
Memoized Zipper-based Attribute Grammars

João Paulo Fernandes1, Pedro Martins2, Alberto Pardo3, João Saraiva4, and
Marcos Viera3

1 LISP/Release - Universidade da Beira Interior, Portugal
jpf@di.ubi.pt

2 University of California, Irvine, USA
pribeiro@uci.edu

3 Universidad de la República, Uruguay
{pardo,mviera}@fing.edu.uy

4 Universidade do Minho, Portugal
jas@di.uminho.pt

Abstract. Attribute Grammars are a powerfull, well-known formalism
to implement and reason about programs which, by design, are conve-
niently modular.
In this work we focus on a state of the art Zipper-based embedding
of Attribute Grammars and further improve its performance through
controlling attribute (re)evaluation by using memoization techniques.
We present the results of our optimization by comparing their impact in
various implementations of different, well-studied Attribute Grammars.

Keywords: Embedded domain specific languages, Attribute Grammars, Zipper
data structure, Memoization

1 Introduction

Attribute Grammars (AGs) are a declarative formalism that allows us to im-
plement and to reason about programs in a modular and convenient way. This
formalism was proposed by Knuth [12] in the late 60s, and a concrete AG re-
lies on a context-free grammar to define the syntax of a language, while adding
attributes to it so that it is also possible to define its semantics.

AGs have been used in practice not only to specify real programming lan-
guages, like for example Haskell [6], but also to specify powerful pretty printing
algorithms [22], deforestation techniques [8] and powerful type systems [17].

When programming with AGs, modularity is achieved due the possibility of
defining and using different aspects of computations as separate attributes. At-
tributes are distinct computation units, tipically quite simple and modular, that
can be combined into elaborated solutions to complex programming problems.
They can also be analyzed, debugged and maintained independently which eases
program development and evolution.

AGs have proven to be particularly useful to specify computations over trees:
given one tree, several AG systems such as [7, 13, 24] take specifications of which

values, or attributes, need to be computed on the tree and perform these compu-
tations. The effort put into the creation, improvement and maintenance of these
AG systems, however, is tremendous, which often is an obstacle to achieving the
success they deserve.

An increasingly popular alternative approach to the use of AGs relies on em-
bedding them as first class citizens of general purpose programming languages [5,
15, 18, 21, 25, 3]. This avoids the burden of implementing a totally new language
and associated system by hosting it in state-of-the-art programming languages.
We want to exploit the modern constructions and infrastructure that are already
provided by those languages and focus on the particularities of the domain spe-
cific language that we are developing.

In this paper we focus on the embedding proposed in [15] for Haskell, which
we revise in Section 2. This choice is motivated by the fact that this embedding
ensures a notation that closely resembles AGs , and even if it relies on a simple
navigation engine, it has shown sufficient expressive power to incorporate state-
of-the-art extensions to the AG formalism such as the possibility of defining: i)
higher-order attributes [20, 26], ii) references [14], iii) circular attributes [15, 21],
and iv) bidirectional transformations [16].

In spite of its elegancy and expressive power, the embedding of [15] does not
ensure that attributes are computed only once on a given node. As will become
clearer in the next section, the same attribute can be evaluated many times on
the same node which causes unnecessary overhead on computations.

The first contribution of this paper is that we take the embedding of [15]
and show how it can be extended in such a way that all attributes in an AG
are evaluated only once. This extension is achieved with a memoization strategy
that can systematically be applied to all embedded AGs in the setting of [15].
This contribution is introduced in Section 3.

A second and final main contribution of the paper is that we analyze the
impact of memoization, in terms of efficiency, on several well known and well
studied AG examples from the literature. This is detailed in Section 4. We con-
clude in Section 5.

