XPD 

Lys751Gln, RAD51 G135C and XRCC3 Thr241Met) and two separate TP53 polymorphisms 

(Arg72Pro and PIN3 Ins16bp), in two groups of breast cancer, familial and sporadic cases, as 

well as in matching control groups. The allelic frequencies of our control group for the different 

polymorphisms are in accordance with earlier reports from European populations (27-30). 

XRCC1 protein is thought to act as a scaffold protein for both single-strand break repair and 

base excision repair activities (31). It has been shown that XRCC1 interacts with DNA Polβ, DNA 

LigIII and APE1, through a BRCT domain at the C-terminus (32). XRCC1 seems to be essential to 

mammalian viability, since its disruption in mice leads to embryonic lethality (33). Several 

polymorphisms have been found in XRCC1 gene and some have been linked to several types of 

cancer (17). Our findings suggest a protective effect of the 399Gln genotypes of XRCC1 
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polymorphism to the development of breast cancer in women with no FH.  These results are 

consistent with those from previous studies of XRCC1 polymorphisms and cancer risk, which 

reported a protective association between the 399Gln carriers and cancer (28,34,35). However, 

other studies in breast cancer showed contradictory results. Some observed a positive correlation 

of 399Gln genotypes with breast cancer risk, specially when gene-exposure interactions were 

considered (36-38); others demonstrated no association (39,40) having also in account the 

presence of FH (9,41-43). Functional studies about XRCC1 suggest that the 399Gln allele may 

be associated with higher levels of different types of DNA damage in some cancers (16,44,45). 

These contradictory effects of 399Gln genotypes can be explained by two points. First, the gene 

variants can independently confer particular function to XRCC1 protein, since their effects can 

potentially depend from other biochemical pathways operating in the tissue being analyzed (46). 

The effects of any given genetic variant can also depend from other genetic or environmental 

factors that interact with it (47). Secondly, these variants can diminish the protein efficiency but 

still provide decreased cancer risk, since, in the presence of excessive damage, cells carriers of 

these variants will have decreased ability to repair and may be more likely to undergo apoptosis. 

XPD is a highly polymorphic gene and the correlation of its polymorphisms and cancer risk 

have been studied extensively (15,18,48). XPD protein is a subunit of the TFIIH complex and has 

important roles in transcription and NER pathway. It participates in the locally unwind of DNA 

helix to permit RNA transcription machinery to access the promoter and to permit the NER 

machinery to access the lesion (49). Some common XPD polymorphisms have been associated 

with a differential DNA repair capacity (19-21,50,51). In this study, we did not find an association 

between the XPD Lys751Gln polymorphism and breast cancer risk. To date, the results 

evaluating XPD Lys751Gln polymorphism are controversial. Our results are in agreement with 

other studies where no correlation was found between this polymorphism and breast cancer risk, 

among women without (36,52,53) and with breast cancer FH (9,41). In contrast, significant 

association between XPD 751Gln allele and breast cancer risk was seen in other recent studies 

(54). Furthermore, the functional significance of XPD polymorphism seems to be dependent from 

environmental factors which interact with that variant. Some studies showed that 751Gln allele 

was associated with reduced DNA repair efficiency of UV-light DNA damage, while others showed 

a suboptimal repair of X-ray-induced DNA damage related with 751Lys allele (44,48). 

RAD51 is a protein participating in DSBR pathway that forms a heterodimer with several 

genes (such as XRCC2, XRCC3, BRCA2) playing an important role in HRR (55). The majority of 
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RAD51 polymorphisms described are in UTRs. Regarding RAD51 5’UTR G135C polymorphism, 

our results showed an association of RAD51 135C genotype and increased breast cancer risk, 

only among women with FH of breast cancer. This suggests that this polymorphism contributes 

to the familial breast cancer in the Portuguese population, in opposition to reported results in the 

Brazilian population (9). Other studies have demonstrated an association of RAD51 genotypes 

with familial breast cancer risk, only in women carriers of BRCA2 mutations (56-58). Since the 

number of BRCA1 and/or BRCA2 mutations detected in our familial breast cancer cases was too 

small (59), it was not possible to perform a separate analysis. The biological effect of the RAD51 

G135C polymorphism is currently unknown. This polymorphism can affect mRNA splicing, 

regulation of transcription, translation or mRNA stability by association of the 5’UTR region with 

regulatory elements (60). Furthermore, linkage disequilibrium can occur between RAD51 gene 

and another sequence in a regulatory region of the gene or with another nearby gene, affecting 

the incidence of breast cancer in familial breast cancer. Concerning sporadic breast cancer risk, 

others studies had obtained similar results in the Australian women (61) and in the Anglo-Saxon 

population (62), where no association was obtained.  

