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Abstract: For more than 30 years, sulfide gold ores were treated in metallurgic plants located in
Nova Lima, Minas Gerais, Brazil, and accumulated in the Cocoruto tailings dam. Both flotation
and leaching tailings from a deactivated circuit, as well as roasted and leaching tailings from an
ongoing plant, were studied for their acid mine drainage potential and elements’ mobility. Detailed
characterization of both tailings types indicates the presence of fine-grain size material hosting
substantial amounts of sulfides that exhibit distinct geochemical and mineralogical characteristics.
The samples from the ongoing plant show high grades of Fe in the form of oxides, cyanide, and
sulfates. Differently, samples from the old circuit shave higher average concentrations of Al (0.88%),
Ca (2.4%), Mg (0.96%), and Mn (0.17%), present as silicates and carbonates. These samples also
show relics of preserved sulfides, such as pyrite and pyrrhotite. Concentrations of Zn, Cu, Au, and
As are higher in the tailings of the ongoing circuit, while Cr and Hg stand out in the tailings of
the deactivated circuit. Although the obtained results show that the sulfide wastes do not tend to
generate acid mine drainage, leaching tests indicate the possibility of mobilization of toxic elements,
namely As and Mn in the old circuit, and Sb, As, Fe, Ni, and Se in the tailings of the plant that
still works. This work highlights the need for proper management and control of tailing dams
even in alkaline drainage environments such as the one of the Cocoruto dam. Furthermore, strong
knowledge of the tailings’ dynamics in terms of geochemistry and mineralogy would be pivotal to
support long-term decisions on wastes management and disposal.

Keywords: geochemistry and environmental mineralogy; tailings; mobility of toxic elements; acid
mine drainage; Minas Gerais—Brazil

1. Introduction

Mining of metals throughout the world produces high volumes of wastes represented
by different types of materials [1]. Although highly variable as a function of the charac-
teristics of the ore deposit and the beneficiation processes, as an example [2] estimated
around 50,000 Mt of wastes, with 33% of them in tailing dams. In plants for Au metallurgy,
the ratio tailings/concentrate can achieve 200:1 [3]. In South Africa, one of the largest Au
producing countries, [2] reported a production of 7.4 × 105 t of tailings from 1997 to 2006.
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These waste materials are discharged in tailing dams and/or ditches in conditions that
could be dangerous to the environment. Even though the tailings treatment and control
processes use alkaline products [4], the main sources of Au are often associated with
sulfides, such as pyrite (FeS2), arsenopyrite (FeAsS), and pyrrhotite (Fe1–xS). Deposition
of these waste materials in subaerial storage facilities allows the oxidation of sulfides,
which may promote the generation of acid mine drainage (AMD) [5–8] with the consequent
mobilization of potentially toxic elements (PTE). Unregulated mining also deserves a
special mention for its contribution to AMD pollution in regions with great influence of
artisanal and small-scale mining operations [9,10].

In order to assure safe closure conditions, it is important to evaluate the AMD potential
in the long term and understand the factors that may control the mobility of PTE. Several
parameters, in addition to the presence of sulfides, can contribute to generation of AMD
and contamination of the surrounding environment [11–15]. Tailings can have a wide
variety of chemical and mineralogical compositions and can suffer geochemical evolution
controlled not only by the original ore paragenesis, but also depending on the mineral
processing techniques and weathering conditions [15]. Supergenic evolution of the tailings
results in a secondary paragenesis with high diversity of mineral phases, including soluble
sulfates, oxides and iron oxyhydroxides, and arsenates, among others. These secondary
minerals, occurring as efflorescences, crusts and other iron-rich precipitates, play important
roles in the dynamics of the sulfide oxidation and in mobility of PTE in surface and
groundwater [16–18]. Another important factor is the dimension of the tailing particles,
as the relationship between size and exposure to weathering can directly influence the
oxidation rate of sulfides [7,19].

In general, AMD develops when the neutralization capacity of carbonate minerals
or alkaline reagents used in the mineral processing plants (as lime) is depleted due to
ongoing sulfide-mineral oxidation. In addition to carbonates, or when they are absent,
silicate minerals can provide some level of acid buffering [19–22]. Nevertheless, major and
trace elements, such as Se and As can be leached from the tailing dams, contributing to the
contamination of water bodies, even if the global geochemical balance is neutral or even
alkaline [8]. Furthermore, [23] presents a review of the geochemistry of these elements,
emphasizing their sources and mobility in naturally contaminated rocks, namely due to
desorption from iron-rich minerals.

