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Gustavo Soutinho1, Lúıs Meira-Machado2, Pedro Oliveira1

1 EPIUnit, ICBADS, University of Porto, Portugal.
2 Department of Mathematics and Centre of Molecular and Environmental Bi-

ology (CBMA) , University of Minho, Portugal.

E-mail for correspondence: lmachado@math.uminho.pt

Abstract: The inference in multi-state models is traditionally performed under
a Markov assumption. This assumption claims that given the present state, the
future evolution of the process is independent of the states previously visited and
the transition times among them. Usually, this assumption is checked including
covariates depending on the history. However, since the landmark methods of the
transition probabilities proposed by de Uña-Álvarez and Meira-Machado (2015),
and by Putter and Spitoni (2018) are free of the Markov assumption, they can
also be used to introduce such tests (at least in the scope of the progressive
multi-state models) by measuring their discrepancy to Markovian estimators. In
this paper, we introduce two local tests for the Markov assumption and compare
them with the usual approach based on local future-past association through
simulations. An application to a clinical trial on colon cancer is included.
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1 Introduction

Multi-state models are the most suitable models for the description of com-
plex longitudinal survival data involving several events of interest. A multi-
state model is a model for a stochastic process, which is characterized by
a finite number of states and the possible transitions among them. In gen-
eral, the multi-state analysis deals with inference for transition intensities
and transition probabilities. The inference for transition intensities often
includes regression analysis which usually involves the modelling of each
transition intensity separately. A popular choice is to model each transi-
tion intensity using a proportional hazards model assuming the process to
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be Markovian. This assumption claims that given the present state, the
future evolution of the process is independent of the states previously vis-
ited and the transition times among them; in other words, the history of
the process is summarized by the state occupied at time t. However, it has
been quoted that the Markov assumption is violated in some applications
(Andersen 2000, 2002). In such cases, if interest is on multi-state regres-
sion, one alternative approach is to use a semi-Markov model in which the
future of the process does not depend on the current time but rather on the
duration in the current state. Semi-Markov models are also called “clock
reset” models, because each time the patient enters a new state time is reset
to 0. This Markov assumption allows also the construction of simple esti-
mators for the transition probabilities, since individuals with different past
histories become comparable. Unfortunately, when this assumption is vio-
lated, the use of the Aalen-Johansen estimators for transition probabilities
can induce bias, and thus may not be recommended. Substitute estimators
for the Aalen-Johansen estimator for a non-Markov process were recently
introduced by de Uña-Álvarez and Meira-Machado (2015). The proposed
estimators are based on subsampling, also referred to as landmarking, and
may behave more efficiently than the Aalen-Johansen estimators when the
Markov assumption does not hold. Putter and Spitoni (2018) recover the
work by Meira-Machado and Meira-Machado (2015) to propose alterna-
tive non-Markovian estimation methods which are based on the landmark
methodology combined with the Aalen-Johansen estimate of the state occu-
pation probabilities derived from specific subsamples. Therefore, when the
aim is to perform inference for transition intensities or for the transition
probabilities it is essential to check if the Markov assumption is tenable.

1.1 Markov assumption

The Markov assumption can be checked by including covariates depending
on the history. In the illness-death model, for example, we can examine
whether the time spent in the initial state is important on the transition
from the disease state (the intermediate state) to death (the absorbing
state) or not. Then, one only needs to fit the regression model with that
covariate and test the null hypothesis H0 : β = 0, against the general
alternativeH0 : β 6= 0. This would assess the assumption that the transition
rate from the disease state into death is unaffected by the time spent in
the previous state.
Since the landmark methods (LM) of the transition probabilities proposed
by de Uña-Álvarez and Meira-Machado (2015), and by Putter and Spi-
toni (2018) are free of the Markov assumption, they can also be used to
introduce such tests (at least in the scope of the progressive multi-state
models) by measuring their discrepancy to Markovian Aalen-Johansen es-
timators (AJ). A log-rank test, for example, can be used to introduce a
local test for Markovianity by measuring the discrepancy of the landmark



Soutinho, Meira-Machado and Oliveira 3

estimators to the Aalen-Johansen Markovian estimators, for a fixed value
s > 0. A test based on the areas between the two curves is also intro-
duced to compare the two curves. We propose the use of the following test
statistic based on direct nonparametric estimates of the transition prob-
abilities T =

∫ τ
s

(
pLMij (s, u)− pAJij (s, u)du

)
, where τ is the upper bound of

the support of T , and pLMij and pAJij denote the transition probabilities for
the landmark and Aalen-Johansen estimators, respectively. Note that if
the null hypothesis of Markovianity holds, the value of T should be close
to zero. To approximate the distributions of the test statistic, bootstrap
methods with a large number of resamples, M , are used. According to large
sample asymptotic distribution theory, when M , the number of replicates
goes to infinity, we have the following statistic distributed approximately
as a standard normal distribution with a mean of 0 and variance of 1:
Z = (µ(T?) − 0)/σ(T?) ∼ N(0, 1). The null hypothesis will be rejected if
Z > Z(1−α/2) or Z < Z(α/2).

