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TAIL DEPENDENCE UNDER SAMPLE FAILURES∗
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Abstract. When collecting samples, sometimes failures of observations occur and consequently
missing data. This can have an impact on the analysis and subsequent inference, especially if the
study focuses on the extreme values where the data is more scarce. In this work, we analyze the
effect of different types of failures on the dependence within the tail of a stationary series. We will
also present some examples.
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1. Introduction. The occurrence of extremal events is a topic of concern of analysts in
several areas, such as environmental, insurance, and finance. During extremal phenomena,
one often encounters increasing dependence on extreme values with a strong impact on
risk. For instance, large losses in financial markets influence more losses which may be
catastrophic for the stability of whole sectors. The most common procedure for evaluating
extremal dependence is the tail dependence coefficient (TDC), a concept introduced in [14]
and later formalized in [12]. More precisely,

(1) χ = lim
x→∞

P(X1 > x, X2 > x)

1− F (x)
,

where (X1, X2) is a random pair with a common marginal distribution function (d.f.) F
and an infinite right-end-point. We say that a random pair is tail dependent if χ > 0 and
tail independent if χ = 0. In the latter case, Ledford and Tawn [13] noticed that a residual
extremal dependence described by the rate of convergence towards zero of P(X1 > x, X2 >
x) may cause bias in inferences about the tail. Their model assumption,

(2)
P(X1 > x, X2 > x)

1− F (x)
= (1− F (x))1/η−1L(x),

includes a parameter η ∈ (0, 1] measuring the degree of residual tail dependence whenever
χ = 0 and the function L is slowly varying at ∞ (i.e., L(tx)/L(x) → 1 as x → ∞) and
provides a relative dependence strength at each η. We observe that if η = 1 and L(x)→ c > 0
as x → ∞, then χ = c > 0, and thus we have the tail dependence. If η < 1 or η = 1 and
L(x) → 0, we have tail independence, with positive association if η > 1/2 and negative if
η < 1/2. The perfect independence leads to η = 1/2 and L(x) = 1. In what follows, we
denote by LTC the Ledford and Tawn coefficient η.
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TAIL DEPENDENCE UNDER SAMPLE FAILURES 637

In the collection of data, errors in the recordings of the observations (due to failures
in the reading devices, technical failures, or even impossibility of collection inherent to the
phenomenon) cause missing data. With regard to inference in tails where data is scarce, this
can have serious consequences. When a missing value occurs, in the majority of cases either
the observation is replaced or the observation is completely lost, and the data sample is
actually a subsample with smaller sample size. Hall and Hüsler [10] presented three different
models addressing these types of patterns. More precisely, for a stationary sequence {Xn} of
random variables with marginal d.f. F and an independent and identically distributed (i.i.d.)
sequence {Un} independent of {Xn}, with Bernoulli(p) marginal d.f., 0 < p < 1, we have the
following:

(M1) Model with missing values: Yn = UnXn. The marginal d.f. of {Yn} is FY (y) =
1− p+ pF (y), y > 0.

(M2) Model with subsampling: {Zn} such that Zn = Xin , where in denote the indexes
of {Xn} for which Un = 1. The marginal d.f. of {Zn} is F .

(M3) Model with replaced missing values: Wn = UnXn + (1 − Un)X
(1)
n , where {X(1)

n }
is an independent replica of {Xn}. The marginal d.f. of {Wn} is also F .

For more details and illustrations, see [10] and the references therein.
In the present paper, we cover the impact of missing data under schemes of types (M1),

(M2), and (M3) on dependence within the tails of a stationary sequence. In section 2 we
present the tail dependence coefficients that we are going to address. The effect of missing
data is analyzed in section 3. Illustrative examples are given in section 4.

2. Tail dependence. Several measures of tail dependence are developed from χ and
η or, more precisely, from the respective multivariate formulations

(3) χXA = lim
x→∞

P
(⋂

i∈A{Xi > x})
1− F (x)

and

(4)
P
(⋂

i∈A{Xi > x})
1− F (x)

= (1− F (x))1/η
XA−1LXA (x),

where A is any set of indexes. If A = {1, 2}, χXA corresponds to the TDC in (1), and ηXA ,
to the LTC in (2).