Once the production of AMD starts, it is very complex to stop the process. In addition,
the remediation techniques based on passive or active processes [24,25] are often inefficient
or expensive as they require long-term application of the treatment strategies. Moreover,
as mentioned by [26], these classical approaches demand an adequate control and disposal
of the resulted PTE-enriched sludge.

Thus, for the management and control of the tailings, it is crucial to assess the AMD
potential as well as the mobility of toxic elements such as As, Ni or Se. In general, a
good understanding of the environmental behavior of the tailings involves a set of proce-
dures, including acid base accounting and leaching tests (e.g., batch, column and/or in
situ) [3,14,15,27–35].

In this work, results of chemical, mineralogical and environmental evaluation of
two different set of tailings from Au beneficiation are presented and discussed. The
tailings represent different scenarios regarding mineralogy and geochemistry as well as
mineral processing techniques and temporal evolution. Therefore, there are tailings from
an old circuit (already deactivated) that are accumulated in an abandoned dam (Cocoruto
dam) and tailings from an active plant, both located in Minas Gerais, Brazil. These two
types represent distinctive beneficiation processes. The old circuit was a sulfide flotation
plant and direct leaching. The ongoing circuit includes stages of calcination of sulfide
concentrates and leaching.

The general objective is to compare the two types of tailings, using detailed geochemi-
cal and mineralogical characterization, namely for determining the AMD potential and the
ability to mobilize PTE. This comparison intends to (i) understand the supergenic evolution
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of different tailings and (ii) support monitoring and identify possible opportunities for
environmental improvements and management of both types of tailings.

2. Location and Characterization of the Study Area

The study area is in the Iron Quadrangle (QF), one of the most gold-producing regions
in Brazil [36,37]. The gold world-class deposits are part of the Rio das Velhas Greenstone
Belt, largely located in State of Minas Gerais (Figure 1a), with an estimated 4.5% of the
world’s ore reserves, almost half, about 936 tonnes [38–40]. The orebodies, hosted in
Archaean rocks, are structurally associated and controlled by hydrothermal alteration. The
mineralization is related to different typologies such as iron-banded formation, clastic and
turbiditic metasedimentary rocks, and quartz veins enriched with sulfides, mainly pyrite,
arsenopyrite, and pyrrhotite [38,40–42].

Minerals 2021, 11, x FOR PEER REVIEW 3 of 16 
 

 

The general objective is to compare the two types of tailings, using detailed geochem-

ical and mineralogical characterization, namely for determining the AMD potential and 

the ability to mobilize PTE. This comparison intends to (i) understand the supergenic evo-

lution of different tailings and (ii) support monitoring and identify possible opportunities 

for environmental improvements and management of both types of tailings. 

2. Location and Characterization of the Study Area 

The study area is in the Iron Quadrangle (QF), one of the most gold-producing re-

gions in Brazil [36,37]. The gold world-class deposits are part of the Rio das Velhas Green-

stone Belt, largely located in State of Minas Gerais (Figure 1a), with an estimated 4.5% of 

the world's ore reserves, almost half, about 936 tonnes [38–40]. The orebodies, hosted in 

Archaean rocks, are structurally associated and controlled by hydrothermal alteration. 

The mineralization is related to different typologies such as iron-banded formation, clastic 

and turbiditic metasedimentary rocks, and quartz veins enriched with sulfides, mainly 

pyrite, arsenopyrite, and pyrrhotite [38,40–42]. 

 

Figure 1. Location of the study area and Iron Quadrangle map (a) [43,44]; (b,c) Images of the Cocoruto Dam sampled area 

(SIRGAS2000—10-09-2019). 

These sulfide Au ores have been treated for over 30 years in metallurgic plants lo-

cated in Nova Lima, in the northern part of the QF, Minas Gerais, 25 km away from its 

capital, Belo Horizonte (Figure 1a). The region has a warm and temperate climate, accord-

ing to the Cfa classification (humid subtropical climate). The average rainfall is around 

1390 mm per year, with the month of August being the driest and the month of December 

having the highest rainfall, with an average of 302 mm. The average temperature is 23.3 

°C, with January the hottest month of the year while the lowest annual temperature is in 

June (average temperature of 17.6 °C) [45].  

