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Abstract—This paper deals with the problem of finding a
mission path that minimizes acceleration and drag while a vehicle
moves from an initial position to a final target in fluid environ-
ments. A variational problem will be formulated in the general
context of manifolds, where the energy functional depends on
acceleration and drag forces. The corresponding Euler-Lagrange
equations will be derived. Questions regarding the integrability
of the Euler-Lagrange equations are the main challenge of this
problem even when the geometry of the configuration space is
not taken into consideration. This is mainly due to the fact that
the power needed to overcome the drag forces is proportional to
the cube of the speed. A numerical optimization approach will
be presented in order to obtain approximate solutions for the
problem in some particular configuration spaces.

I. INTRODUCTION

In path planning problems of autonomous marine or aerial
vehicles, it is frequently required to find a mission path that
minimizes acceleration and drag while the vehicle moves from
an initial position to a final target passing through a series
of waypoints [12]. The resistance that the fluid environment
offers to the moving vehicle is characterized by the drag force.
To be more precise, drag is a mechanical force generated by
the interaction and contact of a solid body with a fluid (gas or
liquid). It is obtained by the difference in velocity between the
solid object and the fluid and acts in the opposite direction to
the motion of the object. Drag forces can be found in several
daily life situations. For instance, it is clear the difficulty of
walking in water because of the much greater resistance it
offers to motion when compared with air. Also, when we
extend our arms out of the window of a moving car one
can feel the strong push of the wind. Therefore it is clear
that in some applications it is important to minimize the drag
forces. This is extremely related to the reduction of the fuel
consumption in automobiles, submarines and aircrafts and also
to improve safety and durability of structures subject to strong
winds. In other cases, the drag force produces very beneficial
effects and it is therefore required to maximize it. It is because
of the drag force that is possible to parachute, for pollen to
fly for distant locations and also to promote the beauty of the
ocean waves [3]. The magnitude of the drag, which depends

on the density of the fluid, the speed and the size, shape and
orientation of the body is, typically, proportional to the square
of the speed. In this case, the power needed to overcome the
drag force is proportional to the cube of the speed.

In this paper we are interested in determine optimal trajecto-
ries of a vehicle moving in a fluid environment that minimize
not only the power needed to overcome changes in velocity but
also the drag forces. Therefore, a variational problem where
the energy functional depends on the acceleration and drag,
is formulated on the general context of manifolds and the
corresponding Euler-Lagrange equations are derived. As we
will see, the presence of the drag term increases substantially
the complexity of the problem even when the problem is
only formulated on a Euclidean space. Algebraic integrability
properties of the Euler-Lagrange equations in Euclidean spaces
have been partially studied in [16] using the theory of Darboux
polynomials.

In the absence of drag, the problem boils down to the
classical problem of finding geometric cubic polynomials
prescribing initial and final positions and velocities [14], [5].
Even in this simpler case, a major issue that remains un-
solved is finding closed form solutions for the Euler-Lagrange
equations. This drawback motivated several authors to look
for alternative approaches. We refer to [4], [5], [9], [11] and
references therein to mention a few.

To overcome the integrability issues raised from the varia-
tional problem proposed in the paper, a numerical algorithm
to find approximate solutions for this highly nonlinear op-
timization problem is proposed and some of the numerical
illustrations will be shown for some particular curved spaces.

II. PROBLEM’S FORMULATION

A. Preliminaries and notations

Let M be a Riemannian manifold of dimension n. If p ∈ M ,
TpM and TM denote respectively the tangent space of M
at p and the tangent bundle of M . Also denote by ∇ the
unique affine connection on M that is compatible with the
Riemannian metric 〈·, ·〉. If x : [0, T ] → M is a smooth curve
on M , then the covariant derivative of a vector field Y along
x with respect to ∇ will be denoted by DY

dt . For the particular978-1-5386-5346-3/18/$31.00 c© 2018 IEEE
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case when the manifold is embedded in some Euclidean space,
the covariant derivative at t is simply obtained by projecting
the usual derivative dY

dt (t) onto the tangent space of M at
x(t).

