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Development of a numerical tool for the seismic vulnerability assessment of vernacular 1 

architecture 2 

Abstract  3 

Aiming at protecting the vernacular heritage located in earthquake prone areas, the paper presents the 4 

development and validation of the numerical tool that constitutes the core of a novel seismic vulnerability 5 

assessment method: Seismic Assessment of the Vulnerability of Vernacular Architecture Structures (SAVVAS). 6 

An extensive numerical modeling campaign was carried out to evaluate and quantify the influence of several 7 

parameters on the seismic response of vernacular buildings. The results were compiled into a database on which 8 

regression analysis could be performed to extract correlations between seismic capacity and qualitative and 9 

simple quantitative data that can be obtained from visual inspection. 10 

1. Introduction 11 

Seismic vulnerability assessment methods for the built environment play an important role on risk mitigation 12 

because they are the main components of models capable of predicting damage to buildings and estimating 13 

losses in future earthquakes. That is why they have become a valuable tool for the preservation of the built 14 

heritage, since they allow identifying the most vulnerable elements at risk. As a result, structural retrofitting 15 

strategies at an urban or regional level can be defined and optimized by highlighting those buildings where the 16 

biggest efforts should be concentrated. This has a particular importance when dealing with the preservation of 17 

the built vernacular heritage, which is rarely represented by single structures, but usually involves a group of 18 

buildings and settlements within a rural region or within an historical city center. 19 

Several definitions and interpretations have been given to vernacular architecture [Rapoport 1972; Rudofsky 20 

1990; Oliver 1997; ICOMOS 1999]. A common understanding of this wide concept is that vernacular buildings 21 

are usually owner or community built. Thus, they are not designed by specialists but, on the contrary, are part of 22 

a process that involves many people over many generations, being based on empirical knowledge and reflecting 23 

the tradition and life style of a community, as well as the inhabitant’s bonding with the natural environment. 24 

That is why vernacular architecture is also often defined as the opposite of high or monumental architecture.  25 
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Precisely because of its empirical and traditional nature, vernacular architecture is nowadays considered in 26 

many places as an obsolete way of building and only valued as part of the region’s identity [Correia 2017]. 27 

Typically, people tend to see vernacular construction technologies as unsafe and eventually abandon and 28 

substitute them with modern ones. This leads to a homogenization of the way of building throughout the world, 29 

providing a type of architecture that can be observed in any geography, jeopardizing the local building culture. 30 

Besides the loss of authenticity, the current global urbanization tendency that results in the adoption of new 31 

modern alien technologies enables structures to be erected quickly and cheaply, but not necessarily safely [Degg 32 

and Homan 2005]. The risk of vernacular heritage to disappear due to this economic, cultural and architectural 33 

homogenization was already highlighted by ICOMOS [1999]. Traditional building knowledge, technologies and 34 

materials face subsequently problems of obsolescence in a parallel way [May 2010]. As a result of this 35 

progressive abandonment, there is also an increasing vulnerability of vernacular architecture facing natural 36 

disasters, including earthquakes. 37 

The main objective of the present research is to contribute to the awareness and protection of the vernacular 38 

heritage located in earthquake prone areas. For that matter, the present paper proposes the development of a 39 

novel seismic vulnerability assessment method particularly adapted for vernacular architecture. There exist a 40 

wide variety of methods in the literature suitable for different types of analysis with different goals. The 41 

different issues previously discussed introduce some constraints to the development of a seismic vulnerability 42 

assessment method adequate to the characteristics of vernacular architecture. First of all, given the typical lack 43 

of resources assigned to the study and preservation of the vernacular heritage, the targeted method should be 44 

easy-to-use and mostly make use of qualitative data that can be rapidly obtained from simple visual inspections. 45 

More detailed and sophisticated approaches that demand a deep investigation of the structures including, for 46 

example, historical research, non-destructive evaluation or advanced structural analysis are typically restricted 47 

for individual monumental buildings. Secondly, given the great heterogeneity of vernacular architecture in terms 48 

of geometry, materials or construction techniques, the new method should also allow the individual assessment 49 

of the buildings. 50 

The method proposed is referred as Seismic Assessment of the Vulnerability of Vernacular Architecture 51 

Structures (SAVVAS). This new method aims at the estimation of the maximum seismic capacity of a building 52 
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based on the identification and characterization of a set of geometrical, structural, constructive and material 53 

characteristics that are more influential in the seismic response of the building. The use of key qualitative and 54 

quantitative parameters to evaluate the seismic vulnerability of masonry buildings was firstly proposed by 55 

Benedetti and Petrini [Benedetti and Petrini 1984]. They defined a vulnerability index formulation on the basis 56 

of a vast set of post-earthquake damage observations and expert judgment. They selected a total of eleven 57 

parameters related to four classes of increasing vulnerability and weighted them according to their relative 58 

importance in determining the seismic behavior of the building. Each parameter is qualified individually, and 59 

the overall vulnerability of the building is calculated as the weighted sum of the parameters, expressed through a 60 

vulnerability index (IV), which can be understood as a measure of the building safety under seismic loads 61 

[Barbat et al. 1996]. The vulnerability index method has been extensively applied in Italy [GNDT 1999] and 62 

variations of the method, such as the one proposed by Vicente [Vicente 2008], have been recently implemented 63 

in several historic city centers in Portugal [Vicente et al. 2011; Neves et al. 2012; Ferreira et al. 2013]. 64 

The vulnerability index method and its variations have provided useful and reliable results as a first level 65 

approach for large-scale assessments. However, they are based solely on empiric observation and the resulting 66 

vulnerability index (IV) is an empirical factor with no physical meaning. It is usually correlated with an 67 

estimated damage for a given earthquake. The present research thus acknowledges the need of strengthening the 68 

reliability and robustness of existing methods by gaining a better insight of the seismic behavior of vernacular 69 

structures. For this purpose, the SAVVAS method has been developed using advanced numerical analysis. In 70 

this work, after the selection of the key parameters, detailed finite element (FE) modeling and nonlinear static 71 

(pushover) analysis were used to perform an extensive parametric study. The influence of the selected 72 

parameters could thus be evaluated and quantified numerically. The strategy consists of modifying a reference 73 

model according to the different parameters considered. The variations on the seismic performance of the 74 

structure are analyzed and compared in order to define each parameter influence. The use of pushover analysis 75 

allows defining the seismic performance of the building quantitatively, in terms of base shear coefficient. From 76 

the extensive numerical analysis, classes of increasing seismic vulnerability could be also established for each 77 

parameter. 78 
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The results of the extensive numerical parametric campaign could be assembled into a database. A statistical 79 

approach was thus followed for the development of the SAVVAS method, based on quantitative data analysis 80 

and Knowledge Discovery in Databases (KDD), using Data Mining (DM) techniques. These techniques allowed 81 

obtaining regression models that intend to predict the seismic capacity of vernacular structure using as inputs 82 

simple variables based on the selected key vulnerability parameters. These regression models are the main 83 

component of the SAVVAS method. 84 

The use of an analytical process instead of an empirical one to develop an expedited method for the seismic 85 

vulnerability assessment of vernacular structures is considered a step forward in the contribution to scientific 86 

knowledge. The first part of the present paper shows in detail the process followed to obtain the regression 87 

models of the SAVVAS method. Secondly, the paper presents the validation of these regression models using 88 

numerical and experimental works gathered from the literature that deal with the seismic analysis of traditional 89 

masonry constructions. The regression models are applied to a total of six cases collected and the predictions are 90 

compared with the results provided by the literature. After the validation of the prediction capability of the 91 

regression models, the SAVVAS formulation is presented at the end of the paper as the main outcome, together 92 

with a summary of the steps that need to be followed to apply it. 93 

2. Numerical parametric study for the definition of seismic vulnerability classes 94 

The idea behind the SAVVAS method consists of developing a novel seismic vulnerability assessment method 95 

that is able to estimate the seismic capacity of vernacular buildings in quantitative terms. The quantification of 96 

the seismic capacity required an extensive numerical parametric study, designed according to the parameters 97 

considered to be more influential in determining the seismic behavior of vernacular buildings. This study helps 98 

understanding the seismic behavior and resisting mechanisms of vernacular constructions that present different 99 

characteristics in terms of construction, geometry and materials. 100 

The numerical analysis is based on FE modeling and pushover analysis. FE modeling following a common 101 

macro-model approach has already been extensively and successfully applied with the aim of analyzing the 102 

seismic behavior of complex masonry and rammed earth structures [Mallardo et al. 2008; Lourenço et al. 2011; 103 