Another important protein in HRR is XRCC3, interacting directly with RAD51, helping the 

assembly of the nucleofilament protein and the selection and interaction with appropriate 

recombination substrates (63). Some common polymorphisms were described in XRCC3 gene 

(62), such as Thr241Met. Our results demonstrate a strong association of increased breast 

cancer susceptibility in women carriers of XRCC3 241Met genotypes and sporadic breast cancer. 

This is consistent with an earlier report in the United Kingdom population (62). Functional data 

supporting the hypothesis of damaging consequences due to XRCC3 Thr241Met polymorphism 

supports our results. The 241Met variant has been associated with higher levels of bulky DNA 

adducts, mitotic defects and lower DNA repair capacities of X-ray-induced DNA damage (16,64). 

However, other studies report no risk association (9,42,61,65-67).  

The TP53 is one of the major tumour suppressor genes which carry out essential functions in 

preservation of genome integrity. Thus, when the cell is under stress, which involves DNA 

damage, p53 promotes growth arrest, allowing the cell to repair the DNA lesions. If the damage 

is excessively hazardous, then p53 will lead to cell apoptosis. Several genetic polymorphisms 

have been described in TP53 gene (68). Concerning the Arg72Pro polymorphism, we did not find 

any association with breast cancer risk. Our results are in agreement with other studies 

(30,69,70), however, the literature remains highly controversial regarding the role of this 
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polymorphism in breast cancer risk (71-76). One study showed that TP53 72Pro variant induces 

transcription activation more efficiently than TP53 72Arg variant (74).  On the other hand, other 

authors revealed that TP53 72Pro variant induces cell cycle arrest better than 72Arg (77). Other 

reports have showed that TP53 72Arg variant is more efficient inducing apoptosis (76,78). 

Beside apoptosis and cell cycle control, p53 protein seems to be crucial in the regulation of the 

different DNA repair pathways (79). A recent study demonstrated the influence of TP53 Arg72Pro 

in DNA repair capacity, showing that TP53 72Pro variant activates several TP53 dependent target 

genes involved in DNA repair much more efficiently than the 72Arg variant expressing cells (80). 

These contradictory results in molecular epidemiologic studies can be explained by the 

differential effects of this alteration in p53 function.  

Another common TP53 polymorphism is the insertion of 16bp in intron 3 of the gene. Our 

findings suggest an association of A2A2 genotype and increased breast cancer risk among 

women with familial and sporadic breast cancer, suggesting that this polymorphism contributed 

to enhance susceptibility for breast cancer among Portuguese population, regardless of the 

presence of FH. Our results are supported by previously reported studies which suggested the 

same association (81). Although the biological effect of the TP53 PIN3 Ins16bp polymorphism is 

currently unclear, theoretically, this polymorphism can affect mRNA splicing, altering the coding 

regions and therefore being implicated in regulation of gene expression and DNA-protein 

interactions, resulting in a defective protein (82,83). Until now, just a single study  had showed 

that PIN3 A2 allele presents reduced mRNA stability (84). The linkage disequilibrium between 

TP53 polymorphisms region can be an important factor affecting the incidence of cancer in 

general (85,86), and breast cancer, in particular (76,81,87). Thus, haplotype analysis would be 

important to confirm the significance of TP53 variants on breast cancer susceptibility. A statistical 

significant association was found between Arg-A2 haplotype and breast cancer susceptibility 

among women with familial breast cancer. On the other hand, a recent study has found that Pro-

A1 haplotype individuals present increased breast cancer risk, however, only in BRCA2 mutation 

carriers (76). Nevertheless, other reports have also demonstrated a positive association of Arg-A2 

haplotype with cancer (81,85). Moreover, functional studies have shown that, in a specific 

haplotype combination, A2 allele is associated with decreased apoptotic and DNA repair capacity 

(30,85).  

The variance in results of association in different case-control studies on XRCC1, XPD, 

RAD51, XRCC3 and TP53 polymorphisms may be connected to variation in genetic/ethnic origin 
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and different carcinogenic exposures of the studied populations. Too small sample size and/or 

the inadequate controlling for certain confounders such as age and breast cancer FH may also 

contribute to differing results. 