Define higher-order covariant derivatives of x by

Dkx

dtk
=

D

dt

(Dk−1x

dtk−1

)
, k ≥ 2,

where, for convenience, Dx
dt is used to denote the velocity

vector field of the curve x, ẋ = dx
dt .

The curvature tensor, denoted by R, is defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

for smooth vector fields X,Y and Z and, among others, it
satisfies the property

〈
R(X,Y )Z,W

〉
=

〈
R(W,Z)Y,X

〉
. (1)

Applying the Riemannian connection ∇ to the curvature
tensor R, one can define a new tensor field ∇R by

(∇WR)(X,Y )Z = ∇W

(
R(X,Y )Z

)
−R(∇WX,Y )Z

−R(X,∇WY )Z −R(X,Y )∇WZ
(2)

For more details about fundamental concepts of differential
geometry we refer to the classical books on the subject [8],
[6], [10], [13].

B. Description of the problem and derivation of the Euler-
Lagrange equations

Denote by Ω the class of all piecewise smooth paths
x : [0, T ] → M such that x(0), x(T ), ẋ(0) and ẋ(T ) are
fixed, and consider the following minimization problem

min
x∈Ω

∫ T

0

〈D2x

dt2
,
D2x

dt2

〉
+ τ

〈dx
dt

,
dx

dt

〉 3
2

dt, (P)

where τ denotes a nonnegative real parameter. The parameter
τ can be interpreted as a control parameter that somehow will
measure the effect of the drag force in the optimal path x
going from the initial position x(0) to the final target x(T )
while prescribing initial and final velocities.

Next we present the first order necessary optimality condi-
tions for problem (P). Since the proof follows similar proofs
that appeared already in the literature (see, for instance, [5]),
we only present a sketch.

Theorem 1. A necessary condition for a curve x : [0, T ] → M
to be a solution for problem (P) is that

D4x

dt4
+R

(D2x

dt2
,
dx

dt

)dx
dt

− 3

2
τ
D

dt

[〈dx
dt

,
dx

dt

〉 1
2 dx

dt

]
= 0. (3)

Proof. (Sketch) Denote the energy functional by

J (x) =

∫ T

0

〈D2x

dt2
,
D2x

dt2

〉
+ τ

〈dx
dt

,
dx

dt

〉 3
2

dt.

Let ε be a positive real number and

α : (−ε, ε)× [0, T ] −→ M
(s, t) 7−→ α(s, t)

be a one parameter variation of x such that α(0, t) = x(t).

Denote by W (t) =
∂α

∂s
(0, t) the variational vector field

associated to the variation α.
In order for x to be a solution for problem (P) one must

have
d

ds
J(αs)

∣∣∣∣
s=0

= 0,

for all variations α.
Using the fact that if V is a vector field along the parame-

terized surface α, then
D

∂s

(DV

∂t

)
=

D

∂t

(DV

∂s

)
+R

(∂α
∂s

,
∂α

∂t

)
V,

together with property (1) of the curvature tensor, it is possible
to write

d

ds
J(αs)

= 2

∫ T

0

〈D4α

∂t4
+R

(D2α

∂t2
,
∂α

∂t

)∂α
∂t

,
∂α

∂s

〉
dt

− 3τ

∫ T

0

〈D

∂t

[〈∂α
∂t

,
∂α

∂t

〉 1
2 ∂α

∂t

]
,
∂α

∂s

〉
dt

+ 2
〈D
dt

(∂α
∂s

)
,
D2α

∂t2

〉∣∣∣∣
T

0

− 2
〈D3α

∂t3
− 3

2
τ
〈∂α
∂t

,
∂α

∂t

〉 1
2 ∂α

∂t
,
∂α

∂s

〉∣∣∣∣
T

0

.