Saloustros et al. 2014; Karanikoloudis and Lourenço 2018]. Pushover analyses with distribution of forces 104 
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proportional to the mass is also a generally accepted and recommended tool used for the seismic assessment of 105 

existing masonry buildings without box-behavior [Lourenço et al. 2011]. This approach allows determining the 106 

ability of the building to resist the characteristic horizontal loading caused by the seismic actions taking into 107 

account the material nonlinear behavior. Despite the limitations of simulating the earthquake loading as a set of 108 

equivalent static forces, pushover analysis is a powerful tool since it can be performed with relatively low 109 

computational efforts in comparison with other more sophisticated nonlinear analysis, such as nonlinear 110 

dynamic time-history analysis. 111 

The development of the new method firstly required to identify and define a number of parameters that 112 

represent appropriately distinctive characteristics of vernacular buildings and influence their seismic behavior. 113 

The definition of these seismic vulnerability assessment parameters was based on the work developed by other 114 

authors that have proposed different vulnerability index formulations [Benedetti and Petrini 1984; Sepe et al. 115 

2008; Boukri and Bensaibi 2008; Vicente 2008; Ferreira et al. 2014; Shakya 2014] and on the earthquake 116 

performance of vernacular constructions reported in past earthquakes [Blondet et al. 2011; Bothara et al. 2012; 117 

Neves et al. 2012; Sorrentino et al. 2013; Gautam et al. 2016]. It should be noted that the SAVVAS method has 118 

been developed with a main focus on vernacular architecture typologies whose structural system typically 119 

consists on load bearing masonry or earthen walls as the main vertical resisting elements, coupled with 120 

horizontal timber diaphragms. Parameters are selected according to the singular behavior of these structural 121 

types, acknowledging that many vernacular constructions around the world share a similar concept at the 122 

structural level. The ten parameters finally selected are shown schematically in Figure 1. 123 

The definition of classes of increasing seismic vulnerability for each parameter is also based on the approach 124 

proposed by existing vulnerability index methods [Benedetti and Petrini 1984]. The methodology adopted for 125 

the definition of the seismic vulnerability classes consists of seven clearly defined steps that are presented in 126 

Figure 2, using one of the parameters as an example. The readers are referred to Ortega [Ortega 2018] for a full 127 

detailed explanation of the parametric study performed and the resulting seismic vulnerability assessment 128 

classification obtained for each parameter. 129 

The first step involves the preparation of reference FE models based on typical vernacular stone masonry and 130 

rammed earth constructions targeted by the SAVVAS method (Figure 3). These reference models are prepared 131 
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in a generic way so that they can easily accommodate the variations required to assess the influence of the 132 

different parameters. Several reference models are constructed for the evaluation of each parameter, aiming at 133 

providing a more comprehensive understanding of each parameter influence on buildings showing different 134 

characteristics. As an example, Figure 2 shows the two reference models prepared for the parametric analysis 135 

aimed at defining the seismic vulnerability classes of P2 (maximum wall span): (1) one-floor rammed earth 136 

building with flexible diaphragm; and (2) two-floor rammed earth building with rigid diaphragm. The use of 137 

these two different building typologies as reference models allows understanding the influence of the maximum 138 

wall span when the building is prone to show an out-of-plane failure mode and when the building is prone to 139 

present in-plane collapse mechanisms. After the definition of the different reference models, the second step 140 

consists of preparing sets of models by modifying each reference model according to a range of variation 141 

established for each parameter, taking into account typical values observed within vernacular architecture. 142 

Once all the models from each set are constructed, they are subjected to a pushover analysis in the direction in 143 

which the parameter under evaluation is supposed to have a greater influence. Continuing with the example 144 

above, parameter P2 evaluates the variations in the response of the building when the maximum length of a wall 145 

prone to out-of-plane movements varies. Thus, the direction selected for the pushover analysis had to be 146 

perpendicular to the walls whose span is being modified. All models from each set of models are then tested in 147 

the same direction. DIANA software [TNO 2011] was used for the construction of the models and to perform 148 

the pushover analyses. There are some modeling specifications that are shared by all the models constructed for 149 

the parametric analysis. Walls are simulated with ten-node isoparametric 3D solid tetrahedron elements 150 

(CTE30), using at least two elements within the thickness. When modeled, floors are assumed to be composed 151 

by: (a) timber beams simulated using three-node beam elements (CL18B); and (b) cross-board sheathing, 152 

modeled using six-node triangular shell elements (CT30S). The roof is modelled as distributed vertical load 153 

along the load bearing walls and, when expected to exert thrust to the walls, a distributed horizontal load is also 154 

applied at the top of the walls. The displacements of the walls elements at the base are fully restrained. 155 

Different materials are considered for the walls (“parameter P3”), from earthen materials (namely adobe 156 

masonry or rammed earth) to brick and stone masonry of different quality. Timber is used for the lintels and 157 

floor construction elements. Only the materials used for the walls are considered to present nonlinear behavior 158 
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and the material model adopted is a standard isotropic Total Strain Rotating Crack Model (TSRCM). This 159 

model describes the tensile and compressive behavior of the material with one stress-strain relationship and 160 

assumes that the crack direction rotates with the principal strain axes. The tension softening function selected is 161 

exponential and the compressive function selected to model the crushing behavior is parabolic. It was selected 162 

because of its robustness and simplicity, showing successful results in previous analysis of complex stone 163 

masonry and earthen structures [Miccoli et al. 2014; Lourenço et al. 2015; Karanikoloudis and Lourenço 2018]. 164 

Timber elements were always considered to present elastic behavior. The material properties adopted varied for 165 

the different models constructed for the parametric analysis and are based on data collected from different 166 

authors and codes [NTC 2008; Lourenço 2009; Gomes et al. 2011; Angulo-Ibáñez 2012; Gallego and Arto 167 

2014]. Other model details vary among the different models, such as the geometry and the level of connection 168 

between the structural elements, see [Ortega 2018] for full details. 169 

The fourth and fifth steps are intended to analyze the results of the pushover analyses carried out on each model 170 

from each set to obtain a better understanding of the seismic behavior of vernacular buildings. Step four aims at 171 

understanding how the seismic response of the building changes in terms of damage patterns and failure 172 

mechanisms according to the variations in the parameter under evaluation. Step five analyzes the variations in 173 

the seismic behavior of the building in terms of the pushover curve. Pushover analyses allow describing the 174 

global seismic response of the structure and the formation of global collapse mechanisms in terms of the 175 

capacity or pushover curve. This curve is given as a relation between the base shear coefficient or load factor 176 

(i.e. the ratio between the horizontal forces at the base and the self-weight of the structure, expressed as an 177 

acceleration in terms of g) and the displacement at the control node (usually taken as the node where the highest 178 

displacements take place). It is noted that this node may vary according to the collapse mechanism obtained, 179 

which can differ between buildings. Thus, the curves are representative of the global structural behavior of the 180 

different buildings subjected to horizontal loading, not individual structural elements composing the buildings. 181 

Furthermore, in order to have a common basis of comparison of the seismic capacity of the buildings in 182 

quantitative terms, four structural limit states (LS) associated to specific damage levels exhibited by the 183 

structure were defined following recommendations available in the literature [Rota et al. 2010; Mouyiannou et 184 

al. 2014]. The LS are determined according to the pushover curve obtained for each building (Figure 4). LS1 is 185 
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associated to the Immediate Occupancy Limit State before which the structural behavior of the building is 186 

essentially elastic, and it can be considered as fully operational. LS1 thus corresponds to the onset of cracking, 187 

which is assumed to start after a reduction of the initial stiffness of the global response of the building up to 2%. 188 

It is noted that the value is relatively low but is related to the low tensile strength of the materials considered in 189 

this study and is defined after observing that the first cracks in the numerical models are visible after this 190 

reduction of the initial stiffness. LS2 is associated to a Damage Limitation Limit State. It depicts the transition 191 

between a state where the structure is still functional, showing minor structural damage and cracks, and a state 192 

of significant damage. The definition of LS2 from the pushover curve is made by satisfying two energy criteria: 193 

(1) the first energy criterion assumes that the area below the three-linear curve formed by LS1, LS2 and LS3 194 

coincides with the area below the pushover curve from LS1 to LS3; and (2) the second criterion assumes that 195 

the LS2 point is on the slope associated to the secant stiffness corresponding to 70% of the maximum strength. 196 

