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Comparação de previsões de modelos de volatilidade e as suas
combinações para o FTSE 100: uma corrida empatada

Resumo

Eu primeiro comparo 74 modelos que incluem os principais modelos simples, ARMA,
GARCH, e HAR da literatura sobre o desempenho sem retrospetiva de modelos de volatil-
idade do dia seguinte. Para o índice FTSE100 no período de 2005-2010, todos os modelos
HAR e GARCH e alguns modelos ARMA e de alisamento exponencial têm um desempenho
similar. Eu, posteriormente, testo 176 combinações de modelos (o que significa que 250
modelos são comparados na totalidade) no período de 2007-2010, e observo que o desem-
penho médio tem menor variância e é sempre ligeiramente melhorado. Esta tendência não
é observada com esquemas de ponderação complexos, que são baseados em regressões reg-
ularizadas (i.e., Lasso, Ridge e Elastic Net); e esta tendência é marginalmente maior quando
se excluem modelos com mau desempenho passado e se ponderam igualmente as previsões
dos modelos remanescentes (i.e., trimming). Mas, no geral, tal como é observado na liter-
atura relevante, todos os modelos razoavelmente adequados tipicamente têm um desem-
penho idêntico, portanto a pesquisa passada parece ter exagerado ao reportar as melho-
rias geradas por novos modelos. Adicionalmente, existe um problema em que, de acordo
com a literatura, mesmo em casos em que existem grandes melhorias no desempenho men-
surado através das funções de perda usadas, isso raramente parece levar a melhorias em
contextos económicos aplicados, tal como a gestão de risco e otimização de portefólios. Por
causa disto, eu argumento que pesquisa subsequente tem de usar métricas diretamente rela-
cionadas com estes contextos aplicados.

Palavras-chave: HAR, GARCH, combinações, regularização, volatilidade.
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Forecast comparison of volatility models and their combinations
for the FTSE 100: a tied race

Abstract

I first compare 74 models that include the main naïve, ARMA, GARCH, and HAR models
from the volatility forecasting literature to assess their out-of-sample performance for day-
ahead forecasts. For the FTSE100 index in the period of 2005-2010, all HAR and GARCH
models and some ARMA and exponential smoothing models perform similarly to each
other. I then test 176 model combinations (meaning that 250 models are compared in to-
tal) in the period of 2007-2010, and observe that the average performance has less variance
and is always slightly improved. This tendency is not observed with complex weighting
schemes, which are based on regularized regression (i.e., Lasso, Ridge and Elastic Net);
and this tendency is marginally larger when excluding underperforming models and equal
weighting the forecasts of the remaining models (i.e., trimming). But, overall, as observed in
the relevant literature, all reasonably adequate models tend to have identical performance,
so past research seems to have overstated the improvements generated by new models. An
additional problem is that, according to the literature, even large performance gains with
the loss functions used seem to rarely translate into improvements in economic applica-
tions, such as risk management and portfolio optimization. Because of this, I argue that
subsequent research must use metrics directly related to these applications.

Keywords: HAR, GARCH, combinations, regularization, volatility.
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1 Introduction

There is an extensive literature related to volatility forecasting that was propelled by the
creation of the ARCH (Engle, 1982) and GARCH models (Bollerslev, 1986) and, later on, the
use of intraday data to measure volatility with less noise (Andersen, Bollerslev, Diebold,
and Ebens, 2001; Andersen, Bollerslev, Diebold, and Labys, 1999, 2003), which made HAR
models (Corsi, 2009) the main focus of more recent research.

Both of these model families have spawned many variations in the literature, but it is
not clear to what extent GARCH models are better than naïve models (Poon and Granger,
2005, 2003), or to what extent HAR models can be improved with other intraday volatility
measures (Liu, Patton, and Sheppard, 2015), among other issues. At the same time, it is
clear that larger, systematic tests or reviews (e.g., Hansen and Lunde, 2005; Liu et al., 2015;
Poon and Granger, 2003) show that the performance of different models tends to be much
closer than what a cursory read of the literature would suggest.

I empirically test a broad range of volatility models for one-day-ahead (out-of-sample)
forecasts, similarly to the paper of Hansen and Lunde (2005) but with more model vari-
ety (74 individual models, and 176 model combinations). My main contributions to the
literature include the comparison of naïve models, some of which perform comparably to
GARCH and HAR models; the comparison of HAR models with more intraday measures,
which was done to a more limited degree in Bollerslev, Patton, and Quaedvlieg (2016); and
I combine these models with simple (e.g., equal weighting) and complex (i.e., regularized
regression) weighting schemes, which was also done to a very limited degree for equity
indexes (e.g., Becker and Clements, 2008). I also do a broad analysis of the literature re-
lated to significance testing because this an important topic to address when differences in
performance are small, and multiple comparisons are being made.

I choose the individual models to test based mainly on two goals: I want to look at
many model families; and, especially for HAR models, I select the ones that have the best
performance in the literature. For model combinations, I mostly choose simple weighting
schemes because that seems to work better in practice (Timmermann, 2006), although I also
use regularized regression schemes, which are very similar to other approaches used in the
literature. These choices allow me to observe the dispersion between the simplest models
and the best models in the literature. With model combinations, I can also understand if
inferior models still offer any improvements, despite their inferiority.

My main conclusion is that most models (some naïve models included) have identical
performance. This is largely consistent with the findings of the literature, so I argue that
I argue that researchers need to use metrics that are more closely aligned with improving
risk management.

1



The remaining thesis is structured as follows. In section 2, I review the literature related
to commonly used volatility models (section 2.1), the realised volatility measures they use
(section 2.2), how they can be combined (section 2.3), and how their performance is evalu-
ated – section 2.4 for the loss functions, and section 2.5 for the significance tests). I describe
the data used, its sources, and some of its limitations on section 3. The methodology (sec-
tion 4) presents the chosen loss functions (section 4.1), the individual models (section 4.2)
and model combinations (section 4.3) tested, and the significance test (section 4.4) used to
evaluate their performance. For the empirical results (section 5), I first present an overview
of the main findings (section 5.1), most of them related to the differences between model
families. In the following sections (from 5.2 to 5.3), for each model family, I analyse the
subtler differences in performance, which tend to be less consistent or unsupported by the
literature. The discussion (section 6) considers my results in the context of the broader lit-
erature: do other ways of improving forecasts perform better than model combinations?
Do they lead to improvements in applied measures? And how should future research ad-
vance the knowledge in this area? Lastly, in section 7 I conclude by highlighting my main
empirical findings and suggestions for future research.

Additionally, I provide suplementary material: the code I use for testing the models and
analysing the results is available on a repository of my personal GitHub account (Pinho,
2020); Appendix A describes the general procedure I used for cleaning the data and some
errors I found with it; Appendix B shows summary statistics for the volatility measures
used (Table 7), and the correlation between the forecasts of model families (Table 8); and
Appendix C contains the results presented in tabular form (Tables 9 through 17).

2



2 Literature review

In the literature about predicting volatility in financial markets, pure time-series models
prevail. There have been attempts to use models that get closer to the underlying data-
generating process (i.e., structural models), which use macroeconomic variables (Bollerslev,
Tauchen, and Zhou, 2009) and measures of sentiment (Oliveira, Cortez, and Areal, 2017;
Wang, Keswani, and Taylor, 2006), among others. But these attempts are ineffective, as
they only manage to improve predictions by a small amount, at best. Contrarily, pure time-
series models have been extremely effective – it is often possible to explain close to 80% of
the variability in volatility (e.g., Andersen, Bollerslev, and Diebold, 2007; Corsi, Pirino, and
Reno, 2010). The goal of such models is to accommodate the market’s stylized facts, such as
volatility clustering, excess kurtosis in the unconditional volatility process, or the leverage
effect (Cont, 2001; Martens, Van Dijk, and De Pooter, 2009). These stylized facts have strong
empirical and theoretical support, with some stylized facts like volatility clustering being
observed in virtually every period, frequency, and financial market (Bollerslev, Chou, and
Kroner, 1992; Bollerslev, Litvinova, and Tauchen, 2006). Importantly, we can assume these
stylized facts will not be arbitraged away because volatility has no reason to stop being
predictable – an efficient market does not remove the uncertainty that causes volatility. As
such, the whole literature implicitly assumes that the current time-series structure related
to volatility will persist.

2.1 Univariate time-series models

When forecasting volatility, “most of the seemingly chaotic nonlinearities work through the
conditional variance,” (Bollerslev et al., 1992, p. 23) which is why modelling it is the main
focus of the research. Initially, the models conditioned volatility on squared innovations
of the return process (Engle, 1982). The creation of the Generalized Autoregressive Het-
eroskedasticity (GARCH) model of (Bollerslev, 1986) soon revealed that the autoregressive
component of volatility is more important. The GARCH conditions on past volatility in
such a way that it simultaneously allows for serially correlated squared errors (i.e., volatil-
ity clustering), and serially uncorrelated returns (i.e., it allows you to model the return
process as a random walk). Subsequent GARCH1 models tried to incorporate other styl-
ized facts, with two of them being emphasized: the leverage effect, which is the tendency
for negative returns to increase volatility more than positive returns (Black, 1976; Nelson,
1991); and the tendency for large returns to affect volatility disproportionately more than

1When I write “GARCH” or “HAR”, I am referring to the models from the family of GARCH or HAR
models, respectively. When I use monospaced font (e.g., GARCH(1,1) or HAR-RV), I am referring to a specific
model.

3



small returns (Bollerslev et al., 1992; Glosten, Jagannathan, and Runkle, 1993). In practice,
most of the popular GARCH models react in similar ways to shocks in volatility (Hentschel,
1995) and have similar performance (Awartani and Corradi, 2005; Hansen and Lunde, 2005).
These last two studies, in particular, show that for stock data and stock index data, the mod-
els that allow for leverage effects tend to be significantly better2 than the GARCH(1,1), though
the improvements are still small: Hansen and Lunde (2005) report that, for most loss func-
tions, the best models (out of 330) only reduce the loss by 5%-13% relative to the model with
median performance; the model with median performance, in turn, consistently has identi-
cal performance to the GARCH(1,1). Looking at a broader set of studies, Poon and Granger
(2003) document that GARCH models are often surpassed by naïve models 3, but mostly in
low-volatility periods.

Although GARCH models showed relatively unsatisfactory performance, they only
started losing popularity after the development of realised variance (Andersen et al., 2001,
1999, 2003). Realised variance uses intraday returns instead of daily returns, which reduces
the noise in the measurement of volatility (the noise comes, for example, from assuming
that days with small daily returns are always days with low volatility). When there is less
noise, volatility can be treated as an observable variable, which makes models much sim-
pler and easier to estimate. One of those simpler models, the Heterogeneous Autoregres-
sive (HAR) model of Corsi (2009), ended up becoming the standard in the literature. This
model allows you to estimate its parameters with ordinary least squares (OLS); it seems
to reduce the one-day-ahead mean squared error over the GARCH(1,1) models by roughly4

20%-60%; and it can replicate a large number of the already-mentioned stylized facts. It
achieves this with parsimony because, unlike GARCH models, it does not need to model
a long-memory process (where, for example, the volatility of one year ago can meaning-
fully affect today’s volatility). Instead, it uses a short-memory process with multiple distri-
butions, which makes the process empirically indistinguishable from a long-memory pro-
cess (LeBaron et al., 2001).

Similarly to GARCH models, researchers developed new variants of HAR models that
accommodate other features of financial markets. Some of the more common features have

2Using the test for superior predictive ability (Hansen, 2005), which controls for multiple comparisons. See
more in section 2.5.

3Note that they consider “historical volatility” to include AR and multivariate VAR models, for example, so
their results would not be as good if you applied my definition of “naïve model” expressed in section 4.

4There are very few studies directly comparing non-augmented HAR and GARCH models. Corsi (2004)
compare them directly and finds a reduction in the MSE of almost 40%, with ARMA-type models having similar
performance. Given that ARMA-type models are similar, we can extrapolate the results from other articles to
obtain very rough estimates: Kambouroudis, McMillan, and Tsakou (2016) find that ARMA-type models, in
relation to GARCH models, reduce the MSE by anywhere from 14% to 50%, which implies that differences
between HAR and GARCH models can be larger; Andersen et al. (2003) find a reduction ranging from 5% to
15%, but this is for exchange rate data, which shows that the chosen type of financial instrument has a substantial
impact on the results.

4



to do with the leverage effect (Corsi and Renò, 2012; Patton and Sheppard, 2015), measure-
ment error (Bollerslev et al., 2016), and jumps (Andersen et al., 2007; Corsi et al., 2010). Most
variants provide small, inconsistent improvements over the base HAR model. There are two
main exceptions to this. The first is the HARQ (“Quarticity HAR”, which will be referred to
as Q-HAR in this thesis) of Bollerslev et al. (2016) often gives sizable and consistent improve-
ments in the forecast accuracy relative to the HAR-RV (“Realised Volatility HAR”) model
by incorporating information about the volatility of volatility. Using a large out-of-sample
period, they find that the reduction in mean error is generally 3%-10% across forecast hori-
zons, for both a stock index (S&P500) and individual stocks. The second exception is the
HAR-log, which is more thoroughly explored in Buccheri and Corsi (2019); this model is
identical to the HAR-RV, but it utilizes the logarithm of realised volatility instead of just re-
alised volatility. The main improvement in performance over the HARQ happened during a
period of higher volatility (2008-2013) for both the MSE and QLIKE loss functions.

2.2 Realised measures of volatility

Each HAR variant is associated with a type of realised measure that isolates a feature of
the intraday time-series. For example, bipower variation (Barndorff-Nielsen and Shephard,
2004) tries to measure the intraday volatility without the influence of volatility jumps, which
are periods of sudden and extreme increases in volatility caused by news releases or other
events. These realised measures are then refined by other authors. One example for bipower
variation is the threshold bipower variation (Corsi et al., 2010) that uses a jump-test to put
more stringent requirements on what is considered a volatility jump.

Just like in the case of model variations, it is typical for the authors of new realised mea-
sures to claim that their contributions generated substantial improvements to model accu-
racy, but thorough empirical tests paint a different picture. One such test was conducted by
Liu et al. (2015), where they use a very large number of measures with a data set that spans
several asset classes. They conclude that the ubiquitous 5-minute realised variance mea-
sure is rarely (significantly) surpassed; and that the best measure across asset classes is the
threshold realised variance, which is also very simple to calculate5. Patton and Sheppard
(2009b) use a similar approach and find that the 5-minute realised volatility works well, but
a simple combination of measures generally beats every individual measure; the accuracy
improvements are small, however.

5To calculate the threshold realised variance, you exclude all the squared returns that are above a certain
threshold. In the article, the threshold at day t is three times the average 5-minute intraday squared returns of
day t.
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2.3 Combining models

Earlier studies on forecasting volatility experimented with combinations of GARCH mod-
els and implied volatility (“IV” henceforth) (Donaldson and Kamstra, 2005; Lamoureux and
Lastrapes, 1993; Martens and Zein, 2004; Pong, Shackleton, Taylor, and Xu, 2004) by includ-
ing IV as an exogenous variable in the conditional volatility equation of GARCH models,
and more recently Kambouroudis et al. (2016) do the same with realised volatility. Although
this creates issues of multicollinearity – IV is very correlated with the conditional volatil-
ity (Becker, Clements, and White, 2007) – most results show that prediction accuracy can be
substantially improved. These improvements tend to be concentrated in 1- to 10-day-ahead
forecasts; for longer periods, the improvements get progressively smaller or negligible as
the horizon increases in frequency to 22-day-ahead forecasts.

More recent studies find that trying to build a “super model” (Figlewski, 1997) is not the
best approach. So instead of making one model that incorporates all sources of information
and time-series properties, they combine several distinct individual models. With this ap-
proach, Becker and Clements (2008) forecast the average volatility for the following 22 days
(rather than using step-ahead forecasts for individual days). When they separate implied
volatility6 from the remaining models, implied volatility is found to be much worse than
model combinations, which are often the best models. There is a caveat, however: the VIX
is among the best models when the accuracy is compared with a loss function that penalizes
underpredictions more than overpredictions. So the VIX does worse largely because it has
a risk-premium embedded in it, which causes a predictable upward bias (Chernov, 2007;
Christensen and Prabhala, 1998).

Another small set of studies uses a different approach to combining models. In the case
of Rapach and Strauss (2008) and Rapach, Strauss, and Wohar (2008), they first study to
what extent there is evidence of structural breaks (i.e., abrupt changes in the structure of
the time-series). They find strong evidence for it, so they test shorter lengths of estima-
tion windows for GARCH models (among other things). Rapach and Strauss (2008) find
that, for exchange rate data, using combinations of GARCH models with different estima-
tion windows is better than choosing a single model/estimation window. This approach is
not better because of large improvements to accuracy – the improvements are in the range
of 2%-5%, typically. Instead, is it better because of the consistency: the improvements for
combinations are much less dependent on the country which the data was tested on, and on
forecast horizon and loss-function used. But the results tend to be mixed when we consider
other studies. On one hand, Rapach et al. (2008) use an identical methodology and do not
get nearly the same results, with the accuracy between individual models and combinations

6Measured with the model-free methodology discussed later, in the Methodology.
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being almost indistinguishable. On the other hand, Yang, Tian, Chen, and Li (2017) use a
HAR model instead of a GARCH one on Chinese agricultural futures, and the results are
even better, with the reduction being larger than 10% over the base HAR model. The differ-
ences between studies are partly due to differences in the data – agricultural futures have
more moderate structural breaks (Vivian and Wohar, 2012), and more prominent seasonal-
ity effects, which makes the base HAR a worse fit and creates an opportunity for models to
exploit the additional structure.

There are adjacent works of literature to volatility forecasting that have explored model
combinations more thoroughly. One minor instance of this happens in the equity risk pre-
mium literature. As an example, Rapach, Strauss, and Zhou (2010) first show that, in out-of-
sample forecasts, all the methods they tested have worse accuracy than a simple historical
average; but even when those forecasts are inferior by themselves, they become substantially
better than the historical average when combined.

The vastest literature on forecast combinations is from Macroeconomics. Given that the
discipline deals with related economic phenomena, we can also use the macroeconomic lit-
erature to understand which methods might work best. Clemen (1989) and Timmermann
(2006) review the empirical literature and find the following stylized facts: good in-sample
performance often leads to bad out-of-sample results; simple weighting schemes (e.g., equal
weights for all models) outperform complex ones; and there are some small benefits when
excluding the worst models (“trimming”) or having time-varying weights7. All these facts
are connected: they imply that simpler models and combinations work better. Even the
more complex weighting schemes usually apply shrinkage towards equal weighting, with
the improvements in prediction being very sensitive to the degree of shrinkage applied.
There is one exception, however: trimming the worst forecasts can benefit prediction even
when it is done aggressively. Aiolfi and Favero (2005), for instance, find that excluding
around 80% of the models yields the best results. But these results should not generalise
in a lot of settings because they are predicting stock returns, which are notoriously hard to

7Note that Timmermann (2006) has some errors in his treatment of the literature related to trimming, which
is why I conclude slightly different things from his literature review. He often seems to confuse the meaning of
“trimming” and “trimmed mean”, though these have been used interchangeably (see Aiolfi and Favero (2005),
for example). Trimming is a procedure where you exclude k% of the models with the worst past performance.
Trimmed mean is a procedure that removes the most extreme forecasts in the cross-section of a day’s forecasts; it
does not look at past performance and is frequently symmetric (i.e., it excludes the k% forecasts that are largest
and smallest, similarly to naïve outlier-removal methods). Here are, concretely, the mistakes Timmermann
makes in the section about trimming (on page 183 and 184). He says that, according to Makridakis and Winkler
(1983), “including very poor models in an equal weighted combination can substantially worsen forecasting
performance,” but that is not explicitly or implicitly stated by the authors of the article, and it cannot be taken
from the results because the authors do not apply trimming. Stock and Watson (2004) also use trimmed mean
and find that it is identical to using the mean or median forecast, but they do not use trimming. The only similar
procedure to trimming that they perform is the “recent best” approach, picking the model with the best recent
performance, but that is an extreme form of trimming, and not what Timmermann was referring to.
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predict (Hou, Xue, and Zhang, 2017). This means that a larger share of the models might be
completely non-informative, thereby making their exclusion worthwhile. Stock and Watson
(2004) find that choosing the model with the best performance in the recent past often has
good results, but it is extremely variable from country to country (similarly to other com-
plex ways of making combinations), so the higher accuracy yielded by complex weighting
schemes often comes at a cost.

