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Abstract— In this paper we describe a neural field model
which explains how a population of cortical neurons may encode
in its firing pattern simultaneously the nature and time of se-
quential stimulus events. From the mathematical point of view,
this is obtained my means of a two-dimensional field, where one
dimension represents the nature of the event (for example the
color of a light signal) and the other represents the elapsed time.
Some numerical experiments are reported which were carried
out using a computational algorithm for two-dimensional neural
field equations. These numerical experiments are described and
their results are discussed.

I. INTRODUCTION

Dynamic Neural Fields (DNFs) have been introduced in
the 1970s as simplified mathematical models of pattern
formation in neural tissue in which the interaction of billions
of neurons is treated as a continuum [19], [1]. These models
take the form of nonlinear integro-differential equations on
a spatially extended domain in which the integral kernel
represents the spatial distribution of synaptic weights be-
tween neurons. Dynamic field theory is still a very active
area of multidisciplinary research since the rich variety of
spatiotemporal patterns that DNF models may generate are
thought to be linked to various cognitive processes in the
brain (for recent overviews see [4] and [16]). For this reason,
there is an increased interest of the robotics community to
apply the processing mechanisms offered by DNF for the
development of brain-inspired control architectures. DNF
have been first introduced into the domain of robotics in
navigaton tasks to endow the attractor dynamis approach with
memory and decision (see for example [2]). The approach
has been later extended to human-robot interaction tasks
with the goal to endow the robot with human-like social
competences like imitation learning, action understanding
and goal inference (see [6]). The self-sustaining properties of
the neuronal population dynamics governed by DNF allow
the system to cope with missing sensory information (e.g.
due to occlusion) and to anticipate the action outcomes ahead
of their realization. Moreover, the capacity to organize a
sequence of behaviours is fundamental for a robot that is
supposed to efficiently work in human environments. In [7]
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a DNF-based model is introduced that allows the robot to
rapidly learn and memorize short sequences of sensorimotor
events.

A specific example of application of DNF to robotics is
working memory defined as the capacity to transiently hold
sensory information to guide forthcoming action. DNF mod-
els with a kernel of lateral inhibition type support a spatially
localized activity pattern, or ”bump”, that is initially triggered
by an external stimulus. The activity remains self-sustained
after stimulus removal due to the recurrent interactions
in the network. In typical applications of one-dimensional
(1D) field models, the neurons represent continuous stimulus
dimensions such as position, color or tone pitch [17], [6].
The bump position thus defines a specific memorized value
along the coded dimension. The mathematical analysis of a
stimulus-specific bump [1] can be extended to derive rigorous
conditions for the existence and stability of multibump
solutions representing the memory of a series of transient
inputs [8].
There have been few studies thus far that generalize math-
ematical results about bump solutions to two-dimensional
(2D) fields (e.g., [11]). Conditions for the existence of
symmetric 2D bumps have been derived [18]. Later work
has shown that non-radially symmetric perturbations can
destabilize bumps to a rich set of possible patterns existing
in 2D fields [3].

The influence of noise in the dynamic behaviour of neural
fields can be very important. This effect can be studied by
means of stochastic versions of the neural field equations.
The effect of additive noise is studied for example in [10].
In [9] the authors analyse the effect noise on bump solutions
of neural fields. In the present paper we don’t have place to
discuss this important topic, therefore we focus only on the
deterministic model.

We also remark that we consider here a mean field model,
which does not consider explicitly the propagation of cortical
waves. In this sense our approach differs significantly from
detailed biophysical models used in the description of the
cortex.

In this paper we investigate with the memory application
in mind a numerical model that simulates how a sequence
of inputs can generate a stable multibump solution in a 2D
field. The study is motivated by recent neurophysiological
findings suggesting that populations of cortical neurons may
encode in their firing pattern simultaneously the nature and
the timing (or temporal order) of sequential stimulus events
[14]. The inputs to the field may be for example light signals
of different colours that occur at different times. In this case,
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Fig. 1. Surface graph of the input function corresponding to a light signal
of the color y = 0
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Fig. 2. Surface graph of the input function corresponding to light signals
of colors y1 = −5 and y2 = 5

the field is spanned over the continuous dimensions colour
(y-axis) and elapsed time (x-axis). The peak coordinates of
a 2D bump contain respectively the information about the
colour and the time interval of a specific event. A projection
of the bump on the x and y axes reveals bell-shaped activity
profiles which is consistent with the notion of broadly tuned
neurons in the feature (colour) dimension and the time
dimension [5], [14]. The localized activity pattern evolves
from a low-activity resting state under the influence of two
excitatory input sources. If a signal of colour y occurs at a
certain time, we have a ridge-like input which is localized
in the feature space y but extends in the time dimension
x, see fig. 1. If several light signals of different colours
occur simultaneously, the graphic of the input has several
parallel ridges, whose coordinates y1, y2, ... correspond to
the different colours (see fig. 2).

Note that these inputs are transient, that is, they remain
during a short time period and then vanish. The second input
to the field is a traveling wave in form of a ridge which
extends in y direction and propagates in the direction of x
with elapsed time t since sequence onset at t = 0 (see [15]
for a possible neural substrate). The graph of such input is
displayed in fig.3.