LS3 is defined by the load factor corresponding to the attainment of the building maximum strength. It is 197 

referred as Life Safety Limit State. Finally, LS4 refers to the Near Collapse Limit State and corresponds to the 198 

point where the building resistance deteriorates below an acceptable limit, which is set at the 80% of the 199 

maximum strength, following recommendations by Eurocode 8 [EN 1998-3 2005]. 200 

Step five thus consists of transforming the pushover curves of the buildings into four-linear capacity curves 201 

according to the points associated to each LS. Through these capacity curves, the seismic behavior of each 202 

building is described by four equivalent static horizontal loads (load factors) that the buildings can withstand 203 

before reaching each LS. However, they also provide information about the deformation capacity of the 204 

building, allowing an easier and quantitative comparison between the structural response of the models from 205 

each set in terms of capacity, stiffness and ductility. 206 

The sixth step consists of comparing the values of load factor corresponding to LS1 and LS3 for the different 207 

models within each set. LS2 and LS4 are not included because they are mathematically determined through LS1 208 

and LS3. The load factor variations for LS1 and LS3 can be expressed in terms of a percentage normalized 209 

using the maximum value of load factor obtained among the buildings analyzed within the set. This procedure 210 

results in the construction of curves that show in a clear manner the variation of the seismic capacity of the 211 

building as a function of the variations defined for each parameter (Figure 2). 212 
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Finally, the seventh and last step consists of the definition of the seismic vulnerability classes according to the 213 

variation of the load factor corresponding to the attainment of the maximum capacity of the building (LS3). The 214 

criterion followed for the definition of the typical four vulnerability classes of increasing vulnerability consists 215 

of dividing equally the total range of variation within each set into four parts. Each interval is associated with a 216 

vulnerability class and buildings are classified according to the interval they lie within, see Figure 2. It is noted 217 

that the ranges of variation obtained for each set can differ, resulting in differences in the definition of the 218 

seismic vulnerability classes. The final classification is made by adopting the most unfavorable class. 219 

3. Methodology adopted to obtain the regression models of the SAVVAS method 220 

In total, the parametric study carried out involved the construction of 277 numerical models with varying 221 

geometrical, construction, material and structural characteristics. Since most models were analyzed in the two 222 

orthogonal directions, results from more than 400 pushover analyses were obtained. This allowed determining 223 

the global seismic response of each building in different seismic loading directions. The results of each 224 

pushover analysis performed on each numerical model could compose a wide, reasonably robust, database 225 

containing two main pieces of information: (1) the differing characteristic of the numerical models according to 226 

the ten key parameters selected; and (2) the seismic load capacity of the different buildings, defined in terms of 227 

load factors leading to the attainment of four damage limit states (LS1, LS2, LS3 and LS4). 228 

The application of DM algorithms to extract models or patterns that explain relationships between variables 229 

from databases is one of the main steps of KDD [Fayyad et al. 1996]. The employment of these tools allows 230 

analyzing the complex database obtained from the numerical analyses performed, which presents a large 231 

number of variables and complex and unclear relationships among them. The SAVVAS method arises precisely 232 

from the intention of delving more deeply into the research question of whether the simple key parameters 233 

variables selected can be used to predict the seismic load capacity of vernacular buildings. The final objective of 234 

the method is to derive regression models able to quantitatively estimate a value of a load factor that causes the 235 

structure to reach the different LS, which can later be correlated with different degrees of structural damage 236 

suffered by the building. Moreover, since the load factors that define each LS are expressed in terms of g, they 237 

can be compared in a straightforward way with an expected seismic event. The seismic input used for 238 
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comparison is expressed in terms of Peak Ground Acceleration (PGA) or, when a more refined assessment is 239 

required, the site response spectra and the building fundamental period can be used to take into account specific 240 

accelerations adapted to each building and site. 241 

There are several DM algorithms that can be applied for the desired deeper analysis and the extraction of 242 

patterns explaining relationships between variables, such as multiple linear regression, artificial neural networks 243 

(ANN), support vector machines (SVM) and decision trees. There is an increasing amount of research in 244 

different fields that make use of the abovementioned techniques. This includes research in structural engineering 245 

where, for example, DM techniques have been widely applied to formulate models able to predict the 246 

mechanical properties of different materials based on experimental data [Baykasoglu et al. 2008; Miranda et al. 247 

2011; Garzón-Roca et al. 2013a Martins et al. 2014; Martins et al. 2018] or the structural behavior of different 248 

structural elements [Marques and Lourenço 2013; Garzón-Roca et al. 2013b; Plevris and Asteris 2014; Aguilar 249 

et al. 2016]. This exemplifies that there is an increasing research focus on developing regression models for the 250 

prediction of the mechanical properties of different materials and the structural behavior of different structural 251 

elements. However, with the exception of [Garzón-Roca et al. 2013b], who used as the database for developing 252 

the ANN models the results of a parametric study with finite elements comprising 3700 models [Sandoval and 253 

Roca 2012], all abovementioned studies have developed the models based on large databases of experimental 254 

data. This research work makes use of a database composed solely of numerical data obtained from the results 255 

of the nonlinear parametric study carried out. 256 

3.1. Methodology 257 

Figure 5 presents an overview of the steps of the methodology adopted to obtain the regression models 258 

necessary for the development of the SAVVAS method. The first step concerns the organization of the database. 259 

The target data include the load factor corresponding to the attainment of LS1, LS2 and LS3. The load factor 260 

defining LS4 is not taken into consideration because it is by definition proportional to the load factor defining 261 

LS3. These three load factors associated to the different LS are considered to define the seismic response of the 262 

buildings because they depict the seismic load (in terms of g) that would cause the building to reach different 263 
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damage levels. The regression models are thus intended to predict these three LS using as the input simple 264 

variables based on the previously selected parameters. 265 

Since the SAVVAS method relies directly upon the regression models, an effort was placed on increasing their 266 

prediction accuracy. Thus, while some of the parameters can be defined by the seismic vulnerability classes 267 

previously defined, others could be more precisely described using more specific quantitative attributes. For 268 

example, P2 (maximum wall span) can be directly defined by the span (in m), instead of by the vulnerability 269 

class. The same occurs for P1, defined by the wall slenderness ratio (λ), P8, defined by the number of floors (N) 270 

of the building and P10, defined by the in-plane index (γi). It should be noted that the in-plane index is defined 271 

as the ratio between the in-plane area of earthquake resistant walls in each main direction (Awi) and the total in-272 

plane area of the earthquake resistant walls (Aw), see Figure 1. In the particular case of P7, which concerns the 273 

amount and area of walls openings, the parameter was also further divided into two parameters, aiming at 274 

distinguishing between the area of wall openings at the walls perpendicular to the loading direction (P7a) from 275 

the area of wall openings at the walls parallel to the loading direction (P7b). The remaining parameters, 276 

including the type of material (P3), the quality of the wall-to-wall connections (P4), the horizontal diaphragms 277 

(P5), the roof thrust (P6) and the previous structural damage (P9), are defined as a function of their class, in 278 

qualitative terms. Thus, they are described in a discrete form, assuming four countable numbers from 1 to 4, 279 

associated to the classes A to D, respectively. 280 

As a result, the data was structured in a database composed of 14 attributes: (a) eleven variables associated to 281 

the parameters; and (b) three variables with the values of load factor associated to LS1, LS2 and LS3 obtained 282 

for each model. The parameters variables are either: (1) expressed in a discrete form from 1 to 4 when the 283 

parameters are described by classes; or (2) expressed as continuous variables using different units depending on 284 

the parameter. The load factors are all continuous variables expressed in g, typically ranging from 0 to 1. 285 

In terms of applied DM algorithms, the SAVVAS method explores the use of two different techniques to 286 

develop the regression models: (a) multiple linear regression (MR); and (b) artificial neural networks (ANN). 287 

Nevertheless, it is noted that the ANN models are mainly developed for reference and comparison purposes, 288 

intended to show a research path open to further research. The focus is here placed on multiple regression 289 

models, whose physical meaning is easier to interpret [Miranda et al. 2011]. The resulting regression models 290 
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obtained are able to predict the seismic behavior of vernacular buildings based on the simple eleven parameters 291 

variables defined. They constitute the core of the SAVVAS method. 292 

3.2. SAVVAS database 293 

A preliminary data analysis performed in a first stage concluded that the extension of the database was not 294 

deemed enough to define robust regression models. Therefore, additional numerical models were built in order 295 

to enlarge the database, intending to have a more balanced distribution of buildings belonging to the different 296 

classes for each parameter. The database needed to be diverse and representative enough of all classes of each 297 

parameter. Considering the pattern of variability within each parameter variable (i.e. the distribution of 298 

buildings belonging to each class), a lack of balance (or asymmetry) was detected. Due to the use of reference 299 

models showing similar initial conditions for the definition of the classes, some seismic vulnerability classes in 300 

certain parameters are more frequent than others. The first step of the database extension process consisted of 301 

identifying those classes in each of the ten parameters that were less represented in the original database. The 302 

main criterion applied for the enlargement of the database was to ensure that there are a minimum of 25 models 303 

representing each parameter class, in order to contain a meaningful statistical amount for all of them. 304 

