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Abstract. We use computational argumentation to both analyse and
generate solutions for reasoning in multimorbidity about consistent rec-
ommendations, according to different patient-centric goals. Reasoning
in this setting carries a complexity related to the multiple variables
involved. These variables reflect the co-existing health conditions that
should be considered when defining a proper therapy. However, current
Clinical Decision Support Systems (CDSSs) are not equipped to deal
with such a situation. They do not go beyond the straightforward ap-
plication of the rules that build their knowledge base and simple inter-
pretation of Computer-Interpretable Guidelines (CIGs). We provide a
computational argumentation system equipped with goal-seeking mech-
anisms to combine independently generated recommendations, with the
ability to resolve conflicts and generate explanations for its results. We
also discuss its advantages over and relation to Multiple-criteria Decision-
making (MCDM) in this particular setting.

1 Introduction

Multimorbidity is the presence of two or more chronic medical conditions in an
individual. It is a complex situation, particularly when the number of existing
conditions is high and there are treatment conflicts [25]. These conflicts are typ-
ically: drug-drug interactions, when treatments have a negative combined effect
on the patient; and drug-disease interactions, when a treatment for a condition
negatively affects the evolution of another condition. Clinical Decision Support
Systems (CDSSs) based on Computer-Intepretable Guidelines (CIGs) are not
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capable of combining different CIG executions to address multiple health condi-
tions, as CIGs are designed to handle a single disease [20,10]. Furthermore, com-
putational approaches that aim to tackle this problem [26,27] are limited in the
dimensions of multimorbidity they consider, namely when it comes to: patient
preferences, patient-specific prioritized goals, and decidable mechanisms for con-
flict resolution. These dimensions are considered to be fundamental in reasoning
for patient management and, in what preferences and goals are concerned, should
result from a discussion between patient and health care professional [15,24]. In
recent years, several works call for the use of Multiple Criteria Decision-making
(MCDM) methods to address conflicts in medical decision-making, produce de-
cisions based on priorities over various criteria, and handle complexity in this
setting [3,12]. However, a general MCDM method lacks the ability to explain
and justify decisions and lay out their respective implications. These elements
become opaque when scores are computed and presented.

We explore structured argumentation to formalize conflict resolution in mul-
timorbidity and compute aggregated consistent sets of CIG recommendations
that take into account the above-mentioned dimensions. The appeal of argu-
mentation in comparison to other computational approaches is in reasoning with
conflicting and incomplete information in a way that aims to emulate human rea-
soning, while allowing important conflicts to be highlighted and analyzed [2]. We
augment the ASPIC+ [13] argumentation system for it provides sub-argument
structure, important for explanations, and has been extensively studied and jus-
tified in regards to semantics for preferences over defeasible rules and mechanisms
to perform defeasible reasoning. It also allows for contraposition, a useful feature
when analyzing conflicts. We propose the ASPIC+G argumentation system for
multimorbidity as a goal-driven argumentation system to select best solutions
and map basic elements in multimorbidity reasoning to it. Following from this,
we also provide a reasoning framework that takes into account drug-drug and
drug-disease conflicts, patient preferences, and prioritized patient-specific goals.
We demonstrate that the selected best solution can be used to derive in-depth
explanations and provide mechanisms to produce justifications for conclusions.
Finally, we show that the proposed argumentation system subsumes MCDM,
with the added benefit of providing explanations for multimorbidity decisions.

2 Case Example

The case example to demonstrate the computational argumentation framework
was adapted from a clinical case in [22], simplified for the sake of brevity and
understanding. There are slight differences such as the addition of chronic kidney
disease to showcase reasoning features.

Example 1. Patient A has a history of type 2 diabetes. Upon consultation and
the completion of medical exams, it was possible to conclude that the patient,
besides type 2 diabetes, has obesity, hypertension, and chronic kidney disease.
The case is run in a CDSS with CIG agents that handle each health condition
separately, yielding recommendations:
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– CIG Agent 1 (for obesity): Define weight decrease (wd) as a therapy goal.
To reduce weight, the patient should practice diet and exercise (de) [18].

– CIG Agent 2 (for diabetes): Define blood glucose decrease (gd) as a ther-
apy goal. Sulfonylurea (sulf) or meglitinide (meg) can reduce blood glucose
elevations, but they cause weight increase (wi). Metformin (met) can lower
blood glucose, but its use in the presence of chronic kidney disease (ckd)
should be avoided as it may accelerate chronic kidney disease (ackd). The
patient should only take one of the drugs [19].

– CIG Agent 3 (for kidney disease): Define delay chronic kidney disease
(dckd) as a therapy goal. The patient is advised to take angiotensin convert-
ing enzyme inhibitors (acei) as they delay the progression of chronic kidney
disease to kidney failure [16].

– CIG Agent 4 (for hypertension): Define blood pressure decrease (bpd) as a
therapy goal. Administer an angiotensin converting enzyme inhibitor (acei) or
a calcium channel blocker (ccb) to decrease blood pressure. However, a calcium
channel blocker compromises the effectiveness of glucose control drugs such
as meglitinide or metformin [17].