Why is model simplicity better? It is partly because of sampling uncertainty: when two
models have similar, yet distinct, performance, a relatively small sample will generate a
noisy model ordering. By averaging the models’ forecasts, we are ensuring that the best
model is always weighted in, which will give us better accuracy if we have no way of know-
ing what the best model is; said another way, we tradeoff lower variance for higher bias.
Strategies of combining models are themselves subject to the same tradeoff – combination
strategies with simple weighting schemes have higher bias and lower variance.

In a lot of applied settings, there are much stronger reasons to prefer model simplic-
ity. Though the sampling-based uncertainty still exists, social sciences have other worries
– unobservable variables, shifting data-generating processes, and the adaptive nature of
interacting agents are among the main ones. In this setting, most models are crude ap-
proximations, so it is unlikely that they can ever be fully correctly specified. Hence, the
(apparent) best model in your sample is probably not taking full advantage of a given in-
formation set; the model structure might also not fit future data as well as it did in the past.
Given our state of ignorance about the true data-generating process, we might get lower
bias and variance by using model combinations.

Some studies show that more complex tools can improve prediction, however. The pre-
viously mentioned study of Becker and Clements (2008) and Yang et al. (2017) find that
regression-based approaches outperform naïve weighting schemes, such as equally aver-
aging all forecasts; within Macroeconomics, Rapach and Strauss (2010) also find success
with more complex approaches; lastly, some competitors in the M4 competition (Makri-
dakis, Spiliotis, and Assimakopoulos, 2020) use more complicated machine learning meth-
ods that generate improvements over simpler combinations, but that improvement is only
around 5%, and is obtained in data sets with business applications that have a large seasonal
component, which is not the case with equity markets’ volatility. So, overall, there is more
evidence in favour of simple combination schemes for volatility forecasting.

2.4 Loss functions

Every result reported so far is typically dependent on the volatility proxy and loss func-
tion used (see Brailsford and Faff (1996) or Brooks and Persand (2003) for extreme exam-
ples, or Poon and Granger (2003) more generally). For volatility proxies, it quickly be-
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came clear that daily squared returns could be misleading in forecast comparisons (An-
dersen and Bollerslev, 1998). For loss functions, however, it was assumed that all would
generate valid rankings. Thus, it was emphasized that you should use many different loss
functions that are either more or less sensitive to outliers, or more or less sensitive to un-
der/overpredictions (Brailsford and Faff, 1996; Hansen and Lunde, 2005).

But more recent developments showed that the majority of loss functions give invalid
forecast rankings, particularly when using a noisy volatility proxy. The rankings are invalid
in the sense that picking the model with lowest loss function will result in a biased vari-
ance estimate for finite samples (Hansen and Lunde, 2006; Patton, 2011). Patton (2011), in
particular, derives a family of loss functions (dubbed “robust”) that give accurate forecasts
of the conditional variance, independently of the noise in volatility proxy, and of the data-
generating process. Different robust8 loss functions weight under/overpredictions differ-
ently, with the (commonly-used) mean squared error (MSE) placing no penalty for under
or overpredictions; and the (also commonly-used) QLIKE placing a moderate penalty on
underpredictions relative to overpredictions. As the penalty on over or underpredictions
becomes higher, the statistical power of tests will tend to become smaller because you need
a higher number of extreme observations to correctly estimate the true (asymptotic) value of
the loss. But volatility models tend to underpredict large jumps in volatility, so the QLIKE is
found to have the most power in statistical tests (Patton, 2011; Patton and Sheppard, 2009b).

Patton (2011) and Patton and Sheppard (2009a) argue that we should opt for robust loss
functions in the absence of a well-defined economic application. It might seem that such an
argument is an overstatement because the bias is very small when using less noisy proxies
for volatility. In the case of the mean absolute error (MAE) of the variance, σ2

t, there is a very
small bias when using 5-minute realised variance – it minimizes 0.99σ2

t (Patton, 2011). But
this relies on optimistic assumptions that are often unmet in reality, such as assuming that
the volatility process has no jumps. When Patton and Sheppard (2009a) use other assump-
tions for the data-generating process, the MAE minimizes 0.35σ2

t in one extreme case. Thus,
it is prudent to at least emphasize the results given by robust loss functions.

8Note that, in this case, the robustness refers to the asymptotic properties when varying the noise of the
volatility proxy, or varying the data-generating process. These “robust” loss functions are, however, less robust
in another sense: they are more impacted by outliers (e.g., when compared to the mean squared error, the mean
absolute error is more robust to outliers, yet less robust to the noise in the volatility proxy or the data-generating
process). In my case, the forecasts of most models are very correlated (Table 8), which means that outliers
happen in the same days and have similar magnitudes. Hence, outliers often do not meaningfully impact the
ranking of the models. Given this premise, I find it acceptable to tradeoff robustness against assumptions about
the data-generating process for robustness against outliers.
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2.5 Significance tests

Using the right loss functions gives us valid performance rankings asymptotically, but we
still want to make inferences based on a sample. In finance, this is especially important be-
cause testing models on new data is often restricted by the passage of time (Lo and MacKin-
lay, 1990). For forecast comparisons, in particular, researchers achieve this goal by testing
many models on the same data set, which creates the problem of data snooping9 (i.e., it in-
creases the probability that some model will significantly outperform all others by chance).
Such a problem is not particularly acute when there is no selection bias (or other kinds of
bias), because traditional statistical tests still give you valid results. For example, if you
tested 100 models with the same performance and variance, and compared each pairwise
difference in mean forecast error (with the test of Diebold and Mariano (2002), say), you
would expect 5% of the differences to be statistically significant at the 5% level – just like
if you made only one comparison. But researchers are seldom interested in knowing the
result of an individual hypothesis in isolation. More commonly, they use (implicitly or
not) tests of joint hypothesis to assess the strength of the evidence, which reduces the false-
positive rate.10 The corrections made for data snooping are not joint hypothesis tests, but
they answer similar questions. The difference is that corrections for data snooping make
the interpretation of individual hypothesis easier because, independently of the number of
hypotheses created, their interpretation is always identical.

The Bonferroni correction (Dunn, 1961) and the Holm-Bonferroni test (Holm, 1979) are
among the most notable procedures to guard against data snooping. They set a higher
threshold for rejection of the null hypothesis, where that threshold increases as the num-
ber of hypotheses tested also increase. Both tests assume that p-values are independent,
so they tend to be too conservative and reduce the statistical power of tests. For most em-
pirical studies, this assumption of independence is not correct: the accuracy of volatility
forecasting models will probably not be normally distributed and, more importantly, they
will surely not be independent. This is because empirical studies test multiple models of the
same family (e.g., HAR or GARCH models) that have very similar performance and simi-
lar p-values. Inspired by those tests, White (2000) and Romano and Wolf (2005) construct
tests that estimate the dependence structure of the p-values, so they give higher statistical
power11, thereby reducing false-negatives.

All the tests previously mentioned use a researcher-specified benchmark. This can be a
9It is also called the problem of multiple comparisons, though that terminology is often associated with

looking at multiple interactions in a model in the broader literature.
10This is true if you suppose that there are true and false hypothesis, and you are not sure which one is which.

In that case, for instance, a simple rule like “only reject the null if the joint hypothesis test is also rejected” will
reduce the number of false-positives.

11Note that the statistical power definition is different from test to test.
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problem because it is possible to include inferior benchmarks and make the performance of
the best model seem more significant. Hansen (2005) tries to correct for this with the test for
superior predictive ability (SPA), but there are other problems associated with benchmarks.
One of them is that a lot of settings have no natural benchmark; the other (larger) problem
is that the benchmark may not be adequate to answer the researchers’ question – a random
walk model of realised volatility (where E[RVt] = RVt−1) is often considered a natural
benchmark (Andersen, Bollerslev, Christoffersen, and Diebold, 2005), but its performance
will almost surely be inferior to any model that has an autoregressive component. Hence, we
do not always get much information out of knowing if a model outperforms the benchmark.

The Model Confidence Set (MCS) of Hansen, Lunde, and Nason (2011) partially solves
these issues because it does not require a benchmark. So, rather than assessing if models
are significantly better than a benchmark, the MCS test compares all the models and yields
a set of models (the so-called “set of superior models”, or SSM) that are, for some level of
significance, considered the “best”. The inadequacies of the test arise out of the way that
the test defines “best”: the set of superior models is obtained by controlling the familywise
error rate (FWER), meaning that it controls the rate at which at least one superior model is
excluded from the set of superior models.

Hansen et al. (2011, p. 454) argue that this objective is an appropriately sceptical goal
because an informative sample “will result in a MCS that contains only the best model”,
and a less informative sample can fail to “distinguish between the models and may result
in an MCS that contains several (or possibly all) models.” But the problem is that the in-
formativeness of a sample is not fully captured by the loss of the models. For instance, as
I have previously argued, it is very common to see the rank of models change depending
on the level of volatility. If we could incorporate this information, it would possibly allows
us to know under what circumstances certain models might perform better or worse, so the
conclusions would be less sample-dependent.

Another disadvantage of the MCS test, which is common to most hypotheses tests, is the
lack of flexibility and interpretability when trying to test different, yet related, hypothesis.
Some authors, for instance, try to prove the superiority of models with certain characteristics
by counting how often each characteristic appears in the set of superior models (e.g., Liu
et al. (2015)). This is a very rough approximation to what the researchers want to know, as
it treats outcomes as a binary event – the model is in or out of the SSM. It is also difficult to
understand, for instance, if a model that is included 50% of the time is significantly better
than another that is in the set 70% of the time (Gelman and Stern, 2006), or how the power
of the test affects the results – are the models included in the set because they are almost
surely equally good, or because of low power?

These disadvantages are apparent in the results of this study because the SSM includes
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almost all models – even the ones that are blatantly inadequate. That said, I still consider
it to be the most adequate significance test in the literature for the purposes of empirical
model comparisons, although it mainly serves as a conservative benchmark.
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3 Data

3.1 Period tested

I use data from the beginning of 2000 until the end of 2010 of the FTSE 100 index (ticker:
FTSE100) and the FTSE 100 VIX index (ticker: VFTSEIX; Siriopoulos and Fassas, 2008) from
Thomson Reuters’ Datastream to construct daily returns and the implied volatility index,
respectively. For the realised measures of volatility, I use OlsenData’s intraday close-price
data of the FTSE 100 index.

After cleaning the data as described in Appendix A, the sample has 2734 daily obser-
vations in total. For individual models, the initial estimation window ranges from the year
2000 to 2004 (5 years, 1249 observations12), and the models are trained on the 5-minute re-
alised variance measure (RV, see section 3.2). For model combinations, the initial estimation
window13 ranges from 2005 to 2006 (2 years, 499 observations)14, and they are trained on the
forecasts or losses of the individual models. This leaves the comparison between all mod-
els’ out-of-sample forecasts to range between 2007 and 2010 (4 years, 1004 observations). If
a model needs to be estimated, it is refitted every day (this is implied in the future sections).
For model combinations using regularization techniques, this procedure is slightly different
(read more in the section 4.3.3).

In the body of this dissertation, I present results from 2005-2010, but the results from
2005-2006 are explored with less detail (Figure 1).

3.2 Volatility measures

Let the price of the FTSE 100 index, Pt, follow a continuous process expressed as a stochastic
differential equation,

d log(Pt) = µtdt+ σtdWt + ktdqt. (1)
12To train individual models, I use 5 years with an rolling expanding window instead of the typical rolling

fixed estimation window of 1000 observations (e.g., Bollerslev et al. (2016); Hansen and Lunde (2005); Rapach
and Strauss (2008, 2010)), and that seems to be sufficient for successfully estimating most models. At the same
time, it seems that models with more parameters have some trouble with estimation (Bollerslev et al. (2016)
mention such a case). My models are even harder to fit, so I use an expanding window of 1249 observations. In
the studies that compare these choices, Rapach and Strauss (2008) find that GARCH models seem to perform
better with fixed estimation windows of 1000 observations because the models do not have to explicitly account
for structural breaks in the time series; for HAR models Buccheri and Corsi (2019) do not find any meaningful
differences between fixed and expanding windows. So, in the end, there is a small tradeoff to using expanding
windows.

13The procedure is somewhat different for model combinations with regularization techniques; read section
4.3.3.

14Other authors, such as Becker and Clements (2008), also use 500 observations to train combinations.
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Figure 1: In-sample/out-of-sample split diagram (top) and realised variance (bottom)

The total sample starts in 01/01/2000 and ends in 31/12/2010. Individual models are trained on the realised
variance (RV, see section 3.2). Model combinations are trained on the forecast errors of individual models.
For model combinations using regularization techniques, this procedure is slightly different (read more in the
section 4.3.3).

In the continuous part of the process (µtdt + σtdWt), µt is the drift process, σt is the in-
stantaneous volatility process, and Wt is a standard Brownian motion15. In the part of the
process that allows for jumps (ktdqt), kt refers to the size of the jumps, and qt is a counting
process (typically a Poisson process) with a possibly time-varying intensity given by λtdt

(i.e., Pr[dqt = 1] = λtdt).
We are interested in finding the unobservable variance of this process, which is the

quadratic variation, QV. The QV can be separated into the Integrated Variance (IV) and
the residual jump component (JV):

QVt ≡
∫t
t−1

σ2
sds︸ ︷︷ ︸

IVt

+
∑

t−1<s⩽t

k2
s︸ ︷︷ ︸

JVt

. (2)

15The process requires additional assumptions to allow for the existence of jumps; read (Andersen et al.,
2007) for more theoretical background and references.
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The volatility of volatility when the process is jump-free is given by the integrated quar-
ticity, IQt, defined as

IQt ≡
∫t
t−1

σ4
sds . (3)

We only observe discrete prices (Pt,j) at some time interval, so the intraday returns (rt,j)
are calculated as

rt,j ≡ log
Pt,j

Pt,j−1
, for j = 1, 2, ...,m (4)

for day t in the jth 5-minute interval16, with the opening price being given when j = 0, and
the closing when j = m.

Intraday returns would be calculated at the highest possible frequency if the intraday
return process did not contain noise, as realised measures are often consistent estimators of
their respective volatilities when the time between returns, ∆, tends towards 0:

QVt = plim
∆→0

RVt ; (5)

IVt = plim
∆→0

TRVt ; (6)

JVt = plim
∆→0

(RVt − TRVt) ; (7)

IQt = plim
∆→0

RQt . (8)

But we observe the return process with a lot of noise related to trading mechanisms (typ-
ically called microstructure noise, which is caused by the bid-ask spread bounce, periods
of low liquidity, etc.). Because of this noise, I need to choose a return frequency that is
high enough to measure the underlying volatility process, but low enough to not measure
microstructure noise.

Provided that the underlying instrument is sufficiently liquid and tick-data is not avail-
able, most studies find that using 5-minute intraday returns is close to optimal (e.g., Ander-
sen et al., 1999; Bandi and Russell, 2008; Liu et al., 2015; McAleer and Medeiros, 2008), so
I use that periodicity. In the London Stock Exchange (LSE), the trading day has 8.5 hours
(FTSE Russell, 2020) so the maximum amount of intraday returns, 1/∆, is 102. In my data,
the actual number of returns fluctuates from day to day, as the data can be very noisy and
was cleaned to exclude certain observations.

16Note that the original unstructured data is in a higher frequency than 5-minutes, so Pt,j is the price at time
j or the last one available before time j.
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I also use daily squared returns, r2
t, as a proxy for volatility:

r2
t ≡

(
log Pt,m

Pt−1,m

)2
, (9)

where m is the last intraday price. Note that the information given by realised measures
does not supersede the one given by squared returns – the realised measures do not include
the close-to-open return, log Pt,0

Pt−1,m
.

Lastly, I use the FTSE 100 VIX index (ticker: VFTSEIX; Siriopoulos and Fassas, 2008) as
the measure of (model-free) implied volatility. Let VFTSEt be the value of the index; to
create the implied daily variance, IVt, we have:

IVt =

(
VFTSEt

100
√

252

)2
. (10)

Table 1 presents the formulas for the realised measures. In Appendix B, Table 7 shows
summary statistics for all the volatility measures with the exception of implied volatility.
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Table 1: Realised volatility measures

Realised measure Authors Variable Definition

Realised variance Andersen et al., 1999 RVt

∑m
j=0 r

2
t,j

Logarithmic Realised variance Andersen et al., 2001 RVlogt log
(∑m

j=0 r
2
t,j

)
Truncated Realised variance Liu et al., 2015; Mancini, 2009 TRVt

∑m
j=0 r

2
t,jI{r2

t,j>(3×RVt
m )}

Jump Barndorff-Nielsen and Shephard, 2004 Jt RVt − TRVt

Realised quarticity Barndorff-Nielsen and Shephard, 2002 RQt
m
3
∑m

j=0 r
4
t,j

Semi-variance (negative returns) Barndorff-Nielsen, Kinnebrock, and Shephard, 2008 RV−
t

∑m
j=0 r

2
t,jI{rt,j<0}

Semi-variance (positive returns) Barndorff-Nielsen et al., 2008 RV+
t

∑m
j=0 r

2
t,jI{rt,j>0}

As before, m represents the last observation of a given day, t, and rt,j is an intraday return as defined in equation (4).
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4 Methodology

4.1 Loss functions

For the reasons mentioned in section 2.4, I only use the quasi-likelihood (QLIKE17) and
mean squared error (MSE) loss functions that are defined for time series in the following
way

MSEt ≡ n−1
n−1∑
i=0

(RVt−i − Ft−i)
2 ; (11)

QLIKEt ≡ n−1
n−1∑
i=1

(
RVt−i

Ft−i

− log RVt−i

Ft−i

− 1
)

; (12)

where RV and F are, respectively, the realised variance measure (Table 1) and the model’s
variance forecast; n is the number of observations. When n = 1, I reference the loss by
squared error (SEt) or QLIKE error (QLEt).

4.2 Individual models

When comparing models, I want to reduce selection bias by testing as many models as
possible, but that adds computational costs and, to some extent, makes the results harder
to interpret. Given this constraint, I use a set of (loose) criteria to select the models from the
literature:

• Model variety. Although a lot of models use the same information set, they use that
information with a different structure. So even if a particular model is deemed in-
adequate in the literature, it might still provide benefits when combined with other
models, especially when there are structural breaks (Pesaran and Timmermann, 2007).

• Model simplicity. As I argued in the Literature Review section, simpler models can
often match or outperform relatively complex ones for individual models (for exam-
ple, under calmer periods simple moving averages can do as well as GARCH models),
and for model combinations (where equal weighting forecasts is hard to beat). Addi-
tionally, augmented individual models rarely provide any substantial benefit, so my
study is more focused on testing whether models can be effectively combined (I ex-
plain this in more detail at the beginning of the section 4.3). Hence, most of the model
complexity is present with model combinations.

17The QLIKE formula I used is the one defined in Liu et al. (2015) and Bollerslev et al. (2016), for example.
It is slightly different from the commonly used formula and it makes the QLIKE always give positive values.
That way, the ratio between the QLIKEs of models can be interpreted in a similar way to the ratio between the
MSEs of models.
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• Ease of estimation and implementation. If I do not find that a model has been created
in the R language (R Core Team, 2020) as a function or package, or that it takes too
much time to implement the model correctly and efficiently, I do not test that model.
Additionally, I do not test some models that take a long time to fit, which happened
with the FIGARCH model (Baillie, Bollerslev, and Mikkelsen, 1996).

• Past performance in the literature. I tend to not test models or alternative specifications
that add complexity without improving forecast performance. Stochastic volatility
models are an example of this because they are hard to fit and have bad performance
compared to GARCH models (Poon and Granger, 2003).

These principles can create some selection bias, but, for this study, I think that is a very
small issue for two reasons. Firstly, it is evident in the literature that the improvements
over the simplest GARCH (GARCH(1, 1)) and simplest HAR (HAR-RV) models are relatively
small, so the differences between a biased and an unbiased sample also tend to be small.
Secondly, a lot of papers empirically testing the performance of individual models were
published before 2006 (with the exception of HAR models) . My out-of-sample period for
model combinations starts after that year, so the bias would tend to be small.