Additionally, some new models were constructed aimed at assessing the efficiency of traditional earthquake 305 

resistant techniques for vernacular architecture [Ortega et al. 2018]. The results of these analyses were also 306 

added to the initially constructed database. In total, the extension process led to a final database composed of 307 

567 results obtained from pushover analyses performed on FE models. The precise information on the process 308 

of extension of the database is detailed in [Ortega 2018].  309 

Several operations can be also applied on the attributes selected for the database in order to eventually help 310 

improving the prediction capabilities of the regression models. For instance, the dependence of the output 311 

variable on a specific predictor may be not linear, which can lead to errors in the prediction. Different 312 

transformations of the input and output data, such as logarithms and powers, were considered to help to linearize 313 

this relationship and to better describe the effect of each parameter in the seismic behavior of the building. 314 

Indeed, all the output variables had to be transformed in order to assure that the predicted values from the 315 

multiple linear regression models are always positive. The output variables are the load factors that measure the 316 



Preprint version, Reference: Ortega, J., Vasconcelos, G., Rodrigues, H., Correia, M., Miranda, T. Development 
of a numerical tool for the seismic vulnerability assessment of vernacular architecture. Journal of Earthquake 
Engineering (2019). https://doi.org/10.1080/13632469.2019.1657987   

13 
 

seismic action that causes the building to reach specific LS and they are expressed in terms of g. Therefore, as a 317 

measure of the seismic load, they cannot be negative. However, in some specific cases, the load factor defining 318 

LS1 can be 0, if the building is assumed to present an initial level of structural damage (e.g. because of the state 319 

of conservation or the roof thrust), but can never show values below 0. This led to the adoption of a logarithmic 320 

transformation of the three output variables (LS1, LS2 and LS3), since the predicted values from a log-321 

transformed regression will never be negative, respecting the physical meaning of the variable. The logarithmic 322 

transformation involves the adoption of a natural logarithm of the output variables. It should be noted that, since 323 

there are zero values among the data of the variable LS1 and there is no logarithm of the value zero, a constant 324 

(c = 0.01) was added to all LS1 values before applying the log transformation. A small positive constant 325 

between 0 and the smallest non-zero observation that preserves the order of magnitudes of the data is usually 326 

recommended [McCune and Grace 2002; Field et al. 2012]. 327 

As a summary, the list of the input and output transformed and untransformed variables considered, together 328 

with general statistical measurements, is presented in Table 1. It should be noted that the transformations of the 329 

variables result from a trial and error process and only those that revealed to have a notable influence in 330 

improving the prediction capabilities of the regression models are presented. 331 

4. Regression models 332 

The statistical analysis and the definition of the regression models are carried out by using R open source 333 

software [R Development Core Team 2008]. Different regression models were prepared and compared in order 334 

to conclude with the final formulation of the SAVVAS method. The discussion of the results presented herein 335 

also allowed a deeper understanding of the relationships among the parameters and their influence on the 336 

seismic behavior of vernacular buildings. The selection of the final expressions is based on a compromise 337 

between the accuracy in the prediction and the choice of patterns whose physical meaning is more 338 

understandable. 339 
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4.1. Multiple linear regression models 340 

The first DM technique applied is multiple linear regression (MR). Regression analysis is a popular statistical 341 

method used to study the relationship among variables [Kottegodo and Rosso 2008]. In the present case, MR is 342 

intended to investigate the dependence of LS1, LS2 and LS3 (output variables) on the eleven key parameter 343 

variables (the input variables), as well as to define and quantify the relationship among them through a 344 

mathematical model. A multiple regression model is required because there is more than one input variable 345 

[Montgomery et al. 2012]. The relationship between variables is often very complex and the simplest approach 346 

consists of fitting a multilinear equation to the data: 347 

= + + + ⋯ + +  (1) 

where Y is the output variable and k is the number of input explanatory variables (xk). The parameters βk are 348 

called the regression coefficients and ε is the error. The line defined by the regression equation (1) describes 349 

how the response changes according to the explanatory variables. Different regression models were prepared 350 

using always multiple regression analysis, but varying the input variables taken into consideration. This section 351 

is thus meant to provide a comparison of the performance of the different models concerning their capability in 352 

predicting the load factors associated to the different limit states (LS). In total, six regression models are 353 

presented and discussed next. 354 

The first regression model (MR0) is a simple model that uses as input only the seismic vulnerability classes for 355 

all ten parameters (i.e. discrete values between 1 and 4) and is mainly meant to serve as reference. Then, aiming 356 

at further improving the precision of the regression models, five more regression models were constructed 357 

assuming different combinations of: (a) input variables; (b) transformations of the attributes; and (c) interactions 358 

among the attributes. It is noted that, in a first step, the regression models are constructed using LS3 as the 359 

output variable. Different combinations were thus created using the continuous variables and transformations 360 

defined and presented in Table 1 and the interactions among them. This latter condition was considered as a 361 

very critical aspect because the results of the numerical parametric study confirmed that the influence of some 362 

parameters is sensitive to the variations of other parameters. Thus, several interactions between the parameters 363 
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were tested in different regression models. For example, when the building presented a rigid diaphragm able to 364 

distribute the load among all structural elements (P5), the influence of the area of wall openings in the in-plane 365 

walls (P7b) is decisive. On the contrary, if the buildings present a flexible diaphragm, the failure of the building 366 

is typically controlled by the out-of-plane failure of the walls and, thus, the area of wall openings in the in-plane 367 

walls has a negligible effect on the response of the building. That is why the interaction between parameters that 368 

influence themselves mutually was introduced in the multiple regression models. Considering the previous 369 

example, a new interaction term composed by the product 5 × 7  can be included in the regression models, 370 

keeping also the independent terms P5 and P7b. With the new predictor term, the influence of P7b on the 371 

variation of LS3 is different for different values of P5, reflecting better what was observed in the numerical 372 

parametric study. 373 

The six different regression models with different sets of input variables and considering the different 374 

interactions among them are shown in Table 2. Regarding the notation adopted, it is noted that label I (ex. 375 

MR_I1) is added to the models that include interaction among parameters. The table shows measurements of the 376 

predictive performance of the models in terms of error and coefficient of determination (R2). It should be noted 377 

that the k-fold cross-validation method, with = 10, was applied for developing the models and assessing the 378 

predictive capacity of the models, since it is considered as one of the most robust methods [Cortez 2010]. The 379 

method consists of randomly partitioning the data into k sets of roughly the same size. A model is then trained 380 

using all the sets except the first subset, which is used for testing, calculating the prediction error and accuracy 381 

of the model. The same operation is repeated ten times (for each partition) and the performance of the model is 382 

evaluated by averaging the errors (MAE and RMSE) of the different test sets. Finally, once the most appropriate 383 

set of input variables and intersections is selected, the final models are developed using all the data. 384 

The models show different levels of complexity in order to find the abovementioned compromise between 385 

accuracy in the prediction and a clear and simple physical meaning. The adoption of more accurate attributes to 386 

define the parameter variables in MR1, together with the logarithmic transformation of the output variable, 387 

already results in a significant improvement in its prediction performance in comparison with the MR0 model. 388 

However, the models that consider interaction among parameter showed an overall improvement with respect to 389 

two models MR0 and MR1, reaching values of R2 close to 0.9. The introduction of the interactions leads to an 390 
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improvement in the prediction capability, reducing the errors, but the level of complexity of the formulation 391 

increases as well. This is the case of models MR_I1, MR_I2 and MR_I3. The use of a robust cross-validation 392 

method reduces the risk of overfitting, i.e. the risk of creating excessively complex models that fit very well the 393 

data because of describing random error instead of the actual patterns of variability. However, the limitations of 394 

the database, such as the narrow range of variability within some parameters, may result in models that are very 395 

adequate for this dataset but are not so representative of scenarios outside of it. That is why, in the end, a more 396 

general expression was preferred. MR_I4 tried to simplify the model to the maximum extent possible in terms of 397 

number of predictors, using only those showing the highest relative importance in the prediction. It shows a 398 

good performance, but it neglects some parameters that proved to be also influential in the parametric analyses 399 

and thus can be critical as well when evaluating other sets of data. Figure 6 shows the predicted versus observed 400 

values obtained for the six models with different sets of input variables and interactions. 401 

After evaluating the performance of the different models, as well as the compromise between simplicity and 402 

prediction capability, model MR_I1 was adopted as MR_LS3 due to its relatively simple formulation. It uses all 403 

the untransformed input variables for the prediction, but adds the interaction between P5 and P7b that had an 404 

obvious influence and proves to have an important prediction weight. By adding this interaction term, the 405 

regression model reaches a R2 of 0.877, explaining 88% of the variation of the output data, which is considered 406 

satisfactory. It should be highlighted that it provides a quite accurate value of LS3 based only on the ten 407 

parameter variables and on one single simple interaction. The errors are also reduced with respect to models 408 