2 Zipper-based Attribute Grammars

In this section we describe by means of an example the embedding of AGs
proposed in [15]. The example we consider, which is used as running example
throughout the paper, is the repmin problem [4]. This is a well-known example
that has been extensively used in the literature, for the same reason we have
chosen it here: it is a simple, easy to understand problem which clearly illustrates
the modular nature of AG and the difficulties on implementing and scheduling
its computations. The goal of repmin is to transform a binary leaf tree of integers
into a new tree with the exact same shape but where all leaves have been replaced
by the minimum leaf value of the original tree. Concretely, we consider the
following definition of binary leaf trees:

data Tree = Leaf Int | Fork Tree Tree

-- Inherited

globmin :: AGTree Int

globmin t = case constructor t of

CRoot → locmin (tree t)

CLeaf → globmin (up t)

CFork → globmin (up t)

-- Synthesized

locmin :: AGTree Int

locmin t = case constructor t of

CLeaf l → l

CFork → min (locmin (left t)) (locmin (right t))

replace :: AGTree Tree

replace t = case constructor t of

CRoot → replace (tree t)

CLeaf → Leaf (globmin t)

CFork → Fork (replace (left t)) (replace (right t))

Fig. 1: Repmin defined using a Zipper-based AG

In order to solve repmin, we may define an AG with three attributes: i)
one inherited attribute, globmin, so that all nodes in a tree may know and use
the global minimum of the tree; and two synthesized attributes: ii) locmin, to
compute the local minimum of each node in a tree, and iii) replace, to compute at
each node the repmin of the tree under it. These attributes should be scheduled
according to the computation: we need to find the minimum value contained in
the tree with locmin, distribute this value across all the nodes of the tree with
globmin and analyze the structure and traverse the tree to create a new one with
replace.

In the setting of [15] we may define the AG for repmin by the embedding in
Haskell shown in Figure 1. We see that, e.g., at a Leaf node, the global minimum
of a tree is inherited from its parent node (up t), and that the local minimum of
a Fork node is given by the minimum of the local minimums of the child nodes
(left t and right t). Notice that the attributes are represented as functions.

Finally, repmin is obtained by computing the replace attribute on the top-
most node of a tree:

repmin :: Tree → Tree

repmin t = replace (mkAG t)

The embedding of [15] relies on the zipper data structure [9] to provide the
means to navigate on a tree and to define the values of attributes in terms of
other attributes on neighbour nodes. An AG computation on a Tree is actually
a function that takes a Zipper and returns the result of the computation:

type AGTree a = Zipper → a

A zipper can be regarded as a tree together with its context:

type Zipper = (Tree,Cxt)

data Cxt = Root | Top | L Cxt Tree | R Tree Cxt

To construct a zipper, we mark a Tree as being at the Root node:

mkAG :: Tree → Zipper

mkAG t = (t ,Root)

Constructor Root is artificially added as a context, since we need to distin-
guish the topmost tree from all the other (sub)trees. In fact, we need to bind
the local minimum of the topmost tree with the global minimum of that same
tree.1

In order to inspect the node under focus, we define a new datatype, with an
associated pattern-matching function:

data Cons = CRoot | CFork | CLeaf Int

constructor :: Zipper → Cons constructor (Leaf l ,) = CLeaf l

constructor (,Root) = CRoot constructor (Fork ,) = CFork

Now, we have defined all it takes to navigate through concrete trees. Going
down on a (non topmost) tree, for example, can be implemented as follows:

left :: Zipper → Zipper right :: Zipper → Zipper

left (Fork l r , c) = (l ,L c r) right (Fork l r , c) = (r ,R l c)

while trying to go down the topmost tree simply creates a zipper whose (real)
context is Top:

tree :: Zipper → Zipper

tree (t ,Root) = (t ,Top)

Going up on a location on a tree may also be performed in a simple way,
which actually inverts the behavior of functions left , right and tree shown above:

up :: Zipper → Zipper up (t ,L c r) = (Fork t r , c)

up (t ,Top) = (t ,Root) up (t ,R l c) = (Fork l t , c)

Finally, we define a function that applies a transformer to the tree under
focus:

modify :: Zipper → (Tree → Tree) → Zipper

modify (t , c) f = (f t , c)

Despite its clear syntax and expressive power, the described embedding does
not ensure that attributes are computed only once on a given node. We may
notice that on the repmin solution presented earlier, the global minimum of a
tree is computed as many times as the number of leaves that tree has.