Table 2: Number of individual models

Model family Number of models

Exponential Smoothing 22

Rolling Average 16

GARCH 14

HAR 13

ARMA 6

Random Walk 2

Implied Volatility 1

When testing HAR models, I use specifications with a lot of parameters, and that goes
(exceptionally) against the criterion of model simplicity. I do that because, to my knowl-
edge, there is no broad empirical test with more complex specifications, unlike the case of
GARCH models. I find it important to test them because it might be the case that one vari-
able is positively correlated with volatility, while another is negatively correlated, so not
adjusting for both variables makes both relationships seem weaker when they are tested in-
dependently – this is the “masked relationship” phenomenon (McElreath, 2020, p. 144-153).
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In my study, for instance, it is plausible that volatility jumps lead to higher future volatility,
while the noise in the volatility process can create the appearance of jumps.

Any negative forecast equal to or smaller than zero is set to half the previous day’s fore-
cast.

4.2.1 Naïve models

See Table 3 for the full list of models. As I mentioned in section 4.2, it is not uncommon to
see simple models match the performance of GARCH models, so it is important to include
them as a benchmark. To do this, I use some of the naïve models from Poon and Granger
(2005, 2003)18, although my definition of “naiïve model” is more restrictive: it is any model
that (conventionally) does not need to have its parameters estimated. In practice, this means
that I do not consider models like the AR(1) as naïve.

The volatility proxy used, h, is either realised variance (RV) or squared returns (r2). This
allows me to have benchmarks for HAR and GARCH models, respectively.

Table 3: Naïve models

Full model name Model name Forecast

Random walk RandWalkht ht−1

Historical average HistAvght n−1 ∑n
j=1 ht−j

Rolling average RollAvg(n)ht n−1 ∑n
j=1 ht−j

Exponential smoothing ExpSmooth(β)ht (1 − β)ht−1 + βFt−1, 0 ⩽ β ⩽ 1

h is the volatility proxy used – RV or r2. For the historical average, n is equal to the cumulative
number of observations at time t. For the rolling average, n corresponds to a fixed number of days
that can take the value of {1, 5, 21, 63, 126, 252, 504, 1008}, meaning that I test 8 different models. For
the exponential smoothing model, β can take the values of {0.05, 0.1, 0.2, ..., 0.9, 0.95}, so I test 11
different models. To initiate the exponential smoothing model, I set the initial value of the volatility
proxy (ExpSmooth(β)h1 ) equal to the variance of that volatility proxy in the initial estimation period,
which has 1231 observations (i.e., ExpSmooth(β)h1 = (n− 1)−1 ∑n

t=0(ht − h̄)2). Similarly to GARCH
models, a higher β parameter leads to more persistence in the volatility process.

18Note that some of the names and notation are different. This happens for naïve and all subsequent models
presented.
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4.2.2 ARMA models

The ARMAh(p,q) model is given by:

ht = µ+

p∑
i=0

αiεt−i +

q∑
i=0

βiht−i + εt, (13)

where h is the volatility proxy used (realised variance, RV, or squared returns, r2), and ε

is the residual term. I test all the models that are possible construct with the parameters p
and q being 0 or 1, meaning that the AR(1) and MA(1) are both included in this category.

Much like HAR models, the process has short memory and uses the volatility proxy
directly. This is not optimal for squared returns because ARMA models assume that the
observed volatility (r2

t) is equal to the conditional variance (σ2
t), so very low values of r2

t

are assumed to be low-volatility days. This issue does not exist nearly to the same extent
with realised variance – in Table 7 from Appendix B, for the 2007-2010 period, the mean
realised variance (2.2e−04) is close to the mean squared return (2.6e−04), but the realised
variance at the 5th percentile (2.7e−05) is more than fifty times higher than the squared
returns at the 5th percentile (4.3e−07). That said, I still test ARMA models because they
combine features from HAR and GARCH models. Like HAR models, they treat volatility as
an observable process; like GARCH models, they are not purely autoregressive processes,
so large unexpected shocks impact the conditional volatility through the residuals, εt−i.
Both of these things combined allow the ARMA models to possibly react quicker to sudden
increases in the volatility, especially when compared to GARCH models.

Another alternative to ARMA models would be to use AR(F)IMA models, which can
create long memory. They are, however, considerably harder to estimate, and they seem
to have identical performance to HAR (Buccheri and Corsi, 2019; Corsi, 2009) and ARMA
models (Becker and Clements, 2008; Kambouroudis et al., 2016; Pong et al., 2004). I had
initially tested ARIMA models, and they do seem to have superior performance in some
circumstances, but I do not have a good reason to include them.

Estimation and application

The ARMA models are tested with the “forecast” R package (Hyndman, Athanasopoulos,
Bergmeir, Caceres, Chhay, O’Hara-Wild, Petropoulos, Razbash, and Wang, 2020). The pa-
rameters are estimated with maximum likelihood.
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4.2.3 Univariate HAR models

Corsi (2009) treats volatility as an observable variable with the Heterogeneous Autoregres-
sive model, HAR-RV:

HAR-RVt = α+ β1RVt−1 + β2RV[t−1,t−5] + β3RV[t−1,t−22] + εt , (14)

where RV is the realised variance (Table 1), α is the constant term, ε is the residual, and the
subscript in RV[t−1,t−T ] represents the average of (in this case) RV over a given period:

RV[t−1,t−T ] ≡ T−1
T∑

i=1
RVt−i . (15)

There are three volatility components – the average daily (T = 1), weekly (T = 5), and
monthly (T = 22) realised variances. Although it is possible to use more or fewer compo-
nents, with or without time-variation, I do not test them because the performance improve-
ments are negligible – Buccheri and Corsi (2019) use time-varying lags in their Score-HAR
model, and the performance is seldom better than the HARlog; and Audrino and Knaus
(2016) show that the specific lags used are not of great importance, so long as the lags are
relatively small (i.e., smaller than 22 days).

In theory, the HAR-RV can be thought of as representing the heterogeneous opinions of
market participants (Müller, Dacorogna, Davé, Pictet, Olsen, and Ward, 1993), where the
volatility of each time horizon (daily, weekly, or monthly) is a proxy for the way those market
participants react to new events – a trader looking to buy a stock without paying a large bid-
ask spread might care about the daily volatility, while another trader looking to rebalance
their portfolio might find the monthly volatility more relevant because it is more persistent.

In the alternative HAR specifications that I test, I distinguish the daily (Dt−1), weekly
(Wt−1), and monthly (Mt−1) components of volatility, where each respective HAR model
follows the process given by

HARt ≡ α+Dt−1 +Wt−1 +Mt−1 + εt , (16)

where Table 4. Their forecasts (Ft) are similarly given by

Ft = α+Dt−1 +Wt−1 +Mt−1 , (17)

except for the HAR-RVlog that is given by

Ft = exp
{
α+Dt−1 +Wt−1 +Mt−1 +

σ2
ε

2

}
, (18)
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where σ2
ε =

∑n
i=1

(εt−i−ε̄)2

n−1 , which gives the variance of all past residuals (ε).
Not all volatility components change with the different realised measures used. Ev-

erything else constant, models with quarticity, Q, only change the daily component19 by
adjusting for the volatility of volatility (RQ, the realised quarticity) of the previous day. If
RQt−1 is high, there were likely periods of low liquidity, sudden trading activity, or other
microstructure noise that in the short-term make prices strongly mean-reverting (Andersen
et al., 1999). This behaviour is not relevant to the ultimate objective of measuring volatility:
knowing how much prices might move. Thus, models with Q (typically) assume that the
volatility is lower when RQt−1 is higher.

In models with semi-variance, S, only the daily component changes by replacing RVt

with RV+
t and RV−

t in an attempt to account for the leverage effect20.
The models with the continuous measure, C, all volatility components use truncated re-

alised variance, TRV (see Table 1), except in the models with semi-variance; in that case,
only the weekly and monthly components use TRV. This is a measure of realised volatil-
ity that is jump-robust, similarly to the commonly used bipower variation, but it requires
fewer assumptions about the volatility process and it is a more efficient estimator, in the-
ory (Mancini, 2009) and practice (Liu et al., 2015). The models with the jump component, J

(which are always accompanied by the continuous component21) always use jump realised
measure (Jt = RVt − TRVt) in the daily, weekly, and monthly components. The jump mea-
sure is usually found to have almost no impact on volatility (e.g., Andersen et al. (2007)),
but this changes when using better jump-robust measures22 (Corsi et al., 2010).

Lastly, I also test the HAR-RVlog because it was shown to perform better than a lot of other
specifications, including the Q-HAR of Bollerslev et al. (2016). To my knowledge, there are
only two recent articles where this is shown more prominently. The first is by Buccheri and
Corsi (2019). Even though the authors are arguing in favour of their more complex speci-
fications, the HAR-RVlog has almost identical performance to those specifications in every
sub-period. Similarly, Clements and Preve (2019) also partly argue in favour of estimating
HAR models in alternative ways to ordinary least squares, but the HAR-RVlog has similar
benefits of improving performance.

19This is sufficient for making one-step-ahead forecasts according to (Bollerslev et al., 2016).
20Corsi and Renò (2012) use another HAR model that accounts for the leverage effect, but they use daily

squared returns instead of the semi-variance. That model gave me extremely variable estimates, a lot of them
negative, so it looks to be a strictly inferior alternative to the model I use here.

21This is done because models with RV-J and models with C-J have very similar information, so it was not
uncommon for the forecasts to be indistinguishable.

22This is not proven to be the case for TRV, but that seems to be a more accurate measure than what (Corsi
et al., 2010) uses. So I expect that the TRV measure similar benefits to the ones described in (Corsi et al., 2010).
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Table 4: All HAR models tested

Model name Dt−1 Wt−1 Mt−1

HAR-RV β1RVt−1 β2RV[t−1,t−5] β3RV[t−1,t−22]

HAR-RVlog β1RVlogt−1 β2RVlog[t−1,t−5] β3RVlog[t−1,t−22]

HAR-C β1TRVt−1 β2TRV[t−1,t−5] β3TRV[t−1,t−22]

HAR-C-J β1TRVt−1 + β2Jt−1 β3TRV[t−1,t−5] + β4J[t−1,t−5] β5TRV[t−1,t−22] + β6J[t−1,t−22]

S-HAR-RV β1RV+
t−1 + β2RV−

t−1 β3RV[t−1,t−5] β4RV[t−1,t−22]

S-HAR-C β1RV+
t−1 + β2RV−

t−1 β3TRV[t−1,t−5] β4TRV[t−1,t−22]

S-HAR-C-J β1RV+
t−1 + β2RV−

t−1 + β3Jt−1 β4TRV[t−1,t−5] + β5J[t−1,t−5] β6TRV[t−1,t−22] + β7J[t−1,t−22]

Q-HAR-RV (β1 + β2RQ1/2
t−1)RVt−1 β3RV[t−1,t−5] β4RV[t−1,t−22]

Q-HAR-C (β1 + β2RQ1/2
t−1)TRVt−1 β3TRV[t−1,t−5] β4TRV[t−1,t−22]

Q-HAR-C-J (β1 + β2RQ1/2
t−1)RVt−1 + β3Jt−1 β4TRV[t−1,t−5] + β5J[t−1,t−5] β6TRV[t−1,t−22] + β7J[t−1,t−22]

QS-HAR-RV (β1 + β2RQ1/2
t−1)RV+

t−1 + (β3 + β4RQ1/2
t−1)RV−

t−1 β5RV[t−1,t−5] β6RV[t−1,t−22]

QS-HAR-C (β1 + β2RQ1/2
t−1)RV+

t−1 + (β3 + β4RQ1/2
t−1)RV−

t−1 β5TRV[t−1,t−5] β6TRV[t−1,t−22]

QS-HAR-C-J (β1 + β2RQ1/2
t−1)RV+

t−1 + (β3 + β4RQ1/2
t−1)RV−

t−1 + β5Jt−1 β6TRV[t−1,t−5] + β7J[t−1,t−5] β8TRV[t−1,t−22] + β9J[t−1,t−22]

Each respective HAR model is given by: α+Dt−1+Wt−1+Mt−1+εt. The forecasts are: Ft = α+Dt−1+Wt−1+Mt−1, except for the HAR-RVlog

that is given by Ft = exp
{
α+Dt−1 +Wt−1 +Mt−1 +

σ2
ε

2

}
, where σ2

ε =
∑n

i=1
(εt−i−ε̄)2

n−1 , which gives the variance of all past residuals (ε).σ2
u

is the conditional variance of the errors, ε.
The daily, weekly, and monthly components of volatility are represented by Dt−1, Wt−1, and Mt−1, respectively. Read the full explanation for
what each component does in section 4.2.3.
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Estimation and application

HAR models are tested with functions that I made, using the lm function of the “stats” R (R
Core Team, 2020) package. The estimator for the linear regression is ordinary least squares
(OLS)23.

4.2.4 Univariate GARCH models

Nested GARCH models

In the Autoregressive Conditional Heteroskedasticity (ARCH) model (Engle, 1982), the con-
ditional return process with zero-mean, rt, is given by

rt = εt = σtzt, zt ∼ N(0, 1) and i.i.d. , (19)

where zt is a Gaussian noise variable, and σt is the conditional volatility process that is itself
defined by

σ2
t = ω+

q∑
i=1

αiε
2
t−i . (20)

In the simplest case (q = 1), the magnitude of innovations at t (ε2
t) depends on the

previous day’s innovation (ε2
t−1). This allows for heteroskedastic and autocorrelated errors

in an uncorrelated return process. Bollerslev (1986) adds persistence to the volatility process
by including the previous day’s (modelled) variance, σ2

t−1,

σ2
t = ω+

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i . (21)

When p = q = 1, the model is very interpretable: the effect of εt on the future conditional
volatility decays at a geometric rate of β when 0 < β < 1; if the value of ε2

t−1 is large, the
conditional volatility increases, and if ε2

t−1 is close enough to 0, the conditional volatility
decreases.

Although there are a lot of extensions on this GARCH model, they often only differ
in how the conditional volatility is affected by the error’s sign and magnitude24. Each model
does it differently, but the underlying structure tends to be similar, and that makes it possible
to nest most popular GARCH models in the family GARCH (fGARCH) of Hentschel (1995):

23Clements and Preve (2019) show alternative ways of estimating HAR models (using weighted least squares
with different weights, for example). I tested this approach and the results were consistently worse – the mean
squared error and quasi-likelihood of every model got worse by roughly 8%.

24My explanation of the effects of volatility are based on the news impact curve (NIC), which is explained
in more detail in the original fGARCH paper (Hentschel, 1995).
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σλ
t − 1
λ

= ω+

q∑
i=1

αiσ
λ
t−i(|zt−i − η2i|− η1i(zt−i − η2i))

δ +

p∑
i=1

βi

σλ
t−i − 1
λ

, (22)

where there is a Box-Cox transformation (Box and Cox, 1964) on the conditional volatility.
The models I test from this family are in Table 5. All those models have p = q = 1 and
zero-mean conditional return processes because those are variables that, empirically, do
not meaningfully affect prediction (please refer to Hansen (2005) and the Literature Review
chapter). The other four parameters of the models change how the conditional volatility
responds to the residual of the return process. The first two parameters, δ and λ, make
the conditional volatility increase or decrease depending on the standardized error’s (zt)
magnitude. More specifically, as errors move away from 0, when δ = λ = 1 (modelling the
standard deviation) the variance increase linearly; when δ = λ = 2 (modelling the variance)
the variance increases exponentially with base 2; and so on.

The third parameter, η1, creates asymmetry in response to the standardized error’s sign.
When η1 is positive (which is typical in stock market data), the conditional volatility in-
creases at a faster pace as the error becomes more negative, and increases at a slower pace
as the error becomes more positive. In other words, when η1 is positive, the response of
conditional volatility to the values of zt−1 slopes up, and the response for positive values of
zt−1 slopes down by the same amount (the shape dictated by δ and λ is unaltered). Because
of the change in slope, η1 has a larger effect on values that are farther away from 0.

It is, however, possible that the effect of η1 is not centred on zt−1 = 0 due to the fourth
parameter, η2. In models where this parameter is free, the conditional volatility decreases
the most when zt−1 = η2, and the whole response to values of zt−1 shifts horizontally by
-η2 (for example, the effect on the conditional volatility of z2

t = 1 when η2 = 0 is the same as
the effect of z2

t = 1.75 when η2 = 0.75). Because most of the probability density of returns
is close to 0, small values of zt−1 are most responsible for the effect of η2, which tends to
cause (or correct) the bias in the volatility model. The variations on GARCH models mix and
match all the characteristics imbued by the four parameters by either setting the parameters
free or fixed.

The Exponential GARCH of Nelson (1991) is also a nested model, but the interpretation
is not as straightforward. The E-GARCH(p,q) is defined as,

log σ2
t = ω+

q∑
i=1

(αizt−i + γi(|zt−i|− E|zt−i|)) +

p∑
i=1

βi log σ2
t−i, (23)

where E|zt−i| = 1 when we assume that zt ∼ N(0, 1). The point at which volatility lowers
the most depends on the values of αi and γi. Here, αi induces asymmetry in an identical
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way to -η1. The effect of γ is also similar to the effect of η1, except25 that the change in slope
is symmetrical: when γ is positive, the response of zt−i to the conditional volatility slopes
up by the same magnitude for zt < 0 and zt > 0.

In practice, all the nested models give similar results, with the main differences origi-
nating because of extreme returns and how the leverage effect is modelled.

Non-nested GARCH models

I test two GARCH-type models that don’t fit in this family, although they are assumed to
follow the same return process. The first one is the Component GARCH of Engle and Lee
(1999), C-GARCH(p,q),

σ2
t = ω̃t +

q∑
i=1

αi(ε
2
t−i − ω̃t−i) +

p∑
i=1

βi(σ
2
t−i − ω̃t−i), (24)

ω̃t = ω+ ρω̃t−1 + ϕ(ε2
t−1 − σ2

t−1), (25)

where ω̃t is the long-term component of volatility. This model can be represented in an
alternative way to aid understanding:

σ2
t = ω̃t + st, (26)

ω̃t = ω+ ρω̃t−1 + ϕ(ε2
t−1 − σ2

t−1), (27)

st = (α+ β)st−1 + α(ε2
t−1 − σ2

t−1), (28)

with st being the short-term component of volatility because it is assumed that 0 < (α+β) <

ρ < 1. This model is particularly useful when there are extremely large volatility shocks
that have a short-lived influence on future volatility, such as the 1987 stock market crash
(Schwert, 1990).

The other model is the Realized GARCH, R-GARCH(p,q), of Hansen, Huang, and Shek
(2012) that uses realised volatility with the (log-linear) specification,

log σ2
t = ω+

q∑
i=1

αi log RVolt−i +

p∑
i=1

βi log σ2
t−i, (29)

log RVolt = ξ+ δ log σ2
t + τ(zt) + ut,ut ∼ N(0,σ2

u), (30)

τ(zt) = η1zt + η2(z
2
t − 1), (31)

where RVolt is a measure of realised volatility; ξ is the constant term of that process; τ(zt)
25There is another exception: a change in γ also causes the whole response of conditional volatility to move

up or down, but ω ends up adjusting for that.
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Table 5: Nested GARCH models (fGARCH)

Model name Author(s) Model notation p q λ δ η1 η2

ARCH Engle (1982) ARCH(q) 0 1 2 2 0 0

Generalized ARCH (GARCH) Bollerslev (1986) GARCH(p, q) 1 1 2 2 0 0

Integrated in variance GARCH Engle and Bollerslev (1986) I-GARCH(p, q) 1 1 2 2 0 0

Glosten, Jagannahan, and Runkle GARCH Glosten et al. (1993) GJR-GARCH(p, q) 1 1 2 2 Free 0

Nonlinear asymmetric ARCH Engle and Ng (1993) NA-ARCH(p, q) 1 1 2 2 0 Free

Absolute Value GARCH Taylor (2008, Ch. 3); Schwert (1989) AV-GARCH(p, q) 1 1 1 1 Free Free

Threshold GARCH Zakoian (1994) T-GARCH(p, q) 1 1 1 1 |η1| ⩾ 1 0

Asymmetric Power ARCH Ding, Granger, and Engle (1993) AP-ARCH(p, q) 1 1 Free δ = λ |η1| ⩾ 1 0

Nonlinear ARCH Higgins and Bera (1992) N-ARCH(p, q) 1 1 Free δ = λ 0 0

Full Family GARCH Hentschel (1995) F-GARCH(p, q) 1 1 Free δ = λ Free Free

These parameters are from the equation (22) which I put here for easy reference:
σλ
t−1
λ

= ω+
∑q

i=1 αiσ
λ
t−i(|zt−i − η2,i|− η1,i(zt−i − η2,i))

δ +
∑p

i=1 βi
σλ
t−i−1

λ
.