Following the four CIG agents separately would produce drug-disease inter-
actions. When considering CIG Agent 1 and CIG Agent 2, there is a conflict
with the use of sulfonylurea and meglitinide from CIG Agent 2, as these drugs
cause weight increase and this effect is contrary to the therapy goal outlined for
obesity in CIG Agent 1, weight decrease. When adding the recommendations of
CIG Agent 3 to the first two, other conflicts appear. The use of metformin for the
treatment of diabetes is compromised by the recommendation to avoid the use
of metformin in the presence of chronic kidney disease. Additionally, from CIG
Agent 4, the recommendation to take a calcium channel blocker compromises
the effectiveness of metformin and meglitinide. This is a drug-drug interaction.
The mutually exclusive use of drugs for diabetes also constitutes drug-drug in-
teractions.

In practice, the case is handled by establishing a priority over patient-specific
goals and eliciting patient preferences [15]. Reproducing the source of the exam-
ple [22], the health care professional acknowledges obesity is the most severe
issue for the patient, thus weight decrease is the most preferred goal, followed
by blood glucose decrease as the second goal, with blood pressure decrease at
the same level. Delaying kidney disease is the least preferred goal. Additionally,
the patient shows a clear preference for sulfonylurea or meglitinide, as the use
of metformin has caused him severe adverse reactions in the past.

The knowledge enclosed in CIGs typically follows a task network model where
each element is a task to carry out. A task recommending a treatment is nor-
mally called an Action and contains certain structured information about the
treatments to be applied, respective outcomes and pre-conditions for application
reflecting interactions [20]. This is the task we focus on and the basis for CIG
Agent recommendations. Further ahead we use Example 1 to instantiate AS-
PIC+G. The process of preference elicitation and goal prioritization, including
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the functions that bring them about (e.g. severity of disease), are outside the
scope of this work, so they will only be referred to as examples.

3 The ASPIC+G Argumentation System

The intuition behind ASPIC+G is that argumentation is often driven by goals
which reflect the multiple objectives that may be achieved in a discussion. This
fits reasoning in a multimorbidity setting particularly well due to the goal-
oriented nature of the process.

3.1 Definition and Argument Construction

We define an ASPIC+G argumentation theory as follows.

Definition 1. An argumentation theory in ASPIC+G is a tuple 〈L,R,n,6Rd
,G,6G〉,

where:
– L is a logical language closed under negation (¬).
– R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) rules of the form
φ1, . . . , φn → φ and φ1, . . . , φn ⇒ φ respectively, where n ≥ 0 and φi, φ ∈ L;

– n is a partial function s.t. 6 n : R → L;
– 6Rd

is a partial pre-order over defeasible rules Rd, denoting a preference
relation, with a strict counterpart <Rd

given by X <Rd
Y iff X 6Rd

Y and
Y 
Rd

X;
– G ⊆ L is a set of goals that the arguments will try to fulfil s.t. ∀ θ ∈ G, there

exists a rule φ1, . . . , φn → φ in Rs or φ1, . . . , φn ⇒ φ in Rd s.t. φ = θ;
– 6G is a total pre-order on G, denoting preferences over goals, with <G given

by φ <G ψ iff φ 6G ψ and ψ 
G φ, and 'G given by φ 'G ψ iff φ 6G ψ and
ψ 6G φ.

In ASPIC+G, knowledge is represented either as strict rules or defeasible
rules. Therefore, an undisputable fact is a strict rule with empty antecedents
and a disputable fact is represented as a defeasible rule with empty antecedents.
The relation 6G is a total pre-order which allows for equally preferred goals, as
it is often the case that distinctions between goals cannot be specified. In order
to understand the construction of arguments, we specify functions to convey ar-
gument features. Conc(A) denotes the conclusion of argument A. Sub(A) denotes
the set of sub-arguments of A. DefRules(A) denotes the set of all defeasible rules
used in A. Finally, TopRule(A) denotes the last inference rule used in the argu-
ment. We use the following definition for argument construction, adapted from
[13].

Definition 2. An argument A of an argumentation theory 〈L,R,n,6Rd
,G,6G〉

has one of the following forms:

6 s.t.: such that
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– A1, . . . , An → ψ if A1, . . . , An are arguments s.t. there exists a strict rule
Conc(A1), . . . ,Conc(An) → ψ in Rs, with Conc(A) = ψ, Sub(A) = Sub(A1) ∪
. . . ∪ Sub(An) ∪ {A}, DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An), and
TopRule(A) = Conc(A1), . . . ,Conc(An)→ ψ;

– A1, . . . , An ⇒ ψ if A1, . . . , An are arguments s.t. there exists a defeasible rule
Conc(A1), . . . ,Conc(An) ⇒ ψ in Rd, with Conc(A) = ψ, Sub(A) = Sub(A1) ∪
. . . ∪ Sub(An) ∪ {A}, DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An)
∪{Conc(A1), . . . ,Conc(An)⇒ ψ}, and TopRule(A) = Conc(A1), . . . ,Conc(An)⇒
ψ.