The circuits of the Nova Lima plant are and were fed by ores from the Raposos 

(Raposos circuits (Figure 2a)) and Cuiaba mines (Cuiaba circuit (Figure 2b) and ongoing 

roasted plant (Figure 2c)). The Raposos circuit (Figure 2a) is a plant that treated non-re-

fractory sulfide (pyrite, pyrrhotite and arsenopyrite) ore. The circuit reached 90% of Au 

recovery and was divided into grinding, gravity concentration, conventional leaching and 

CIP (carbon in leach), elution and electrorecovery. This part of the plant was deactivated 

in 1998 with the deactivation of the Raposos underground mining works, [46]. 

Figure 1. Location of the study area and Iron Quadrangle map (a) [43,44]; (b,c) Images of the Cocoruto Dam sampled area
(SIRGAS2000—10-09-2019).

These sulfide Au ores have been treated for over 30 years in metallurgic plants located
in Nova Lima, in the northern part of the QF, Minas Gerais, 25 km away from its capital,
Belo Horizonte (Figure 1a). The region has a warm and temperate climate, according to
the Cfa classification (humid subtropical climate). The average rainfall is around 1390 mm
per year, with the month of August being the driest and the month of December having
the highest rainfall, with an average of 302 mm. The average temperature is 23.3 ◦C, with
January the hottest month of the year while the lowest annual temperature is in June
(average temperature of 17.6 ◦C) [45].

The circuits of the Nova Lima plant are and were fed by ores from the Raposos
(Raposos circuits (Figure 2a)) and Cuiaba mines (Cuiaba circuit (Figure 2b) and ongoing
roasted plant (Figure 2c)). The Raposos circuit (Figure 2a) is a plant that treated non-
refractory sulfide (pyrite, pyrrhotite and arsenopyrite) ore. The circuit reached 90% of Au
recovery and was divided into grinding, gravity concentration, conventional leaching and
CIP (carbon in leach), elution and electrorecovery. This part of the plant was deactivated in
1998 with the deactivation of the Raposos underground mining works, [46].
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workflow [46]. The yellow stars represent sampling points.

The Cuiaba circuit (Figure 2b) treats refractory ore (mainly Au enclosed in pyrite)
with 92% of Au recovery and was divided into grinding, gravity concentration, sulfide
flotation, roasting, neutralization, calcined leaching, CIP, elution and electrodeposition [46].
Currently at the Nova Lima plant, the material is treated from the roasting stage (Figure
2c), as the previous steps are carried out directly at the plant located in the Cuiaba mine in
Sabará, Minas Gerais. The tailings from the Raposos and the Cuiaba flotation circuits were
deposited in a dam, already deactivated, named by Cocoruto (Figure 2a,b). The tailings
from the ongoing circuit (roasting and leaching) are available in a dam known as calcined
(Figure 2c).

Both structures are downstream type, monitored and declared safe according to the
mining national agency [47]. In this study, the tailings samples representing the old circuits
were collected directly at the Cocoruto dam, while the tailings from the ongoing circuit
were collected directly at the calcined dam discharge. Therefore, the Nova Lima facility
provides the opportunity to examine the potential environmental impact promoted by
leaching and mobilization of PTE [48].

3. Materials and Methods

The sampling campaign was performed in the spring, a season (September 2019)
in which weather conditions vary greatly. Typically, during this month it is common to
alternate between dry and humid periods, with temperatures between 19 ◦C and 25 ◦C [45].
A total of 15 sites were selected in the Cocoruto dam (CoT samples) to represent the old
circuit. Sampling, using percussion and auger methods, was performed at a maximum
of 10 m. Another set of fresh tailings samples (CaT samples) was collected over 28 days
in September 2019 during the production stage, representing a total of 40 samples from
the active plant (Figure 2c). All samples were immediately sealed and refrigerated until
analysis. Additional material was transferred to polypropylene bags and frozen until
analysis. Refrigerated and frozen samples were packaged and shipped to the chemical
laboratory for analysis.