The meaning of each parameter is explained after equation (22) in the body of the text.
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is the component that models the leverage effect; σ2
u is the variance of the residuals of the

realised volatility process, ut, which is jointly estimated with every other parameter; and
τ(zt) is the leverage function. Like in the fGARCH specification given by equation (22), η1

creates an asymmetry in the response of negative or positive standardized residuals, zt; η2

has a similar effect to γi in the E-GARCH because the effect is symmetric, but here it affects z2
t

instead of |zt|. The main feature of this model is that the estimation of the realised volatility
is affected both by the log variance (log σ2

t) and residuals of the return process through τ(zt).
The model also produces estimates for RVt and r2

t, so they are shown separately in the form
of R-GARCHRV

t (1, 1) and R-GARCHr
2

t (1, 1), respectively.

Estimation and implementation of the models

All the GARCH models are implemented using the Rugarch package (Ghalanos, 2014) for
the R programming language (R Core Team, 2020), and always assuming that the errors are
normally distributed. For prediction, this package is the most complete according to Hill
and McCullough (2019). The estimation of the parameters is done with the typically used
quasi-maximum likelihood (White, 1982).

4.3 Model combinations

As I argued in section 4.2, some information in the data may only be exploited when con-
ditioning on other variables (e.g., volatility jumps may improve performance only when
the model corrects for measurement errors). The forecasts of individual models are highly
collinear, much more so than most realised measures, so model combinations are a blunt
tool to explore these masked relationships. As I also argued before, the approach of trying to
build a “super model” has not yielded many tangible benefits – GARCH models see little-to-
no improvements in performance when they have more parameters or different conditional
distributions, and the best HAR models, such as the Q-HAR of Bollerslev et al. (2016), seldom
benefit from using more proxies for volatility measures26.

This means that combining models remains one of the few methods that could plausibly
improve forecast performance and, at the same time, reduce the uncertainty in the model
selection process. To achieve this goal, the combination methods I use are all meant to
reduce the variance of the forecasts because the high collinearity between forecasts adds
difficulties in estimating the independent effect of one model relative to others.

Every model combination that needs to be estimated on the performance of individ-
ual models either uses the mean squared error (MSE) loss function or the quasi-likelihood

26I still test HAR models with many volatility proxies because there has been no sufficiently thorough em-
pirical test, as I argued in section 4.2.3.
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Table 6: Number of model combinations

Model family Number of models

Grouping 127

Trimming 42

Regularization 6

Equal Weight 1

(QLIKE) loss function. I want to test this to see how these methodologies optimize for dif-
ferent loss functions, and it also serves as a small robustness test.

Any negative forecast equal to or smaller than zero is set to half the previous day’s fore-
cast.

4.3.1 Equal weighting and grouping

Let Vt contain all the individual models’ forecasts for the day t, Ft,i:

Vt ≡ {Ft,i} for i = 1, 2, ...,n. (32)

The forecast for the equal weighting combination, EqualWeightt, is a simple average of all
individual forecasts:

EqualWeightt ≡ (#Vt)
−1

∑
Ft,i∈Vt

Ft,i . (33)

The disadvantage of this weighting scheme is that it is too naïve – it assigns a 1
n

weight to
the only implied volatility model and assigns the same 1

n
weight for each of the 11 (very cor-

related) GARCH models. In practice, this means that the weighting scheme overrepresents
model categories that have a higher number of individual models.

As an attempt to fix this, I use a slightly more elaborate weighting scheme to adjust the
weights based on the category the model belongs to implied volatility (IV), naïve models
with squared returns (Naïver) and realised variance (NaïveRV), ARMA models (ARMAr or
ARMARV), GARCH models (GARCH), and HAR models (HAR). I choose to separate them
this way because the literature has shown that the model structure and the volatility proxy
used are two important characteristics that meaningfully distinguish these models.

The forecast for each category is simply an equally weighted average of the models in
that category. For example, the forecast for what I call a “grouping” model containing only
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ARMA (RV) models is given by

Grouping({ARMARV}) ≡ 1
3
(
ARMARV(0, 1)t + ARMARV(1, 0)t + ARMARV(1, 1)t

)
.

I can combine more than one model category. For example, I can combine the category
of ARMA models using realised variance, ARMARV, and the category of GARCH models,
GARCH. When combining multiple model categories, each category’s forecast is assigned
a weight inversely proportional to the number of categories being used (i.e., 1

2 for 2 cate-
gories, 1

3 for 3 categories, and so on). In the example above, the combination assigns 50% of
the weight to at the forecasts of ARMARV (which is split among its 3 models), and 50% to
GARCH (which is split among its 11 models):

Grouping({ARMARV, GARCH}) ≡0.5
3 (ARMA(1,0)RV

t + ARMA(0,1)RV
t + ARMA(1,1)RV

t )

+
0.5
11 (ARCH(1) + GARCH(1, 1) + ... + R-GARCH(1, 1)).

More generally, let the set B contain all the categories that are going to be included in a
given forecast, and the forecasts for those grouping models be given by

Grouping(B) ≡
∑

Vi,t∈B

(#Vi,t)
−1

#B
∑

Fi,t∈Vi,t

Fi,t, (34)

whereVi,t contains all the forecasts of one of the 7 model categories, indexed by i = 1, 2, ..., 7
in no particular order. I test all the possible models that are possible to make with these
categories, so there are

( 7
#B
)

possible combinations for each unique set B that can be made
with the 7 categories (127 models in total).

Estimation and application

This model does not require estimation. It is implemented using the R programming lan-
guage (R Core Team, 2020) with functions I created.

4.3.2 Trimming

Trimming27 is the practice of removing a portion of models that have underperformed in
the past. In the literature, it is common to remove models whose (cumulative) loss is be-
low a certain percentile (e.g., for the forecast combination at time t, only include model i if
MSEi,t−1 is below the 80th percentile of all MSEi,t−1).

27“Trimming” is often used differently in the literature; read the footnote 7 on page 7 for more details.
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The problem with this approach is that it is hard to compare results across studies – a
researcher only comparing GARCH and HAR models might find that it is better to exclude
10% of models, while another researcher that is also testing naïve models might need to
exclude 50% of models to get the best performance. To try to have a more stable measure,
I exclude models that exceed a threshold relative to the previous day’s minimum (cumula-
tive) loss function (e.g., exclude the ith model if MSEi,t−1 is above 1.25 × min[MSEj,t−1]),
and the forecasts of the models that are not excluded receive a weight inversely proportional
( 1
n

) to the number of remaining models (n).
I denote this threshold by k, and I test the values of 1, 1.1, ..., 3 for it. When k = 1, only

the models with the lowest loss are selected; when k = 3, very few models are excluded in
my data set (on average, less than 1 forecast is excluded in each day). Formally:

Trimming(k)t ≡ n−1
n∑

i=1
Fi,t|Li,t−1 <= (k× min L·,t−1), (35)

where Li,t−1 is the loss function used (MSE or QLIKE) for the previous day, and Fi,t repre-
sents the forecast given by some individual model i.

Estimation and application

This procedure is also implemented in the R programming language (R Core Team, 2020).
As I described in section 3, the individual models make out-of-sample predictions for the
first 2 years, so the trimming model combinations are trained on those 499 observations.
This ensures that the trimming is not excluding models based on overfit in-sample data.
This process is repeated for every observation with an expanding window.

4.3.3 Regularization: Ridge, Lasso, and Elastic Net regression

With the typically used ordinary least squares (OLS) estimator, the coefficients (β̂OLS
t ) are

found by minimizing the residual sum of squares (RSS), here with the notation adapted to
time series:

β̂OLS
t = argmin

β


N−1∑
i=0

(yt−i − β0 −

p∑
j=1

βjxt−i,j)
2


= argmin

β

{RSS} ,
(36)

where yt−i is the response variable (the realised variance in my case), β0 is the constant
term, βj is the coefficient of a predictor (the forecasts of some individual model, in my case),
and xt−i,j are the specific observations for those predictors.
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Ordinary least squares gives unbiased coefficient estimates, even when heteroskedastic-
ity and multicollinearity are present (Wooldridge, 2016, p. 82-86). But when we break those
assumptions and/or when the sample size is relatively small, the estimator gives estimates
with high variance – a small change in one observation can cause large changes in the esti-
mated parameters (Hastie, Tibshirani, and Friedman, 2009, p. 219-231). When that variance
is primarily driven by the noise in the data, the parameter estimates cannot be generalized
to data outside the sample. By applying some form of regularization, we are shrinking the
parameters towards zero, so we are effectively assuming that there is some reversion to the
mean – on average, the true parameter’s value is less extreme than the estimated parameter.

The ridge regression (Hoerl and Kennard, 1970; Hastie et al., 2009, p. 61-68) applies
shrinkage to the squared values of coefficients obtained by minimizing the residual sum
of squares (RSS):

β̂
ridge
t = argmin

β

RSS + λ

p∑
j=1

β2
j

 , (37)

where the penalty to the squared value of the coefficients is given by λ (ℓ2 penalty). The Least
absolute shrinkage operator (Lasso) (Tibshirani, 1996; Hastie et al., 2009, p. 68-69) is similar,
but it penalizes the absolute value of the coefficients (ℓ1 penalty),

β̂lasso
t = argmin

β

RSS + λ

p∑
j=1

|βj|

 . (38)

Lastly, the Elastic Net28 (Zou and Hastie, 2005; Hastie et al., 2009, p. 661-664) combines both
these penalties by giving a weight of α to the ℓ1 penalty, and a weight of 1 − α to the ℓ2

penalty29:

β̂enet
t = argmin

β

RSS + λ

1 − α

2

m∑
j=1

β̂2
j + α

p∑
j=1

|βj|

 . (39)

All the methods’ forecasts are simply given by the sum of the parameters estimated with
their respective methodologies, so the formulas are the same (with the only difference that

28I use the “naïve Elastic Net“, as Zou and Hastie (2005) call it, since that is the version of the model that is
used in applications. The naïve Elastic Net is more biased and less variable than the other version.

29We can ignore the 1
2 that is multiplied by 1 − α because that does not affect the calculation of the weights.
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p, the number of parameters, might be different when α > 0):

ElasticNet(λ,α)t = β0 +

p∑
i

βiFt−1,i ; (40)

ElasticNet(λ, 0)t = Ridge(λ)t = β0 +

p∑
i

βiFt−1,i ; (41)

ElasticNet(λ, 1)t = Lasso(λ)t = β0 +

p∑
i

βiFt−1,i ; (42)

where Ft−1,i is the forecast of some individual model. In practice, the λ coefficient varies
from day to day because of the estimation procedure (read more about it in the Estimation
and application subsection below).

For the ridge regression, the penalty is given toβ2
j , so larger values of coefficients get dis-

proportionately penalized, whereas values close to zero receive a small penalty. In practice,
this means that the coefficients tend to become similar to each other and/or shrunk very
closely towards 0 (while never becoming exactly 0). This is advantageous when all or al-
most all the predictors are informative, and when there is high multicollinearity. The latter
case is especially relevant for this study because the OLS estimator tends to make some of
the coefficients extremely positive or negative, even if they have very similar information.
When using ridge regression, they tend to become all positive and small if the shrinkage
parameter (λ) is sufficiently large.

Because the Lasso applies a penalty to the absolute values of the coefficients (|βj|), it
more quickly shrinks some of the coefficients towards zero, and they can become exactly
zero. This is optimal when few predictors contain relevant information for forecasting (i.e.,
the solution is sparse). In the presence of multicollinearity, however, it tends to pick the
collinear predictor that happened to be better than others and shrink all the relative un-
derperformers to 0. This is seldom desirable because multicollinear predictors often have
identical information, so they should be averaged to some extent.

To get to a compromise between both approaches, the Elastic Net applies both types of
regularization – it first applies the ℓ1 regularization (removes some of the unimportant pre-
dictors), and then applies the ℓ2 regularization (which gives all the advantages I previously
mentioned).

These three techniques are equivalent to a wide set of methodologies used in the liter-
ature. Hastie et al. (2009, p. 69-79) show that the ridge regression is identical to a continu-
ous version of principal components regression (PCR) and partial least squares regression
(PLSR), and Stock and Watson (2012) show that this type of shrinkage (penalty to coefficients
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estimated by OLS, which includes some factor models) yields identical results, indepen-
dently of the specific form in which they are applied. Hastie et al. (2009, p. 69-79) also show
that the Lasso is similar to a continuous version of subset selection methods and least angle
regression (LAR), and the elastic net has a similar effect to the bridge regression (the bridge
applies shrinkage to |βj|

p, so it gives similar values to the elastic net when 1 < p < 2, ex-
cept that these values of p do not eliminate parameters, unlike the Elastic Net when α > 0).
Finally, these regularization techniques give solutions that can be obtained with a Bayesian
approach to model averaging (by applying data-driven Gaussian or Laplacian priors for the
Ridge and Lasso regressions, respectively), which Stock and Watson (2012) also tested.

Estimation and application

I use the R package “glmnet” (Friedman, Hastie, and Tibshirani, 2010) for the regression,
and my functions for the time series leave-one-out cross-validation (which I call tsCV) and
grid search procedures.

I need to use tsCV because the typical cross-validation procedure is only a good approxi-
mation of out-of-sample performance if there is no variable selection based on performance,
and the observations in the observations in the sample are independent and identically dis-
tributed30 (Hastie et al., 2009, p. 241-249; Arlot, Celisse, et al., 2010). There are ways of
adapting to that dependence structure, but Bergmeir and Benítez (2012) find that they are
inferior to the so-called “blocked cross-validation”, which is often referred to as “time se-
ries cross-validation”. This procedure is similar to the “last block evaluation” (or ”hold out
sample”) procedure, where there are separate training and testing data sets, but here the
model is retrained every k observations. I use tsCV with k = 1 given by

tsCVMSE ≡ n−1
n∑

t=w

(f(Xt−1,Yt−1)t − yt)
2 , (43)

tsCVQLIKE ≡ n−1
n∑

t=w

(
yt

f(Xt−1,Yt−1)t
− log

(
yt

f(Xt−1,Yt−1)t

)
− 1

)
, (44)

where f(Xt−1, Yt−1)t is the forecast for day t, which uses data up to t−1 (i.e., Yt−1 ≡ {yt} for
t = 1, 2, ..., t− 1; and Xt−1 ≡ {xt,s} for t = 1, 2, ..., t− 1 and s = 1, 2, ...,p). Crucially, w is the
day where tsCV starts, and n the day where it ends. Assuming that t = 1 corresponds to
01-01-2005 (the day where individual models first make their out-of-sample predictions), it
is always the case that w = 249. Initially, n = 500 but it increases by 1 every time the model
makes a step-ahead forecast.

30This is not strictly true for time series, as Bergmeir, Hyndman, and Koo (2018) have shown, but they find
that to use cross-validation we need to use purely (non-linear) autoregressive models with uncorrelated errors,
which is not an assumption that holds in my case.
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To find the optimal values of λ and α, I have to repeat the cross-validation procedure
multiple times and then pick the optimal combination31. If there are ties in tsCV, I randomly
choose one set of hyperparameters from the ones that tied. Because there are only two
hyperparameters, I use grid search, which just involves defining a (discrete) range of values
for those hyperparameters and then testing all possible combinations of those values.

In my case, α can take the values of 0, 0.05, ..., 1, and λ the values of exp(w) where w =

−28,−27.8, ...,−12. I pick these values because they were very wide, and widening them
further did not affect the results.

This whole procedure is done every day, so the values of λ and α for the Elastic Net, and
the values of λ for the Ridge and Lasso can also change every day. There is also another
detail related to how the variables are standardized32. The shrinkage works on the values
of the coefficients, but if these are in different scales, most of the penalty goes for the pre-
dictor with the largest scale. This is not the case with my study, so I do not standardize the
predictors. The standardization would still lead to differences in the results because not all
variables have the same variance – relative to high-variance predictors, low-variance predic-
tors are less penalized after standardizing. But I do not want this to happen. I prefer that,
for example, a naïve model with a long-term average suffers more shrinkage because their
(small) fluctuations are likely noisy, so their performance is unlikely to be good. At most,
those less variable models might help with bias-correction in naïve combination schemes.

4.4 Significance test: Model confidence set

I represent the set of all models (which includes individual models or combinations) by M0,
where models are indexed by i = 1, 2, ...,m0. Let the error for the ith model at time t be given
by Li,t (which can either be the standard error, SEi,t, or the quasi-likelihood error, QLEi,t,
as described in section 4.1). Let dij,t be the difference in loss function between the ith and
jth models at time t:

dij,t ≡ Li,t − Lj,t, for all i, j ∈ M0 . (45)

The MCS procedure tests the null hypothesis that the expected difference in the mean loss
function between models is 0,

H0,M : E(dij) = 0 for all i, j ∈ M , (46)
31To prevent overfitting, which happens in all forms of model selection to some extent Cawley and Talbot

(2010), it is common to apply the one-standard-deviation heuristic, defined as picking the value λ that gives
the most parsimonious model with an error (at most) one standard error away from the best result (Hastie
et al., 2009, p. 61). I planned to do this, but this rule only picked an intercept-only model, so I also look at the
performance of the regularization methods by looking at how the out-of-sample performance varied with all
values of lambda.

32This can be applied in time series so long as the data that is used for standardization for a model at time t

only includes data up to t− 1.
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where M ⊂ M0. The MCS procedure sequentially tests this hypothesis of equal predictive
ability on pairs of models and eliminates the models from M that are found to be signifi-
cantly inferior. The objective of the test is to find the set of superior models, M∗, defined by

M∗ ≡ {i ∈ M0 : µij < 0 for all j ∈ M0} . (47)

In practice, the set of best models is unknown, so we try to estimate what models are in
that set for a given level of confidence (α) such that the models in M∗ are in M̂∗

1−α at least
(1 − α)% of the samples (i.e., P(M∗ ⊂ M̂∗

1−α ⩾ 1 − α)).
Let d̄ij be the average of the differences in loss function over the n periods for the ith

and jth models,

d̄ij ≡ n−1
n∑

t=1
dij,t ; (48)

and let d̄i· be the average of d̄ij for the m models inside M, which is the set of models that
have not been excluded,

d̄i· ≡ m−1
∑
j∈M

d̄ij ; (49)

the statistic that I use for the procedure is the mean of the (standardized) difference between
the loss of the ith relative to the jth model inside M:

ti· ≡
d̄i·√

v̂ar(d̄i·)
, (50)

where v̂ar(d̄i,j) is a bootstrapped estimate of var(d̄i,j). The excluded model is the one that
has the highest loss relative to other models,

Tmax ≡ max
i∈M

ti·. (51)

With this, it is possible to give a detailed description of the MCS algorithm (Becker and
Clements, 2008; Bernardi and Catania, 2018; Hansen, Lunde, and Nason, 2003; Hansen et al.,
2011), which is the following:

1. Start with all the models in the MCS (i.e., M = M0).

2. Calculate the Tmax statistic as in equation (51). This statistic represents the model that
got the worst (mean) loss when compared with all other models in M.

3. Calculate the MCS p-value, p̂i. To do this, firstly resample the data with replacement
B times (I use B = 5000) with a block bootstrap procedure. Secondly, calculate the
Tmax for each of the samples. Thirdly, to finally get the MCS p-value, calculate the per-
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centage of times that T(b)
max > Tmax, where T(b)

max is the statistic for the bth bootstrapped
sample:

T(b)
max ≡ max

i∈M

d̄
(b)
i· − d̄i·√

var
(
d̄
(b)
i· − d̄i·

) . (52)

If Tmax is very large, it becomes unlikely that T(b)
max is even larger because the d̄

(b)
i·

statistic is subtracted by d̄i· .

More succinctly, the MCS p-value is given by:

p̂i ≡ B−1
B∑

b=1
1(T(b)

max > Tmax) , (53)

1(A) ≡

1 if A is true,

0 if A is false.
(54)

4. If p̂i < α, remove the ith model from M. Else, if p̂i ⩾ α, stop the procedure and set
M = M̂∗

1−α.

To compute Tmax, the MCS procedure uses the performance measures of all models, so
the results of the test can retain a general meaning without losing too much statistical power.