Importantly, we assume that only at field positions which
receive both inputs simultaneously, the combined input is
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Fig. 3. Surface graph of the input function corresponding to a traveling
wave, moving in the direction of the x axis
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Fig. 4. Combination of two inputs generating a bump state

strong enough to generate a transition from a stable resting
state to the bump state (see fig.4) which persists after all
inputs are switched off (see fig.5).

The structure of the rest of this paper is as follows.
In Section 2 we give the mathematical formulation of the
problem and the outline of the numerical algorithm. Some
numerical examples are described in Section 3 and we finish
with some conclusions in Section 4.

−20
−15

−10
−5

0
5

10
15

20

0

10

20

30

40
0

0.1

0.2

0.3

0.4

 

yx

 

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 5. Example of a stable bump solution which remains after all the
inputs are switched off
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II. MATHEMATICAL FORMULATION AND NUMERICAL
ALGORITHM

We consider the Neural Field Equation in the form

c ∂
∂tV (x, y, t) = I(x, y, t)− V (x, y, t)+∫

Ω
W (‖(x, y)− (x′, y′)‖2)S(V (x′, y′, t))dx′dy′,

t ∈ [0, T ], (x, y) ∈ Ω ⊂ IR2,
(1)

where V (x, y, t) represents the potential corresponding to
the event (x, y) at instant t. The coordinates of the event
are the and colour x and time y. Let us assume that Ω =
[0, 2L]×[−L,L]. The connectivity kernel W is of oscillating
type:

W (r) = A exp(−kr) (k sin(a1r) + cos(a1r)) , (2)

where A, a1, k are certain positive constants (see [7]).
The activation function S is of Heavyside type:

S(V ) = H(V − b),

where b > 0 is a certain threshold.
I represents the sum of the external inputs and has several

components:

I(x, y, t) =

n∑
i=0

Ii(x, y, t),

where I0 is a traveling wave:

I0(x, y, t) = α0 exp(−γ0(x− vt)2), (3)

0 ≤ t ≤ T , (x, y) ∈ [0, 2L] × [−L,L], v > 0 is a positive
number: the remaining inputs are localized (peaks with center
at Ci):

Ii(x, y, t) = αi exp
(
−γi(y − Ci)

2)
)
, (4)

where Ci ∈ [−L,L], αi, γi, are given positive numbers, i =
0, ..., n.

As initial condition we take

V (x, y, 0) ≡ 0.

The numerical solution of this kind of two-dimensional
problems is a challenge for computational methods. The
choice of a sufficiently small discretization step size in-
creases the cost of the spatial convolution. Moreover, we
have to take into consideration that robot applications require
real time performance, which imposes very strict constraints
to the computing time. In this context, the efficiency of the
numerical methods is of crucial importance. The computa-
tions presented here were carried out using an algorithm
described in [13], which combines a second order implicit
method for the time discretization with Gaussian quadrature
rules for the integration in space. In the two-dimensional
case, the required computational effort to solve equation (1)
grows very fast as the discretization step is reduced, and
therefore special attention has to be paid to the creation
of effective methods. An important approach are the low-
rank methods, as those discussed in [20], when the kernel is
approximated by polynomial interpolation, which enables a
significant reduction of the matrix dimensions. If for example
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Fig. 6. Surface graphs of the solution at time t = 0.5 in the case of
Example 1
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Fig. 7. Surface graphs of the solution at time t = 2.5 in the case of
Example 1

the domain Ω is discretized by a mesh with 100×100 points,
the low-rank method allows us (without loosing precision) to
compute the solution only at n× n Chebyshev nodes, were
n is in the range 10 − 20, depending on the type of inputs
considered in the specific problem.

III. NUMERICAL EXAMPLES

Example 1. In this example, the external input consists of
a travelling wave I0, described by (3), and a localized signal
I1, of the type (4), which are constant during the time interval
t ∈ [0, 1.5] and then vanish. The corresponding parameters
are: α0 = 0.1, γ0 = 1, v = 5; α1 = 0.1, γ1 = 1, C1 = 0.
The threshold for the activation function is b = 0.1; the
connectivity kernel is described by (2), with the constants
A = 0.02, k = 0.8, a1 = 1. The domain of discretization
is [0, 40] × [−20, 20]; the step in time is τ = 0.1, the total
number of time steps is nt = 50; the number of Chebyshev
nodes is 25× 25 and the number of gridpoints is 48× 48.

In this case we observe that the combination of I0 with
I1 generates at certain points a transition to the bump state
(see fig. 6). When the potential at these points reaches the
threshold b = 0.1, an activity region arises, which remains
as a one-bump solution after the external input is removed.
(see fig. 7).