The chemical composition was analyzed by inductively coupled plasma mass spec-
trometry (ICP-MS, PerkinElmer SCIEX, Waltham, MA, USA—detection limit 0.001 mg/kg)
after acid digestion (nitric acid, hydrogen peroxide and hydrochloric acid) in accordance
with Method 3050B published by the U.S. Environmental Protection Agency (USEPA) [49].
In addition, Au analyses were performed by atomic absorption spectroscopy (AAS, Varian,
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Palo Alto, CA, USA—detection limit 0.05 mg/kg), using the fire assay method. All metal
solutions were prepared from concentrated stock solutions (Sigma Aldrich). High-purity
water produced with a Millipore Milli-Q system was used throughout the analytical process.
Quality assurance and quality control (QC/QA) procedures included duplicates, blanks
and standard reference materials for ICP-MS. Certified Reference Materials Si81 (Rocklabs)
for solid tails were selected to represent a wide range of total elemental concentrations.
Results of blanks were always below detection limits. Values for precision (expressed as
RSD %) were less than 5% for all elements.

The particle size distribution (PSD) was obtained by vibratory sieving between
212-38 µm. In addition to the geochemical and PSD data, polished sections were pre-
pared in composed samples for mineralogical characterization. The mineralogical study
was carried out through optical microscopy and scanning electron microscopy (SEM—Field
Electron and Ion Company–FEI; Hillsboro, OR, USA) at the UFMG, Belo Horizonte. The
samples were analyzed in an FEI electronic microscope, Quanta 600 FEG, high vacuum
mode, coupled to the automated analyzer software (MLA—mode GXMAP and SPL-DZ)
and the EDS Espirit Bruker (20 Kve) microanalysis system.

The evaluation of acid mine drainage potential consisted of the comparison of the
Modified Acid-Base Accounting (MABA) and Net Acid Generation Test (NAG-test) [50,51].
The acid base accounting (ABA) test is conducted to assess the static potential of generating
acidic drainage from a material. It was conducted in accordance with the MEND guide [50]
and aims to determine the balance between acid production and consumption from the
mineral components of a given sample. Acid production and consumption were measured,
respectively, using the parameters acidity potential (AP) and neutralization potential (NP).
The NAG-test was carried out in accordance with the MEND guide [51], in which hydrogen
peroxide was used to oxidize an aliquot (2.5 g) of comminuted sample (<75 mm). Final
pH values (NAG-pH), and electrical conductivity were noted, and the liquor, filtered,
was titrated with NaOH solution to defined pH values (4.5 and 7.0) in order to obtain
indications on the global amount of non-neutralized acidity, per sample weight. The results
of the NAG and MABA tests are compared with each other, allowing a refinement of the
interpretation of the latter, and a more improved classification (according to both criteria)
regarding the sample’s AMD potential [50,51]. In addition, leaching test derived (SPLP)
was carried out in accordance with the USEPA 1312 method [52].

4. Results
4.1. Chemical Composition

Table 1 and Figure 2 show the composition of the tailings. The elements were selected
primarily based on the environmental relevance and inclusion in the Brazilian legal frame-
work as well as potential economic interest. The samples from the ongoing process (CaT)
comprise the following major elements, according to the decreasing order of their average
concentration: Fe > Ca > Al > Mg > K > Mn, Na. The samples from the old Cocoruto dam
(CoT) contain higher levels of Mn than CaT tailings: Fe > Ca > Mg > Al > Mn > K, Na
(Table 1 and Figure 2). A relative depletion of the iron concentrations could be verified for
the tailings deposited historically in the Cocoruto Dam. The elements Na and, especially K,
on the other hand, had an enrichment of the order of 3× and 10×, respectively (Table 1
and Figure 3).

The average concentrations of sulfur and cyanide in the ongoing process samples
were also an order of magnitude higher than that of the CoT samples (Figure 3). Based only
on the sulfur contents, this result could suggest that the CaT samples may have greater
acid generation potential, compared to the samples from the Cocoruto Dam.

The trace elements with environmental interest [40] presented the following decreasing
order of their average concentrations for CaT: (As > Zn) 10 mg/kg > (Cu > Ni > Pb > Co)
102 mg/kg > (Sb, Cr, Ba, Cd) 101 mg/kg and CoT (As) 103 mg/kg > (Zn) 102 mg/kg >
(Cr > Cu > Ni > Pb > Hg) 101 mg/kg. The As followed by Zn remained as the main trace
elements of environmental interest in the samples of tailings collected both in mineral
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processing and in the Cocoruto Dam (Table 1 and Figure 4). The element Hg was not
detected in the CaT samples, but it had an average content of 21 mg/kg in the samples
from the Cocoruto Dam.