Estimation and application

This procedure is estimated with the R package “MCS” by Bernardi and Catania (2018).
I include the 1004 observations from the out-of-sample period that has model combina-
tions and individual models (though I exclude the duplicates, which only happens with the
“grouping” model of implied volatility). The block bootstrap procedure uses 10000 simu-
lations. To choose the block length, an AR(p) process is fit on all dij terms, and the number
of blocks p is determined by the maximum number of significant parameters (as described
by Bernardi and Catania (2018), which cite all the relevant literature), which resulted in a
block length of 30. I set α = 0.2; this is slightly higher than the typical 10% level chosen
because I find the test to be too conservative (please refer to section 2.5), but using 10% does
barely has any impact in the models that were excluded.
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5 Empirical results

5.1 Summary

Figure 2: Out-of-sample MSE for individual models and model combinations (2007-2010)

This figure compares the performance of all models I tested (black points), where each model category has a corresponding
average of all those models (vertical red bars). This is a relative comparison: every mean squared error is divided by the
mean squared error of the HAR-RV, so a performance of 1.0 (marked with the rightmost dotted vertical line) means that the
performance is equal to the one from the HAR-RV. The leftmost dotted vertical line marks the individual model with the best
relative MSE – in this case, the E-GARCH(1,1) with a relative MSE of 0.84. Note that all these statistics are only calculated from
observations in the period being considered in the figure (2007-2010). Some results may be missing from the figure because
they could not fit in the figure. All the results, along with the corresponding MCS p-values, are expressed on the tables from
Appendix C.

All of my results are summarised in Figures 2 and 3, and the correlations between the
model’s forecasts are compared in Table 8 of Appendix B. For both the mean squared error
(MSE) and the quasi-likelihood (QLIKE) loss functions, individual models are, on average,
inferior model combinations (with exception of regularization methods). Combining mod-
els by excluding past underperformers (“trimming”) is generally the best approach, but
all simple model combination schemes lead to similar results: they usually perform better
than the HAR-RV (represented by the rightmost vertical dotted line) but underperform the
best individual model (which is represented by the leftmost vertical dotted line).

Out of the individual models, GARCH models appear to be the best alternative to prac-
titioners who only have access to squared returns, since they fare similarly to HAR and
ARMA-RV models. This is unusual in the literature – when compared to GARCH models,
HAR models typically reduce the MSE by 20%-60% (please refer to the footnote on page 4).

The following characteristics are the only ones associated with slightly better perfor-
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Figure 3: Out-of-sample QLIKE for individual models and model combinations (2007-2010)

This figure compares the performance of all models I tested (black points), where each model category has a corresponding
average of all those models (vertical red bars). This is a relative comparison: every quasi-likelihood is divided by the quasi-
likelihood of the HAR-RV, so a performance of 1.0 (marked with the rightmost dotted vertical line) means that the performance
is equal to the one from the HAR-RV. The leftmost dotted vertical line marks the individual model with the best relative QLIKE
– in this case, the HAR-C-J with a relative QLIKE of 0.91. Note that all these statistics are only calculated from observations in
the period being considered in the figure (2007-2010). Some results may be missing from the figure because they could not
fit in the figure. All the results, along with the corresponding MCS p-values, are expressed on the tables from Appendix C.

mance: allowing for the leverage effect, both with GARCH (e.g., E-GARCH(1, 1)) and HAR
(e.g., S-HAR) models; HAR models that have continuous and jump components, or that use
the logarithm of realised variance (RVlog) instead of just the realised variance; and expo-
nential smoothing models using realised volatility with high or intermediate persistence in
the volatility process (i.e., 0.5 ⩽ β ⩽ 0.95).

The Model Confidence Set (MCS) with an α level33 set to 0.2 did not exclude any model
from the set of superior models with the MSE, and it only excluded 3 models with the
QLIKE: the random walk model with squared returns (RandWalkr), and two exponential
smoothing models (ExpSmooth(0.3)r and ExpSmooth(0.4)r).

In the next section, I discuss in more detail the issues with this test. In light of those
issues, and despite the lack of significant results, I expect that analyzing more subtle rela-
tionships will be informative for future research – if this were not the case, my results would
probably not have replicated many of the patterns observed in the literature. That said, the
analysis is still meant to be understood as primarily descriptive because my sample is rela-
tively limited when compared to other studies in the literature. Additionally, although the

33It is typical to set α = 0.1, but I believe the MCS test is too conservative, so I set a lower threshold for
rejection. But there are barely any differences between using both levels in my case.
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FTSE100 index is less studied than equity indexes from the United States of America, both
of them will be correlated, so my results are not fully independent from the ones observed
in the literature.

5.2 Individual models

5.2.1 Naïve models and implied volatility

The naïve model results in the 2007-2010 period (Figures 4 and 5) show similar tendencies to
those observed in the literature: using squared returns is inferior to using realised volatility
because squared returns are noisy (Andersen et al., 2005, 1999, 2003); some of the models
with too much persistence (such as historical volatility and long-term moving averages) or
too little persistence (such as the random walk model) tend to be substantially worse than
other models (Poon and Granger, 2003); and this last tendency is more extreme with the
QLIKE loss function – some naïve models have a QLIKE 2000 times larger than the QLIKE
of the HAR-RV – because the QLIKE penalizes underpredictions more (e.g., Bollerslev et al.
(2016) observes this tendency for the AR(1) model).

In my sample, I find a slight contradiction with the results of Poon and Granger (2005,
2003) because, while some naïve models do relatively better than GARCH models dur-
ing the low volatility period of 2005-2006 (Appendix C), that relationship is driven by the
worse GARCH performance during that period – the performance of naïve models remains
roughly constant relative to the performance of HAR models.

Implied volatility does slightly better than most naïve models, but it gets worse for the
QLIKE loss function. This is slightly unexpected, as implied volatility has an upward bias
(Chernov, 2007; Christensen and Prabhala, 1998), which should favour a loss function that
values overpredictions more, as observed in Becker and Clements (2008). That said, the
deterioration in performance is not large, and it is typical for implied volatility to perform
slightly worse than statistical models for one-day-ahead forecasts.

Lastly, for exponential smoothing, both when parameters allow for high or medium per-
sistence in the volatility process (β > 0.5 and β ≈ 0.5, respectively), and when using the
MSE or the QLIKE, the performance is on average very close to the HAR-RV.

5.2.2 HAR and ARMA with realised volatility

Both HAR and ARMA models have a much narrower range in their relative performances
(Tables 6 and 5). For both categories, the simpler models (i.e., those with fewer parame-
ters) do slightly and consistently worse, except for the HAR-RVlog, whose outperformance
is mostly observed with the mean squared error – a pattern also observed in Buccheri and
Corsi (2019). For the 2005-2006 period (Appendix C), the ordering of the models remains
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Figure 4: Out-of-sample MSE for naïve models and implied volatility (2007-2010)

This figure compares the performance of all naïve models (4.2.1) I tested, ordered by their performance. This is a relative comparison: every mean squared error is
divided by the mean squared error of the HAR-RV, so a performance of 1.0 (marked with the rightmost dotted vertical line) means that the performance is equal to the
one from the HAR-RV. The leftmost dotted vertical line marks the individual model with the best relative MSE – in this case, the E-GARCH(1, 1) with a relative MSE of
0.84. Note that all these statistics are only calculated from observations in the period being considered in the figure (2007-2010). Some results may be missing from the
figure because they could not fit in the figure. All the results, along with the corresponding MCS p-values, are expressed on the tables from Appendix C.
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Figure 5: Out-of-sample QLIKE for naïve models and implied volatility (2007-2010)

This figure compares the performance of all naïve models (4.2.1) I tested, ordered by their performance. This is a relative comparison: every quasi-likelihood is divided
by the quasi-likelihood of the HAR-RV, so a performance of 1.0 (marked with the rightmost dotted vertical line) means that the performance is equal to the one from the
HAR-RV. The leftmost dotted vertical line marks the individual model with the best relative QLIKE – in this case, the HAR-C-J with a relative QLIKE of 0.91. Note that
all these statistics are only calculated from observations in the period being considered in the figure (2007-2010). Some results may be missing from the figure because
they could not fit in the figure. All the results, along with the corresponding MCS p-values, are expressed on the tables from Appendix C.
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Figure 6: Out-of-sample MSE for HAR and ARMARV models (2007-2010)

This figure compares the performance of all HAR models (section 4.2.3) and all ARMA models with realised variance (section
4.2.2) I tested, ordered by their performance. This is a relative comparison: every mean squared error is divided by the
mean squared error of the HAR-RV, so a performance of 1.0 (marked with the rightmost dotted vertical line) means that the
performance is equal to the one from the HAR-RV. The leftmost dotted vertical line marks the individual model with the best
relative MSE – in this case, the E-GARCH(1, 1) with a relative MSE of 0.84. Note that all these statistics are only calculated
from observations in the period being considered in the figure (2007-2010). These results, along with the corresponding MCS
p-values, are expressed on the tables from Appendix C.
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Figure 7: Out-of-sample QLIKE for HAR and ARMARV models (2007-2010)

This figure compares the performance of all HAR models (section 4.2.3) and all ARMA models with realised
variance (section 4.2.2) I tested, ordered by their performance. This is a relative comparison: every quasi-
likelihood is divided by the quasi-likelihood of the HAR-RV, so a performance of 1.0 (marked with the rightmost
dotted vertical line) means that the performance is equal to the one from the HAR-RV. The leftmost dotted ver-
tical line marks the individual model with the best relative QLIKE – in this case, the HAR-C-J with a relative
QLIKE of 0.91. Note that all these statistics are only calculated from observations in the period being considered
in the figure (2007-2010). Some results may be missing from the figure because they could not fit in the figure.
All the results, along with the corresponding MCS p-values, are expressed on the tables from Appendix C.

similar, but the dispersion between results widens, which makes the HAR-RVlog the best
individual model for the MSE during that period, and very close to the best model for the
QLIKE.

Why does using RVlog bring such consistent improvements? Most likely, because using
the logarithm generates more stable estimates of volatility. In the literature, this is often
hinted at – RVlog is (unconditionally) roughly normally distributed (e.g., (Pong et al., 2004))
and Clements and Preve (2019) find that the HAR-RVlog yields similar improvements to other
ways of getting more stable estimates, such as using the weighted least squares estimator.
Furthermore, this is indirectly reflected in my results because when I do not replace negative
HAR forecasts34 (which are not shown in this thesis), there are three HAR models with an
MSE 3 times higher than the MSE of the HAR-RV. For this reason, modelling the logarithm
of realised volatility should probably be preferred.

34As I described in sections 4.2 and 4.3, I replace negative forecasts with the model’s forecast of the previous
day divided by two.
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Figure 8: Out-of-sample MSE for GARCH and ARMAr models (2005-2006)

This figure compares the performance of all GARCH models (section 4.2.4) and all ARMA models with squared returns
(section 4.2.2) I tested, ordered by MSE of the models in the period of 2007-2010. This is a relative comparison: every mean
squared error is divided by the mean squared error of the HAR-RV, so a performance of 1.0 (marked with the rightmost dotted
vertical line) means that the performance is equal to the one from the HAR-RV. The leftmost dotted vertical line marks the
individual model with the best relative MSE – in this case, the HAR-RVlog with a relative MSE of 0.93. Note that all these
statistics are only calculated from observations in the period being considered in the figure (2005-2006). Some results may be
missing from the figure because they could not fit in the figure. All the results, along with the corresponding MCS p-values,
are expressed on the tables from Appendix C.

All other patterns in the data are extremely subtle: models with continuous (C) and jump
(J) components are better, as are models with semi-variance (RV+

t and RV−
t ) which allow for

the leverage effect. The inclusion of the quarticity component (Q) is even less consequential
than other components. This does not allow me to say that it is expected to be less important
in other data sets, as Bollerslev et al. (2016) shows evidence in favour of it with a larger
sample size. That said, it is informative to know that this outperformance does not seem
as consistent as the one reported by the HAR-RVlog, both in my results and the literature
(Buccheri and Corsi, 2019; Clements and Preve, 2019).

5.2.3 GARCH and ARMA with squared returns

For individual models, GARCH models had the most surprising results: on average, they
performed better than HAR models. This is, however, inconsistent because in the low
volatility period of 2005-2006 it had a relatively low MSE, but a relatively high QLIKE (Fig-

46



Figure 9: Out-of-sample QLIKE for GARCH and ARMAr models (2005-2006)

This figure compares the performance of all GARCH models (section 4.2.4) and all ARMA models with squared returns
(section 4.2.2) I tested, ordered by MSE of the models in the period of 2007-2010. This is a relative comparison: every quasi-
likelihood is divided by the quasi-likelihood of the HAR-RV, so a performance of 1.0 (marked with the rightmost dotted vertical
line) means that the performance is equal to the one from the HAR-RV. The leftmost dotted vertical line marks the individual
model with the best relative QLIKE – in this case, the QS-HAR-RV with a relative QLIKE of 0.88. Note that all these statistics
are only calculated from observations in the period being considered in the figure (2005-2006). Some results may be missing
from the figure because they could not fit in the figure. All the results, along with the corresponding MCS p-values, are
expressed on the tables from Appendix C.
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Figure 10: Out-of-sample MSE for GARCH and ARMAr models (2007-2010)

This figure compares the performance of all GARCH models (section 4.2.4) and all ARMA models with squared returns
(section 4.2.2) I tested, ordered by the MSE of the models in the period of 2007-2010. This is a relative comparison: every
mean squared error is divided by the mean squared error of the HAR-RV, so a performance of 1.0 (marked with the rightmost
dotted vertical line) means that the performance is equal to the one from the HAR-RV. The leftmost dotted vertical line marks
the individual model with the best relative MSE – in this case, the E-GARCH(1, 1) with a relative MSE of 0.84. Note that all
these statistics are only calculated from observations in the period being considered in the figure (2007-2010). Some results
may be missing from the figure because they could not fit in the figure. All the results, along with the corresponding MCS
p-values, are expressed on the tables from Appendix C.
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Figure 11: Out-of-sample QLIKE for GARCH and ARMAr models (2007-2010)

This figure compares the performance of all GARCH models (section 4.2.4) and all ARMA models with squared returns
(section 4.2.2) I tested, ordered by the MSE of the models in the period of 2007-2010. This is a relative comparison: every
quasi-likelihood is divided by the quasi-likelihood of the HAR-RV, so a performance of 1.0 (marked with the rightmost dotted
vertical line) means that the performance is equal to the one from the HAR-RV. The leftmost dotted vertical line marks the
individual model with the best relative QLIKE – in this case, the HAR-C-J with a relative QLIKE of 0.91. Note that all these
statistics are only calculated from observations in the period being considered in the figure (2007-2010). Some results may be
missing from the figure because they could not fit in the figure. All the results, along with the corresponding MCS p-values,
are expressed on the tables from Appendix C.
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ures 8 and 9); while in the high volatility period of 2007-2010 it was the opposite – a rela-
tively high MSE, but low QLIKE (Figures 10 and 11). Through visual inspection (Figure 12
shows one prototypical example), it is possible to observe a pattern: GARCH models tend
to have too much persistence after a large shock. This was previously observed with the
1987 crash Schwert (1989), and the C-GARCH was constructed to correct such problems, but
in my sample this does not happen successfully. The GARCH variants that perform better
are the ones that allow for the leverage effect, which is corroborated by Hansen and Lunde
(2005) and Awartani and Corradi (2005). The inclusion of the realised volatility (through
the R-GARCHRV) was not consequential in almost every case.

Figure 12: Example: GARCH vs HAR after a volatility shock

The realised volatility (from 2006-07-25 to 2007-11-13) is shown in black, and the one-day-ahead volatility forecasts by other
models (“Vol”) with 3 different colors. This is the typical pattern with GARCH models in my sample – they tend to not
mean-revert as quickly as they should. The C-GARCH(1,1) was made to solve this issue, so it is shown in the comparison.

Despite my results, I do not expect that GARCH models do as well as HAR models
in the long run. There is enough evidence in the literature to suggest that GARCH models
sometimes underperform more heavily relative to models with realised volatility (e.g., Corsi
(2004)), and my sample is mostly composed of a period of very high volatility by historical
standards. But if GARCH models do perform satisfactorily during such high volatility peri-
ods, this is still a very meaningful result, as these are the periods with a disproportionately
high impact on risk management. This conclusion could also be applied to exponential
smoothing models with squared returns that, despite being slightly inferior in my sample,
seem to have equivalent performance to GARCH models in the literature35 (Andersen et al.,

35In most of the literature, the exponential smoothing model with beta = 0.94 is referred to as the “Risk-
Metrics” model (Morgan et al., 1996).
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Figure 13: Out-of-sample MSE for Grouping and Equal Weight combinations (2007-2010)

Within each category, I mark the performance of the best individual model with a cross (e.g., for GARCH models, the cross
represents the performance of the E-GARCH(1, 1) in this case). The blue squares represent the average performance of the
individual models. And the red diamonds are the “Grouping” (section 4.3.1) models. They are obtained by averaging all
forecasts of their respective model categories – the forecasts for the “GARCH” model group, for example, are obtained by
averaging the forecasts of the 14 individual GARCH models. I also include the EqualWeight as a point of reference, which
averages all (74) individual model forecasts.
This is a relative comparison: every mean squared error is divided by the mean squared error of the HAR-RV, so a performance
of 1.0 (marked with the rightmost dotted vertical line) means that the performance is equal to the one from the HAR-RV. The
leftmost dotted vertical line marks the individual model with the best relative MSE – in this case, the E-GARCH(1, 1) with a
relative MSE of 0.84. Note that all these statistics are only calculated from observations in the period being considered in the
figure (2007-2010). Some results may be missing from the figure because they could not fit in the figure. All the results, along
with the corresponding MCS p-values, are expressed on the tables from Appendix C.

2003; Corsi, 2004).

5.3 Model combinations

5.3.1 Grouping and equal weighting models

I first look at averaging the forecasts within each category (Figures 13 and 14). There, we
can observe a stylized fact from the model combinations literature (Timmermann, 2006):
the performance of the average forecast (red diamonds) is consistently better than the perfor-
mance of the average model (blue squares), although it rarely surpasses the best model within
that category (black crosses). The improvements tend to get larger with worse model cate-
gories, which is why the improvements for the QLIKE are larger. Worse models benefit more
from being combined because the reasons for the improvements (such as models not taking
advantage of all information, or models having noisy estimates) are more often present in
naïve models, and models that use squared returns.

I also combine multiple model categories (Figures 15 and 16), similarly to Makridakis
and Winkler (1983) – for instance, instead of just pooling HAR forecasts, I can pool HAR and
GARCH forecasts. As I combine more models from different categories, the average and the
variance of the losses decrease, although the effect is smaller with the QLIKE – there, as I
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Figure 14: Out-of-sample QLIKE for Grouping and Equal Weight combinations (2007-2010)

Within each category, I mark the performance of the best individual model with a cross (e.g., for HAR models, the cross
represents the performance of the HAR-C-J in this case). The blue squares represent the average performance of the individual
models. And the red diamonds are the “Grouping” (section 4.3.1) models. They are obtained by averaging all forecasts of
their respective model categories – the forecasts for the “GARCH” model group, for example, are obtained by averaging the
forecasts of the 14 individual GARCH models. I also include the EqualWeight as a point of reference, which averages all (74)
individual model forecasts.
This is a relative comparison: every quasi-likelihood is divided by the quasi-likelihood of the HAR-RV, so a performance of
1.0 (marked with the rightmost dotted vertical line) means that the performance is equal to the one from the HAR-RV. The
leftmost dotted vertical line marks the individual model with the best relative QLIKE – in this case, the HAR-C-J with a relative
QLIKE of 0.91. Note that all these statistics are only calculated from observations in the period being considered in the figure
(2007-2010). Some results may be missing from the figure because they could not fit in the figure. All the results, along with
the corresponding MCS p-values, are expressed on the tables from Appendix C.

add more model categories, the probability of using a combination that improves on the
HAR-RV gets smaller.

To understand why this is, it helps to look at the results in Figures 17 and 18: com-
binations of HAR and/or GARCH, which are the best models, are sufficient to bring the
reduction in variance, while also not deteriorating the expected performance. Hence, infe-
rior models do not contribute to improved performance, although the differences are very
small (as can be seen by the equal weight scheme).