3.2 Attack, Defeat, and Goal Fulfilment

Attacks follow two of the three possible ways in ASPIC+ [13]. Arguments may be
attacked on a conclusion of a defeasible inference (rebutting) or on a defeasible
inference step itself (undercutting). Undermining attacks are represented as a
special case of rebuttal. It is considered that an argument cannot be attacked
on the conclusion of a strict inference. To define an undercutting attack, n is
used to assign elements of Rd a well-formed formula in L. n(r) : r ∈ Rd denotes
that r is applicable and ¬n(r) denotes that r is not applicable. An argument
using r is undercut by any argument concluding ¬n(r). The following definition
of attack was adapted from [13].

Definition 3. An argument A attacks an argument B iff A undercuts or rebuts
B, where: A undercuts B (on B′) iff Conc(A) = ¬n(r) for some B′ ∈ Sub(B) s.t.
the top rule r of B′ is defeasible; A rebuts B (on B′) iff Conc(A) = ¬φ for some
B′ ∈ Sub(B) of the form B′′1 , . . . , B

′′
n ⇒ φ.

The introduction of goals in argumentation demands the definition of a ful-
filment relation.

Definition 4. An argument A fulfils goal θ ∈ G iff
Conc(A) = θ. If A fulfils a goal, we denote it with Goal(A). For a set of ar-
guments S, we write Goal(S) for the set of goals fulfilled by the arguments in S,
i.e. Goal(S) = {Goal(A) | A ∈ S s.t. A fulfils a goal }.

We use a preference order over arguments � determined by a weakest-link
principle on 6Rd

, as described in [13]. To specify �, we resort to an ordering of
defeasible rule sets �Rd

, defined over an elitist criterion, i.e., the set with the
overall weakest rule is the weakest. Therefore, given two sets of defeasible rules
R and R′: if R = ∅ then R �/Rd

R′; if R = ∅ and R′ 6= ∅ then R′ �Rd
R; else,

assuming a pre-order 6Rd
over the elements in R ∪R′, if ∃X ∈ R s.t. ∀Y ∈ R′,

X 6Rd
Y , then R�Rd

R′.
Considering two arguments A and B, we say that A � B iff DefRules(A) �Rd

DefRules(B). We can define the strict counterpart ≺ directly under the weakest-
link principle, in terms of �Rd

.
Attack and argument preference bring about a defeat relation D. It is consid-

ered that: an argument A successfully rebuts an argument B if A rebuts B on B′
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and A ⊀ B′; an argument A defeats an argument B iff A undercuts or successfully
rebuts B.

We now define an ASPIC+G framework as follows.

Definition 5. An argumentation framework in ASPIC+G is a tuple (A,D,G,6G ,F),
where A is a set of arguments, D ⊆ A × A is a binary relation of defeat, G is
the set of goals, 6G is a preference order over goals, and F is a binary relation
of fulfilment s.t. F ⊆ A× G.

To select arguments, the framework uses the semantics presented in Dung’s
abstract argumentation framework [7], according to the following definition.

Definition 6. Let (A,D,G,6G ,F) be an ASPIC+G argumentation framework.
For any X ∈ A, X is acceptable with respect to some set S ⊆ A iff ∀Y ∈ A s. t.
(Y, X) ∈ D, ∃Z ∈ S s.t. (Z, Y) ∈ D. Let S ⊆ A be a conflict free set, i.e., there
are no A, B in S s.t. (A, B) ∈ D. Then: S is an admissible extension iff X ∈ S
implies X is acceptable with respect to S; and S is a preferred extension iff it is
a set inclusion maximal admissible extension.

It is of interest within the context of multimorbidity to produce the preferred,
and thus maximal sets of arguments, which are the most inclusive self-defended
sets, containing all the sub-arguments that lead to a conclusion and the argu-
ments that defend it.

3.3 Goal Set Ordering

The preferred extensions are viewed as consistent argumentation paths in the
discussion and the possible solutions to solve a problem. However, it is necessary
to compare the sets of goals that they fulfil in order to rank them. We now define
a goal set ordering �G over sets of goals.

Definition 7. Let S and S′ be two finite sets of goals. We define the goal set
ordering, denoted by the operator �G, as: S′ �G S iff S′ = ∅ or ∃g ∈ (S \ S′)
such that ∀g′ ∈ (S′ \ S), g′ 6G g.

A goal set ordering S′ �G S denotes that S is at least as preferred as S′,
possibly more. The underlying principle is that the argumentation will always
try to fulfil the goals by their order of importance. Due to the base relation 6G
being a total pre-order, �G is also a total pre-order. We also allow for different
goal extensions to be equally preferred by fulfilling goals of equal preference.

With the goal set ordering, it becomes possible to find the best goal-driven
solutions, i.e., the top preferred extensions.

Definition 8. Let F = (A,D,G,6G ,F) be an ASPIC+G argumentation frame-
work and S a preferred extension of F . We say that S is a top preferred extension
of F iff for every preferred extension S′ of F , Goal(S′) �G Goal(S).