Now, setting s = 0 in the above and using the fact that
W (0) = W (T ) = 0 and also DW

dt (0) = DW
dt (T ) = 0, one

gets

d

ds
J(αs)

∣∣∣∣
s=0

= 2

∫ T

0

〈D4x

dt4
+R

(D2x

dt2
,
dx

dt

)dx
dt

,W
〉
dt

− 3τ

∫ T

0

〈D
dt

[〈dx
dt

,
dx

dt

〉 1
2 dx

dt

]
,W

〉
dt.

The result follows by considering appropriate vector fields
W .

Remark 1. In the absence of drag forces, the Euler-Lagrange
equation (3) reduces to

D4x

dt4
+R

(D2x

dt2
,
dx

dt

)dx
dt

= 0,

which represents the differential equation that characterizes
the geometric cubic polynomials on M appearing for the first
time in the literature in [14].

Motivated by the invariants along a geometric cubic poly-
nomial derived in [2] and [1], in the next two propositions
we obtain the expressions for two invariants along a curve x
satisfying the differential equation (3). The second invariant
is derived under the assumption that the Riemannian manifold
M is locally symmetric. In this case, it can be proved that the
curvature tensor is parallel, i.e., ∇R = 0 (see [8]).
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Proposition 1. The quantity

I1 =
〈D3x

dt3
,
dx

dt

〉
− 1

2

〈D2x

dt2
,
D2x

dt2

〉
− τ

〈dx
dt

,
dx

dt

〉 3
2

, (4)

is invariant along a curve x satisfying (3).

Proof. The proof closely follows the one given in [2] for
geometric cubic polynomials.

Take the inner product on both sides of the Euler-Lagrange

equation (3) with
dx

dt
, and note that

3

2

〈D
dt

[〈dx
dt

,
dx

dt

〉 1
2 dx

dt

]
,
dx

dt

〉
=

d

dt

〈dx
dt

,
dx

dt

〉 3
2

.

Proposition 2. If M is a locally symmetric Riemannian
manifold, then the quantity

I2 =
〈D3x

dt3
,
D3x

dt3

〉
+
〈
R
(D2x

dt2
,
dx

dt

)dx
dt

,
D2x

dt2

〉

− 3τ
〈dx
dt

,
dx

dt

〉 1
2
〈D3x

dt3
,
dx

dt

〉
+

9

4
τ2
〈dx
dt

,
dx

dt

〉2

,

is preserved along any curve x that satisfies the Euler-
Lagrange equations (3).

Proof. The proof is similar to the one given in [1] for
Riemannian cubic polynomials.

Note that since M is locally symmetric, the tensor ∇R,
defined by (2), vanishes identically.

The expression for I2 is therefore obtained by taking the
inner product on both sides of the Euler-Lagrange equation
(3) with D3x

dt3 . In this case, some computations yield
〈D
dt

[〈dx
dt

,
dx

dt

〉 1
2 dx

dt

]
,
D3x

dt3

〉

=
d

dt

[〈dx
dt

,
dx

dt

〉 1
2
〈D3x

dt3
,
dx

dt

〉
− 3

4
τ
〈dx
dt

,
dx

dt

〉2]
,

and
〈
R
(D2x

dt2
,
dx

dt

)dx
dt

,
D3x

dt3

〉
=

1

2

d

dt

〈
R
(D2x

dt2
,
dx

dt

)dx
dt

,
D2x

dt2

〉
.

As it can be seen, equation (3) is highly nonlinear and in
the next section we start its analysis for the particular case of
the Euclidean spaces.