Example 2. In this case we have again a traveling wave I0
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Fig. 8. Surface graphs of the solution at time t = 1 in the case of
Example 2
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Fig. 9. Surface graphs of the solution at time t = 5 in the case of
Example 2

and two localized inputs I1 and I2, with α1 = 0.1, γ1 = 1,
C1 = −10 and α2 = 1, γ2 = 1, C2 = 10, which corresponds
to an event with two different colors (see fig. 8). As in the
previous example, inputs I0, I1 and I2 are constant in the
time interval 0 < t < 1, and then are removed. All the other
parameters have the same values as in previous example. We
observe again an activity region which remains in the form
of a two-bump solution after the input is removed (see fig.9).

We remark that in this figure the bumps have approx-
imately the form of conic peaks, while in the previous
example the bump was extended in the direction of x-axis
(see fig. 7). This happens because the duration of the stimulus
in Example 2 (0 < t < 1) is shorter than in the case of
Example 1 (0 < t < 1.5). In this way, we observe that the
output field also retains information about the duration of the
stimulus.

Example 3. In this example, we have three series of inputs
at different times. First in the time interval [0, 1] we have I0,
I1 and I2 (with the same parameters as in Example 2); then
on [1, 3] we have only the traveling wave I0; finally on [3, 4]
we have again I0, I1 and I2. After t = 4 all the inputs are
removed.

The output field of this example consists of a four-bump
solution: two peaks correspond to the two first localized
signals, and the remaining two ones correspond to the second
series of signals.

The graphs describing the evolution of the output field in
this case are displayed in fig. 10,11 and 12.

−20 −15 −10 −5 0 5 10 15 20

0
10

20
30

40
−0.05

0

0.05

0.1

0.15

 

yx

 

0

0.02

0.04

0.06

0.08

0.1

Fig. 10. Surface graphs of the solution at time t = 1 in the case of
Example 3; here the output field contains only the representation of the first
series of signals
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Fig. 11. Surface graphs of the solution at time t = 4 in the case of
Example 3; at this moment we can see also a representation of the second
series of signals.

Example 4. In this example, like in the preceeding one,
we have three series of inputs at different times. First in
the time interval [0, 1.5] we have I0 and I1, where I0 has
the same parameters as in previous examples and I1 is a
localized signal of the form (4), with α1 = 0.1, γ1 = 1,
C1 = −10; then on [1.5, 3] we have only the travelling wave
I0; finally on [3, 4.5] we have I0, I1 and I2, where I1 is
described above and I2 is a localized signal of the form (4),
with α2 = 0.1, γ2 = 1, C2 = 10. After t = 4.5 all the inputs
are removed.

The output field of this example consists of a three-bump
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Fig. 12. Surface graphs of the solution at time t = 7 in the case of
Example 3. Here we can see the stable four-bump field which remains after
all the inputs are switched off.
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Fig. 13. Surface graphs of the solution at time t = 1 in the case of
Example 4; the output field reflects the first signal.
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Fig. 14. Surface graphs of the solution at time t = 4 in the case of
Example 4; at this time the output field also reflects the second series of
signals.

solution: one peak corresponds to the first localized signal,
and the remaining two ones correspond to the second series
of signals.

The evolution of the output field for this example can
be observed in figs. 13, 14 and 15. Graphs of the solution
at different times show how the solution changes under
the effect of the transient inputs and how a stable three-
bump solution remains after all the inputs are switched off.

The numerical algorithm described above was coded in
MATLAB. The computations were carried out in a PC with
a 1.7Ghz processor, using 8 Gb of RAM. In such conditions
each time step of the algorithm is performed in 5-9 sec,
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Fig. 15. Surface graphs of the solution at time t = 7 in the case of Example
4. Here we can see the stable three-bump field which remains after all the
inputs are switched off.

depending on the example.

IV. CONCLUSION

We have described a two-dimensional neural field model
which explains how a population of cortical neurons may
encode in its self-sustained firing pattern simultaneously the
nature and time of sequential stimulus events [14]. Follow-
ing the same neural processing mechanism, the memorized
information can be recalled in a ”read-out” field which
receives the multibump pattern and the traveling wave I0
as subthreshold inputs. As an important contribution to ex-
perimental and theoretical neuroscience, the postulated wave
mechanism explains how a nervous system lacking specific
sensors for temporal perception may develop neurons that
respond to specific interval durations. Very recent findings
in cell populations of rats performing timing tasks seem to
support this computational mechanism [15].
A series of numerical experiments has been carried out, using
a computational algorithm described in [13] for the numerical
solution of the two-dimensional neural field equation (1).

The numerical results presented in section 3 actually sup-
port the conjecture that if the external input has appropriate
intensity and duration, and if the connection kernel is of the
type described by (2), the neural activity can generate stable
multibump solutions which contain the information carried
by the external signals. The results complement earlier
numerical studies showing the formation of 2D multibump
patterns which are solely defined by initial conditions [11].

For real world applications like for instance in robotics
[6], the computing time is of critical importance. Though
the computational algorithm used for these numerical ex-
periments was designed to solve efficiently two-dimensional
neural field equations, it was conceived to be used in a
more general context and it may be not sufficiently fast
to use in such applications. A possible way of improving
this algorithm is to adapt it to the solution of problems
of the class considered here, by taking advantage of some
simplifications that can be done, when the problem data have
the specific form described in Section 2. This is a direction
of research that we intend to implement in the near future.
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