The natural history of breast cancer can be influenced by several factors. We hypothesize that 

under the influence of genetic polymorphisms, chronic exposure to higher levels of several 

endogenous (e.g. estrogens) and exogenous breast carcinogens, resulting in a higher 

accumulation of DNA damage during an individual’s lifetime, may alter the waiting-time-to onset 

of disease. Moreover, it has been suggested that DNA repair genes are associated to age related 

disease (88), and TP53 polymorphisms are associated to familial breast cancer by the age of 50 

years (30). Our results are consistent with this hypothesis, in which XRCC1 Arg399Gln, XRCC3 

Thr241Met and TP53 PIN3 Ins16bp polymorphisms seem to influence directly the age to onset 

sporadic breast cancer and familial breast cancer, respectively.  

In this work, we performed the analysis of possible associations between XRCC1 Arg399Gln, 

XPD Lys751Gln, RAD51 G135C, XRCC3 Thr241Met and TP53 Arg72Pro and PIN3 Ins16bp 

polymorphisms and breast cancer clinical-pathological features. According to our results, XRCC1 

Gln/Gln genotype seems to be associated with less aggressive tumors, since this genotype was 

correlated with well differentiated tumors. Deficient efficiency of the XRCC1 protein has been 

described in XRCC1 Gln variant (44,45). Furthermore, repair of more complex base lesions (89-

91) by BER pathway can potentially convert non-lethal DNA lesion into lethal DSB (92,93). Thus, 

deficiency in BER, by low efficiency of XRCC1, may actually reflect a well differentiated nature of 

the cancer cells in less aggressive tumors, since less lethal DNA lesions are produced.  

We also observed that RAD51 C135 genotypes show a correlation with more aggressive 

tumors, since we found a significant association of them with moderate to poor differentiated 

grade. Additionally, assessment of the OS demonstrated that patients with RAD51 C135 

genotypes presented a poorer survival compared with others genotypes. These results can be 

explained by the location of this polymorphism in the 5’ UTR, affecting mRNA stability and/or 

translation efficiency, leading to altered RAD51 protein levels (60). Thus, RAD51, the key factor of 

homologous recombination process, can disturb the activity of the multiprotein DNA repair 

complex, including BRCA1, BRCA2 and XRCC3 proteins, contributing to high levels of genetic 

instability (94), and as a result, being correlated with more aggressive tumors as described for 

breast carcinomas associated with BRCA1 mutations (95).  
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No correlation was found between XPD Lys751Gln and XRCC3 Thr241Met polymorphisms 

and clinical-pathological features, such as histological grade, axillary lymph node metastases, 

estrogen receptor, survival and recurrence at last follow-up. 

Additionally, our findings suggest the Pro/Pro and A2A2 TP53 genotypes as predictor factors 

for the presence of lymph node metastases, being in agreement with previously functional 

studies regarding the biological consequences of these variants in P53 protein function, such as, 

on one hand, transcription activation and apoptosis inhibition, and, on the other hand, cell cycle 

arrest induction and DNA repair activation, by the 72Pro allele (74,77,78,80,84).   

In summary, we showed that XRCC1 399Gln genotypes confer a protective effect to the 

development of sporadic breast cancer. Furthermore, we also demonstrated a strong association 

of increased breast cancer susceptibility in women carriers of XRCC3 241Met genotypes and 

negative FH. In addition, our results suggested that PIN3 A2 allele in a haplotype combination 

confer increased breast cancer susceptibility among women FH carriers.  Therefore and based 

on the above mentioned results, we decided to evaluate the XRCC1, XRCC3 and P53 protein 

expression profiles in a series of invasive ductal breast carcinomas and in a panel of human 

breast cancer cell lines, assessing the possible correlations between their expression and with 

their respective genetic polymorphic status. 

Importantly, this work is the first report regarding XRCC1 protein expression in breast tissues. 

Our results show that XRCC1 nuclear expression is a common event in human breast tissues, 

either in normal-like, benign lesions, DCIS and invasive carcinomas. Similar results where 

obtained in other types of human cancers. Crnogorac-Jurcevic et al (96) described positive 

nuclear XRCC1 IHC expression in 100% of normal pancreatic tissues evaluated, whereas just 

77% of the neoplastic pancreatic samples presented moderate/strong expression. In invasive 

bladder carcinoma, a mean percentage of positive nuclear staining of near 95% was observed 

(97). No correlation of XRCC1 expression was found with clinical-pathological features within our 

series. 