As a concrete example of this, in Figure 2 we show the function call chains
that activate the computation of attributes replace on leaves labelled with 1 (left)
and 2 (right). As defined earlier, replace in a leaf will call globmin on the same
node, then globmin will call globmin at its parent, and so on, calling then locmin
from the root to the leaves. So, while in the first computation of replace every
attribute is computed only once, in the second case we see that some calls to

1 This binding can be seen in the definition of globmin, in CRoot → locmin (tree t).

Fig. 2: Function (attribute) calls to evaluate replace in a leaf

globmin are new, but then we reach a point in which we start to repeat the steps
that have already been taken, therefore duplicating computations and creating
an unnecessary overhead, which grows proportionally with the number of leaves.

One contribution of this paper is the introduction of a strategy for solving
this efficiency issue, which is presented in the next section. This is achieved by
memoizing attribute computations, improving that way the performance of the
solution, and allowing us to say that we provide, under a formal perspective, a
real attribute grammar embedding.

Although we use repmin as a running example, the strategy we study has
also been applied and assessed in other problems that are well know in the AG
domain, some of which are presented in Section 4.

3 Memoized AGs

As an alternative to the solution given in Figure 1 we present the one in Fig-
ure 3. The structure of the new code is quite similar to the old one. Without
delving into details now, it can be seen that the main differences are the use of a
memo function, which introduces memoization in the evaluation of the attribute
grammar, and the use of let to pass around a changing tree.

In order to avoid attribute recomputations, we attach a table to each node
of a tree to store the value of the attributes associated to the node. We do so by
transforming the original tree into a new one of same shape and with a memo
table attached to each node. The new tree type is now parametric on the type
m of the memo table.

data Treem m = Forkm m (Treem m) (Treem m)

| Leafm m Int

A new version of the Zipper has to be defined to be able to navigate through
a tree of type Treem.

-- Inherited

globmin :: (Memo Globmin m Int ,Memo Locmin m Int) ⇒ AGTreem Int

globmin = memo Globmin $ λz → case constructorm z of

CRoot → locmin .@. treem z

CLeaf → globmin ‘atParent ‘ z

CFork → globmin ‘atParent ‘ z

-- Synthesized

locmin :: (Memo Locmin m Int) ⇒ AGTreem Int

locmin = memo Locmin $ λz → case constructorm z of

CLeaf v → (v , z)

CFork → let (left , z ′) = locmin .@. leftm z

(right , z ′′) = locmin .@. rightm z ′

in (min left right , z ′′)

replace :: (Memo Replace m Tree,Memo Globmin m Int ,Memo Locmin m Int)

⇒ AGTreem Tree

replace = memo Replace $ λz → case constructorm z of

CRoot → replace m .@. treem z

CLeaf → let (mini , z ′) = globmin z

in (Leaf mini , z ′)

CFork → let (l , z ′) = replace .@. leftm z

(r , z ′′) = replace .@. rightm z ′

in (Fork l r , z ′′)

Fig. 3: Repmin defined using memoization

type Zipperm m = (Treem m,Cxtm m)

data Cxtm m = Rootm | Topm
| Lm m (Cxtm m) (Treem m)

| Rm m (Treem m) (Cxtm m)

The combinatorsmkAGm, constructorm, treem, leftm, rightm, upm and modifym

that work on Zipperm are analogous to the ones defined in Section 2 for the orig-
inal Zipper type. For example, upm is defined as:

upm :: Zipperm m → Zipperm m

upm (t , T opm) = (t , Rootm)

upm (t , Lm m c r) = (Forkm m t r , c)

upm (t , Rm m l c) = (Forkm m l t , c)

3.1 Memo Tables

A memo table will contain Maybe elements corresponding to the attribues, where
Nothing is used to mean that the value of an attribute has not been computed
yet. In our example, we store Maybe values for the attributes Globmin, Locmin
and Replace.