In particular, if we consider a stationary sequence {Xn}, the lag-m TDC and LTC are,
respectively, obtained by taking A = {1, m}, i.e.,
(5) χ(X)

m ≡ χX{1,m} = lim
x→∞

P(Xm > x | X1 > x)

and

(6) P(Xm > x | X1 > x) = (1− F (x))1/η
(X)
m −1L(X)

m (x);

here η
(X)
m ≡ ηX{1,m} ∈ (0, 1] with slowly varying function L

(X)
m (x) ≡ LX{1,m}(x). The lag-m

measures TDC and LTC can be found in, e.g., [11], [4], and references therein.
In [3], for integers s and k such that 1 � s < d − k + 1 � d, the upper s, k-extremal

coefficient of the random vector X = (X1, . . . , Xd) is defined by

χ(Xs:d | Xd−k+1:d) = lim
x→∞

P(Xs:d > x | Xd−k+1:d > x),

where X1:d � · · · � Xd:d. This coefficient can be interpreted as the limiting probability that
the sth worst performer in a system is attracted by the kth best one, provided the latter has
an extremely good performance. Interesting applications are systems in finance, engineering,
and insurance, among others (see, e.g., [8], [3]). If s = k = 1, we obtain the upper extremal
dependence coefficient, εX , considered in [8], i.e.,

εX = χ(X1:d | Xd:d).
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638 M. FERREIRA AND H. FERREIRA

The lag-m upper s, k-extremal coefficient, applied to a stationary sequence {Xn} in [7],
is obtained by replacing d by m,

(7) χ(Xs:m | Xm−k+1:m) = lim
x→∞

P(Xs:m > x | Xm−k+1:m > x),

and the lag-m upper extremal dependence coefficient is defined by

(8) εXm = χ(X1:m | Xm:m).

The Fragility Index (FI), as introduced in [9], is another measure of extreme risk depen-
dence, concerning the fragility of a system. Given a random vector X = (X1, . . . , Xd), the
FI of X corresponds to the asymptotic expected number of exceedances above a threshold
x among X1, . . . , Xd, Nx :=

∑d
i=1 1{Xi>x}, given that there exists at least one exceedance,

i.e., the variables FI = limx→∞E(Nx | Nx > 0). The system {X1, . . . , Xd} is fragile if FI > 1
and weakly fragile whenever FI = 1. This concept was generalized in order to evaluate the
stability of a system divided into blocks (see [6]). Denote by D = {I1, . . . , Is} a partition of
D = {1, . . . , d}, and by Nx the number of blocks where at least one exceedance of x takes
place, i.e.,

Nx =

s∑
j=1

1{XIj
�xIj

};

we denote by XIj the subvector of X whose components have indexes in Ij , with j = 1, . . . , s
(i.e., XIj is the jth block of a random vector X) and by xIj the vector of length |Ij | with
components equal to x ∈ R. The block-FI of a random vector X = (X1, . . . , Xd) relative to
partition D is defined as

FI(X,D) = lim
x→∞

E(Nx | Nx > 0).

Taking the partition D∗ = {Ij = {j} : j = 1, . . . , d}, we obtain the FI introduced in [9].
All operations and inequalities on vectors are meant componentwise.
In order to measure the stability of a stochastic process divided into blocks, we consider

the lag-m block-FI relative to a partition Dm of Dm = {1, . . . ,m}, i.e.,
(9) FI(X,Dm) = lim

x→∞
E(Nx | Nx > 0),

where Nx is the number of blocks with at least one occurrence of an exceedance of x for
a horizon of m successive time instants.

Whenever the system is weakly fragile, i.e., with a unit FI, we might observe an asymp-
totic independence, i.e., a residual dependence that vanishes at high values. For instance,
Gaussian processes are weakly fragile, regardless of the correlation between the variables
(see [9]).

The asymptotic independent fragility index (AIFI), introduced in [9], is defined by

(10) ηX
A =

1

|A| lim
x→∞

∑
i∈A lnP(Xi > x)

lnP
(⋂

i∈A{Xi > x})
for any set of indexes A ⊆ D = {1, . . . , d}. In the case d = 2, we find the Ledford and Tawn
coefficient of asymptotic independence (see [13]).