Table 1. Statistical summary of the major and trace elements. CoT—old circuit; CaT—ongoing circuit;
N—number of samples.

Element Source N Average Standard Deviation Minimum Maximum

Ag(mg/kg) CoT 30 0.5000 0.0000 0.5000 0.5000
CaT 40 3.260 0.5478 2.970 4.960

Al (%)
CoT 30 0.8790 0.4150 0.5670 1.4820
CaT 40 0.622 0.0569 0.516 0.799

Sb (mg/kg) CoT 30 0.5000 0.0000 0.5000 0.5000
CaT 40 49.060 10.4800 29.600 70.300

As (mg/kg) CoT 30 1799 171.2 1610 2018
CaT 40 7905 878.0 3553 9275

Ba (mg/kg) CoT 30 17.1500 7.3800 12.0000 28.1000
CaT 40 23.427 2.4770 18.600 30.300

Cd (mg/kg) CoT 30 2.9325 0.0670 2.8700 3.0000
CaT 40 14.083 1.2010 11.000 17.000

Ca (%)
CoT 30 2.3850 0.4850 1.9190 2.8720
CaT 40 1.672 0.1177 1.404 1.903

Pb (mg/kg) CoT 30 21.1000 4.4800 15.9000 26.7000
CaT 40 258.480 32.0600 215.000 343.000

Cyanide
(mg/kg)

CoT 30 2.9850 1.2920 1.6200 4.2600
CaT 40 51.890 21.1700 13.900 87.600

Co (mg/kg) CoT 30 4.0000 0.0000 4.0000 4.0000
CaT 40 116.330 11.7400 95.300 144.000

Cu (mg/kg) CoT 30 78.0500 15.4100 56.6000 93.0000
CaT 40 670.520 56.4700 583.000 824.000

Cr (mg/kg) CoT 30 85.2000 20.5000 59.0000 109.0000
CaT 40 35.020 8.4700 26.900 81.400

Fe (%)
CoT 30 6.7600 0.5520 6.3970 7.5660
CaT 40 24.859 2.0270 21.557 28.974

P (%)
CoT 30 0.0002 0.0000 0.0002 0.0002
CaT 40 0.047 0.0075 0.027 0.061

Mg (%) CoT 30 0.9570 0.2720 0.6340 1.2040
CaT 40 0.450 0.0424 0.317 0.520

Mn (%)
CoT 30 0.1728 0.0307 0.1396 0.2119
CaT 40 0.079 0.0072 0.059 0.088

Hg (mg/kg) CoT 30 0.0688 0.0338 0.0250 0.1000
CaT 40 0.036 0.0274 0.025 0.160

Ni (mg/kg) CoT 30 72.2000 15.2200 52.9000 90.1000
CaT 40 392.630 51.7200 269.000 506.000

K (%)
CoT 30 0.0411 0.0178 0.0226 0.0644
CaT 40 0.377 0.0310 0.326 0.471

Na (%)
CoT 30 0.0091 0.0010 0.0086 0.0106
CaT 40 0.049 0.0050 0.041 0.062

Sulfates (%)
CoT 30 0.2175 0.1763 0.0400 0.4400
CaT 40 1.505 0.1333 1.230 1.810

Zn (mg/kg) CoT 30 170.5 38.3 136 0.5000
CaT 40 2724 318.8 1941 1.430

Au (mg/kg) CoT 30 1.055 0.6620 0.4800 2.010
CaT 40 1.510 0.3731 0.3100 2.430
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4.2. Size Particle Distribution

In general, the grain size distribution (Figure 5) is similar to other dams that store
tailings from Au exploitation [7,8,27,53]. The tailings presented 80% of their particles
classified as silt-sized (Figure 5). The CoT samples are shown to have a thicker distribution
than the ongoing process tailings (CaT). The difference can be explained by changes in
the grinding process and different features of the ore sources and their variability [30]. In
addition, the samples that represent CoT originate from older circuits, which have low
grinding efficiency when compared to the ongoing one (CaT).
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4.3. Mineralogy

Table 2 shows the mineralogical composition of both tailings. The samples from
the Cocoruto dam (old circuit) consist mainly of quartz, carbonates, iron oxides and
phyllosilicates such as muscovite and chlorite (Figure 6). This is in accordance with higher
Al, Ca and Mg concentrations. Sulfides are present, but they look well-preserved, mainly
in the form of iron sulfides with sphalerite, covellite and arsenopyrite subordinated.