We define singleton datatypes to refer to each attribute in a table:

data Globmin = Globmin

data Locmin = Locmin

data Replace = Replace

By means of a multi-parameter type class Memo we define functions to lookup
and modify the value (of type a) of a given attribute att in a memo table of type
m.

class Memo att m a where

mlookup :: att → m → Maybe a

mmodify :: att → (Maybe a → Maybe a) → m → m

The intended meaning of mmodify att f m is the update of the value v of
attribute att stored in the table m by f v . The benefit of defining this class
is that we can have memoized implementations of AGs that are generic in the
representation of the memo tables.

There are different alternatives in how we can implement a memo table. One
possibile representation is in terms of tuples. In our example, the tuple stores
values corresponding to Globmin (Int), Locmin (Int) and Replace (Tree).

type MemoTable = (Maybe Int ,Maybe Int ,Maybe Tree)

The use of tuples to represent memo tables imposes an important drawback
because it requires to close the universe of attributes for defining the tuple cor-
responding to the memo table. Consequently, the addition of a new attribute to
the AG leads to the redefinition of the memo table and its associated operations.
In other words, the solution with tuples is not extensible.

One way to solve this problem is by replacing tuples by some implementation
of extensible records, like the heterogeneous strongly typed lists [11] defined in
the HList2 library. In our repository3 we include an alternative version that
represents the memo tables as extensible records.

Once we have decided the representation of the memo table we are in con-
ditions to define an instance of the Memo class for each attribute. For example,
the instance for Globmin for the representation in terms of tuples is as follows:

instance Memo Globmin MemoTable Int where

mlookup (g , ,) = g

mmodify f (g , l , r) = (f g , l , r)

A Treem can be generated from an input tree by attaching a given memo table
to each node.

2 https://hackage.haskell.org/package/HList
3 https://hackage.haskell.org/package/ZipperAG

buildm :: Tree → m → Treem m

buildm (Fork l tr) mt = Forkm mt (buildm l mt) (buildm r mt)

buildm (Leaf n) mt = Leafm mt n

We make a final remark concerning the representation of memo tables. Our
representation assumes uniformity on all nodes of the AG in the sense of all
having the same attributes. However, this is not the case in every AG. Different
types of nodes may have different attributes and consequently different types of
memo tables. To admit this case one possible solution is to declare MemoTable
as a sum type with one type of memo table for each kind of node:

data MemoTable = MTFork MemoTableFork | MTLeaf MemoTableLeaf

It is then necessary to define corresponding instances of the Memo class taking
into account the alternative memo tables.

3.2 Attribute computation

An attribute computation computes a value, as before, but now it may also apply
modifications to memo tables contained in the tree:4

type AGTreem m a = Zipperm m → (a,Zipperm m)

The function memo, used in every attribute definition of Figure 3, is who puts
the memoization mechanism to work. It takes as input a reference to an attribute
and an AGTreem, representing the computation of that attribute, and returns
as result a new AGTreem where the computation of the attribute is memoized.

memo :: Memo attr m a ⇒ attr → AGTreem m a → AGTreem m a

memo attr eval z =

case mlookup attr (getMemoTable z) of

Just v → (v , z)

Nothing → let (v , z ′) = eval z

in (v ,modifym z ′ (mmodify attr (const $ Just v)))

First of all, the memo table is obtained (by getMemoTable). Then the given
attribute is searched in the memo table to see whether it was already computed.
In the affirmative case, the stored value of the attribute is directly returned.
Otherwise, we have to compute the value of the attribute at the current location
of the zipper and modify the Treem by storing the computed value in the cor-
responding memo table. Notice the use of modifym to update the Zipperm that
will be passed to future computations.