The AIFI blocks of X = (X1, . . . , Xd) relative to a partition D of D are defined in [6]
by

η(X,D) = 1

s
lim

x→∞

∑s
j=1 lnP(XIj > xIj )

lnP(X1 > x, . . . ,Xd > x)
,

whenever the limit exists. Similarly, we consider the lag-m AIFI blocks applied to a stationary
sequence {Xn},

(11) η(X,Dm) =
1

s
lim

x→∞

∑s
j=1 lnP(XIj > xIj )

lnP(X1 > x, . . . ,Xm > x)
.

Furthermore, we obtain the tail dependence coefficients of a stationary sequence under
missing values derived from models (M1), (M2), and (M3) defined in the introduction.
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3. Tail dependence under failures. We start by calculating the coefficients (3)
and (4) for the sequences {Yn}, {Zn}, and {Wn}, respectively, originating from the fault
schemes corresponding to the models (M1), (M2), and (M3), that form the basis for the
results.

Proposition 3.1. Consider a stationary sequence {Xn} and the sequences {Yn}, {Zn},
and {Wn} derived according to models (M1), (M2), and (M3), respectively. Then, for any
set of indexes A,

(i) χYA = χXAp|A|−1;

(ii) χWA = χXA (p|A| + (1− p)|A|), provided that χXA in (3) exists;

(iii) χZA = χX
Ã , provided that χX

Ã in (3) exists for Ã = {ij : Uj = 1, j ∈ A}.
Proof. (i) We have that

(12) P

(⋂
i∈A
{Yi > x}

)
= P

(⋂
i∈A
{Xi > x}

)
P

(⋂
i∈A
{Ui = 1}

)
,

and now the result follows from

χYA = lim
x→∞

P
(⋂

i∈A{Xi > x})p|A|
1− (1− p+ pF (x))

.

(ii) Observe that

P

(⋂
i∈A
{Wi > x}

)
= P

(⋂
i∈A
{UiXi + (1− Ui)X

(1)
i > x}

)

=
∑
I⊆A

P

(⋂
i∈I
{Xi >x}

)
P

(⋂
i∈I
{Ui =1}

)
P

(⋂
i∈I
{X(1)

i >x}
)
P

(⋂
i∈I
{Ui =0}

)
,(13)

and thus we have

χWA = lim
x→∞

∑
I⊆A P

(⋂
i∈I{Xi > x})p|I|P(⋂

i∈I{X(1)
i > x})(1− p)|I|

1− F (x)

= lim
x→∞

(
P
(⋂

i∈A{Xi > x})p|A|
1− F (x)

+
P
(⋂

i∈A{X(1)
i > x})(1− p)|A|

1− F (x)

)
.

(iii) It suffices to observe that

χZA = lim
x→∞

P
(⋂

i∈ ˜A
{Xi > x})

1− F (x)
.

Proposition 3.1 is proved.

Proposition 3.2. Consider a stationary sequence {Xn} and the sequences {Yn}, {Zn},
and {Wn} derived according to models (M1), (M2), and (M3), respectively. Then, for any
set of indexes A,

(i) ηYA = ηXA and LYA (x) = LXA (x)p|A|−1, provided that (4) holds;

(ii) ηWA = ηXA and LWA(x) = LXA (x)(p|A| + (1 − p)|A|), provided that (4) holds.
Moreover, if (4) holds for each I ⊆ A, then 1/ηWA = min{1/ηXI + 1/ηX

I : I ⊆ A}, where
1/ηXI = 0 if I = ∅.

(iii) ηZA = ηX
Ã , provided that (4) holds for Ã = {ij : Uj = 1, j ∈ A}.

Proof. The proof follows from Proposition 3.1. For the second part of (ii), see also [5,
Proposition 2.9].