ASPIC+G will be used to model Example 1 and demonstrate the outcomes of
reasoning in multimorbidity using patient preferences and patient-specific goals.
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4 Modelling Multimorbidity with ASPIC+G

We perform a mapping of basic components in CIG multimorbidity management
to ASPIC+G and demonstrate its reasoning features. We also demonstrate how
the given solutions can produce explanations.

4.1 Formalization and Reasoning

Let us consider A as a set containing all aggregated Action tasks recommended
by all CIG agents, such as the ones in Example 1. We denote an action Ax,a ∈ A,
where x is the index and a the CIG agent recommending the action. For instance,
A1,2 is the first action recommended by CIG Agent 2. An action Ax,a is a tuple
〈tx,a,Ox,a,Px,a〉, where:
– tx,a is a treatment;
– Ox,a = {(e1,C1, λ1), . . . , (en,Cn, λn) : n > 0} stands for outcomes and is a set

containing effects (ei,Ci, λi), i ∈ {1, . . . , n} brought about by treatment tx,a,
where: ei is a description of an effect; Ci = {c1, . . . , cm : m ≥ 0} is a set with
patient-specific conditions unifiable with the patient state cj , j ∈ {1, . . . ,m}
that enable the occurrence of effect ei over treatment tx,a; λi is the impact of
an effect ei, if ei is a positive effect, then λi = ⊕, otherwise, if it is a negative
effect, λi = 	.

– Px,a = {p1, . . . , pn : n ≥ 0} denotes pre-conditions and contains constraints
for the application of a treatment tx,a.
From Example 1, we have the following actions in A:

A1,1〈de, {(wd, ∅,⊕)}, ∅〉 ;
A1,2〈sulf, {(gd, ∅,⊕), (wi, ∅,	)}, {¬meg,¬met}〉;
A2,2〈meg, {(gd, ∅,⊕), (wi, ∅,	)}, {¬sulf,¬met}〉;
A3,2〈met, {(gd, ∅,⊕), (ackd, {ckd},	)}, {¬sulf,¬meg}〉;
A1,3〈acei, {(dckd, ∅,⊕)}, ∅〉;
A1,4〈acei, {(bpd, ∅,⊕), (¬(meg → gd), ∅,	)}, {¬ccb}〉;
A2,4〈ccb, {(bpd, ∅,⊕), (¬(meg → gd), ∅,	)}, {¬acei}〉.

While there are CIG languages, such as PROForma [6], that encode the
impact λ of an effect, this is not always the case. As such, we assume that this
evaluation of effects is provided by either the CIG language or a joint assessment
by health care professional and patient.

The next component of multimorbidity management is a set containing the
contraries of effects E = {C1, . . . , Cn : n ≥ 0} where each Ci, i ∈ {1, . . . , n},
is a tuple (ej , ek) s.t. ∃ Ax,a = 〈tx,a,Ox,a,Px,a〉,Ay,b = 〈ty,b,Oy,b,Py,b〉 ∈ A, s.t.
(ej ,Cj, λj) ∈ Ox,a and (ek,Ck, λk) ∈ Oy,b. Example 1 provides effect contraries:
E = {(wd,wi), (dckd, ackd)}. The automatic retrieval of contraries from a CIG
language may be performed by analysing the clinical effects with medical termi-
nologies and identifying the medical concept (e.g., weight) and term denoting
a transition (e.g, increase, decrease), with a posterior matching with its oppo-
site. Given the freedom associated with the expression of these effects, contrary
identification is not addressed herein.
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The last component for reasoning in multimorbidity is the state of the patient
S = {s1, . . . , sn : n ≥ 0}, where each element is a condition manifested by the
patient. In Example 1, we consider that S = {ckd}, as this is the only element
that interacts with the elements of other components.

With A, E and S becomes possible to express applicability of treatments,
treatment/effect relations, treatment conflicts, and effect conflicts in a logical
language for ASPIC+G. The purpose is to aggregate the knowledge elements
provided by CIG agents through argumentation and augment them with patient
preferences over treatments and treatment goals.

Definition 9. Let A, E and S, be the basic components for decision-making in
multimorbidity. An argumentation theory in ASPIC+G for multimorbidity is a
tuple 〈L,R,n,6Rd

,G,6G〉, where 7:

– R = Rd ∪Rs are respectively defeasible and strict rules in which:
• Rd = R1∪R2 whereR1 = {⇒ tx,a | ∃Ax,a = 〈tx,a,Ox,a,Px,a〉 ∈ A.} andR2 =
{tx,a, c1, . . . , cn ⇒ ez | ∃Ax,a = 〈tx,a,Ox,a,Px,a〉 ∈ A, (ez, {c1, . . . , cn},⊕) ∈
Ox,a, n ≥ 0};
• Rs = R3 ∪ R4 ∪ R5 ∪ R6 where R3 = {tx,a, c1, . . . , cn → ez | ∃ Ax,a =
〈tx,a,Ox,a,Px,a〉 ∈ A, (ez, {c1, . . . , cn},	) ∈ Ox,a, n ≥ 0}, R4 = {tx,a →
¬ty,b | ∃ Ax,a = 〈tx,a,Ox,a,Px,a〉,Ay,b = 〈ty,b,Oy,b,Py,b〉 ∈ A,¬ty,b ∈ Px,a},
R5 = {ej → ¬ek | (ej , ek) ∈ E or (ek, ej) ∈ E, and R6 = {→ s | s ∈ S};

– 6Rd
is a partial pre-order over defeasible rules R1, denoting a preference

relation over treatments;
– G = {e1, . . . , en | n ≥ 0,∃Ax,a = 〈tx,a,Ox,a,Px,a〉 ∈ A, (en, Cn,⊕) ∈ Ox,a} is a

set of goals in terms of the positive effects of treatments;
– 6G is a total pre-order over treatment goals in G.