5.3.2 Trimming

From the previous sub-section, it becomes clear that combining the best categories leads
to better results. But instead of trying to combine the best models by choosing the right
categories, we can explicitly try to achieve that goal by trimming the worst forecasts (Figures
19 and 20).

Once again, the improvements are very small compared to the equal weighting scheme,
and it sometimes does worse than combinations of GARCH and/or HAR. But the results
are a bit more consistent for both loss functions, especially for 1.1 ⩽ k ⩽ 1.4, which excludes
an average of roughly 10 to 40 individual models per day (out of the 74).

So, although trimming has the best average performance across every specification tested
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Figure 15: Out-of-sample MSE for Grouping combinations (2007-2010)

Each black point is a “Grouping” model (section 4.3.1), which is a way to combine models. The row with 1 model category
shows the same data as the red diamonds in Figure 13. The row with 2 model categories shows all the possible Grouping
combinations that can be made with the 7 individual model categories (HAR with GARCH, HAR with IV, etc.). The other
rows have the same interpretation – they give the performance of Grouping models that can be made with n individual
model categories.
This is a relative comparison: every mean squared error is divided by the mean squared error of the HAR-RV, so a performance
of 1.0 (marked with the rightmost dotted vertical line) means that the performance is equal to the one from the HAR-RV. The
leftmost dotted vertical line marks the individual model with the best relative MSE – in this case, the E-GARCH(1, 1) with a
relative MSE of 0.84. Note that all these statistics are only calculated from observations in the period being considered in the
figure (2007-2010). Some results may be missing from the figure because they could not fit in the figure. All the results, along
with the corresponding MCS p-values, are expressed on the tables from Appendix C.

Figure 16: Out-of-sample QLIKE for Grouping combinations (2007-2010)

Each black point is a “Grouping” (section 4.3.1) model, which is a way to combine models. The row with 1 model category
shows the same data as the red diamonds in Figure 14. The row with 2 model categories shows all the possible Grouping
combinations that can be made with the 7 individual model categories (HAR with GARCH, HAR with IV, etc.). The other
rows have the same interpretation – they give the performance of Grouping models that can be made with n individual
model categories.
This is a relative comparison: every quasi-likelihood is divided by the quasi-likelihood of the HAR-RV, so a performance of
1.0 (marked with the rightmost dotted vertical line) means that the performance is equal to the one from the HAR-RV. The
leftmost dotted vertical line marks the individual model with the best relative QLIKE – in this case, the HAR-C-J with a relative
QLIKE of 0.91. Note that all these statistics are only calculated from observations in the period being considered in the figure
(2007-2010). Some results may be missing from the figure because they could not fit in the figure. All the results, along with
the corresponding MCS p-values, are expressed on the tables from Appendix C.
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Figure 17: Out-of-sample MSE for selected Grouping models (2007-2010)

Out of all the Grouping models presented in Figure 15, I present the ones containing all possible combinations of GARCH,
HAR, and IV models – a priori, I considered those to be the models that would most benefit from being combined.
This is a relative comparison: every mean squared error is divided by the mean squared error of the HAR-RV, so a performance
of 1.0 (marked with the rightmost dotted vertical line) means that the performance is equal to the one from the HAR-RV. The
leftmost dotted vertical line marks the individual model with the best relative MSE – in this case, the E-GARCH(1, 1) with a
relative MSE of 0.84. Note that all these statistics are only calculated from observations in the period being considered in the
figure (2007-2010). Some results may be missing from the figure because they could not fit in the figure. All the results, along
with the corresponding MCS p-values, are expressed on the tables from Appendix C.

Figure 18: Out-of-sample QLIKE for selected Grouping models (2007-2010)

Out of all the Grouping models presented in Figure 16, I present the ones containing all possible combinations of GARCH,
HAR, and IV models – a priori, I considered those to be the models that would most benefit from being combined.
This is a relative comparison: every quasi-likelihood is divided by the quasi-likelihood of the HAR-RV, so a performance of
1.0 (marked with the rightmost dotted vertical line) means that the performance is equal to the one from the HAR-RV. The
leftmost dotted vertical line marks the individual model with the best relative QLIKE – in this case, the HAR-C-J with a relative
QLIKE of 0.91. Note that all these statistics are only calculated from observations in the period being considered in the figure
(2007-2010). Some results may be missing from the figure because they could not fit in the figure. All the results, along with
the corresponding MCS p-values, are expressed on the tables from Appendix C.
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Figure 19: Out-of-sample MSE for trimming and Equal Weight combinations (2007-2010)

TrimmingMSE(k) excludes all the models whose past MSE is above the k threshold. That threshold, given by k, is the ratio
between that past MSE, and the past MSE of the model with the lowest MSE. If k = 2, for example, and the best model had
an MSE of 1.5e− 07, the trimming procedure excludes any models with MSE > 3e− 07.
This is a relative comparison: every mean squared error is divided by the mean squared error of the HAR-RV, so a performance
of 1.0 (marked with the rightmost dotted vertical line) means that the performance is equal to the one from the HAR-RV. The
leftmost dotted vertical line marks the individual model with the best relative MSE – in this case, the E-GARCH(1, 1) with a
relative MSE of 0.84. Note that all these statistics are only calculated from observations in the period being considered in the
figure (2007-2010). Some results may be missing from the figure because they could not fit in the figure. All the results, along
with the corresponding MCS p-values, are expressed on the tables from Appendix C.
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Figure 20: Out-of-sample QLIKE for trimming and Equal Weight combinations (2007-2010)

TrimmingQLIKE(k) excludes all the models whose past MSE is above the k threshold. That threshold, given by k, is the ratio
between that past MSE, and the past QLIKE of the model with the lowest QLIKE. If k = 2, for example, and the best model
had a QLIKE of 1.5e− 07, the trimming procedure excludes any models with QLIKE > 3e− 07.
This is a relative comparison: every quasi-likelihood is divided by the quasi-likelihood of the HAR-RV, so a performance of
1.0 (marked with the rightmost dotted vertical line) means that the performance is equal to the one from the HAR-RV. The
leftmost dotted vertical line marks the individual model with the best relative QLIKE – in this case, the HAR-C-J with a relative
QLIKE of 0.91. Note that all these statistics are only calculated from observations in the period being considered in the figure
(2007-2010). Some results may be missing from the figure because they could not fit in the figure. All the results, along with
the corresponding MCS p-values, are expressed on the tables from Appendix C.
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Figure 21: Out-of-sample MSE for regularization regressions (2007-2010)

This figure compares the performance of all Regularization models (section 4.3.3) I tested, ordered by the MSE of the models
in the period of 2007-2010.
This is a relative comparison: every mean squared error is divided by the mean squared error of the HAR-RV, so a performance
of 1.0 (marked with the rightmost dotted vertical line) means that the performance is equal to the one from the HAR-RV. The
leftmost dotted vertical line marks the individual model with the best relative MSE – in this case, the E-GARCH(1, 1) with a
relative MSE of 0.84. Note that all these statistics are only calculated from observations in the period being considered in the
figure (2007-2010). Some results may be missing from the figure because they could not fit in the figure. All the results, along
with the corresponding MCS p-values, are expressed on the tables from Appendix C.

(Figures 2 and 3) the main conclusion is that any (simple) form of combining forecasts leads
to more consistent results, with a similar MSE and QLIKE to the (ex-post) optimal model.
This is corroborated by Timmermann (2006), which also finds that trimming is the better
option for making forecast combinations.

5.3.3 Regularization: Ridge, LASSO and Elastic Net

I can additionally improve forecasts by exploiting complex relationships that exist between
individual models. This complexity introduces the additional difficulty of correctly esti-
mating hyperparameters due to overfitting, which is difficult to deal with in the estimation
process – as I mentioned in section 4.3.3, applying the one-standard-deviation rule made
the procedure select intercept-only models. Notice in Figures 21 and 22 that the effect of
overfitting is noticeable: the models optimized on the MSE do better in terms of the QLIKE,
and the models optimized on the QLIKE do better in terms of the MSE. Lastly, note that
the ridge does predictably better than all other types of regularization techniques for the
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Figure 22: Out-of-sample QLIKE for regularization regressions (2007-2010)

This figure compares the performance of all Regularization models (section 4.3.3) I tested, ordered by the MSE of the models
in the period of 2007-2010.
This is a relative comparison: every quasi-likelihood is divided by the quasi-likelihood of the HAR-RV, so a performance of
1.0 (marked with the rightmost dotted vertical line) means that the performance is equal to the one from the HAR-RV. The
leftmost dotted vertical line marks the individual model with the best relative QLIKE – in this case, the HAR-C-J with a relative
QLIKE of 0.91. Note that all these statistics are only calculated from observations in the period being considered in the figure
(2007-2010). Some results may be missing from the figure because they could not fit in the figure. All the results, along with
the corresponding MCS p-values, are expressed on the tables from Appendix C.
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Figure 23: Out-of-sample MSE for regularization regressions with fixed λ (2007-2010)

Whereas Figures 21 and 22 show Regularization models that dynamically choose the shrinkage parameter (λ), this figure shows the performance of those models
when λ is fixed. The three α values shown, 0, 0.5 and 1, correspond to the Ridge regression, Elastic Net, and Lasso methods.
This is a relative comparison: every mean squared error is divided by the mean squared error of the HAR-RV, so a performance of 1.0 (marked with the rightmost dotted
vertical line) means that the performance is equal to the one from the HAR-RV. The leftmost dotted vertical line marks the individual model with the best relative MSE
– in this case, the E-GARCH(1, 1) with a relative MSE of 0.84. Note that all these statistics are only calculated from observations in the period being considered in the
figure (2007-2010). Some results may be missing from the figure because they could not fit in the figure. All the results, along with the corresponding MCS p-values,
are expressed on the tables from Appendix C.
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Figure 24: Out-of-sample QLIKE for regularization regressions with fixed λ (2007-2010)

Whereas Figures 21 and 22 show Regularization models that dynamically choose the shrinkage parameter (λ), this figure shows the performance of those models
when λ is fixed. The three α values shown, 0, 0.5 and 1, correspond to the Ridge regression, Elastic Net, and Lasso methods.
This is a relative comparison: every quasi-likelihood is divided by the quasi-likelihood of the HAR-RV, so a performance of 1.0 (marked with the rightmost dotted
vertical line) means that the performance is equal to the one from the HAR-RV. The leftmost dotted vertical line marks the individual model with the best relative
QLIKE – in this case, the HAR-C-J with a relative QLIKE of 0.91. Note that all these statistics are only calculated from observations in the period being considered in the
figure (2007-2010). Some results may be missing from the figure because they could not fit in the figure. All the results, along with the corresponding MCS p-values,
are expressed on the tables from Appendix C.
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reasons I mentioned in section 4.3.3, but the results are still inferior and more variable than
the ones obtained in simpler weighting schemes, so regularization adds no value (at least
in the way I applied it).

To have a better sense of how these regularization methods were overfitting, I display
results for α = 0 (ridge), alpha = 0.5 (elastic net), and α = 1 (lasso) with all the possible
shrinkage parameters and their respective (out-of-sample) losses in Figures 23 and 24. For
the MSE, the best shrinkage parameter only matches the HAR-RV; and for the QLIKE, the
results are worse and more unstable. The figures also show that increasing the α hyperpa-
rameter (which puts a larger focus on excluding predictors) leads to identical performance
so long as you increase the shrinkage parameter accordingly and, roughly speaking, set
α < 0.9 (the results for all α values used are not shown in this thesis).

This ex-post analysis does not necessarily represent best-case-scenario in terms of per-
formance – if the shrinkage parameter decreases in magnitude as the standard errors get
smaller, the loss should also be smaller than when using a fixed shrinkage parameter (this
happens, for example, with the ridge regression for the QLIKE). Such an improvement
seems, however, hard to obtain and comes at the cost of considerable variance in the re-
sults.

Timmermann (2006) reviews the literature and finds that shrinkage methods are often
more successful than in my case; but his review also shows that the results are “quite sen-
sitive to the shrinkage parameters” (page 184) and that trimming often does better, so there
is, in large part, concordance between what I find and the literature.
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6 Discussion

Broadly speaking, there are two ways to improve out-of-sample forecasts: we can use more
data in our model, or we can get better estimates with the data we already have. The new
data has come in the form of utilizing multivariate models (Liu, 2009), new realised mea-
sures with intraday returns and tick data (Liu et al., 2015), and macroeconomic or alterna-
tive data sets (Bollerslev et al., 2009; Oliveira et al., 2017; Wang et al., 2006). For short-term
forecasts (roughly 1- to 10-day-forecasts), only the advent of realised measures has substan-
tially impacted performance, and new measures tend to offer very slight improvements, as
I demonstrate in my empirical results and the Literature Review (section 2.2).

To get better estimates with the data available, there are numerous methods in the lit-
erature such as the use of variations on GARCH models (Hansen and Lunde, 2005), differ-
ent estimators and link functions (Clements and Preve, 2019), outlier removal (Franses and
Ghijsels, 1999), model comparisons (Timmermann, 2006), among others. Barring some ex-
ceptions, few of these methods offer consistent improvements in forecast performance. The
lack of improvements is even more salient for longer-term forecasts (close to, or larger than,
20-day-ahead forecasts) since they mostly dominated by implied volatility and models with
realised volatility also seem adequate at making long-term predictions (Christensen and
Prabhala, 1998; Pong et al., 2004).

So if all alternatives to improve forecasts have had limited success, it is important to
prove that small increments are correctly measured and useful in applied settings. But al-
most no papers do this. One of the few articles is by Neely (2009) that tests how the delta
hedging practice is improved by augmenting implied volatility with statistical models; he
finds that the tracking error is not economically significant and rarely statistically signifi-
cant, and that augmenting IV with models using squared returns was not consistently better
than augmenting IV with models using realised variance. In the context of portfolio opti-
mization, Liu (2009) find that intraday data improves on squared returns, but only when
rebalancing the portfolio every day.

So if the benefits given by these models are limited and often lack of economic sig-
nificance, it puts into question the usefulness of the paradigm used in the literature that
I analyse, which tends to measure progress based on the loss of point forecasts made by
univariate models. At a minimum, researchers must be more conservative when equating
improvements in a loss function to improvements in applied settings. And to advance the
knowledge in this area, researchers must test economic significance more often – in settings
such as delta hedging or some other kind of risk management (e.g., (Liu, 2009)); determining
risk premia (Bollerslev et al., 2009); methodological improvements (Bollerslev et al. (1992)
give a few examples of applications related to this); focus on improving forecasts just with
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squared returns, since most practitioners do not have access to intraday data (Clements and
Preve (2019), for example, show that a range-based volatility proxy with daily high-low-
close data performs well); among others.

To assess statistical significance, I find the MCS test to generally be insufficient when
there are many models relative to the number of observations. Consider the anecdote that
when I use the MCS test with the QLIKE with just the 74 individual models in my sample,
4 models are excluded from the set of superior models; but when I also include model
combinations (another 176 models), only 3 models are excluded in total, even though almost
all the model combinations have close-to-optimal performance. This behaviour is caused by
a large loss of power, which is itself mainly caused by the test trying to control the rate of at
least one falsely-rejected model (familywise error rate, or FWER).

The alternatives covered in the Literature Review (section 2.5) have similar issues, in that
they often try to control for the FWER, and they can lack sufficient flexibility for the particu-
lar setting (e.g., not allowing for nested models). A worthwhile alternative is to use Bayesian
multilevel models (Gelman, Hill, and Yajima, 2012) that has the advantages of being more
interpretable, flexible and easily extensible, and allows you to incorporate knowledge from
past research, which is valuable when the literature is as extensive as the one about volatility
forecasting.
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7 Conclusion

I compare the main univariate models in the financial market volatility literature, and test
model combinations. With individual models, the GARCH, HAR, ARMA(1,1), and expo-
nential smoothing models work similarly well, though the models using realised variance
are more consistent. GARCH and HAR models are better when they allow for the leverage
effect; HAR models are additionally improved by the simultaneous inclusion of continuous
and jump realised measures, and by the use of the logarithm of realised variance (RVlog);
and exponential smoothing models perform well when their parameter allows for high or
intermediate volatility persistence (i.e., 0.5 ⩽ β ⩽ 0.95).

Model combinations have, on average, a lower loss than individual models: for any given
model category, the loss of individual models is more variable than the model combination
made with the models from that category; the loss of individual models is also higher than
the model combination; but the loss of the best individual model of a category is lower than
the model combination made with models from that category. This effect is stronger for the
mean squared error (MSE) than for the quasi-likelihood (QLIKE); for simple model com-
bination weighting schemes (i.e., everything I tested except regularization); and for model
combinations that exclude bad performers directly (by trimming) or indirectly (by only com-
bining the best-performing models to begin with, such as only combining HAR and GARCH
models).

All of these differences in performance are very small. To assess their significance, I use
the model confidence set (MCS) test (Hansen et al., 2011), which I consider to be the most
adequate test in the literature. At the same time, it pursues the wrong goal, which is to
control the rate at which at least one superior model is excluded from the set of superior
models (SSM). This issue, among other things, reduces the power of the test substantially,
so it does not reject many models that are clearly inferior – with α set to 0.2, for the QLIKE,
only 3 out of the 250 models tested are not included in the SSM; for the MSE, no model is
excluded because models are closer to each other on that loss function. So, despite the lack
of significant results, I find it probable that many of the observed patterns mentioned above
will be seen in other samples, especially for those that have also been documented in the
literature36 (e.g., Hansen and Lunde (2005) and Awartani and Corradi (2005) also find that
GARCH models are better when they allow for the leverage effect, and I essentially replicate
most of the main findings of Timmermann (2006) about model combinations).

In light of the research that applies these models in applied economic settings, it is al-
most surely the case that, in practice, using any reasonably adequate model would give

36One limitation of this study is that the index used (FTSE100) is probably correlated with other widely
studied indexes so, to some extent, I would expect to see similar results.
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identical benefits under most circumstances. Since many avenues to improve performance
have already been tried with little success, future research needs to measure progress with
metrics directly related to economic applications that models are supposed to improve, as
loss functions do not translate well into those.
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Appendix A Data cleaning

All of the anomalies in the data were related to the intraday data, so FTSE100 and VFTSE
indexes are only changed in one way: I exclude any days that are not included in the clean
version of the intraday data.

To clean the intraday data, I firstly eliminate all observations that:

• Have the same day and hour (only the last of the repeated observations is not excluded.

• Are unordered in time.

• Are outside trading hours or trading days (includes holidays and weekends).

To find other mistakes in the data, I flag observations with:

• Large price changes (adjusted or not by the volatility of the respective day).

• Days with returns close or equal to zero.

• Large differences in time between intraday observations, or days.

I then sort anomalies by how large they are and investigate them individually by observ-
ing how they cluster, or how they related to news in those events. I stop investigating when
there are many anomalies below a certain magnitude that have not been excluded.

A few issues stand out, either because the inclusion of observations became more sub-
jective, or because they have a larger impact on the final results:

• On 2000-04-05, there was a technical problem with the London Stock Exchange be-
cause it opened and closed later than usual. The number of observations was similar,
although my data set seems to miss the last hour of trading. I kept this observation
because it is a typical trading day.

• From 2010-03-29 to 2010-03-31, which is after the timezone change in 2010-03-28, the
trading schedule does not change to the one of British Summer Time. I could not find
any warnings or news of this occurrence, but those days are very similar to a typical
day, so I include them.

• There were a few other days not excluded because the London Stock Exchange had
technical problems. I did not exclude them.

• I excluded two very large intraday returns on 2000-03-13, where the first one was of
roughly +6%, followed almost immediately after by a second one of roughly -6% in a
period where volatility did not seem to justify the magnitude of those returns, espe-
cially in such a short time. According to other (free) data sources, the price hit after
the +6% was higher than the maximum price for that day.
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• From 2001-09-13 to 2001-10-03 (after the terrorist attacks of 2001-09-11), there are 14
days even though other data sources indicate that the exchange was open.