One effect of attribute computation by memoization is a continuos movement
of the computation focus. This means that the location where the computation
of an attribute is taking place is continuosly changing. Changes in the compu-
tation focus correspond to location changes in the zipper. Those movements in
the zipper need to be taken into account when defining the computation of an

4 This could also be represented in terms of a State monad, but we will not take that
alternative in this paper.

attribute because in some cases it is neccesary to return to the original location
after moving. To see an example suppose we implement locmin of Figure 3 in
the following way:

locmin = memo Locmin $

λz → case constructorm z of

CLeaf v → (v , z)

CFork → let (left , z ′) = locmin (leftm z)

(right , z ′′) = locmin (rightm z ′)

in (min left right , z ′′)

In the CFork case, the focus is first moved to the left child where locmin is
computed. Then, the intention is to compute locmin at the right child of the
original Fork. However, this is not the case, since it is actually computed at the
right child of the left child of the original Fork (if that location even exists). In
summary, this definition of locmin is not correct. The reason of the failure is
that once we move the focus to another position, using e.g. leftm or rightm, it
does not return to the original one.

To cope with this problem we define two new combinators (.@.) and atParent
to move the focus of the Zipperm to an immediate position to compute an
attribute there, returning the focus to the original location afterwards. By using
(.@.) an attribute is computed in the given child, and then the focus goes back
to the parent using upm:

(.@.) :: AGTreem m a → AGTreem m a

eval .@. z = let (v , z ′) = eval z

in (v , upm z ′)

Moving the focus to the parent adds the complication of knowing the position
of the child to which we have to return. This is easily solved by inspecting the
context of the zipper from which we started.

atParent eval z = (v , (back z) z ′)

where

(v , z ′) = eval (upm z)

back (, T opm) = treem

back (, Lm) = leftm
back (, Rm) = rightm

Finally, to evaluate the AG defined in Figure 3 we compute replace at the initial
Treem (with empty tables at each node), ignoring the final Treem.

repmin :: Tree → Tree

repmin t = fst (replace (mkAGm (buildm t emptyMemo)))

If, for example, we adopt the memo table representation in term of tuples then
the empty table for this AG is given by:

emptyMemo = (Nothing ,Nothing ,Nothing)

0	

50	

100	

150	

200	

250	

300	

2300	
 2600	
 2900	
 3200	
 3500	
 3800	
 4100	
 4400	
 4700	
 5000	

Ti
m
e	

in
	
 m

ill
is
ec
on

ds
	

Number	
 of	
 nodes	

Original	

Memo	

Fig. 4: Performance of the repmin implementations.

4 Results

In this section, we assess in terms of efficiency the memoization approach we
followed in this paper against the original, non-optimized embedding of [15]. For
this assessment, we test the optimized and non-optimized versions of Repmin
together with three well known AG examples from the literature. The results are
presented as running times and memory consumption.

For the benchmarks we are presenting in this section, we compiled the dif-
ferent approaches with the Glasgow Haskell Compiler (ghc), version 7.8.4, using
the -O2 optimization flag. The computer used was a 1.3 GHz Intel Core i5

with 8 GB 1600 MHz DDR3 RAM memory (mid 2013 stock MacBook Air with
RAM upgrade).

4.1 Repmin

We have started by benchmarking the running example presented throughout
this paper. For this test, we used increasingly larger balanced binary leaf trees
with a number of nodes ranging from 2300 to 5000, represented on Figure 4 in
the x-axis.

The performance results of the implementations with and without memoiza-
tion allow us to observe that the memoized version significantly improves the
performance of the original version. Indeed, when we reach the 5000 nodes there
is a clear gap in the time required to run repmin between the original and the
memoized versions.

Another interesting result is how well the memoized version scales. As we
grow from 2300 to 5000 nodes, almost 50%, the memoized shows only a slight
increase in running time, while the original approach takes proportionally more
and more processing time.

The use of memoization strategies in programming often trades off memory
consumption to achieve better runtime performance. This is also evidenced from
the memory consumption comparison we performed on the different implemen-
tations of Repmin, which is presented in Figures 5a and 5b. Both times we ran
repmin with a balanced tree with 150,000 nodes.

Benchmark +RTS -hc -p -K100M 9,898,013,519 bytes x seconds

seconds0.0 200.0 400.0 600.0 800.0 1000.0

by
te

s

0M

2M

4M

6M

(90)Main.CAF

(a) Non memoized.