Note that the treatments provided by CIG agents are handled as disputable
facts and, thus, represented as defeasible rules with empty antecedents in R1.
This stems from treatments being viewed as interventions that could be applied
to the patient, but may not, given the context. Therefore, this element is de-
feasible. As for the treatment/effect relations, they are handled in two possible
ways. In R2, this relation is depicted as a defeasible rule, when the effect of a
treatment is positive. We consider that treatments only create a presumption
in favour of their positive effect. However, when it comes to negative effects, we
adopt a more conservative approach in R3, for negative effects are considered as
something that compromises their corresponding positive effects, and, in a goal-
driven search of solutions it is important to maximize the possibility of achieving
the most preferred goals. For this reason, we represent a relationship between
treatments and negative effects as strict rules. This also allows, by contraposi-
tion, to obtain the negation of treatments that compromise positive effects. R4

represents drug-drug conflicts extracted from pre-conditions of actions, indicat-
ing that two treatments must not be combined. Similarly, R5 presents effects
that are contrary to each other. This allows for the derivation of drug-disease

7 We omit L and n, as they are implicit from the formalization.
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conflicts. Finally, R6 is used to describe patient state, consisting of undisputable
facts. Accordingly, we apply strict rules with no antecedents.

We now instantiate ASPIC+G for Example 1 by Definition 9. L consists of
all atoms defined for Example 1 and their negations. n, R, 6Rd

, G, and 6G are
as follows:

– Rd = {⇒ de, ⇒ sulf, ⇒ meg, ⇒ met, ⇒ acei, ⇒ ccb} ∪ {de ⇒
wd, sulf ⇒ gd, r1 : meg ⇒ gd, r2 : met ⇒ gd, acei, ckd ⇒ dckd, acei ⇒
bpd, ccb⇒ bpd};

– Rs = {sulf → wi, meg → wi, met, ckd → ackd, ccb → ¬r1, ccb → ¬r2} ∪
{sulf → ¬meg, sulf → ¬met, meg → ¬met, acei → ¬ccb} ∪ {wd →
¬wi, ackd→ ¬dckd} ∪ {→ ckd};

– R = Rd ∪Rs;
– 6Rd

: (⇒ met) <Rd
(⇒ sulf), (⇒ met) <Rd

(⇒ meg);
– G = {wd, gd, dckd, bpd};
– 6G : dckd <G gd 'G bpd <G wd.

In R, ASPIC+G allows for the representation of a situation in which a treat-
ment negates defeasible rules r1 and r2, meaning that there is a medical circum-
stance in which these rules do not apply. In turn, these rules, due to their nature,
are defeasible. The remaining defeasible rules reflect the possible treatments for
diabetes, kidney disease, obesity, and hypertension. We need not be exhaustive
in the listing of treatment conflicts in actions and treatment contraries, since
the negation of the antecedent is obtained by contraposition. The relation 6Rd

reflects the treatment preference of the patient for sulf or meg over met. The
goal set G contains the goals driving the treatment and their preference order
is specified in 6G . These goals are selected from positive effects in actions. wd
is the most preferred goal since obesity is the most significant concern of the
patient. bpd and gd are equally preferred. Lastly, dckd is the least preferred.

By Definition 2, we build the arguments A for the argumentation framework
along with representation of goals G:

A = {A1 :⇒ de, A2 : A1 ⇒ wd, A′2 : A2 → ¬wi, A′′2 : A′2 → ¬sulf, A′′′2 : A′2 →
¬meg, B1 :⇒ sulf, B2 : B1 ⇒ gd, B′2 : B1 → ¬met, B′′2 : B1 → ¬meg, B′′′2 : B1 →
wi, B′′′′2 : B′′′2 → ¬wd, C1 :⇒ meg, C2 : C1 → gd, C′2 : C1 → ¬met, C′′2 : C1 →
¬sulf, C′′′2 : C1 → wi, C′′′′2 : C′′′2 → ¬wd, D1 :⇒ met, D2 : D1 → gd, D′2 : D1 →
¬meg, D′′2 : D1 → ¬sulf, E1 :⇒ acei, E′1 :→ ckd, D′′′2 : D1, E

′
1 → ackd, D3 : D′′′2 →

¬dckd, E2 : E1, E
′
1 ⇒ dckd, E3 : E2 → ¬ackd, E4 : E′1, E3 → ¬met, E5 : E1 ⇒

bpd, E6 : E1 ⇒ ¬ccb, F1 :⇒ ccb, F2 : F1 ⇒ bpd, F′1 : F1 → ¬acei, F′′1 : F1 →
¬r1, F′′′1 : F1 → ¬r2};
G = {G1 : wd, G2 : gd, G3 : dckd, G4 : bpd}.