2 Simulation study

In this section we report results of a simulation study, where the aim is to
compare the finite sample performance of three methods to test the Markov
assumption in an illness-death model. To simulate the data in the illness-
death model, we assume that all the individuals are in the initial state
1 (State 1), at time t = 0, and the course of the history is given by two
groups of subjects. The individuals who pass through the intermediate state
(State 2), at some specific time and those who directly go to the absorbing
state (State 3). Transition times from the initial state are generated from
the cause-specific hazards given by h12(t) = 0.29/(t+ 1) and h13(t) =
0.024t where t > 0, denotes the time since the start point. To study the
Markov assumption, three different hazards were considered to generate
death times for individuals passing through the intermediate state: h123(t) =
0.05, h223(t) = 0.25(t12 + 1)−0.8 and h323(t) = 0.04× log(t+ 1), where t12 is
the transition time to the intermediate event. The first scenario is Markov
since the hazard is independent of time, whereas the second is semi-Markov
and the third is non-Markov. Censoring times were generated from uniform
distributions. Two samples size were considered for each scenario (n = 250
and n = 500).
Table 1 reports the rejection proportions of the proposed local tests (com-
paring the transition probabilities p23(s, t)) for the fixed values s = 1, s = 2,
s = 4 and s = 8 with sample sizes n = 250 and n = 500. These quantities
were estimated by the empirical rejection proportions from 1000 trials at
the significant level 0.05. This table also reports the global test which is
obtained through the fit of a Cox model with covariates depending on the
history (time in the previous state).
For all three scenarios the results show that the power of the local tests
increase with the sample sizes. The log-rank test revealed to be much con-
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TABLE 1. Rejection proportions of the local tests log-rank and the test based on
the area for the fixed values s = 1, s = 2, s = 4 and s = 8. Rejection proportions
for the global test based on the Cox model is also shown.

Model Markov

Sample size 250 250 250 250 250 500 500 500 500 500
s 1 2 4 6 8 1 2 4 6 8

Log-rank 0.006 0 0 0 0 0.001 0.001 0 0 0
Area 0.304 0.303 0.308 0.255 0.228 0.096 0.094 0.110 0.107 0.078
Cox 0.052 0.052 0.052 0.052 0.052 0.042 0.042 0.042 0.042 0.042

Model semi-Markov

Log-rank 0.452 0.233 0.023 0 0 0.903 0.767 0.179 0.014 0
Area 0.966 0.977 0.884 0.771 0.600 0.993 0.990 0.962 0.830 0.643
Cox 0.894 0.894 0.894 0.894 0.894 0.998 0.998 0.998 0.998 0.998

Model non-Markov

Log-rank 0.059 0.03 0.005 0.003 0.001 0.135 0.086 0.035 0.006 0.001
Area 0.705 0.801 0.797 0.760 0.721 0.594 0.743 0.812 0.785 0.703
Cox 0.392 0.392 0.392 0.392 0.392 0.727 0.727 0.727 0.727 0.727

servative obtaining low power for small sample sizes. In general, this method
is unable to distinguish the inequality between AJ and LM curves in semi-
Markov and non-Markov scenarios for sample sizes of n = 100 (results not
shown) and n = 250. This feature is present even in the case of lower values
of s in the semi-Markov scenario. In this scenario, departures between the
two curves (obtained for the transition probabilities p23(s, t) from AJ and
LM methods) are expected to increase as the difference t− s increases. On
the other hand, the bootstrap test based on the areas, is able to identify
the differences between survival curves in the semi-Markov and non-Markov
scenarios. However this local test also obtains high rejection proportions
when the data is generated from a Markov scenario. The results for both
local tests greatly improve when considering a sample size of n = 500.
For completeness purposes, Table 1 also shows the results from the global
test based on the Cox proportional hazard model. This approach seems
to have better results in the Markov scenario, while obtaining reasonable
proportions of rejections in the semi-Markov and non-Markov scenarios.

3 Real data analysis

Our methodology is motivated by the re-analysis of colon cancer from a
large clinical trial on Duke’s stage III patients. In this study, 929 patients
affected by colon cancer were followed from the date of a curative surgery
for colorectal cancer until censoring or death from colon cancer. From this
total, 468 developed a recurrence and among these 414 died. 38 patients
died without recurrence. The rest of the patients (423) remained alive and
disease-free up to the end of the follow-up. These data can be viewed as aris-
ing from a progressive illness-death model with states ‘Alive and disease-
free’, ‘Alive with Recurrence’ and ‘Dead’.
Figure 1 reports estimated transition probabilities for fixed value of s = 365
and s = 1825 days (1 and 5 years respectively), along time. Plots shown
in the top of the figure (for s equal to one year) show departures between
the two Markov-free estimators and the Aalen-Johansen estimator. On the
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other hand, the corresponding plot for s equal to 5 years show that all
proposed methods behave quite similar.
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FIGURE 1. Estimates of the transition probabilities for the Aalen-Johansen (AJ)
and Markov-free estimators (landmark and landmark Aalen-Johansen). Colon
cancer data.

A p-value of 0.154 was obtained from the global test (based on the Cox
model) proving no evidence against the Markov model for the colon data.
However, a graphical test (not shown here) displaying the two curves with
the respective bootstrap confidence intervals reveal differences in the two
curves for s = 365 (one year). These findings were not confirmed by the
local tests based on the log-rank test. Results from this local test confirm
its low power to distinguish the differences in the survival curves. For a
fixed value of s = 365 the log-rank test provided a p-value of 0.279. For a
fixed value of s = 1825 (five years) the corresponding p-value was 0.996.
The bootstrap test based on the area of the two curves lead a p-value of
0.032 for s = 365 and 0.326 for s = 1825.
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