Benchmark +RTS -hc -p -K100M 7,237,760 bytes x seconds

seconds0.0 0.1 0.1 0.2 0.2 0.2

by
te

s

0M

5M

10M

15M

20M

25M

30M

35M

40M

(90)Main.CAF

(b) Memoized.

Fig. 5: Heap Profile on Repmin (values in Mbytes).

As expected, we observe that it is the original version that throughout its
execution has the lowest peak of memory consumption, of slightly more than 8
Mbytes. And it is the memoized version, which is the fastest in terms of runtime
performance, that reaches the highest peak of consumed memory, of around 45
Mbytes. A large difference but a burden expected by the use of the memo tables.

It is worth mentioning the time gap between the two versions. The original
took around 1500 seconds (around 25 minutes) while the memoized version took
around 0.3 seconds. Even though these tests cannot be compared to the per-
formance ones of Figure 4, because of the overhead introduced when analysing
memory consumption (by the ghc profiler), among themselves there is a huge gap
in run time, confirming the exponential behavior of the non memoized version.

A final note, as mentioned earlier, the original implementation of Repmin is
an extremely heavy example of semantics requiring a large number of necessary
recomputations of attributes (the minimum value of the tree is constantly be-
ing required). So, it comes as no surprise that the memoized versions perform
significantly better here. The next examples are focused on real situations.

4.2 Algol-68 Scope Rules

In this section we benchmark an implementation of the Algol 68 scope rules [19, 8,
15]. Algol 68 holds central characteristics of widely-used programming languages,
such as a structured layout and mandatory but unique declarations of names
which are used.

The semantics requirements are therefore the same as some real examples,
like the ones on the Eli system [10] (to define a generic component for the name
analysis task of a compiler), or the let-in construct of the Haskell programming
language.

Algol 68 is a simple block structure language that does not require a declare-
before-use scope rule discipline. A program consists of a block with a list con-

0	

50	

100	

150	

200	

250	

300	

60	
 70	
 80	
 90	
 100	
 110	
 120	
 130	
 140	
 150	

Ti
m
e	

in
	
 m

ill
is
ec
on

ds
	

Number	
 of	
 enclosed	
 blocks	

Original	

Memo	

Fig. 6: Performance of the Algol implementations.

taining either use or declaration of names, or a nested block. An example of a
program is:

p = [use ′ y ; decl ′ x ;

[decl ′ y ; use ′ y ; use ′ w ;]

decl ′ x ; decl ′ y ;]

In this language a definition of an identifier x is visible in the smallest enclosing
block, with the exception of local blocks that also contain a definition of x . In
the latter case, the definition of x in the local scope hides the definition in the
global one. In a block an identifier may be declared at most once.

According to these rules, p above contains two errors: a) at the outer level,
the variable x has been declared twice, and b) the use of the variable w , at the
inner level, has no binding occurrence at all.

Implementing a validator for Algol implies not only checking each individual
block for double declarations of variables, but also constantly analysing outer
blocks for the declaration of variables whose definition can not be found in the
current block, forcing multiple tree traversals.

In Figure 6, we show the results we obtained when running the different im-
plementations on Algol programs with an increasing number of enclosing blocks.
The x-axis of Figure 6 ranges from 60 to 150 enclosing blocks, an increase of
more than 50%. Similarly to the previous examples, memoization shows better
processing times.

4.3 HTML Table Formatter

We now analyze an example from [22]: we want to format HTML style tables.
Namely, we want our AG to receive an abstract data type of an HTML table
and to print a geometrically well defined table. Figure 7 shows an example of a
possible input (left) and correspondent output (right).

Notice that in the output, all the lines have the same number of columns and
the columns have the same length. None of these features are required in the
HTML language.