By Definition 3, we are able to derive the attack relations among arguments.
Additionally, by Definition 4, we establish the fulfilment relations between ar-
guments and goals. Attacks, fulfilments, and sub-argument relations are repre-
sented in the graph of Fig. 1. The explanatory power of a graph, describing an
ASPIC+G argumentation theory in the context of multimorbidity, lies in identi-
fying how and where treatment conflicts arise in the clinical process leading up
to a goal. The attacks in Fig. 1 are mostly rebuttals appearing from the drug-
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drug interactions caused by the group sulf , meg, and met and the group acei
and ccb and the contrary effects of treatments. From Fig. 1, it is also possible
to identify that the argument for met (D1) is also rebutted by an argument (E4)
resulting from the patient having chronic kidney disease and having to delay its
progression. This attack is caused by a drug-disease interaction. The only un-
dercutting attacks are made to argument C2 by argument F′′1 and to argument D2
by argument F′′′1 . The arguments attack the applicability of rules r1 (used in C2)
and r2 (used in D2) in the presence of ccb. This type of situation is useful for a
physician to know in what circumstances a piece of knowledge is not valid. Going
back to attacks brought about by the drug interactions, the attacks highlighted
in blue do not result in defeat for D′′2 ≺ B1 and D2′ ≺ C1. This happens due to
the preferences of the patient expressed in 6Rd

which, in turn, are responsible
for DefRules(D′′2)�Rd

DefRules(B1) and DefRules(D′2)�Rd
DefRules(C1), i.e, the

use of sulf or meg is preferred to met and arguments that use the latter cannot
defeat arguments that use one of the first two. The graph also determines which
arguments fulfil the treatment goals established for the patient. By Definitions
6 and 7, we calculate the preferred extensions and respective goal sets:
– S1 = {A1, A2, A′2, A′′′2 , E1, E′1, E2, E3, E4, E5, E6}, Goal(S1) = {G1, G3, G4};
– S2 = {A1, A2, A′2, A′′′2 , D1, D′2, D′′2 , D2′′′, D3, E

′
1, F1, F

′
1, F
′′
1 ,

F1′′′, F2}, Goal(S2) = {G1, G4};
– S3 = {A1, B1, B2, B′2, B′′′2 , B′′′′2 , E1, E

′
1, E2, E3, E4, E5, E6}, Goal(S3) = {G2, G3, G4};

– S4 = {A1, B1, B2, B′2, B′′′2 , B′′′′2 , E′1, F1, F
′
1, F
′′
1 , F1′′′, F2}, Goal(S4) = {G2, G4};

– S5 = {A1, C1, C2, C′2, C′′′2 , C′′′′2 , E1, E
′
1, E2, E2, E3, E4, E5,

E6}, Goal(S5) = {G2, G3, G4};
– S6 = {A1, C1, C′2, C′′′2 , C′′′′2 , E′1, F1, F

′
1, F
′′
1 , F
′′′
1 , F2}, Goal(S6) = {G4}.

There are six possible solutions for the argumentation theory in the form of
preferred extensions: S1 − S6. Considering the already established goal ordering
of 6G , by Definition 7, we calculate the goal set ordering �G. Since extension
S1 fulfils wd, bpd and dckd, by Definition 8 it is the top preferred extension.
This is the case due to the respective goal extension fulfilling the most preferred
combination of goals and being the largest doing so. This means that in Example
1, patient A should practice diet and exercise and take angiotensin converting
enzyme inhibitor to address obesity, hypertension and delay the progression of
kidney disease. In this way, the ASPIC+G argumentation system ensures that
the most important goals in the treatment process are achieved.

4.2 Explanation of Results

The explainable nature of argumentation, as analyzed in [8,28], also contributes
to making it a useful tool in the domain. We do not intend to exhaustively
show explanatory properties of ASPIC+G and leave this aspect for future work.
Nonetheless, we present a feature that puts it in advantage in the later compar-
ison with MCDM. We show how one can justify a given formula concluded by
a top preferred extension using the notions of defense and sub-argument. In the
upcoming formalization we will resort to a defends relation with the following
definition.
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Fig. 1. Argumentation graph for Example 1.
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Definition 10. Let F = (A,D,G,6G ,F) be an ASPIC+G argumentation frame-
work. An argument C ∈ A defends an argument A ∈ A iff: there exists an argu-
ment B ∈ A s.t. B attacks A and C attacks B; or there exists an argument B ∈ A
s.t. B defends A and C defends B.

As mentioned, we regard an explanation for a conclusion as a justification
and define it as follows.

Definition 11. Let F = (A,D,G,6G ,F) be an ASPIC+G argumentation frame-
work generated from some argumentation theory and S a top preferred extension
of F . The possible explanations of a conclusion φ, with Conc(A) = φ for some
A ∈ S, is the set Exp(φ, S) =

{
Sub(A) ∪ {b ∈ Sub(B) | B defends A} | A ∈ S s.t.