Table 2. Mineralogical Composition of CaT and CoT.

Minerals Chemical Formula CaT (Wt%) CoT (Wt%)

Quartz SiO2 15.6 55.8

Feldspar Group
Albite NaAlSi3O8 1.50 0.370

Anorthite CaAl2Si2O8 0.053 0.01
K feldspar KAlSi3O8 0.390

Phyllosilicates
Biotite KMg2.5Fe0.5AlSi3O10(OH)1.75F0.25 1.00 0.16

Smectite (Si,Al)(Mg,Fe)O(OH)NaH2O. 1.80 0.13
Muscovite Group KAl3Si3O10(OH)1.9F0.1 11.0 5.56

Chlorite (Mg,Fe)3(Si,Al)4O10(OH)2·(Mg,Fe)3(OH)6 3.30 6.12

Oxides
Iron

Oxides/Hydroxides Fe2O3/FeOOH 56.8 8.86

Rutile/Anathase TiO2 0.599 0.49

Carbonates
Ankerite Ca(Fe,Mg,Mn)(CO3) 1.00 11.2
Siderite FeCO3 - 7.25
Calcite CaCO3 0.200 2.25

Sulfates
Gypsum CaSO4 2H2O 7.00 0.030

Sulfides
Pyrite FeS2 0.002 0.500

Pyrrhotite Fe(1−x)S 0.004 0.790
Arsenopyrite FeAsS 0.056 0.240
Gesdorffite NiAsS 0.010 -
Covellite CuS 0.100 0.070
Sphalerite ZnS - 0.010

Gold Minerals
Native Gold Au > 80%, Ag, Cu, Hg (526) (364)

Electrum Au = 80%, Ag = 20% (42) (10)

The samples from the ongoing process (CaT) are characterized by high concentrations
of iron oxides, in addition to sulfates and silicates (mainly quartz). The high concentration
of oxides justifies higher Fe contents than the samples of Cocoruto. Sulfides are reliquaries,
associated with oxidized phases, and are rare. In Figure 6b, is identified, in false images,
the presence of As, Cu, Ni, and Zn with oxidized phases, in addition to Fe. In both types
of samples there are still fine Au grains. These particles are associated with iron oxides in
the CaT and with sulfides in CoT samples. (Figure 6a–d). The optical microscopy images
(Figure 6e–f) support these observations, showing the dominant hematite in CaT samples
and the presence of Au in association with pyrite in CoT samples, respectively.

4.4. AMD Potential

The results of the MABA tests are presented graphically in Figure 7. Calcined samples
collected in mineral processing showed relatively small variability in acidity (AP) and
neutralization potentials (NP): In the first case, it ranged between 1.5 and 2.5 kg/CaCO3
t and, in the second, it varied between 8.3 and 15.5 kg/CaCO3 t. All these samples were
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classified as potentially non-acid-forming (PNA) by the MABA assay criterion, as they
presented NP/AP ratio (NPR) > 2. The average NPR value for CaT corresponded to
6.1 kg/CaCO3 t.
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Figure 6. False Images (a) sulfides associated with iron oxide and Au particles—CoT, (b) quartz, carbonates and Fe oxides
particles—CoT, (c,d) Fe oxides associated with Au, silicates and Fe oxides with As, Ni, Co, Al, Zn, Pb—CaT samples.
Photomicrographs taken under reflected light and uncrossed nico (e) hematite (Ht) from CaT samples and (f) Au associated
with pyrite (Py)—CoT samples.

The tailings samples collected at the Cocoruto Dam showed relevant dispersion of
acidity and neutralization potentials, in accordance with the mineralogical features. The
AP values oscillated mainly in the range of 5–150 kg/CaCO3 t. NP values between 44
to 123 kg/CaCO3 t. This dispersion resulted in the following relative potentials for the
generation of acid drainage, according to the MABA test criteria: Nonacid-forming samples
(NPR > 2) represent 45%, samples in the uncertainty zone (NPR 1 to 2) are 50%, and
samples acid-forming (NPR < 1) are 5%. Vertically, the samples in the uncertainty zone
corresponded mainly to depths of 4.0 to 5.5 m and 8.0 to 11.5 m. The non-acid-forming
samples occurred mainly between 0.0 and 1.5 m and from 6.0 to 7.5 m in depth (Figure 7b).