An entry in the table can be a string or a nested table, thus, the straight-
forward algorithm to express this table formatting requires two traversals and

〈TR〉〈TD〉 The first line 〈/TD〉〈TD〉 of a 〈/TD〉〈/TR〉
〈TABLE〉

〈TR〉〈TD〉〈TABLE〉
〈TR〉〈TD〉 This 〈/TD〉〈TD〉 is 〈/TD〉〈/TR〉

〈TR〉〈TD〉 another 〈/TD〉〈TD/〉〈/TR〉

〈TR〉〈TD〉 table 〈/TD〉〈TD/〉〈/TR〉
〈/TABLE〉
〈/TD〉〈TD〉 table 〈/TD〉〈/TR〉

〈/TABLE〉

7

14

1

4

24

5

1 1

1

7

1

12

5

1

1

|--------------------|

|The first line|of a |

|--------------------|

||----------| |table|

||This |is| | |

||----------| | |

||another| | | |

||----------| | |

||table | | | |

||----------| | |

|--------------------|

Fig. 7: HTML Table Formatting

the definition of gluing data types to pass the width/height (blue subscripts /
superscripts in Figure 7) of nested table from the first to the second traversal.
Simplifying, it is required to know the sizes of inner tables in order to resize the
outer ones.

To test this AG, we computed trees representing HTML tables with the same
number of rows (50) and an increasing number of columns. All the cells of the
tables include the same text, excepting for the ones in the last column, which
include nested tables with, recursively, the same shape but half the number of
rows and columns of the containing table. The results are presented in figures 8a
(time) and 8b (memory consumption), where the x-axis represents the number
of columns, ranging from 10 to 100.

It can be observed from these results that, although the reduction in execu-
tion time is great, the memoized evaluator does consume much more memory.
Note that, for large inputs this evaluator produces large strings. As a result, in
the memoized version, partial results are kept in the memo table: large strings
in this case. As usual in memoization techniques the gain in runtime is obtained
by using additional memory: the memo table. In fact, memory consumption can
result in a scalability problem in certain cases. To reduce this problem several
AG techniques to purge entries from a memo table have been proposed [19],
which can be used in our zipper-based setting.

(a) Time (b) Memory

Fig. 8: Performance of the HTML table formatters.

5 Conclusion

This paper shows how memoization is introduced in zipper-based embeddings
of AGs. Regarding the programs we finally end up with, we argue that they
maintain the elegance of the embedding we build upon, and in most cases show
better performance, often by various different orders of magnitude.

There is a range of AG applications where this technique does not necessarily
yield an advantage. For example, AGs that only have one tree traversal or heavily
rely on local attributes or semantic operations on their leaves should not (greatly)
benefit from the use of memoization. However, real applications of AGs do not
fit into this category. In fact, we have seen through a series of standard AG
examples that there is a range of problems where memoization provides real
noticeable benefits modulo the memory consumption.

As a possible direction of future research, we would like to test the approach
suggested here with other embeddings of AGs such as the ones of [23, 1, 2]. This
comparison should be performed whenever possible (for example, it might be
hard to perform with specific AG systems such as [7, 13, 24]), but other embed-
dings have different strategies to deal with attribute recomputation (for exam-
ple, lazy evaluation). Further tests are required to see how this compares to our
memoized approach.

Another line of work, could be the use of type-level programming techniques
to make the AG system extensible in the sense of adding new productions to the
grammars.

References

1. Eric Badouel, Bernard Fotsing, and Rodrigue Tchougong. Yet another implemen-
tation of attribute evaluation. Research Report RR-6315, INRIA, 2007.

2. Eric Badouel, Bernard Fotsing, and Rodrigue Tchougong. Attribute grammars as
recursion schemes over cyclic representations of zippers. Electronic Notes Theory
Computer Science, 229(5):39–56, 2011.

3. Florent Balestrieri. The Productivity of Polymorphic Stream Equations and The
Composition of Circular Traversals. PhD thesis, University of Nottingham, 2015.

4. Richard S. Bird. Using circular programs to eliminate multiple traversals of data.
Acta Inf, 21:239–250, 1984.

5. Oege de Moor, Kevin Backhouse, and Doaitse Swierstra. First-Class Attribute
Grammars. In 3rd. Workshop on Attribute Grammars and their Applications, pages
1–20, Ponte de Lima, Portugal, 2000.

6. Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. The architecture of the
Utrecht Haskell compiler. In Haskell Symposium, pages 93–104, 2009.

7. Atze Dijkstra and Doaitse Swierstra. Typing Haskell with an Attribute Gram-
mar (Part I). Technical Report UU-CS-2004-037, Institute of Information and
Computing Sciences, Utrecht University, 2004.

8. João Paulo Fernandes and João Saraiva. Tools and Libraries to Model and Ma-
nipulate Circular Programs. In Symposium on Partial Evaluation and Program
Manipulation, pages 102–111. ACM, 2007.

9. Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549–554, 1997.

10. Uwe Kastens, Peter Pfahler, and Matthias T. Jung. The Eli System. In Int.
Conference on Compiler Construction, pages 294–297. Springer-Verlag, 1998.

11. Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous
collections. In Workshop on Haskell, pages 96–107. ACM, 2004.

12. Donald Knuth. Semantics of Context-free Languages. Mathematical Systems The-
ory, 2(2), June 1968. Correction: Mathematical Systems Theory 5 (1), March 1971.

13. Matthijs Kuiper and João Saraiva. Lrc - A Generator for Incremental Language-
Oriented Tools. In International Conference on Compiler Construction, pages
298–301. Springer-Verlag, 1998.

14. Eva Magnusson and Görel Hedin. Circular reference attributed grammars - their
evaluation and applications. Science Computer Programming, 68(1):21–37, 2007.

15. Pedro Martins, João Paulo Fernandes, and João Saraiva. Zipper-based attribute
grammars and their extensions. In Brazilian Symposium on Programming Lan-
guages, pages 135–149. Springer, 2013.

16. Pedro Martins, João Paulo Fernandes, João Saraiva, Eric Van Wyk, and Anthony
Sloane. Embedding attribute grammars and their extensions using functional zip-
pers. Science of Computer Programming, 2016. In Press.

17. Arie Middelkoop, Atze Dijkstra, and S. Doaitse Swierstra. Iterative type inference
with attribute grammars. In International Conference on Generative Programming,
pages 43–52. ACM, 2010.

18. Ulf Norell and Alex Gerdes. Attribute Grammars in Erlang. In Workshop on
Erlang, 2015, pages 1–12. ACM, 2015.

19. João Saraiva. Purely Functional Implementation of Attribute Grammars. PhD
thesis, Utrecht University, The Netherlands, December 1999.

20. João Saraiva and S. Doaitse Swierstra. Generating Spreadsheet-Like Tools from
Strong Attribute Grammars. In International Conference on Generative Program-
ming, pages 307–323. Springer, 2003.

21. Anthony M. Sloane, Lennart C. L. Kats, and Eelco Visser. A pure object-oriented
embedding of attribute grammars. Electronic Notes in Theoretical Computer Sci-
ence, 253(7):205–219, 2010.

22. Doaitse Swierstra, Pablo Azero, and João Saraiva. Designing and Implementing
Combinator Languages. In Third Summer School on Advanced Functional Pro-
gramming, volume 1608 of LNCS Tutorial, pages 150–206. Springer-Verlag, 1999.

23. Tarmo Uustalu and Varmo Vene. Comonadic functional attribute evaluation.
Trends in Functional Programming, pages 145–162. Intellect Books (10), 2005.

24. Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: an Extensible
Attribute Grammar System. Electronic Notes in Theoretical Computer Science,
203(2):103–116, 2008.

25. Marcos Viera, Doaitse Swierstra, and Wouter Swierstra. Attribute Grammars Fly
First-class: how to do Aspect Oriented Programming in Haskell. In International
Conference on Functional Programming, pages 245–256. ACM, 2009.

26. Harald Vogt, S. Doaitse Swierstra, and Matthijs Kuiper. Higher order attribute
grammars. SIGPLAN Notices, 24(7):131–145, June 1989.