The lag-m versions are now straightforward.
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Corollary 3.1. Consider a stationary sequence {Xn} and the sequences {Yn}, {Zn},
and {Wn} derived according to models (M1), (M2), and (M3), respectively. Then,

(i) χ
(Y )
m = χ

(X)
m p;

(ii) χ
(W )
m = χ

(X)
m (p2 + (1− p)2), provided that χ

(X)
m in (5) exists;

(iii) χ
(Z)
m = χ

(X)
im−i1

, provided that χ
(X)
im−i1

≡ χXAm in (3) exists for some Am = {i1, im}.
Corollary 3.2. Consider a stationary sequence {Xn} and the sequences {Yn}, {Zn},

and {Wn} derived according to models (M1), (M2), and (M3), respectively. Then the following
statements hold :

(i) η
(Y )
m = η

(X)
m and L

(Y )
m (x) = L

(X)
m (x)p;

(ii) η
(W )
m = max(η

(X)
m , 1/2) and L

(W )
m (x) = (p2 + (1 − p)2)L

(X)
m (x)1{η(X)

m �1/2} + 2p(1 −
p)1{η(X)

m �1/2}, provided that (6) holds;

(iii) η
(Z)
m = η

(X)
im−i1

and L
(Z)
m (x) = L

(X)
im−i1

(x), provided that (4) holds for some Am =
{i1, im}.

Proof. (ii) It suffices to observe that (4) holds with A = {1, m}, and thus it also holds

for all I ⊆ A. This implies that η
(W )
m = min(1/η

(X)
m , 2) = max(η

(X)
m , 1/2).

Remark 3.1. We can see that, compared to the initial sequence {Xn}, the TDC decreases
for sequences {Yn} and {Wn} and does not decrease for sequence {Zn}. Under asymptotic
independence, the LTC of {Yn} and {Wn} is given by the LTC of the initial sequence {Xn}
(although with a slight decrease in the weak dependence that results from the slowly varying
function) but may increase with respect to the sequence {Zn}. However, for the sequence
{Wn}, if (4) holds for each I ⊆ A, the LTC may be greater than or equal to that of {Xn}.
In any case, the LTC does not depend directly on p.

Furthermore, we derive the lag-m upper s, k-extremal coefficients in (7), as well as the
particular case of the lag-m upper extremal dependence coefficients defined in (8).

Proposition 3.3. Consider a stationary sequence {Xn} and the sequences {Yn}, {Zn},
and {Wn} derived according to models (M1), (M2), and (M3), respectively. If (3) holds for
all A ⊆ Dm = {1, . . . ,m}, then we have successively

χ(Ys:m | Ym−k+1:m)

=

∑s−1
i=0

∑
I∈Fi

∑
J⊆I(−1)|J|χX

I∪J p|I∪J|−1

−∑
∅�=J⊆Dm

(−1)|J|χXJ p|J|−1−∑k−1
i=1

∑
I∈Fi

∑
J⊆I(−1)|J|χXI∪J p|I∪J|−1

,

χ(Zs:m | Zm−k+1:m)

=

∑s−1
i=0

∑
˜I∈Fi

∑
˜J⊆˜I

(−1)|˜J|χX
˜I∪J̃

−∑
∅�=˜J⊆Dm

(−1)|˜J|χX
J̃ −∑k−1

i=1

∑
˜I∈Fi

∑
˜J⊆˜I(−1)|

˜J|χX
Ĩ∪J̃

,

and, denoting here q = 1− p,

χ(Ws:m |Wm−k+1:m)

=

∑s−1
i=0

∑
I∈Fi

∑
J⊆I(−1)|J|χX

I∪J (p|I∪J| + q|I∪J|)

−∑∅�=J⊆Dm
(−1)|J|χXJ (p|J|+ q|J|)−∑k−1

i=1

∑
I∈Fi

∑
J⊆I(−1)|J|χXI cupJ (p|I∪J|+ q|I∪J|)

,

provided the ratios are defined, where Fi denotes the family of all subsets of Dm with cardi-
nality equal to i, I is the complement set of I ∈ Fi in Dm, and Ã= {ij : Uj=1, j∈A} for
each A ⊆ Dm.