MR0 and MR1, showing a maximum error of 0.318g. The predicted versus observed values obtained for this 409 

model are further shown in Figure 7a. Figure 7b presents the predicted value with the residuals. The graph 410 

shows clearly that the highest deviations occur for higher values of LS3, approximately over 0.6g. Those 411 

buildings with LS3 > 0.6g can be already considered to have low vulnerability so that the accuracy of the model 412 

is less critical. The main part of the dataset includes models with values of LS3 ranging from 0.15g to 0.6g and 413 

is well matched. Besides, all values bounce over the 0 line, but the great majority of them lies between -0.1g and 414 

0.1g. Only 16% of the models are outside this range, i.e. showed an absolute error higher than 0.1g. Thus, 415 

results were deemed acceptable to adopt MR_I1 as the regression model for LS3. By comparing the models 416 

shown in Figure 6, it is clear that, with the exception of the simple MR0 regression model, the performance of 417 
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the different models is similar in terms of accuracy of the prediction, which justifies the selection of MR_I1 as 418 

the final regression model, given its simpler formulation. The regression equation obtained from MR_LS3 is: 419 

ln( 3) = 2.523 − 0.044 ×  − 0.063 × − 0.238 × 3 − 0.186 × 4 − 0.279 × 5 − 0.091 × 6 + 0.273× 7 − 2.833 × 7 − 0.396 × − 0.156 × 9 + 0.684 × + 0.438 × 5 × 7  (2) 

The regression models intended to predict the load factors corresponding to LS1 and LS2 were constructed 420 

following the same procedure previously explained for LS3. Only the final models adopted are presented and 421 

discussed. Figure 8 presents the predicted versus observed values of both models. Table 3 shows the variables 422 

used for the final models constructed and the measurements of the performance, in terms of errors (MAE and 423 

RMSE) and coefficient of determination (R2). 424 

In the case of the regression model prepared for the prediction of the load factor associated to LS1 (MR_LS1), 425 

different sets of input variables and different interactions were trained and tested until reaching the final 426 

formulation. As an example, particular attention was put in the use of the variables representing the seismic 427 

vulnerability parameters P6 (roof thrust) and P9 (previous structural damage), which can lead LS1 to take zero 428 

values for some classes. The logarithmic transformation of both variables allowed capturing properly this 429 

characteristic. The same parameters interaction used for the selected MR_I1 model for LS3 was also adopted for 430 

this model ( 5 × 7 ). The overall behavior of the model is considered quite acceptable for the relatively 431 

simple formulation obtained (Figure 8a), presenting low errors and a high R2 of 0.811. The final regression 432 

equation from MR_LS1 model reads: 433 

ln( 1 + ) = 2.201 − 0.061 ×  − 0.099 × − 0.712 × ln( 3) − 0.156 × 4 − 0.289 × 5 − 0.521× ln( 6) − 3.668 × 7 − 0.847 × ln( ) − 2.31 × ln( 9) + 0.679 × 5 × 7  (3) 

In the case of the regression model constructed for the prediction of the load factor associated to LS2, instead of 434 

using the parameter variables, the variables previously used as output (LS1 and LS3, expressed in g) are now 435 

used as the only input for the model. These new inputs are selected because the definition of this damage limit 436 

state is mathematically dependent on LS1 and LS3 [Ortega 2018]. Therefore, it can be calculated using solely 437 

those two input variables. This simplified its calculation while leading to very accurate predictions and an 438 

almost perfect correlation with much reduced errors (Figure 8b). The final regression equation from MR_LS2 439 

model is: 440 
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LS2 = 0.152 × 1 + 0.781 × 3 (4) 

4.2. Artificial neural networks 441 

An artificial neural network is a computational scheme whose basic unit are neurons organized in layers. Each 442 

neuron receives a series of inputs, multiplies them by previously defined weights and combines them adding a 443 

predetermined constant called bias to send an output. Most common neural networks are composed by different 444 

parallel layers of neurons. The first layer contains the input variables, the intermediate layer or layers are known 445 

as hidden layers, and the last layer contains the output. Typically, besides the predefined input and output 446 

variables that are intended to be predicted, an ANN is also described by the number of hidden layers and the 447 

number of neurons in each hidden layer. This work uses a feedforward network, which means that the 448 

connections always go from inputs to outputs (there is no connection between the neurons within the same 449 

layer) and there are no cycles in the network. It uses the sigmoid function as the activation function, which is a 450 

particular case of logistic function that is commonly used within ANN architecture [Montgomery et al. 2012; 451 

Günther and Fritsch 2010]. Finally, the learning process algorithm applied is back propagation, which consists 452 

of setting initial random values for the weights and biases, leading to a specific output. The error is measured 453 

and propagated backwards in order to adjust the weights and biases. This process is repeated so that gradually 454 

the actual output from the model gets closer to the desired output after rounds of testing, until reaching a 455 

minimum error specified. 456 

The neuralnet package [Fritsch et al. 2016] for the R software was used for the preparation and training of the 457 

ANN models. ANN models are able to detect the interactions among the parameters and, since they are not 458 

based on a linear combination of the input variables, the transformations proposed for the input variables are no 459 

longer necessary either. However, the logarithmic transformations were still applied to the output variables in 460 

order to prevent them to reach negative values. Two models were prepared, each of them with one output 461 

variable: LS1 and LS3. The ANN model for LS2 was deemed unnecessary because the linear regression model 462 

already obtained, shown in Equation (4), was considered accurate enough. The variables used as input are those 463 

that proved to be significant predictors of LS1 and LS3 when preparing the multiple linear regression models. 464 

This way, the models could also be directly compared. The ANN models have a unique hidden layer with four 465 
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neurons. This number was determined by a trial and error process. The 10-fold method was used for training and 466 

validating the models. 467 

The results obtained showed that the ANN models slightly outperformed the multiple linear regression models. 468 

Figure 9 shows the predicted versus observed values in both models, showing the improvement in the behavior 469 

when compared to the predicted versus observed values obtained for the multiple regression models for LS1 470 

(Figure 8a) and LS3 (Figure 7a). The results lie notably closer to the 45º line, even for the highest values of LS1 471 

and LS3, which were less accurately estimated by the multiple regression models. Table 4 shows the variables 472 

adopted for each regression model and the measurements of performance of both models in terms of errors 473 

(MAE and RMSE) and coefficient of determination (R2). The errors (MAE and RMSE) of the ANN models 474 

were reduced around 20% in both models, while the coefficient of determination also increased around 7% for 475 

the model predicting the load factor associated with LS1 and 5% for the model predicting the load factor 476 

associated with LS3. 477 

Besides the aforementioned improvement obtained with the ANN models, they have the disadvantage of not 478 

being as straightforward as the MR models. The resulting formulation is not a simple expression such as the 479 

ones presented in Equations (2), (3) and (4), but a structure composed of hidden layers, multiple weights and 480 

inner functions, as previously explained. Thus, for practical matters, the complexity of the ANN architecture 481 

makes the MR models desirable for practical use. They are easy to implement and calculate, while keeping a 482 

robust prediction. It is noted that the SAVVAS method is conceived to provide a first seismic assessment that 483 

can be carried out in an expedited way, even for large numbers of buildings. Thus, it is preferable that it is based 484 

on simple visual inspection and relatively simple formulations.  485 

Another main advantage of the multiple regression models is that they are easier to interpret. This is important 486 

because the method is also intended to allow performing an initial evaluation of the effect of different 487 

retrofitting strategies in reducing the seismic vulnerability of vernacular buildings. Each parameter can be 488 

assessed independently directly from Equations (2), (3) and (4), in order to better understand their influence. For 489 

instance, the term of Equations (2) involving P4 is is (0.186 × 4), where P4 refers to the seismic vulnerability 490 

class of the building corresponding to the parameter P4 (wall-to-wall connections). Thus, the use of a 491 

strengthening solution that can improve the wall-to-wall connections and supposes an increase in the seismic 492 
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vulnerability class from 4 to 1, leads to a quantifiable increase in the maximum capacity of the building (LS3) 493 

that can be easily calculated. This increase goes from ( . ) up to ( . ), where a represents the sum of 494 

the rest of the terms concerning the other variables and is kept constant, since the strengthening is only applied 495 

at the level of the wall-to-wall connections. Since ( ) = × , ( . ) = 0.475 and ( . ) = 0.83, 496 

upgrading the class of P4 from 4 to 1, will suppose a significant increase of LS3, by the order of 1.75 times 497 (0.83 0.475⁄ ). This can be evaluated for every parameter. It also shows that the log transformation of the data 498 

adopted seemed to be enough for the multiple regression models to capture adequately the nonlinear 499 

relationships and interactions among the variables. 500 

5. Validation of the regression models 501 

The regression models proposed are based on numerical simulations and, sometimes, the accuracy of the 502 

regression models might be biased with the intrinsic limitations of the database used for their development, 503 

which certainly cannot cover all possible cases. That is why some numerical and experimental studies were 504 

gathered from the literature and their results are compared with the model predictions. They consist of six 505 

examples of the seismic assessment of different structures that could be associated to the vernacular heritage 506 

because of their geometric, construction techniques and material characteristics. The following studies were 507 

selected because they provide sufficient information about the buildings to perform the parameter survey and 508 

inform about the maximum capacity of the buildings. In this way, the results from the studies can be compared 509 

in a straightforward way with the results obtained when applying the regression expressions. 510 