Conc(A) = φ
}

.

Thus, an explanation Exp(φ, S) contains all the support (in the form of sub-
arguments) and defense for a conclusion.

Example 2. Let F = (A,D,G,6G ,F) be the ASPIC+G argumentation frame-
work for Example 1 and S1 its top preferred extension. The only explanation
for top goal (G1 : wd) = Conc(A2) in Exp(wd, S1) is the set {A1, A2, A′2, A′′2 , A′′′2 }.
Transforming this set into one containing its conclusions yields {de, wd,¬wi,
¬sulf,¬meg}.

In the explanation of Example 2, A1 is a sub-argument of A2 an therefore
supports it. A′2 defends A2 by being a sub-argument of both A′′2 and A′′′2 , which,
in turn, defend A2 by attacking B1 and C1 respectively. From the conclusions, de
supports wd, and by concluding ¬wi, we are also concluding ¬sulf and ¬meg,
which are drugs that cause weight increase. Therefore, these arguments justify
the fulfilment of weight decrease. With Definition 11 it becomes possible to ex-
plain why goals are fulfilled and why treatments are in the solution for patient
management. Note that generating compound explanations for any combina-
tion of conclusions amounts to performing the union of their respective single
explanations.

Some interesting properties of explanations include the closure under the
sub-argument relation and direct consistency. The first ensures that for every
argument in an explanation, all of its sub-arguments are also included in the
explanation, and one can see that it is satisfied by the way the explanation
sets are constructed. This property, together with the transitive nature of the
notion of defense, ensures that every explanation also contains an explanation
for every single one of its sub-conclusions, and hence provides maximal depth
for the explanation. On the other hand, direct consistency guaranties that no
two arguments in an explanation have opposite conclusions, and follows from
the consistency of preferred extensions in ASPIC+ [13], since explanations are
subsets of preferred extensions. Note that this last remark also implies that
explanations are indirectly consistent, i.e. even after applying as many strict
rules as desired to form new arguments from the ones present in an explanation,
it is impossible to find two arguments with opposite conclusions. This ensures
the well-behavior of the explanatory feature.
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5 Relation with Multiple Criteria Decision

Our argumentation system can also be used to solve MCDM problems. There
are numerous variations of MCDM methods [23], but there is no clear method
proposed for health care, only a set of guidelines on how to conduct such an
analysis, mainly criteria elicitation [12], which are not within the scope of this
paper. Therefore, in this comparison we will focus on a general MCDM problem,
defined as in [14].

Definition 12. A multiple-criteria decision problem P = (D,C, agg) consists
of:
1. A sequence of decisions D = (d1, ..., dn);
2. A sequence of criteria C = (c1, ..., ck), where each ci ∈ C is a function ci :

D → R;
3. An aggregation function agg : R|D|×|C| → R|D|.
We denote with VP the two-dimensional vector of the criteria values for each
decision:

VP =

c1(d1) ... ck(d1)
...

. . .

c1(dn) ck(dn)


In MCDM, a decision which is at least as good as every other one according

to the aggregation function agg is called a preferred decision.

Definition 13. Given a multiple-criteria decision problem P = (D,C, agg), a
decision di ∈ D is preferred iff for all dj ∈ D agg(VP )j ≤ agg(VP )i.

We now provide a mapping to translate a problem into an argumentation
theory in ASPIC+G, with a similar construction to the one done in [14].

Definition 14. Let P = (D,C, agg) be a multiple-criteria decision problem. We
construct the argumentation theory P ′ = (A,D,G,6G ,F), such that:
1. L is the smallest set closed under negation which contains all elements of D

and R;
2. R = R1 ∪ R2 ∪ R3 ∪ R4, where: a) R1 = {⇒ di | di ∈ D}; b) R2 =
{di → ¬dj | di, dj ∈ D}; c) R3 = {di → vi,j | di ∈ D, vi,j ∈ VP }; d)
R4 = {vi,1, ..., vi,k → agg(VP )i | vi,j ∈ VP , k = |C|}.

3. n is the empty function;
4. ≤Rd

= ∅;
5. G = {agg(VP )i | di ∈ D};
6. agg(VP )i ≤G agg(VP )j iff agg(VP )i ≤ agg(VP )j.

In the resulting argumentation theory P ′, each decision di gives rise to a
series of arguments which eventually lead to the fulfilment of the respective goal
agg(VP )i. The preferred decisions are then retrieved in ASPIC+G in the form
of top preferred extensions thanks to the ordering on the goals.
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Theorem 1. Let P = (D,C, agg) be a multiple-criteria decision problem and
P ′ its mapping into an argumentation theory in ASPIC+G as defined in Def.
14. Then, for all d ∈ D, d is a preferred decision in P iff there exists a top
preferred extension in P ′ containing the argument ⇒ d.