Proof. According to [3, Proposition 2.9], we have

χ(Xs:m | Xm−k+1:m)

=

∑s−1
i=0

∑
I∈Fi

∑
J⊆I(−1)|J|χX

I∪J

−∑
∅�=J⊆Dm

(−1)|J|χXJ −∑k−1
i=1

∑
I∈Fi

∑
J⊆I(−1)|J|χXI∪J

,
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provided the ratio is defined. Now the results follow from Proposition 3.1 above. Proposi-
tion 3.3 is proved.

Corollary 3.3. Under the conditions of Proposition 3.3, we have successively

εYm =
χXDm pm−1

−∑
∅�=J⊆Dm

(−1)|J|χXJ p|J|−1
,

εZm =
χ
X

D̃m

−∑
∅�=˜J⊆Dm

(−1)|˜J|χX
J̃

,

εWm =
χXDm (pm + (1− p)m)

−∑
∅�=J⊆Dm

(−1)|J|χXJ (p|J| + (1− p)|J|)
.

Finally, we address the concept of tail dependence through fragility and compute the
lag-m FI in (9) and the lag-m AIFI in (11).

Proposition 3.4. Under the conditions of Proposition 3.3, we have successively

FI(Y,Dm) = lim
x→∞

∑s
j=1

∑
k∈Ij (−1)

k−1 ∑
J⊂Ij ; |J|=k χ

XJ p|J|−1∑m
k=1(−1)k−1

∑
J⊂Dm; |J|=k χ

XJ p|J|−1
,

FI(Z,Dm) = lim
x→∞

∑s
j=1

∑
k∈Ij (−1)

k−1 ∑
˜J⊂Ij ; |˜J|=k

χX
J̃∑m

k=1(−1)k−1
∑

˜J⊂Dm; |˜J|=k
χX

J̃

FI(W,Dm) = lim
x→∞

∑s
j=1

∑
k∈Ij (−1)

k−1 ∑
J⊂Ij ; |J|=k χ

XJ (p|J| + (1− p)|J|)∑m
k=1(−1)k−1

∑
J⊂Dm; |J|=k χ

XJ (p|J| + (1− p)|J|)
.

Proof. By definition (9), we have

FI(X,Dm) = lim
x→∞

∑s
j=1 P(

⋃
i∈Ij{Xi > x})

1−P(
⋂

i∈Dm
{Xi < x})

= lim
x→∞

∑s
j=1

∑
k∈Ij (−1)

k−1 ∑
J⊂Ij ; |J|=k P(

⋂
i∈J{Xi > x})∑m

k=1(−1)k−1
∑

J⊂Dm; |J|=k P(
⋂

i∈J{Xi > x}) ,

provided the ratios are defined. For more details, see [6] and [7]. The results are now
straightforward from Proposition 3.1. Proposition 3.4 is proved.

Proposition 3.5. Consider a stationary sequence {Xn} and the sequences {Yn}, {Zn},
and {Wn} derived according to models (M1), (M2), and (M3), respectively. Then the following
results hold :

(i) If (10) holds for all Ij ∈ Dm, j = 1, . . . , s, and also for Dm, then

η(Y,Dm) = η(W,Dm) = η(X,Dm).

Moreover, if (10) holds for all A ⊆ Dm, with the limit given by ηX
A , then

η(W,Dm) = ηW
Dm

1

s

s∑
j=1

1

ηW
Ij

,

with 1/ηW
A = min{1/ηXI + 1/ηX

I : I ⊆ A}, where 1/ηXI = 0 if I = ∅, respectively.

(ii) If (10) holds for all Ĩj , j = 1, . . . , s, and also for D̃m, with notation Ã = {ij : Uj =
1, j ∈ A} for each A ⊆ Dm, then

η(Z,Dm) = ηX
˜Dm

1

s

s∑
j=1

1

ηX
˜Ij

.
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Proof. According to Proposition 6.1 in [6], if (10) holds for all Ij ∈ Dm, j = 1, . . . , s,
and also for Dm, with the limit given by ηX

Ij
and ηX

Dm
, respectively, then we have

η(X,Dm) = ηX
Dm

1

s

s∑
j=1

1

ηX
Ij

.(14)

The required result now follows from Proposition 3.2. Proposition 3.5 is proved.