Regarding XRCC3 expression, our percentage of cytoplasmatic positive breast cancer cases is 

comparable with the only other existent report (98). However, our frequency of XRCC3 nuclear 

expression differs from that obtained by Honrado et al (98), mainly in the sporadic breast cancer 

patients. These differences can be explained by clinical features heterogeneity in sporadic cases 

used in both studies. Moreover, our study demonstrated that XRCC3 nuclear expression 

correlates with well/moderate differentiated tumors and with positivity to estrogen receptors. 
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XRCC3 expression reveals an operational protein, working in order to achieve a state of relative 

genomic stability. Thus, cancer cells with active XRCC3 can exist in less aggressive tumors, 

translated in more differentiated tumors and estrogens receptors positive, corroborating our 

findings. 

Our frequency of P53 positive nuclear expression in invasive breast carcinoma samples 

(12.4%) were similar to other studies (99-101). Additionally, the lack of association between P53 

IHC expression and clinical-pathological characteristics was also in agreement with previous 

reports, which showed that prognostic and predictive value of P53 positive expression in breast 

cancer was found to be weak (102).  

XRCC3 gene is required for several functions, like repair of double strand breaks through the 

HRR pathway (103), for repair of DNA cross-linking (104), and chromosomal segregation (105). 

During HRR, the XRCC3 protein interacts with the RAD51 protein, enabling RAD51 protein 

multimers to assemble at the site of damage (104,106). Furthermore, RAD51 has also been 

found to colocalize with the XRCC1 protein after base damage, suggesting coordination between 

XRCC1-dependent single strand break repair and recombination events during DNA replication 

(107). This comes in direction to our finding, where we got a good correlation between XRCC1 

positive and XRCC3 cytoplasmatic positive expression in breast cancer tissues. Furthermore, we 

observed a correlation between P53 positive expression and XRCC3 cytoplasmatic expression. As 

already mentioned P53 takes part directly or indirectly in several DNA repair pathways, such as 

HRR. Several studies demonstrated that P53 wild-type downregulates HRR through interaction 

with RAD51 or it paralogs, like XRCC3 (108). Since P53 expression suggests a deregulation of 

P53 function, so an upregulation of HRR players, like XRCC3, can occur. The biological meaning 

of cytoplasmatic XRCC3 protein localization is still unknown. However, evidences of in vitro 

studies have shown increased XRCC3 staining in the cytoplasm region after DNA damage 

(109,110), suggesting a function of this expression in the biological role of the protein. 

Concerning the XRCC1, XRCC3 and P53 protein expression in breast cancer and no 

correlation was found with their polymorphic status, either in case group and human cell lines. 

The reasons for the lack of associations can be explain by the high genetic heterogeneity of the 

tumors, so that these polymorphisms in these genes produce only subtle alterations in protein 

activity and effectiveness, which are not perceptible in IHC analysis. Furthermore, interpretation 

of IHC is a subjective issue, depending on the experience of the interpreter. 
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In conclusion, our findings imply the RAD51 G135C polymorphism as a real risk modifier in 

familial breast cancer cases. Furthermore, we point out that XRCC1 Arg399Gln and XRCC3 

Thr241Met polymorphisms are important biomarkers to sporadic breast cancer susceptibility. 

Moreover, our results also propose that PIN3 A2 allele in a haplotype combination confer 

increased breast cancer susceptibility among women carriers of FH of breast cancer. A possible 

interpretation for different associations depending on the presence of FH may be due to this 

factor broadly represents shared genes and environmental factors. The presence of a single 

polymorphism has most likely weak effects on the individual phenotype, not being measurable 

except in the context of these additional supporting factors, such as the family history. Among 

individuals without a familial predisposition, the effect may be hidden by sum effects of other 

unidentified genetic and environmental factors (42). According to our findings with clinical-

pathological parameters, we clearly underlie the role of XRCC1 Arg399Gln and RAD51 G135C 

polymorphisms in the prediction of breast tumor aggressiveness and patients’ survival. 

Furthermore, our results suggest TP53 Arg72Pro and PIN3 Ins16bp polymorphisms as predictive 

factors of presence of lymph node metastases. Additionally, we demonstrated that XRCC1, 

XRCC3 and P53 expressions do not correlate with the respective genetic polymorphisms 

analysed, in breast cancer patients and human breast cancer cell lines.  

This work brings a significantly contribution to the characterization of the genetic breast 

cancer susceptibility profile, within familial breast cancer cases non-carriers of BRCA1/BRCA2 

mutations and sporadic breast cancer patients, in the Portuguese population. These findings can 

be helpful for an early and more efficient screening of breast cancer disease.  
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