The NAG test (net acid generation) was another method used in order to compare
with the results obtained by MABA, mainly because of the S grades. Figure 8 presents the
graph NAGpH versus NPR, allowing to correlate the results of the MABA and NAG-tests,
and to better refine the classification of acid generation potential of the samples under
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analysis. The results of the NAG test showed a pH value well above the limit of 4.5,
indicating all samples as non-acid-forming, regardless of the result of the NPR. The pH
fluctuated from 7.4 to 8.5 for samples from the Cocoruto Dam, and from 8.1 to 9.5 for
process samples. These results indicate less potential for liquid acidity than previously
indicated, only by the NPR (MABA) criterion. The summary of the assessment of the
potential for acidity generation, based on the MABA and NAG, therefore, demonstrates
that all process samples resulted in potentially non-acid forming (NAF). Only 45% of the
samples collected at the Cocoruto Dam resulted in potentially non-acid forming, using the
MABA criterion. However, this number was 100% using the NAG criterion.
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Figure 7. Results of Modified Acid-Base Accounting (MABA) tests (a) global and (b) for CoT, by
sampling depth.

4.5. SPLP Leaching

In addition to the tests already presented, the SPLP leaching test (USEPA 1312 method)
was carried out in order to assess the potential for leaching toxic elements. Data from
leaching tests can be used as indicators of potentially contaminating substances, even
though the test conditions are very limited in view of the environmental geochemical
conditions. A basic criterion used to assess the magnitude of the potential impact is the
comparison with benchmarks in the context of the legal framework. The Brazilian law,
through CONAMA Resolution 396/2008, was used as reference for the permitted limits of
the following elements: Al, Sb, As, Ba, Be, Cd, Pb, Co, Cu, Cr, Fe, Mn, Hg, Ni, Ag and Zn.
Since there is no definition for the predominant industrial use, recreation was defined as
the predominant use.
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The elements Cd, Pb, Hg, and Zn were not detected in the leaching extracts (Table 3
and Figure 9), with two exceptions: Pb equal to 0.02 mg/L, and Zn equal to 0.1 mg/L in
a sample from the Cocoruto Dam. In the extracts of this dam, only the elements As and
Mn showed concentrations above the respective legal reference (VMP) (i.e., 0.05 mg As/L,
and 0.1 mg Mn/L). The average concentrations were around an order of magnitude higher
than the VMP, in these cases (Figure 9).

Table 3. VMP—maximum allowed values From Brazilian Law—CONAMA [54].

Samples Not Detected Elements Parameters with Values AboveVMP
Conama 2005 Reference

CoT Cd, Hg, Pb, Zn As (VMP 0.05 mg/L)
Mn (VMP 0.1 mg/L)

CaT Cd, Hg, Pb, Zn

As (VMP 0.05 mg/L)
Fe (VMP 0.3 mg/L)
Ni (VMP 0.1 mg/L)
Se (VMP 0.01 mg/L)
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Mn = 0.1 mg/L; VMP Ni = 0. 1 mg/L. NA—Not applied for recreation use.
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On the other hand, in the calcined ongoing process the elements As, Fe, Ni, and Se
showed values above the CONAMA references, in at least one of the leaching extracts.

5. Discussion

The differences in particle distribution could contribute to differentiate the two types of
tailings regarding the speed and magnitude of AMD. It is known that the rate of oxidation
of sulfides is directly related to the size of the particles and the availability of the surface
for reaction [20,55]. The mineralogical characteristics confirmed the distinction between
tailings that were subjected to different processes, in accordance with the geochemical
signatures (Figure 1). Such geochemical and mineralogical diversity could result in different
potentials for mobilizing pollutants in AMD. For example, the higher amounts of sulfides
in the Cocoruto tailings (old circuit) could suggest higher potential for AMD generation.
However, Figure 6 suggests that inhibition of the oxidative dissolution processes occurs,
since the sulfide grains are preserved. Moreover, AMD generation could be controlled by
the presence of carbonates due to the ore paragenesis and metallurgical ore treatment [7].
Neutralization conditions also occur in CaT samples due to the addition of lime.