The proof of this theorem lies in the fact that all decisions are in conflict
with each other thanks to the rules in R2. These being the only conflicts present
in the framework, together with the lack of preferences over defeasible rules,
ensures that every preferred extension represents exactly one decision and its
consequences. By using the ranking over goals in ASPIC+G, which is derived
from the ranking over the aggregations in P , we filter out the preferred exten-
sions which do not represent preferred decisions, and hence obtain a bijection
between preferred decisions in P and top preferred extensions in P ′. 8 This shows
that ASPIC+G subsumes MCDM and provides thus at least as much expressive
power. Additionally, our argumentative approach provides more transparency in
the reasoning process and allows for explanations of preferred decisions (top pre-
ferred extensions), which is of extreme importance in medical reasoning for the
sake of clarity and compliance with recommendations. Within a multimorbidity
context, an MCDM method would produce a decision consisting of a set contain-
ing recommended treatments and respective aggregated score, which cannot be
further decomposed and analyzed to demonstrate how that decision is brought
about.

6 Related Work

Wilk et al. [26] propose a first order-logic framework in order to detect and
mitigate adverse interactions (both drug-drug and drug-disease) between con-
currently applied recommendations based on constraint logic programming. Rea-
soning requires that all stable solutions be encoded beforehand in the form of
revision operators and computation mechanism is undecidable, as opposed to the
computation of preferred extensions. Zamborlini et al. [27] use their transition-
based medical recommendation model to represent interactions in association
with recommendations from different CIGs. Interaction types are defined exten-
sively. However, there is no reasoning mechanism to deal with conflicting rec-
ommendations. Spiotta et al. [21] propose a framework to analyze the temporal
conformance of followed actions against a single CIG. Using answer set program-
ming they provide explanations on conflicting situations, based on events in the
state of a patient. There, the setting is different from the presented herein and
the method does not aim to combine different CIGs.

Regarding argumentative approaches, Fox et al. [9] introduce argumentation
to help physicians decide for or against treatments. There, patient preferences
and patient-specific goals are not featured. Hunter and Williams [11] offer a
formal approach to aggregating clinical evidence. Based on the available evi-
dence, arguments are generated for claiming that one treatment is superior, or

8 The complete proof is provided as supplemental material.
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equivalent, to another. This approach does not concern multimorbidity nor the
combination of different CIG recommendations. Brando et al. [5] developed an
argumentation-based decision support system which can be used to both rep-
resent medical decisions within a single guideline and dynamically choose the
most suitable plans to achieve a unique goal. Goal prioritization is not featured.

Amgoud and Prade [1] propose an abstract argument-based framework for
decision-making. They formulate a series of decision principles that are goal-
driven. Yet, this argumentation framework would not fit decision-making in
multimorbidity particularly well for it does not provide sub-argument structure,
contrasting to our interest in showing a mapping from CIGs to rule patterns
in argumentation. The notions of pro and con arguments are used to evaluate
options, while our mechanism is solely based on explicit goal preferences and
does not require the user to elicit all possible solutions beforehand. Muller and
Hunter [14] formulate a structured argumentation framework for decision-making
where goals are used to select decisions. In their work, there is a form of backward
reasoning from goals to arguments and a direct comparison of their framework
with MCDM. Given the importance of the latter in medical reasoning, we adapt
their procedure to perform our own comparison. Note that the type of reasoning
performed in our work goes in the opposite direction, from arguments to goals.
We first check what are the possible preferred extensions, which, within the
context, provide all possible treatment solutions without conflict and respective
effects, and then verify which goals each solution fulfils in order to determine its
ranking. This kind of reasoning and prioritization of goals are more adequate for
assessing the recommendations proposed by CIG agents in a multimorbidity, as
these recommendations are already the product of a reasoning process within the
CIG agent. Black and Atkinson [4] present a dialogical argumentation framework
for reasoning among different agents. Each agent, according to its perspective,
has an input as to how a goal can be achieved. ASPIC+G does not possess this
dialogical nature, nor it it an objective in the current presentation. Furthermore,
Black and Atkinson [4] do not specify an argument evaluation method, whereas
our approach establishes detailed semantics for ordering preferred extensions
based on respective goal sets.

7 Conclusions and Future Work

ASPIC+G models discussions driven by goals, where it is not only important
to have explanatory arguments in favour or against a position, but also to know
where paths lead to. As such, the presented argumentation system is a contribu-
tion in medical reasoning as it is fit for reasoning in multimorbidity. It combines
the recommendations of agents, deriving drug-drug and drug-disease conflicts
that arise from them, using patient preferences over treatments and preferred
semantics so resolve the conflicts and produce solutions, then selecting the best
solution based on patient-specific goal preferences. We also show that best so-
lutions are capable of providing explanations in the form of sub-argument and
defending argument sets, which are closed under the sub-argument relation, and



16 T. Oliveira et al.

both directly and indirectly consistent. ASPIC+G subsumes MCDM in produc-
ing preferred solutions, with the advantage of being more explanatory, an impor-
tant feature in CDSSs. The present work does not specify preference elicitation or
goal prioritization methods. We plan to address this and manage different types
of preferences, mainly over defeasible rules, stemming from different sources. An
example to be considered is the strength of evidence backing recommendations
in relation to effects.
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