As an example of the process of validation followed, the first study consists of a detailed numerical study of the 511 

seismic safety analysis of a representative stone masonry structure typology from Lisbon, in Portugal [Mendes 512 

and Lourenço 2015]. The buildings belonging to this typology are commonly known as gaioleiro buildings. It 513 

represents an appropriate study because the building was studied by means of numerical modeling and pushover 514 

analysis, which were the analytical tools also applied for the development of the SAVVAS method. 515 

Additionally, the results of the maximum capacity of the building are given in terms of base shear coefficient or 516 

load factor, which is the same information that can be obtained after applying the regression equations. Thus, 517 

results can be directly compared. Table 5 presents the results obtained in terms of: (1) values adopted for each 518 
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parameter, according to the attributes necessary to apply the regression models; (2) numerical or experimental 519 

seismic coefficient provided by the paper; and (3) the estimated load factor associated to LS3 obtained using 520 

two different regression models. 521 

It should be highlighted that the regression models also allow to distinguish the seismic behavior of the building 522 

in the four principal directions (+/-X and +/-Y), which is not possible using other simplified formulations. Since 523 

the value of most parameters depends on the evaluated direction, assessing each resisting direction leads to 524 

different values of the maximum capacity. This is in agreement with the reviewed study, which revealed that the 525 

capacity of the building is very different in each principal direction (X and Y). This feature is well-captured by 526 

the SAVVAS regression models which shows a good correlation between the numerical seismic coefficient 527 

from the paper and the predicted load factor obtained from the method. The reviewed paper also included a 528 

parametric analysis that consists of varying the material properties of the masonry walls. The results of this 529 

parametric study were also correlated with the results obtained from the regression models modifying parameter 530 

P3, assuming varying material quality of the masonry walls. The change in the material properties is indicated in 531 

Table 5 with (+) when they were increased and with (-) when they were reduced. A very good correlation 532 

between the results from the paper and the predicted load factor can be highlighted. The method is thus able to 533 

simulate accurately the variations in the parametric analysis simply by increasing or decreasing one 534 

vulnerability class in P3. Both models (MR and ANN) provide a good accuracy with a maximum difference of 535 

0.08g. 536 

Another example consists of the validation of the regression models with the results of another experimental test 537 

conducted at the EUCENTRE research center in Pavia, Italy [Magenes et al. 2014]. The test campaign consisted 538 

on shaking table tests on two full-scale two-story unreinforced masonry buildings with timber floors. The first 539 

prototype was an unstrengthened reference prototype (URM) without seismic resistant detailing, while the 540 

second specimen introduced some reinforcement measures (RM). In this case, only the results of the 541 

experimental campaign are available, so the results of the method were compared with the maximum resisted 542 

base shear coefficient. 543 

Even though detailed information about the construction of the two specimens is given in the paper, some of the 544 

qualitative parameters have to be assumed by the photos or by the descriptive qualitative information provided. 545 
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For example, for the URM building, the type of horizontal diaphragm is considered as class D. According to the 546 

plans shown in the paper, the beams are only connected to the walls by a partial embedment within the wall but 547 

there is no strengthened connection between the floor sheathing and the walls. This class was upgraded to class 548 

B for the RM buildings, since the strengthening interventions were destined to improve the wall-to-floor and 549 

wall-to-roof connections and to moderately improve the in-plane stiffness of the floor, aimed at preventing the 550 

occurrence of premature out-of-plane failure mechanisms. The undressed double-leaf stone masonry of the walls 551 

is considered as class B because of the assumed good workmanship at the laboratory. Also, the authors report 552 

that some damage took place on the RM building during the transportation phase, with observed cracks below 1 553 

mm. Thus, a class B on the previous structural damage (P9) was adopted. 554 

The regression models predict very accurately the maximum capacity of the building and capture very well the 555 

improvement in the seismic behavior when applying the strengthening intervention in the floors. Table 6 shows 556 

that the errors in the prediction of the multiple linear regression models are below 0.03g. Even though the 557 

uniaxial shaking table only imposed the base motion in +/- X direction, the performance of the building was 558 

evaluated in all directions, including +/-Y, because the regression models can estimate the weakest direction of 559 

the building. Thus, it is interesting to see how the method predicts that the unreinforced building, which is prone 560 

to out-of-plane collapse, is more vulnerable in Y direction while, after the intervention in the diaphragms, the 561 

building is more likely to fail in X direction. The method is thus able to show that reinforcing the diaphragms 562 

will have an effect in the failure mode of the building, leading to the development of in-plane resisting 563 

mechanisms. This change in the failure mode was also reported in the reviewed paper. 564 

A third example consisted of the application of the regression models to a study conducted at EUCENTRE 565 

research center in Pavia, Italy, consisting of a unidirectional shaking table test of a full-scale unreinforced clay 566 

brick masonry building [Kallioras et al. 2018]. The study provides the results of the experimental campaign in 567 

terms of maximum accelerations measured in g, which were compared with the results obtained after the 568 

application of the regression models. The paper provided information about the base-shear coefficients (BSC) 569 

that led the building to reach different damage states, including: (a) the BSC corresponding to the onset of the 570 

first significant cracks, which can be correlated with the load factor related to the reaching of LS1; and (b) the 571 

maximum attained overall BSC for the building, which can be correlated with the load factor related to the 572 
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reaching of LS3. Thus, the two regression models aimed at the estimation of the load factors associated with 573 

LS1 and LS3 could be used and the results compared with the ones observed experimentally, see Table 7. 574 

Results for all limit states show a good agreement between the predicted values with the multiple regression 575 

models and the experimentally obtained values, with minimum errors, validating the results obtained with the 576 

two regression expressions. Errors are slightly higher for the ANN models. 577 

The remaining three case studies consists of: (1) an experimental campaign carried out on a two-story 578 

unreinforced stone masonry building that was tested on a shaking table test at the CNR-ENEA research center 579 

of Casaccia, in Rome, Italy [Betti et al. 2014]. The results of the experimental analysis were replicated with 580 

finite element modelling and pushover analysis. These numerical results were compared with the results 581 

obtained after the application of the regression equations from the SAVVAS method; (2) an experimental 582 

campaign carried out at the LEE/NTUA research center in Athens, Greece [Mouzakis et al. 2012], where two 583 

reduced scaled (1:2) two-story stone masonry buildings were tested on a bi-directional shaking table: one 584 

unstrengthened reference prototype (URM) and a second specimen with some reinforcement measures (RM). 585 

This study also just provides the results of the experimental campaign and thus the results obtained after the 586 

application of the regression models were compared with the values of maximum accelerations measured in g 587 

given by the paper; and (3) an experimental campaign of two-story unreinforced stone and brick masonry 588 

buildings tested on a shaking table by ISMES, in Bergamo, Italy and LEE/NTUA, in Athens, Greece [Benedetti 589 

et al. 1998]. The results obtained from the test on a stone masonry specimen (STM) and a brick specimen (BM) 590 

are provided in terms of maximum lateral force coefficients so they can be compared with the results provided 591 

after the application of the SAVVAS regression models. 592 

As a summary, Table 8 provides the most relevant results obtained for the validation of the regression models. 593 

All the results correspond to the load factor associated with LS3 because it could be calculated in the six cases. 594 

The prediction capability of the models was considered validated, given the low errors obtained, particularly for 595 

the multiple regression models. The regression models are also able to detect the most vulnerable direction of 596 

the buildings and simulate well the effect of the reinforcing techniques. 597 
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6. SAVVAS formulation 598 