As per Liu et al. (2015), after all these steps, I exclude observations that have less than
60% of the maximum number of 1-minute returns per day (i.e., exclude days with less than
306 observations), and then convert them to 5-minute returns.
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Appendix B Summary statistics
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Table 7: Summary statistics for volatility measures

Period Name Minimum 5th perc. Mean 95th perc. Maximum SD ACF(1) ACF(2) ACF(3)

2000-2004 RQ 7.7e− 11 6.6e− 10 2.9e− 07 5.1e− 07 9.7e− 05 3.4e− 06 0.01 0.02 0.03

TRV 3.5e− 06 1.0e− 05 6.9e− 05 2.1e− 04 2.6e− 03 1.2e− 04 0.36 0.32 0.30

RV+ 3.6e− 06 9.2e− 06 5.9e− 05 1.8e− 04 1.9e− 03 9.4e− 05 0.42 0.38 0.37

RV− 3.5e− 06 9.7e− 06 5.2e− 05 1.6e− 04 8.3e− 04 6.4e− 05 0.73 0.66 0.60

RV 7.0e− 06 2.1e− 05 1.2e− 04 3.7e− 04 3.2e− 03 1.8e− 04 0.52 0.47 0.44

r2 2.3e− 10 4.4e− 07 1.6e− 04 7.1e− 04 3.5e− 03 3.4e− 04 0.21 0.35 0.25

2005-2006 RQ 3.7e− 11 1.6e− 10 2.7e− 08 1.0e− 07 1.4e− 06 1.2e− 07 0.12 0.17 0.49

TRV 1.8e− 06 5.2e− 06 2.3e− 05 6.7e− 05 3.0e− 04 2.9e− 05 0.32 0.32 0.34

RV+ 2.5e− 06 4.7e− 06 1.9e− 05 5.9e− 05 2.2e− 04 2.1e− 05 0.37 0.30 0.28

RV− 3.3e− 06 4.7e− 06 1.5e− 05 4.0e− 05 1.4e− 04 1.6e− 05 0.60 0.53 0.52

RV 5.3e− 06 1.0e− 05 3.8e− 05 1.1e− 04 4.4e− 04 4.4e− 05 0.43 0.41 0.41

r2 4.1e− 10 1.7e− 07 4.7e− 05 1.9e− 04 8.8e− 04 9.1e− 05 0.23 0.18 0.37

2007-2010 RQ 1.6e− 10 1.2e− 09 3.2e− 06 2.1e− 06 2.2e− 03 7.0e− 05 0.07 0.03 0.01

TRV 5.9e− 06 1.4e− 05 1.3e− 04 3.5e− 04 8.4e− 03 3.4e− 04 0.37 0.41 0.28

RV+ 4.6e− 06 1.3e− 05 1.1e− 04 3.3e− 04 2.6e− 03 2.0e− 04 0.57 0.46 0.49

RV− 4.4e− 06 1.2e− 05 9.4e− 05 3.1e− 04 2.5e− 03 1.6e− 04 0.67 0.63 0.51

RV 1.2e− 05 2.7e− 05 2.2e− 04 7.1e− 04 1.1e− 02 4.8e− 04 0.48 0.51 0.37

r2 2.4e− 12 4.3e− 07 2.6e− 04 1.0e− 03 8.8e− 03 7.2e− 04 0.21 0.26 0.30

Each statistic corresponds only to the data within the respective period. “perc.” means “percentile”; SD is the standard deviation; and “ACF(t)” is the autocorrelation function
with t lags. The names of the volatility measures are described in section 3.2.
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Table 8: Average correlation by model category

ARMARV ARMAr EqualWeight GARCH Grouping HAR IV NaïveRV Naïver RegularizationMSE RegularizationQLIKE TrimmingMSE TrimmingQLIKE

ARMARV 0.90 0.57 0.66 0.60 0.69 0.79 0.86 0.71 0.80 0.77 0.75 0.80 0.79

ARMAr 0.57 0.83 0.65 0.62 0.66 0.78 0.68 0.80 0.70 0.71 0.73 0.74 0.71

EqualWeight 0.66 0.65 1.00 0.83 0.83 0.91 0.90 0.81 0.84 0.90 0.91 0.94 0.95

GARCH 0.60 0.62 0.83 0.75 0.74 0.82 0.80 0.75 0.76 0.78 0.80 0.84 0.84

Grouping 0.69 0.66 0.83 0.74 0.77 0.86 0.85 0.78 0.80 0.82 0.83 0.87 0.86

HAR 0.79 0.78 0.91 0.82 0.86 0.97 0.95 0.90 0.91 0.92 0.93 0.97 0.96

IV 0.86 0.68 0.90 0.80 0.85 0.95 1.00 0.85 0.92 0.93 0.93 0.96 0.96

NaïveRV 0.71 0.80 0.81 0.75 0.78 0.90 0.85 0.89 0.84 0.84 0.86 0.89 0.87

Naïver 0.80 0.70 0.84 0.76 0.80 0.91 0.92 0.84 0.87 0.87 0.87 0.92 0.91

RegularizationMSE 0.77 0.71 0.90 0.78 0.82 0.92 0.93 0.84 0.87 0.90 0.91 0.93 0.93

RegularizationQLIKE 0.75 0.73 0.91 0.80 0.83 0.93 0.93 0.86 0.87 0.91 0.92 0.94 0.93

TrimmingMSE 0.80 0.74 0.94 0.84 0.87 0.97 0.96 0.89 0.92 0.93 0.94 0.99 0.99

TrimmingQLIKE 0.79 0.71 0.95 0.84 0.86 0.96 0.96 0.87 0.91 0.93 0.93 0.99 0.99

I first take all the 250 models that I tested and calculate their Pearson correlation coefficient, which creates a correlation matrix. I then average these coefficients groupwise (I
include the diagonal of the matrix). When the groups are the same (e.g., ARMARV with ARMARV), the average coefficient tells us how similar models of the same category are –
that is why the coefficient for IV and EqualWeight is 1, as there is only one implied volatility and one “EqualWeight” model being tested.
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Appendix C Empirical results
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Table 9: Results (Part 1)

Model name Model family MSE1 QLIKE1 MSE2 QLIKE2 AvgMSE2
AvgQLIKE2

p̂MSE p̂QLIKE

EqualWeight EqualWeight − − 0.90 1.0e+ 00 0.90 1.00 1.00 1.00

Group(ARMARV) Grouping − − 0.99 1.2e+ 00 0.91 1.12 1.00 1.00

Group(ARMARV , ARMAr) Grouping − − 0.97 1.4e+ 00 0.91 1.12 1.00 1.00

Group(ARMARV , ARMAr , IV) Grouping − − 0.92 1.3e+ 00 0.91 1.12 1.00 1.00

Group(ARMARV , IV) Grouping − − 0.90 1.2e+ 00 0.91 1.12 1.00 1.00

Group(ARMAr) Grouping − − 1.04 1.7e+ 00 0.91 1.12 0.98 1.00

Group(ARMAr , IV) Grouping − − 0.95 1.5e+ 00 0.91 1.12 1.00 1.00

Group(GARCH) Grouping − − 0.86 9.8e− 01 0.91 1.12 1.00 1.00

Group(GARCH, ARMARV) Grouping − − 0.86 9.9e− 01 0.91 1.12 1.00 1.00

Group(GARCH, ARMARV , ARMAr) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, ARMARV , ARMAr , IV) Grouping − − 0.89 1.2e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, ARMARV , IV) Grouping − − 0.87 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, ARMAr) Grouping − − 0.91 1.2e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, ARMAr , IV) Grouping − − 0.90 1.3e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR) Grouping − − 0.88 9.1e− 01 0.91 1.12 1.00 1.00

Group(GARCH, HAR, ARMARV) Grouping − − 0.88 9.5e− 01 0.91 1.12 1.00 1.00

Group(GARCH, HAR, ARMARV , ARMAr) Grouping − − 0.89 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, ARMARV , ARMAr , IV) Grouping − − 0.89 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, ARMARV , IV) Grouping − − 0.87 1.0e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, ARMAr) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, ARMAr , IV) Grouping − − 0.89 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, IV) Grouping − − 0.88 1.0e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, NaïveRV) Grouping − − 0.88 9.3e− 01 0.91 1.12 1.00 1.00

Group(GARCH, HAR, NaïveRV , ARMARV) Grouping − − 0.88 9.6e− 01 0.91 1.12 1.00 1.00

Group(GARCH, HAR, NaïveRV , ARMARV , ARMAr) Grouping − − 0.89 1.0e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, NaïveRV , ARMARV , ARMAr , IV) Grouping − − 0.89 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, NaïveRV , ARMARV , IV) Grouping − − 0.88 1.0e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, NaïveRV , ARMAr) Grouping − − 0.89 1.0e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, NaïveRV , ARMAr , IV) Grouping − − 0.89 1.1e+ 00 0.91 1.12 1.00 1.00

The “model family” is what I often refer to as the “model category” of each model. “MSE1”/“QLIKE1” is the model’s loss in the period of 2005-2006 relative to the loss of the
HAR-RV in 2005-2006. “MSE2”/“QLIKE2” is the model’s loss in the period of 2007-2010 relative to the loss of the HAR-RV in 2005-2006. “AvgMSE2

”/“AvgMSE2
” is the average relative

loss of the model family. “p̂MSE”/“p̂QLIKE” are the MCS p-values for the model (“Model name”) using the MSE and QLIKE loss functions, respectively. Empty values (“−”) in
those p-values signify that the model was excluded from the set of superior models (please refer to section 4.4 for more details on the MCS test).
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Table 10: Results (Part 2)

Model name Model family MSE1 QLIKE1 MSE2 QLIKE2 AvgMSE2
AvgQLIKE2

p̂MSE p̂QLIKE

Group(GARCH, HAR, NaïveRV , IV) Grouping − − 0.88 1.0e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, NaïveRV , Naïver) Grouping − − 0.89 9.7e− 01 0.91 1.12 1.00 1.00

Group(GARCH, HAR, NaïveRV , Naïver , ARMARV) Grouping − − 0.89 9.8e− 01 0.91 1.12 1.00 1.00

Group(GARCH, HAR, NaïveRV , Naïver , ARMARV , ARMAr) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, NaïveRV , Naïver , ARMARV , ARMAr , IV) Grouping − − 0.89 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, NaïveRV , Naïver , ARMARV , IV) Grouping − − 0.88 1.0e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, NaïveRV , Naïver , ARMAr) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, NaïveRV , Naïver , ARMAr , IV) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, NaïveRV , Naïver , IV) Grouping − − 0.89 1.0e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, Naïver) Grouping − − 0.90 9.8e− 01 0.91 1.12 1.00 1.00

Group(GARCH, HAR, Naïver , ARMARV) Grouping − − 0.89 9.8e− 01 0.91 1.12 1.00 1.00

Group(GARCH, HAR, Naïver , ARMARV , ARMAr) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, Naïver , ARMARV , ARMAr , IV) Grouping − − 0.89 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, Naïver , ARMARV , IV) Grouping − − 0.88 1.0e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, Naïver , ARMAr) Grouping − − 0.91 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, Naïver , ARMAr , IV) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, HAR, Naïver , IV) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, IV) Grouping − − 0.90 1.2e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, NaïveRV) Grouping − − 0.86 9.6e− 01 0.91 1.12 1.00 1.00

Group(GARCH, NaïveRV , ARMARV) Grouping − − 0.88 9.9e− 01 0.91 1.12 1.00 1.00

Group(GARCH, NaïveRV , ARMARV , ARMAr) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, NaïveRV , ARMARV , ARMAr , IV) Grouping − − 0.89 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, NaïveRV , ARMARV , IV) Grouping − − 0.87 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, NaïveRV , ARMAr) Grouping − − 0.89 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, NaïveRV , ARMAr , IV) Grouping − − 0.89 1.2e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, NaïveRV , IV) Grouping − − 0.88 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, NaïveRV , Naïver) Grouping − − 0.89 1.0e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, NaïveRV , Naïver , ARMARV) Grouping − − 0.89 1.0e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, NaïveRV , Naïver , ARMARV , ARMAr) Grouping − − 0.91 1.1e+ 00 0.91 1.12 1.00 1.00

The “model family” is what I often refer to as the “model category” of each model. “MSE1”/“QLIKE1” is the model’s loss in the period of 2005-2006 relative to the loss of the
HAR-RV in 2005-2006. “MSE2”/“QLIKE2” is the model’s loss in the period of 2007-2010 relative to the loss of the HAR-RV in 2005-2006. “AvgMSE2

”/“AvgMSE2
” is the average relative

loss of the model family. “p̂MSE”/“p̂QLIKE” are the MCS p-values for the model (“Model name”) using the MSE and QLIKE loss functions, respectively. Empty values (“−”) in
those p-values signify that the model was excluded from the set of superior models (please refer to section 4.4 for more details on the MCS test).
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Table 11: Results (Part 3)

Model name Model family MSE1 QLIKE1 MSE2 QLIKE2 AvgMSE2
AvgQLIKE2

p̂MSE p̂QLIKE

Group(GARCH, NaïveRV , Naïver , ARMARV , ARMAr , IV) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, NaïveRV , Naïver , ARMARV , IV) Grouping − − 0.88 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, NaïveRV , Naïver , ARMAr) Grouping − − 0.91 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, NaïveRV , Naïver , ARMAr , IV) Grouping − − 0.90 1.2e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, NaïveRV , Naïver , IV) Grouping − − 0.89 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, Naïver) Grouping − − 0.92 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, Naïver , ARMARV) Grouping − − 0.89 1.0e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, Naïver , ARMARV , ARMAr) Grouping − − 0.91 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, Naïver , ARMARV , ARMAr , IV) Grouping − − 0.90 1.2e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, Naïver , ARMARV , IV) Grouping − − 0.89 1.1e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, Naïver , ARMAr) Grouping − − 0.94 1.2e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, Naïver , ARMAr , IV) Grouping − − 0.92 1.2e+ 00 0.91 1.12 1.00 1.00

Group(GARCH, Naïver , IV) Grouping − − 0.91 1.2e+ 00 0.91 1.12 1.00 1.00

Group(HAR) Grouping − − 0.94 9.2e− 01 0.91 1.12 1.00 1.00

Group(HAR, ARMARV) Grouping − − 0.92 1.0e+ 00 0.91 1.12 1.00 1.00

Group(HAR, ARMARV , ARMAr) Grouping − − 0.93 1.2e+ 00 0.91 1.12 1.00 1.00

Group(HAR, ARMARV , ARMAr , IV) Grouping − − 0.90 1.2e+ 00 0.91 1.12 1.00 1.00

Group(HAR, ARMARV , IV) Grouping − − 0.89 1.1e+ 00 0.91 1.12 1.00 1.00

Group(HAR, ARMAr) Grouping − − 0.94 1.2e+ 00 0.91 1.12 1.00 1.00

Group(HAR, ARMAr , IV) Grouping − − 0.91 1.2e+ 00 0.91 1.12 1.00 1.00

Group(HAR, IV) Grouping − − 0.91 1.1e+ 00 0.91 1.12 1.00 1.00

Group(HAR, NaïveRV) Grouping − − 0.91 9.7e− 01 0.91 1.12 1.00 1.00

Group(HAR, NaïveRV , ARMARV) Grouping − − 0.91 1.0e+ 00 0.91 1.12 1.00 1.00

Group(HAR, NaïveRV , ARMARV , ARMAr) Grouping − − 0.92 1.1e+ 00 0.91 1.12 1.00 1.00

Group(HAR, NaïveRV , ARMARV , ARMAr , IV) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(HAR, NaïveRV , ARMARV , IV) Grouping − − 0.89 1.1e+ 00 0.91 1.12 1.00 1.00

Group(HAR, NaïveRV , ARMAr) Grouping − − 0.92 1.1e+ 00 0.91 1.12 1.00 1.00

Group(HAR, NaïveRV , ARMAr , IV) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(HAR, NaïveRV , IV) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

The “model family” is what I often refer to as the “model category” of each model. “MSE1”/“QLIKE1” is the model’s loss in the period of 2005-2006 relative to the loss of the
HAR-RV in 2005-2006. “MSE2”/“QLIKE2” is the model’s loss in the period of 2007-2010 relative to the loss of the HAR-RV in 2005-2006. “AvgMSE2

”/“AvgMSE2
” is the average relative

loss of the model family. “p̂MSE”/“p̂QLIKE” are the MCS p-values for the model (“Model name”) using the MSE and QLIKE loss functions, respectively. Empty values (“−”) in
those p-values signify that the model was excluded from the set of superior models (please refer to section 4.4 for more details on the MCS test).
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Table 12: Results (Part 4)

Model name Model family MSE1 QLIKE1 MSE2 QLIKE2 AvgMSE2
AvgQLIKE2

p̂MSE p̂QLIKE

Group(HAR, NaïveRV , Naïver) Grouping − − 0.92 1.0e+ 00 0.91 1.12 1.00 1.00

Group(HAR, NaïveRV , Naïver , ARMARV) Grouping − − 0.91 1.0e+ 00 0.91 1.12 1.00 1.00

Group(HAR, NaïveRV , Naïver , ARMARV , ARMAr) Grouping − − 0.92 1.1e+ 00 0.91 1.12 1.00 1.00

Group(HAR, NaïveRV , Naïver , ARMARV , ARMAr , IV) Grouping − − 0.91 1.1e+ 00 0.91 1.12 1.00 1.00

Group(HAR, NaïveRV , Naïver , ARMARV , IV) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(HAR, NaïveRV , Naïver , ARMAr) Grouping − − 0.93 1.1e+ 00 0.91 1.12 1.00 1.00

Group(HAR, NaïveRV , Naïver , ARMAr , IV) Grouping − − 0.91 1.1e+ 00 0.91 1.12 1.00 1.00

Group(HAR, NaïveRV , Naïver , IV) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(HAR, Naïver) Grouping − − 0.95 1.0e+ 00 0.91 1.12 1.00 1.00

Group(HAR, Naïver , ARMARV) Grouping − − 0.92 1.0e+ 00 0.91 1.12 1.00 1.00

Group(HAR, Naïver , ARMARV , ARMAr) Grouping − − 0.93 1.1e+ 00 0.91 1.12 1.00 1.00

Group(HAR, Naïver , ARMARV , ARMAr , IV) Grouping − − 0.91 1.2e+ 00 0.91 1.12 1.00 1.00

Group(HAR, Naïver , ARMARV , IV) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(HAR, Naïver , ARMAr) Grouping − − 0.95 1.2e+ 00 0.91 1.12 1.00 1.00

Group(HAR, Naïver , ARMAr , IV) Grouping − − 0.92 1.2e+ 00 0.91 1.12 1.00 1.00

Group(HAR, Naïver , IV) Grouping − − 0.92 1.1e+ 00 0.91 1.12 1.00 1.00

Group(IV) Grouping − − 0.98 1.6e+ 00 0.91 1.12 1.00 1.00

Group(NaïveRV) Grouping − − 0.91 1.1e+ 00 0.91 1.12 1.00 1.00

Group(NaïveRV , ARMARV) Grouping − − 0.94 1.1e+ 00 0.91 1.12 1.00 1.00

Group(NaïveRV , ARMARV , ARMAr) Grouping − − 0.94 1.2e+ 00 0.91 1.12 1.00 1.00

Group(NaïveRV , ARMARV , ARMAr , IV) Grouping − − 0.91 1.2e+ 00 0.91 1.12 1.00 1.00

Group(NaïveRV , ARMARV , IV) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(NaïveRV , ARMAr) Grouping − − 0.94 1.2e+ 00 0.91 1.12 1.00 1.00

Group(NaïveRV , ARMAr , IV) Grouping − − 0.92 1.3e+ 00 0.91 1.12 1.00 1.00

Group(NaïveRV , IV) Grouping − − 0.91 1.2e+ 00 0.91 1.12 1.00 1.00

Group(NaïveRV , Naïver) Grouping − − 0.94 1.1e+ 00 0.91 1.12 1.00 1.00

Group(NaïveRV , Naïver , ARMARV) Grouping − − 0.93 1.1e+ 00 0.91 1.12 1.00 1.00

Group(NaïveRV , Naïver , ARMARV , ARMAr) Grouping − − 0.94 1.2e+ 00 0.91 1.12 1.00 1.00

Group(NaïveRV , Naïver , ARMARV , ARMAr , IV) Grouping − − 0.92 1.2e+ 00 0.91 1.12 1.00 1.00

The “model family” is what I often refer to as the “model category” of each model. “MSE1”/“QLIKE1” is the model’s loss in the period of 2005-2006 relative to the loss of the
HAR-RV in 2005-2006. “MSE2”/“QLIKE2” is the model’s loss in the period of 2007-2010 relative to the loss of the HAR-RV in 2005-2006. “AvgMSE2