1) Particular case of Euclidean spaces: For the case when
M = Rn, that is, assuming that the configuration space is flat,
the curvature tensor vanishes everywhere and the covariant
derivative reduces to the usual derivative. In this case, the
Euler-Lagrange equation becomes

....
x − 3

2τ〈ẋ, ẋ〉−
1
2 〈ẍ, ẋ〉ẋ − 3

2τ〈ẋ, ẋ〉
1
2 ẍ = 0, (5)

or alternatively

d

dt

(...
x − 3

2τ〈ẋ, ẋ〉
1
2 ẋ

)
= 0, (6)

meaning that the quantity

I =
...
x − 3

2τ〈ẋ, ẋ〉
1
2 ẋ,

is an invariant along an optimal trajectory x.
The analogous to the invariants I1 and I2 given in propo-

sitions 1 and 2 are given, respectively, by

I1 =
〈...
x, ẋ

〉
− 1

2

〈
ẍ, ẍ

〉
− τ

〈
ẋ, ẋ

〉 3
2 ,

and

I2 =
〈...
x,

...
x
〉
− 3τ

〈
ẋ, ẋ

〉 1
2
〈...
x, ẋ

〉
+ 9

4τ
2
〈
ẋ, ẋ

〉2
.

Remark 2. The invariant I1 comes directly from Noether’s
symmetry Theorem [7], when the system is conservative.
In fact, when the Lagrangian L does not depend on time
explicitly, the quantity

〈 d

dt

(∂L
∂ẍ

)
, ẋ

〉
−
〈∂L
∂ẍ

, ẍ
〉
−
〈∂L
∂ẋ

, ẋ
〉
+ L

is preserved along each extremal of problem (P).

Based on some of the invariants given above, authors in
[16] provided a very interesting study of the Euler-Lagrange
equation for Euclidean spaces using the theory of Darboux
polynomials. However, this study was inconclusive and our
purpose here is to show the behavior of the solutions of
the proposed optimization problem for certain Riemannian
manifolds.

In order to get some insight about the solutions of the Euler-
Lagrange equation, we start to consider the one-dimensional
case, that is M = R. In this case, the Euler-Lagrange equation
(5) reduces to

....
x − 3τẋẍ = 0, (7)

which is still nonlinear (unless τ = 0) and only approximate
solutions can be obtained. In Fig. 1 it is shown an approximate
solution of (7) for several values of τ and the corresponding
velocity is sketched in Fig. 2. When τ = 0 the solution will
be, as expected, the cubic polynomial satisfying the required
boundary conditions. From the analysis of Fig. 2, as long as
the parameter τ increases one can notice abrupt changes on
the velocity of the curve.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

4

6

8

10

12

τ = 0

τ = 1

τ = 5

τ = 10

τ = 50

Fig. 1. Approximate solution for the Euler-Lagrange equation (7) with
boundary conditions x(0) = 10, x(1) = 0, ẋ(0) = 1 and ẋ(1) = 0.
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Fig. 2. Approximate solution for the velocity of the optimal solutions
represented in Fig. 1.

Due to the high nonlinearity of the Euler-Lagrange equation,
we propose in the next section a numerical algorithm to obtain
approximate solutions for the optimization problem (P) for
Euclidean spaces and Euclidean spheres.

III. NUMERICAL OPTIMIZATION ALGORITHM

In this section, we consider the cases when M is the
Euclidean space Rn or the unit n−sphere Sn, and present
a numerical algorithm that generates approximate solutions
for the optimization problem (P). As we already mentioned
for the Euclidean case, the covariant derivatives reduce to
the usual derivatives. Since Sn is an embedded manifold of
the Euclidean space Rn+1, the covariant derivatives at each
time t are obtained by the projection of the corresponding
usual derivatives at t onto the tangent space of Sn at x(t). In
particular,

D2x

dt2
= ẍ−

〈
ẍ, x

〉
x,

and, in this case, the optimization problem (P) can be written
as

min
x∈Ω

∫ T

0

〈
ẍ, ẍ

〉
− 2

〈
ẍ, x

〉2
+
〈
ẍ, x

〉2〈
x, x

〉
+ τ

〈
ẋ, ẋ

〉 3
2 dt.