The prediction capability of the regression models was considered validated with the examples available in the 599 

literature, given the low errors obtained, particularly for the multiple regression models. This confirmed also the 600 

potential of the method and, consequently, a final formulation for the SAVVAS method is proposed using the 601 

expressions for the three limit states shown in Equations (2), (3) and (4). Table 9 summarizes the process and 602 

provides the final formulation of the SAVVAS method. As observed during the validation process, the 603 

application of the method simply consists of three steps: (1) collection of the data related to the ten key seismic 604 

vulnerability assessment parameters, defined either by specifying different quantitative attributes or by 605 

assigning a seismic vulnerability class from 1 to 4; (2) application of the regression models expressions to 606 

determine the three different values of load factor defining each limit state (LS1, LS2 and LS3). With the 607 

obtainment of these values, it is possible to have an estimation of the seismic actions that can cause the building 608 

to reach the different structural limit states for each direction, expressed as an acceleration (in terms of g); and 609 

(3) estimation of the minimum load that will cause the building to reach the different limit states. Since this 610 

method allows calculating a different load factor in each main direction of the building, the load factor 611 

representing the global vulnerability of the building is defined as the minimum value obtained among the four 612 

resisting directions. Moreover, since the load factors related with the different structural damage limit states are 613 

expressed as accelerations, they can be used in a straightforward way to eventually correlate the seismic action 614 

in terms of peak ground acceleration (PGA) with the expected damage. Alternatively, as previously stated, when 615 

a more refined assessment is required, the site response spectra and the building fundamental period can be used 616 

to take into account specific accelerations adapted to each building and site.  617 

7. Final considerations 618 

The main objective of the present paper has been the presentation and validation of the numerical tool that 619 

constitute the core of a new method for the seismic vulnerability assessment of vernacular architecture, referred 620 

as Seismic Assessment of the Vulnerability of Vernacular Architecture Structures (SAVVAS). The method is 621 

intended to be an expedited simplified approach that provides the possibility of performing a primary seismic 622 

safety assessment of a vernacular building or group of buildings based on simple surveys that can be carried out 623 
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even solely by means of visual inspection. These methods are particularly appropriate when addressing large 624 

number of buildings or when the necessary amount of resources required in order to perform more sophisticated 625 

analyses cannot be assigned to the assessment of the targeted buildings, which is generally the case when 626 

dealing with the study of vernacular constructions. 627 

The SAVVAS method is considered innovative method because it provides a new formulation that allows 628 

defining the seismic capacity of the building through seismic load factors associated with different damage limit 629 

states using simple parameters and classes typically used in classical simplified seismic vulnerability index 630 

methods. Since these load factors expressed as accelerations (in terms of g) are related with structural damage 631 

limit states, the SAVVAS method is intended to directly correlate accelerations induced by the seismic event 632 

with the expected damage. For that matter, we can use as seismic input the peak ground acceleration (PGA) for 633 

a simplified assessment or we can use the site response spectra and the building natural frequency for a more 634 

detailed assessment that uses specific accelerations adapted to each building and site. This is one main 635 

advantage of the SAVVAS method over more classical seismic vulnerability index approaches. Vulnerability 636 

index formulations calculate a vulnerability index (Iv), which is just an intermediate step to estimate the damage 637 

suffered by a building under an earthquake of a specific intensity, because empirically developed expressions 638 

have to be later implemented to correlate Iv with damage. The vulnerability functions resulting from the 639 

SAVVAS method are able to directly relate the seismic accelerations with structural limit states and, 640 

subsequently, with expected damage. This correlation is necessary in order to perform damage and loss 641 

assessments. 642 

Even though the parameters selection was done through a combination of empirical observation and expert 643 

judgment, this method is considered analytical in its development because it relies on a solid numerical 644 

parametric study. The influence of the different parameters was validated through detailed finite element 645 

modeling and pushover analysis. Results helped to obtain a comprehensive understanding of the seismic 646 

behavior of vernacular architecture and to provide a quantitative definition of seismic vulnerability classes. The 647 

use of an analytical procedure for the definition of the seismic vulnerability assessment classes helps to 648 

strengthen the reliability of the existing simplified methods that typically rely solely on empirical knowledge 649 

obtained from post-earthquake damage observation. 650 
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In a second step, data mining (DM) techniques were applied on the database resulting from the numerical 651 

campaign. The primary goal was to obtain regression models able to predict the load factors corresponding to 652 

different structural limit states using as predictors variables associated to the seismic vulnerability assessment 653 

parameters previously defined. Several multiple regression and ANN models were developed and proved to be 654 

reliable in their predictive capabilities. The development of the models also allowed a better understanding of 655 

the role of the seismic vulnerability parameters on defining the seismic response of vernacular buildings and 656 

helped to discover complex relationships among them. The regression models were validated with their 657 

application on numerical and experimental examples found in the literature, revealing a very good correlation 658 

between the predicted and observed seismic load factor. During this validation process, they were also 659 

confirmed to be useful in assessing the effect of some reinforcement techniques on the final seismic capacity of 660 

the building. Moreover, they also provide information about the capacity of the building in each main direction, 661 

which is another advantage of this method because it allows identifying the weakest direction and possible 662 

failure mechanisms. Thus, it can be of great help in identifying deficiencies of the structure before making 663 

decisions on strengthening interventions. 664 

The robustness of the regression models is conditioned by the limitations and assumptions existing in nonlinear 665 

static analysis of masonry and earthen vernacular buildings. The results obtained when applying the regression 666 

expressions would simulate the results obtained as if we were performing a pushover analysis on a structure 667 

with such characteristics. The method is also conditioned by the size of the database which, even though is 668 

considered exhaustive, cannot comprehend the vast amount of possibilities observed in vernacular buildings. It 669 

should be here noted that, in any case, the database used can always be further enlarged with more results in 670 

order to make it more comprehensive. The SAVVAS formulation and procedure have been defined but the 671 

database remains open for future extension. Nonetheless, the results obtained with the current form are deemed 672 

satisfactory, since the models are able to provide a reliable first estimate of the seismic capacity of a building 673 

based solely on limited information related to the ten key seismic vulnerability parameters. 674 

  675 
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 818 

Figure 1. Seismic vulnerability assessment parameters considered for the SAVVAS method 819 
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 821 

Figure 2. Seven steps followed for the definition of the seismic vulnerability classes using parameter P2 822 

(maximum wall span) as an example 823 

  824 



Preprint version, Reference: Ortega, J., Vasconcelos, G., Rodrigues, H., Correia, M., Miranda, T. Development 
of a numerical tool for the seismic vulnerability assessment of vernacular architecture. Journal of Earthquake 
Engineering (2019). https://doi.org/10.1080/13632469.2019.1657987   

35 
 

 825 

Figure 3. Examples of vernacular buildings targeted by the SAVVAS method in Portugal: (a) stone masonry 826 

buildings in Vila Real de Santo António historic city center; (b) adobe masonry rural construction in Alentejo 827 

[Correia 2002]; (c) rammed earth urban building in Serpa [Correia 2002]; (d) stone masonry buildings in Lagos 828 

historic city center; and (e) rammed earth rural construction in Alcácer do Sal [Correia 2007] 829 
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 831 

Figure 4. Definition of the four limit states according to the pushover curve 832 
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 834 

Figure 5. Methodology adopted to obtain the regression models of the SAVVAS method 835 
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 837 

Figure 6. Comparison of predicted versus observed values for the six regression models constructed 838 
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 840 

Figure 7. (a) Predicted versus observed values for the MR_LS3 model; and (b) residual versus fitted values 841 
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 843 

Figure 8. Predicted versus observed values for: (a) MR_LS1 model; and (b) MR_LS2 model 844 
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 846 

Figure 9. Predicted versus observed values for: (a) ANN_LS1 model; and (b) ANN_LS3 model 847 
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Table 1. List of variables and general statistical measures 849 

Variables Description Minimum Maximum Mean Median Mode STD 

Input 

P1 
λ Ratio between the effective wall inter-

story height (h) and its thickness 4 22.5 7.34 6 5.6 3.43 

λ-1/2 Power transformation of the variable 0.21 0.50 0.39 0.41 0.42 0.06 

P2 
s Maximum wall span without intermediate 

supports, measured in meters (m) 2.5 12 5.90 5.25 7 1.87 

ln(s) Log transformation of the variable 0.92 2.48 1.73 1.66 1.95 0.30 

P3 
P3 Seismic vulnerability class of the building 

according to P3 1 4 3.36 4 4 1.04 

ln(P3) Log transformation of the variable 0 1.39 1.14 1.39 1.39 0.44 

P4 P4 Seismic vulnerability class of the building 
according to P4 1 4 1.44 1 1 0.94 