The chemical and mineralogical study highlights the occurrence of high grades of Au
in these two sets of tailings. In CoT samples, the concentration reaches 1.0 mg/kg with Au
crystals associated with sulfides and rock minerals such as carbonates and silicates (Figure
6a,b). In the ongoing process, in CaT samples, the concentration reaches 1.70 mg/kg,
with grains enclosed in iron oxides (Figure 6c). Both Au features portray limitations and
problems in the beneficiation old and ongoing processes. However, this inefficiency of
the mineral separation processes may represent an opportunity for creating profit through
valorization of the mine wastes. The reuse of tailings is now an important research line,
as discussed in [53,56–60]. Especially in view of the scenario experienced in Brazil after
the mediatized disasters of the Mariana (2015) and Brumadinho (2019) dams [61–64], it is
crucial to find sustainable solutions for the closure stage. Therefore, in the present cases,
the obtained results suggest the possibility of transforming an environmental liability into
an economic outcome.

The tests for prediction of AMD indicate that minimum pH is around 8, reaching a
maximum of 9.6, reflecting the alkaline products used for extraction of Au with cyanide
solutions. However, the levels of S present in the forms of sulfate and sulfide, thin PSD,
and the presence of toxic leachable elements above permitted limits do not rule out the gen-
eration of AMD in practice if the tailings are stored improperly. These results, in addition
to geochemical and mineralogical features, imply that the samples from the Cocoruto Dam
are not potentially acid-forming under the conditions in which they are disposed. The net
potential for acidity generation is low. However, in the case of removal of these materials,
they must be disposed properly, without long-term exposure (months/years).

Under pH conditions close to neutrality, a series of trace elements can remain solubi-
lized [8], as verified for As, Fe, Ni, Mn and Se. This behavior was also observed by [23],
specifically for As and Se leached out in underground rock excavation works. The Al for
the sample of the CoT tailings was an exception. Thus, the generation of effluents with
metals or metalloids does not require long periods of exposure of sulfide minerals [7]. The
As stood out in SPLP leaching test, with an average concentration (26 mg As/L), 3×of
magnitude above the permitted limits by the Brazilian law (VMP). This could be explained
by the presence of arsenopyrite in CoT samples and iron oxide in CaT. For the other param-
eters mentioned, the averages values cofound were up to an order of magnitude higher
than the corresponding VMP.

6. Conclusions

An integrated characterization of tailings from different mineral beneficiation pro-
cesses was performed to evaluate the environmental risk of mobilizing pollutants from the
mine drainage.
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The tailings presented 80% of their particles classified as silt-sized. Sulfides are
present in the samples from the historic Cocoruto dam, but they appear well-preserved.
The tailings consist mainly of quartz (55.8%), carbonates (20.7%), iron oxides (8.86%),
muscovite (5.56%) and chlorite (6.12%). Therefore, the potential acidity associated with
sulfides could be neutralized by the dissolution of carbonates, such as calcite and silicates
such as chlorite, besides the reagents used during the process. This fact contributes to make
it a less dangerous waste when compared to the current one (CaT).

The tailings from the ongoing process (CaT) are characterized by high contents of iron
oxides (56.8%), gypsum (7%) and silicates (mainly quartz—15.6%). In both types of tailings,
the chemical composition allowed to identify elements with environmental relevance by
their toxicity, namely Mn in the old tailings and As, Fe, and Ni in the more recent tailings.
In addition to these elements of environmental concern, it should be noted the interesting
values of Au (up to 2.4 mg/kg in the recent tailings), suggesting a potential for reuse during
closures of dam facilities or tailings mass-rearrangement needs.

The geochemical tests, MABA and NAG, indicate that these tailings are not potentially
acid-forming, under the conditions in which they are disposed. The net potential for acidity
generation is low. However, the results of the SPLP leaching tests indicated a leaching
potential for As and Mn in the Cocoruto Dam. Samples that are subject to calcination
indicate leaching potential for other elements, namely Sb, As, Fe, Ni, and Se. It is of note
that As concentrations in these samples were two orders of magnitude higher than the
ones found in samples from Cocoruto Dam. Moreover, the concentrations of S present in
the forms of sulfate and sulfide, together with thin PSD and the presence of leachable PTE
above permitted limits by the Brazilian law are important issues of concern. In the case of
tailings mobilization or inappropriate storage, the generation of AMD and contamination
by PTE is likely to occur.
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