The strategy that we propose to solve the above problem
consists in implementing a discretization procedure for the
derivatives ẋ and ẍ in the interval [0, T ] using finite differences
(forward, central and backward to the lower, interior and
upper bound instants of time, respectively). This discretization
procedure originates a set of k vectors in a Euclidean space,
x(t1), . . . , x(tk), which are the unknown variables of the
problem. For convenience of implementation, we consider
the discretization step h = ti+1 − ti, i = 1, . . . , k − 1
a constant value. The objective function is therefore imple-
mented via numerical integration, more precisely using the
trapezium rule for the k variables x(t1), . . . , x(tk). Finally,
the nonlinear constrained optimization problem (P) is solved
using a classical optimization routine based in the Sequential
Quadratic Programming (SQP) technique [15]. Its solution is

the set of values x(t1), . . . , x(tk) that estimate the whole curve
t 7→ x(t), t ∈ [0, T ].

Next, we describe the high level Algorithm 1 that solves
numerically the proposed nonlinear optimization problem (P)
and whose solutions estimate the optimal solutions of the
problem. This algorithm was implemented using the MATLAB
code. Several routines from MATLAB toolboxes were used.
The trapz routine was used to estimate the value of the
integral function and the fmincon routine was used to find
a local minimum for the objective function.

Algorithm 1
1: select the discretization step h and the number of variables

k
2: discretize ẋ and ẍ using finite differences

Forward finite differences:
ẋ(t1) ≈ 1

h [x(t2)− x(t1)]

ẍ(t1) ≈ 1
h2 [x(t3)− 2x(t2) + x(t1)]

Central finite differences:
ẋ(ti) ≈ 1

2h [x(ti+1)− x(ti−1)]

ẍ(ti) ≈ 1
h2 [x(ti+1)− 2x(ti) + x(ti−1)]

Backward finite differences:
ẋ(tk) ≈ 1

h [x(tk)− x(tk−1)]

ẍ(tk) ≈ 1
h2 [x(tk)− 2x(tk−1) + x(tk−2)]

3: estimate the integral∫ b

a

f(t)dt ≈ h
2 [f(t1) + 2f(t2) + 2f(t3) + · · ·
+2f(tk−2) + 2f(tk−1) + f(tk)]

4: solve the optimization problem to find the variables
x(t1), . . . , x(tk)

5: design the curve x

Numerical experiments on R3 and S2 are presented in
figures 3 and 4, respectively. Both simulations have been
performed for several values of τ and the number of variables
considered was k = 51. In both cases, we have assumed
equally spaced times and the value of the discretization step
used was h = 0.02.

Fig. 3 illustrates approximate solutions for problem (P) in
R3 for several values of τ and boundary conditions x(0) =
(0, 0, 1), x(T ) =

(
1
2 ,

1
2 ,−1

)
, ẋ(0) =

(
2, 2, 2

)
and ẋ(T ) =

(0, 1, 0) . Approximate solutions for problem (P) in S2 for
several values of τ are represented in Fig. 4 for boundary
conditions x(0) = (0, 0, 1), x(T ) =

(
1
2 ,

1
2 ,−

√
2
2

)
, ẋ(0) =(

0, 0, 0
)

and ẋ(T ) = (1, 1,
√
2).

IV. CONCLUSION

We formulated a variational problem on a Riemannian
manifold in order to minimize acceleration together with drag
forces while a vehicle is moving in a fluid environment from an
initial position to a final target. The Euler-Lagrange equations
associated to this problem were derived in Theorem 1. Due
to the high nonlinearity of the Euler-Lagrange equations, this
problem represents a source of many challenging questions
regarding numerical integration on manifolds. To overcome
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Fig. 3. Approximate solutions for problem (P) in R3 for τ = 0, 1, 2, 5.

Fig. 4. Approximate solutions for problem (P) in S2 for τ = 0, 1, 10, 20.

this difficulty, we proposed in Section III a possible numerical
algorithm to obtain approximate solutions for the variational
problem in the particular cases of the Euclidean spaces and
the unit spheres. We believe that similar algorithms for solving
the problem in other curved spaces can be designed and this
will be our future purpose.
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