”/“AvgMSE2
” is the average relative

loss of the model family. “p̂MSE”/“p̂QLIKE” are the MCS p-values for the model (“Model name”) using the MSE and QLIKE loss functions, respectively. Empty values (“−”) in
those p-values signify that the model was excluded from the set of superior models (please refer to section 4.4 for more details on the MCS test).
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Table 13: Results (Part 5)

Model name Model family MSE1 QLIKE1 MSE2 QLIKE2 AvgMSE2
AvgQLIKE2

p̂MSE p̂QLIKE

Group(NaïveRV , Naïver , ARMARV , IV) Grouping − − 0.90 1.1e+ 00 0.91 1.12 1.00 1.00

Group(NaïveRV , Naïver , ARMAr) Grouping − − 0.95 1.2e+ 00 0.91 1.12 1.00 1.00

Group(NaïveRV , Naïver , ARMAr , IV) Grouping − − 0.93 1.2e+ 00 0.91 1.12 1.00 1.00

Group(NaïveRV , Naïver , IV) Grouping − − 0.92 1.2e+ 00 0.91 1.12 1.00 1.00

Group(Naïver) Grouping − − 1.07 1.3e+ 00 0.91 1.12 0.75 1.00

Group(Naïver , ARMARV) Grouping − − 0.95 1.1e+ 00 0.91 1.12 1.00 1.00

Group(Naïver , ARMARV , ARMAr) Grouping − − 0.96 1.3e+ 00 0.91 1.12 1.00 1.00

Group(Naïver , ARMAr) Grouping − − 1.01 1.4e+ 00 0.91 1.12 1.00 1.00

Group(Naïver , ARMAr , IV) Grouping − − 0.95 1.4e+ 00 0.91 1.12 1.00 1.00

Group(Naïver , IV) Grouping − − 0.96 1.3e+ 00 0.91 1.12 1.00 1.00

ElasticNetMSE RegularizationMSE − − 2.29 1.5e+ 00 1.90 2.03 0.85 1.00

LassoMSE RegularizationMSE − − 2.28 3.6e+ 00 1.90 2.03 0.85 0.95

RidgeMSE RegularizationMSE − − 1.13 1.0e+ 00 1.90 2.03 0.95 1.00

ElasticNetQLIKE RegularizationQLIKE − − 1.21 2.1e+ 00 1.21 2.97 0.71 1.00

LassoQLIKE RegularizationQLIKE − − 1.35 2.2e+ 00 1.21 2.97 0.63 1.00

RidgeQLIKE RegularizationQLIKE − − 1.07 4.6e+ 00 1.21 2.97 0.86 0.90

TrimmingMSE(1.1) TrimmingMSE − − 0.87 9.3e− 01 0.89 0.98 1.00 1.00

TrimmingMSE(1.2) TrimmingMSE − − 0.89 9.0e− 01 0.89 0.98 1.00 1.00

TrimmingMSE(1.3) TrimmingMSE − − 0.89 9.1e− 01 0.89 0.98 1.00 1.00

TrimmingMSE(1.4) TrimmingMSE − − 0.89 9.2e− 01 0.89 0.98 1.00 1.00

TrimmingMSE(1.5) TrimmingMSE − − 0.88 9.2e− 01 0.89 0.98 1.00 1.00

TrimmingMSE(1.6) TrimmingMSE − − 0.87 9.4e− 01 0.89 0.98 1.00 1.00

TrimmingMSE(1.7) TrimmingMSE − − 0.88 9.8e− 01 0.89 0.98 1.00 1.00

TrimmingMSE(1.8) TrimmingMSE − − 0.88 1.0e+ 00 0.89 0.98 1.00 1.00

TrimmingMSE(1.9) TrimmingMSE − − 0.88 1.0e+ 00 0.89 0.98 1.00 1.00

TrimmingMSE(1) TrimmingMSE − − 0.89 1.1e+ 00 0.89 0.98 1.00 1.00

TrimmingMSE(2.1) TrimmingMSE − − 0.89 1.0e+ 00 0.89 0.98 1.00 1.00

TrimmingMSE(2.2) TrimmingMSE − − 0.89 1.0e+ 00 0.89 0.98 1.00 1.00

TrimmingMSE(2.3) TrimmingMSE − − 0.89 1.0e+ 00 0.89 0.98 1.00 1.00

The “model family” is what I often refer to as the “model category” of each model. “MSE1”/“QLIKE1” is the model’s loss in the period of 2005-2006 relative to the loss of the
HAR-RV in 2005-2006. “MSE2”/“QLIKE2” is the model’s loss in the period of 2007-2010 relative to the loss of the HAR-RV in 2005-2006. “AvgMSE2

”/“AvgMSE2
” is the average relative

loss of the model family. “p̂MSE”/“p̂QLIKE” are the MCS p-values for the model (“Model name”) using the MSE and QLIKE loss functions, respectively. Empty values (“−”) in
those p-values signify that the model was excluded from the set of superior models (please refer to section 4.4 for more details on the MCS test).
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Table 14: Results (Part 6)

Model name Model family MSE1 QLIKE1 MSE2 QLIKE2 AvgMSE2
AvgQLIKE2

p̂MSE p̂QLIKE

TrimmingMSE(2.4) TrimmingMSE − − 0.89 1.0e+ 00 0.89 0.98 1.00 1.00

TrimmingMSE(2.5) TrimmingMSE − − 0.90 1.0e+ 00 0.89 0.98 1.00 1.00

TrimmingMSE(2.6) TrimmingMSE − − 0.90 1.0e+ 00 0.89 0.98 1.00 1.00

TrimmingMSE(2.7) TrimmingMSE − − 0.90 1.0e+ 00 0.89 0.98 1.00 1.00

TrimmingMSE(2.8) TrimmingMSE − − 0.90 1.0e+ 00 0.89 0.98 1.00 1.00

TrimmingMSE(2.9) TrimmingMSE − − 0.90 1.0e+ 00 0.89 0.98 1.00 1.00

TrimmingMSE(2) TrimmingMSE − − 0.88 1.0e+ 00 0.89 0.98 1.00 1.00

TrimmingMSE(3) TrimmingMSE − − 0.90 1.0e+ 00 0.89 0.98 1.00 1.00

TrimmingQLIKE(1.1) TrimmingQLIKE − − 0.90 8.9e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(1.2) TrimmingQLIKE − − 0.88 8.8e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(1.3) TrimmingQLIKE − − 0.88 9.0e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(1.4) TrimmingQLIKE − − 0.89 9.1e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(1.5) TrimmingQLIKE − − 0.88 9.2e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(1.6) TrimmingQLIKE − − 0.89 9.2e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(1.7) TrimmingQLIKE − − 0.89 9.2e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(1.8) TrimmingQLIKE − − 0.89 9.2e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(1.9) TrimmingQLIKE − − 0.88 9.3e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(1) TrimmingQLIKE − − 0.99 9.4e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(2.1) TrimmingQLIKE − − 0.89 9.3e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(2.2) TrimmingQLIKE − − 0.88 9.3e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(2.3) TrimmingQLIKE − − 0.88 9.3e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(2.4) TrimmingQLIKE − − 0.88 9.3e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(2.5) TrimmingQLIKE − − 0.88 9.4e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(2.6) TrimmingQLIKE − − 0.88 9.4e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(2.7) TrimmingQLIKE − − 0.88 9.4e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(2.8) TrimmingQLIKE − − 0.88 9.5e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(2.9) TrimmingQLIKE − − 0.88 9.5e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(2) TrimmingQLIKE − − 0.89 9.3e− 01 0.89 0.93 1.00 1.00

TrimmingQLIKE(3) TrimmingQLIKE − − 0.88 9.5e− 01 0.89 0.93 1.00 1.00

The “model family” is what I often refer to as the “model category” of each model. “MSE1”/“QLIKE1” is the model’s loss in the period of 2005-2006 relative to the loss of the
HAR-RV in 2005-2006. “MSE2”/“QLIKE2” is the model’s loss in the period of 2007-2010 relative to the loss of the HAR-RV in 2005-2006. “AvgMSE2

”/“AvgMSE2
” is the average relative

loss of the model family. “p̂MSE”/“p̂QLIKE” are the MCS p-values for the model (“Model name”) using the MSE and QLIKE loss functions, respectively. Empty values (“−”) in
those p-values signify that the model was excluded from the set of superior models (please refer to section 4.4 for more details on the MCS test).
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Table 15: Results (Part 7)

Model name Model family MSE1 QLIKE1 MSE2 QLIKE2 AvgMSE2
AvgQLIKE2

p̂MSE p̂QLIKE

ARMARV(0, 1) ARMARV 2.96 2.50 1.13 2.5e+ 00 1.07 1.63 0.77 1.00

ARMARV(1, 0) ARMARV 1.82 1.81 1.13 1.4e+ 00 1.07 1.63 0.96 1.00

ARMARV(1, 1) ARMARV 1.02 1.06 0.94 9.9e− 01 1.07 1.63 1.00 1.00

ARMAr(0, 1) ARMAr 6.97 3.64 1.25 4.0e+ 00 1.15 2.74 0.75 0.88

ARMAr(1, 0) ARMAr 5.75 3.35 1.21 3.0e+ 00 1.15 2.74 0.69 1.00

ARMAr(1, 1) ARMAr 1.47 1.42 1.00 1.2e+ 00 1.15 2.74 1.00 1.00

C-GARCH(1,1) GARCH 1.16 1.00 0.96 1.2e+ 00 0.94 1.33 1.00 1.00

E-GARCH(1,1) GARCH 1.07 1.06 0.84 1.1e+ 00 0.94 1.33 1.00 1.00

F-GARCH(1,1) GARCH 1.09 0.97 0.86 1.1e+ 00 0.94 1.33 1.00 1.00

AP-ARCH(1,1) GARCH 1.10 0.96 0.86 1.1e+ 00 0.94 1.33 1.00 1.00

AV-GARCH(1,1) GARCH 1.05 1.02 0.85 1.1e+ 00 0.94 1.33 1.00 1.00

GARCH(1,1) GARCH 1.26 1.05 1.00 1.2e+ 00 0.94 1.33 1.00 1.00

GJR-GARCH(1,1) GARCH 1.22 0.97 0.87 1.1e+ 00 0.94 1.33 1.00 1.00

NA-ARCH(1,1) GARCH 1.05 1.01 0.85 1.1e+ 00 0.94 1.33 1.00 1.00

N-ARCH(1,1) GARCH 1.24 1.05 0.98 1.2e+ 00 0.94 1.33 1.00 1.00

T-GARCH(1,1) GARCH 1.07 0.96 0.86 1.0e+ 00 0.94 1.33 1.00 1.00

I-GARCH(1,1) GARCH 1.33 1.05 1.01 1.2e+ 00 0.94 1.33 1.00 1.00

R-GARCHr(1, 1) GARCH 1.10 0.96 0.98 1.1e+ 00 0.94 1.33 1.00 1.00

R-GARCHRV(1, 1) GARCH 0.93 0.98 0.92 1.1e+ 00 0.94 1.33 1.00 1.00

ARCH(1) GARCH 4.83 3.11 1.39 4.2e+ 00 0.94 1.33 0.69 0.85

Q-HAR-C-J HAR 1.00 0.90 1.00 9.3e− 01 1.01 0.99 1.00 1.00

HAR-C-J HAR 0.97 0.94 0.97 9.1e− 01 1.01 0.99 1.00 1.00

Q-HAR-C HAR 1.17 0.96 1.07 1.1e+ 00 1.01 0.99 0.98 1.00

HAR-C HAR 1.09 1.11 1.05 1.2e+ 00 1.01 0.99 0.99 1.00

QS-HAR-C-J HAR 1.03 0.88 0.99 9.3e− 01 1.01 0.99 1.00 1.00

S-HAR-C-J HAR 0.98 0.93 0.97 9.6e− 01 1.01 0.99 1.00 1.00

QS-HAR-C HAR 1.16 0.89 1.00 9.9e− 01 1.01 0.99 1.00 1.00

S-HAR-C HAR 1.06 1.04 1.13 1.1e+ 00 1.01 0.99 0.97 1.00

Q-HAR-RV HAR 1.08 0.89 1.01 9.7e− 01 1.01 0.99 1.00 1.00

The “model family” is what I often refer to as the “model category” of each model. “MSE1”/“QLIKE1” is the model’s loss in the period of 2005-2006 relative to the loss of the
HAR-RV in 2005-2006. “MSE2”/“QLIKE2” is the model’s loss in the period of 2007-2010 relative to the loss of the HAR-RV in 2005-2006. “AvgMSE2

”/“AvgMSE2
” is the average relative

loss of the model family. “p̂MSE”/“p̂QLIKE” are the MCS p-values for the model (“Model name”) using the MSE and QLIKE loss functions, respectively. Empty values (“−”) in
those p-values signify that the model was excluded from the set of superior models (please refer to section 4.4 for more details on the MCS test).
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Table 16: Results (Part 8)

Model name Model family MSE1 QLIKE1 MSE2 QLIKE2 AvgMSE2
AvgQLIKE2

p̂MSE p̂QLIKE

QS-HAR-RV HAR 1.10 0.88 0.97 9.5e− 01 1.01 0.99 1.00 1.00

HAR-RV HAR 1.00 1.00 1.00 1.0e+ 00 1.01 0.99 1.00 1.00

HAR-RVlog HAR 0.93 0.88 0.90 9.7e− 01 1.01 0.99 1.00 1.00

S-HAR-RV HAR 1.00 0.98 1.07 9.8e− 01 1.01 0.99 0.99 1.00

RandWalkr IV 1.65 1.56 0.98 1.6e+ 00 0.98 1.60 1.00 1.00

ExpSmoothRV(0.95) NaïveRV 1.08 1.07 1.03 1.4e+ 00 1.16 1.99 0.97 1.00

ExpSmoothRV(0.9) NaïveRV 0.99 1.00 0.95 1.2e+ 00 1.16 1.99 1.00 1.00

ExpSmoothRV(0.8) NaïveRV 0.95 0.96 0.91 1.0e+ 00 1.16 1.99 1.00 1.00

ExpSmoothRV(0.7) NaïveRV 0.96 0.96 0.91 9.7e− 01 1.16 1.99 1.00 1.00

ExpSmoothRV(0.6) NaïveRV 0.99 0.97 0.93 9.6e− 01 1.16 1.99 1.00 1.00

ExpSmoothRV(0.5) NaïveRV 1.04 0.98 0.97 9.8e− 01 1.16 1.99 1.00 1.00

ExpSmoothRV(0.4) NaïveRV 1.10 0.99 1.02 1.0e+ 00 1.16 1.99 1.00 1.00

ExpSmoothRV(0.3) NaïveRV 1.17 1.01 1.09 1.1e+ 00 1.16 1.99 0.97 1.00

ExpSmoothRV(0.2) NaïveRV 1.26 1.04 1.18 1.1e+ 00 1.16 1.99 0.95 1.00

ExpSmoothRV(0.1) NaïveRV 1.37 1.08 1.28 1.2e+ 00 1.16 1.99 0.92 1.00

ExpSmoothRV(0.05) NaïveRV 1.44 1.11 1.34 1.2e+ 00 1.16 1.99 0.90 1.00

RandWalkRV NaïveRV 1.51 1.16 1.41 1.3e+ 00 1.16 1.99 0.89 1.00

RollAvgRV(1008) NaïveRV 4.12 2.87 1.44 6.7e+ 00 1.16 1.99 0.61 0.33

RollAvgRV(126) NaïveRV 1.34 1.37 1.28 2.4e+ 00 1.16 1.99 0.61 1.00

RollAvgRV(21) NaïveRV 1.08 1.09 1.05 1.4e+ 00 1.16 1.99 0.94 1.00

RollAvgRV(252) NaïveRV 1.32 1.38 1.35 3.2e+ 00 1.16 1.99 0.49 1.00

HistVolRV NaïveRV 4.69 3.12 1.42 5.0e+ 00 1.16 1.99 0.67 0.79

RollAvgRV(5) NaïveRV 0.99 1.06 0.95 1.0e+ 00 1.16 1.99 1.00 1.00

RollAvgRV(504) NaïveRV 1.49 1.62 1.43 4.7e+ 00 1.16 1.99 0.50 0.73

RollAvgRV(63) NaïveRV 1.28 1.25 1.21 1.9e+ 00 1.16 1.99 0.56 1.00

ExpSmoothr(0.95) Naïver 1.17 1.03 1.04 1.4e+ 00 1.56 7899.89 0.99 1.00

ExpSmoothr(0.9) Naïver 1.18 0.96 1.01 1.2e+ 00 1.56 7899.89 1.00 1.00

ExpSmoothr(0.8) Naïver 1.38 1.05 1.05 1.3e+ 00 1.56 7899.89 0.97 1.00

ExpSmoothr(0.7) Naïver 1.61 1.35 1.15 1.7e+ 00 1.56 7899.89 0.49 1.00

The “model family” is what I often refer to as the “model category” of each model. “MSE1”/“QLIKE1” is the model’s loss in the period of 2005-2006 relative to the loss of the
HAR-RV in 2005-2006. “MSE2”/“QLIKE2” is the model’s loss in the period of 2007-2010 relative to the loss of the HAR-RV in 2005-2006. “AvgMSE2

”/“AvgMSE2
” is the average relative

loss of the model family. “p̂MSE”/“p̂QLIKE” are the MCS p-values for the model (“Model name”) using the MSE and QLIKE loss functions, respectively. Empty values (“−”) in
those p-values signify that the model was excluded from the set of superior models (please refer to section 4.4 for more details on the MCS test).
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Table 17: Results (Part 9)

Model name Model family MSE1 QLIKE1 MSE2 QLIKE2 AvgMSE2
AvgQLIKE2

p̂MSE p̂QLIKE

ExpSmoothr(0.6) Naïver 1.86 1.84 1.28 2.5e+ 00 1.56 7899.89 0.37 1.00

ExpSmoothr(0.5) Naïver 2.15 2.59 1.44 3.7e+ 00 1.56 7899.89 0.35 0.81

ExpSmoothr(0.4) Naïver 2.48 3.73 1.64 6.1e+ 00 1.56 7899.89 0.34 −

ExpSmoothr(0.3) Naïver 2.89 5.60 1.87 1.1e+ 01 1.56 7899.89 0.34 −

ExpSmoothr(0.2) Naïver 3.37 9.29 2.16 2.8e+ 01 1.56 7899.89 0.34 0.24

ExpSmoothr(0.1) Naïver 3.96 19.72 2.51 1.1e+ 02 1.56 7899.89 0.34 0.45

ExpSmoothr(0.05) Naïver 4.30 37.31 2.71 2.7e+ 02 1.56 7899.89 0.34 0.51

RandWalkr Naïver 4.67 1093.65 2.94 1.6e+ 05 1.56 7899.89 0.34 −

RollAvgr(5) Naïver 1.78 2.05 1.16 2.5e+ 00 1.56 7899.89 0.62 1.00

RollAvgr(126) Naïver 1.54 1.40 1.31 2.1e+ 00 1.56 7899.89 0.36 1.00

RollAvgr(21) Naïver 1.32 1.04 1.08 1.5e+ 00 1.56 7899.89 0.98 1.00

RollAvgr(63) Naïver 1.49 1.23 1.27 1.8e+ 00 1.56 7899.89 0.43 1.00

RollAvgr(252) Naïver 1.36 1.37 1.38 2.8e+ 00 1.56 7899.89 0.34 1.00

RollAvgr(504) Naïver 1.65 1.65 1.44 4.0e+ 00 1.56 7899.89 0.39 0.86

RollAvgr(1008) Naïver 7.82 3.69 1.43 5.4e+ 00 1.56 7899.89 0.59 0.57

HistVolr Naïver 8.82 3.97 1.38 4.0e+ 00 1.56 7899.89 0.69 0.86

The “model family” is what I often refer to as the “model category” of each model. “MSE1”/“QLIKE1” is the model’s loss in the period of 2005-2006 relative to the loss of the
HAR-RV in 2005-2006. “MSE2”/“QLIKE2” is the model’s loss in the period of 2007-2010 relative to the loss of the HAR-RV in 2005-2006. “AvgMSE2

”/“AvgMSE2
” is the average relative

loss of the model family. “p̂MSE”/“p̂QLIKE” are the MCS p-values for the model (“Model name”) using the MSE and QLIKE loss functions, respectively. Empty values (“−”) in
those p-values signify that the model was excluded from the set of superior models (please refer to section 4.4 for more details on the MCS test).
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