P5 
P5 Seismic vulnerability class of the building 

according to P5 1 4 2.71 3 4 1.38 

ln(P5) Log transformation of the variable 0 1.39 0.82 1.10 1.39 0.64 

P6 P6 Seismic vulnerability class of the building 
according to P6 1 4 1.24 1 1 0.70 

P7 
P7a 

Ratio between the maximum area of wall 
openings in a wall perpendicular to the 
loading direction and the total area of the 
considered wall 

0 0.7 0.09 0.06 0 0.16 

P7b 
Ratio between the area of wall openings 
in all in-plane resisting walls and the total 
area of all in-plane resisting walls 

0 0.69 0.12 0 0 0.18 

P8 
N Number of floors 1 4 1.87 2 1 0.89 
ln(N) Log transformation of the variable 0 1.39 0.51 0.69 0 0.47 

P9 
P9 Seismic vulnerability class of the building 

according to P9 1 4 1.29 1 1 0.77 

ln(P9) Log transformation of the variable 0 1.39 0.15 0 0 0.39 

P10 γi 

Ratio between the in-plan area of 
earthquake resistant walls in the loading 
direction and the total in-plan area of 
earthquake resistant walls 

0.26 0.79 0.53 0.50 0.50 0.11 

Output 

LS1 (g) 
LS1(g) Load factor associated to LS1 0 1 0.24 0.23 0 0.18 
ln(LS1+c) Log transformation of the variable -4.61 0.01 -1.86 -1.43 -4.61 1.28 

LS2 (g) 
LS2(g) Load factor associated to LS2 0.02 1.01 0.36 0.35 0.38 0.19 
ln(LS2) Log transformation of the variable -3.91 0.01 -1.17 -1.05 -0.97 0.62 

LS3 (g) 
LS3(g) Load factor associated to LS3 0.03 1.24 0.42 0.41 0.41 0.21 
ln(LS3) Log transformation of the variable -3.51 0.22 -1.02 -0.89 -0.89 0.59 
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Table 2. Different regression models constructed with measurements of their performance 852 

 Variables      
Model Output Input Interactions R2 εmax MAE RMSE 
MR0 LS3 P1; P2; P3; P4; P5; P6; P7; P8; P9; P10 - 0.772 0.405g 0.075g 0.095g 
MR1 ln(LS3) λ; s; P3; P4; P5; P6; P7a; P7b; N; P9; γi - 0.842 0.296g 0.064g 0.084g 

MR_I1 ln(LS3) λ; s; P3; P4; P5; P6; P7a; P7b; N; P9; γi P5:P7b 0.872 0.318g 0.057g 0.078g 

MR_I2 ln(LS3) λ-1/2; ln(s); ln(P3); P4; P5; P6; P7a; P7b; ln(N); ln(P9); γi P5:P7b 
P7b:ln(N) 0.875 0.320g 0.056g 0.076g 

MR_I3 ln(LS3) λ-1/2; ln(s); ln(P3); P4; P5; ln(P5); P6; P7a; P7b; ln(N); 
ln(P9); γi 

P5:P7b 
P7b:ln(N) 
ln(N):P10 
P5:P10 

P7b:P10 

0.891 0.345g 0.051g 0.069g 

MR_14 ln(LS3) λ-1/2; ln(P3); P4; P5; P7b; ln(N); ln(P9); γi P5:P7b 0.865 0.338g 0.057g 0.077g 
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Table 3. Characteristics of the regression models constructed for the definition of LS1 and LS2 855 

 Variables      
Model Output Input Interactions R2 εmax MAE RMSE 

MR_LS1 ln(LS1+c) λ; s; ln(P3); P4; P5; ln(P6); P7b; ln(N); ln(P9) P5:P7b 0.811 0.319g 0.057g 0.079g 
MR_LS2 ln(LS2) LS1; LS3 - 0.977 0.143g 0.022g 0.028g 
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Table 4. Characteristics of the ANN regression models constructed for the definition of LS1 and LS3 858 

 Variables      
Model Output Input Interactions R2 εmax MAE RMSE 

ANN_LS1 ln(LS1+c) λ; s; ln(P3); P4; P5; ln(P6); P7b; ln(N); ln(P9) - 0.868 0.321g 0.044g 0.066g 

ANN_LS3 ln(LS3) λ; s; P3; P4; P5; P6; P7a; P7b; N; P9; γi - 0.912 0.286g 0.048g 0.062g 
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Table 5. Application of regression models to [Mendes and Lourenço 2015] and comparison of the results 861 

  LS3(g) 

Model P1 P2 P3 P4 P5 P6 P7a P7b P8 P9 P10 Literature MR_LS3 ANN_LS3 

Y 7.06 12.45 3 2 1 1 0 0.33 4 1 0.46 0.10 0.12 0.14 

X 7.06 9.45 3 2 1 1 0.33 0 4 1 0.59 0.46 0.38 0.42 

Y (+) 7.06 12.45 2 2 1 1 0 0.33 4 1 0.46 0.15 0.16 0.17 

X (+) 7.06 9.45 2 2 1 1 0.33 0 4 1 0.59 0.51 0.48 0.56 

Y (-) 7.06 12.45 4 2 1 1 0 0.33 4 1 0.46 0.07 0.10 0.12 

X (-) 7.06 9.45 4 2 1 1 0.33 0 4 1 0.59 0.29 0.30 0.31 
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Table 6. Application of regression models to [Magenes et al. 2014] and comparison of the results 864 

  LS3(g) 

Model P1 P2 P3 P4 P5 P6 P7a P7b P8 P9 P10 Literature MR_LS3 ANN_LS3 

+Y (URM) 8.35 5.2 2 2 4 2 0.1 0.07 2 1 0.46 - 0.38 0.32 

-Y (URM) 8.35 5.2 2 2 4 2 0.32 0.07 2 1 0.46 - 0.40 0.35 

+X (URM) 8.35 3.75 2 2 4 1 0 0.22 2 1 0.61 0.43 0.41 0.36 

-X (URM) 8.35 3.75 2 2 4 1 0.14 0.22 2 1 0.61 0.43 0.43 0.38 

+Y (RM) 8.35 5.2 2 2 2 1 0.1 0.07 2 2 0.46 - 0.58 0.60 

-Y (RM) 8.35 5.2 2 2 2 1 0.32 0.07 2 2 0.46 - 0.62 0.66 

+X (RM) 8.35 3.75 2 2 2 1 0 0.22 2 2 0.61 0.54 0.51 0.58 

-X (RM) 8.35 3.75 2 2 2 1 0.14 0.22 2 2 0.61 0.54 0.53 0.62 
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Table 7. Application of regression models to [Kallioras et al. 2018] and comparison of the results 867 

  LS3(g) LS1(g) 

Model P1 P2 P3 P4 P5 P6 P7a P7b P8 P9 P10 Lit. MR_LS3 ANN_LS3 Lit. MR_LS1 ANN_LS1 

+Y 13 4.04 1 2 3 1 0.20 0.18 2 1 0.54 0.54 0.54 0.41 0.39 0.35 0.34 

-Y 13 4.91 1 2 3 1 0.18 0.18 2 1 0.54 0.54 0.52 0.39 0.39 0.32 0.31 
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Table 8. Summary of the results obtained for the application of the regression models to all the cases studied 870 

 LS3(g) 
 [Mendes and Lourenço 

2015] 
[Magenes et al. 

2014] 
[Kallioras 
et al. 2018] 

[Betti et al. 
2014] 

[Mouzakis et al. 
2012] 

[Benedetti et 
al. 1998] 

 
Y X URM RM Y +X -X +Y -Y URM RM STM BM 

Literature 0.10 0.46 0.43 0.54 0.54 0.27 0.29 0.29 0.29 0.48 0.88 0.19 0.3 
MR_LS3 0.12 0.38 0.43 0.53 0.54 0.23 0.23 0.27 0.28 0.52 1.01 0.20 0.29 
ANN_LS3 0.14 0.42 0.38 0.62 0.41 0.26 0.25 0.30 0.31 0.42 0.83 0.20 0.29 
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Table 9. SAVVAS formulation and procedure 873 

Step 1 Definition of the seismic vulnerability assessment parameters 
 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 
 λ (h/t) s (m) P3 [1-4] P4 [1-4] P5 [1-4] P6 [1-4] P7a P7b N P9 [1-4] γi 

Step 2 Calculation of the load factors associated to the limit states in each main direction i 

 ( ) = ( . . . . ( ) . . . ( ) . . ( ) . ( ) . ) −  

 ( ) = . × ( ) + . × ( ) 

 ( ) = ( . . . . . . . . . . . . . ) 
Step 3 Calculation of the global load factors defining the limit states of the building 

 ( ) =  ( ( )) 

 ( ) = ( )  

 ( ) =  ( ( )) 
 874 