4. Examples. Here we present two examples: the first is a process presenting tail
dependence, and the second is an asymptotic tail independent process.

Example 4.1. We consider the Yeh–Arnold–Robertson Pareto (III) (see [15]), abbrevi-
ated YARP (III)(1), given by

Xn = min

(
b−1/αXn−1,

1

1−Bn
εn

)
,

where innovations {εn}n�1 are i.i.d. with the distribution Pareto (III)(0,σ,α), i.e.,

1− Fε(x) =

[
1 +

(
x− μ

σ

)α]−1

, x > μ,

with σ, α > 0. The sequence {Bn}n�1 has i.i.d. with Bernoulli distribution (b) (independent
of the innovations). We interpret 1/0 as +∞.

Define the m-step transition probability function (t.p.f.), Qm(x, ]1, y]) = P(Xn+m < y |
Xn = x). The m-step t.p.f. of YARP (III)(1) was deduced in [2] as

Qm(x, ]0, y]) =

⎧⎪⎨
⎪⎩
1−

m−1∏
j=0

[F ε(b
j/αy)(1− b) + b], x > ybm/α,

1, x � ybm/α.

For i1 < i2 < i3, we have

P(Xi1 > x, Xi2 > x, Xi3 > x)

=

∫ ∞

x

∫ ∞

x

[1−Qi3−i2(u2, ]0, x])]Q
i2−i1(u1, du2) dFX(u1),(15)

and thus

P(Xi1 > x, Xi2 > x, Xi3 > x)

= [1− F (x) + bi3−i2F (x)][1− F (x) + bi2−i1F (x)](1− F (x)).

For more details, see [7]. Similarly, for i1 < i2 < · · · < ik,

P(Xi1 > x, . . . ,Xik > x) =

∫ ∞

x

· · ·
∫ ∞

x

(
1−Qik−ik−1(uik−1 , ]0, x])

)

×
k−1∏
j=2

Qik−j−ik−j+1(uik−j , duik−j+1) dFX(ui1)

=

k∏
j=2

(1− F (x) + bij−ij−1F (x))(1− F (x)).

Hence, we have, for A = {i1, . . . , ik},

χXA = lim
x→∞

k∏
j=2

(1− F (x) + bij−ij−1F (x)) = bik−i1 .
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Denoting by ζ(A) and ς(A) the maximum and minimum of A, respectively, we obtain

χXA = bζ(A)−ς(A).

In particular, χ
(X)
m = bm−1, and therefore χ

(Y )
m = bm−1p, χ

(Z)
m = bim−i1 , and χ

(W )
m =

bm−1(p2 + (1− p)2).
The lag-m upper s, k-extremal coefficients, upper extremal dependence coefficients, and

block-FI can be readily deduced for {Yn}, {Zn}, and {Wn} from, respectively, Proposi-
tion 3.3, Corollary 3.3, and Proposition 3.4.

Example 4.2. Consider the ARMAXp model (see [1])

(16) Xn = max(Xc
n−1, εn)

with univariate marginals having Pareto (α) d.f., i.e., 1 − F (x) = x−α, x > 1, α > 0, and
innovations {εn}n�1 with marginal d.f.

Fε(x) =
1− x−α

1− x−α/c
.

We can observe that, 1−Fε(x) ∼ x−α as x→∞, where an ∼ bn denote that limn→∞ an/bn =
k �= 0.

The m-step t.p.f. of the ARMAXp is

Qm(x, ]1, y]) =

⎧⎨
⎩

F (y)

F (y1/cm)
, x � y1/cm ,

0, x > y1/cm .

By the same argument as in (15), we obtain

P(Xi1 > x,Xi2 > x,Xi3 > x) = 1− 3F (x) +
F 2(x)

F (x1/ci2−i1 )
+

F 2(x)

F (x1/ci3−i1 )

+
F 2(x)

F (x1/ci3−i2 )
− F 3(x)

F (x1/ci3−i2 )F (x1/ci2−i1 )

∼ x−3α + x−α/ci3−i1
.

Analogously, for i1 < i2 < · · · < ik, we have

P(Xi1 > x, . . . ,Xik > x) =

∫ ∞

x

· · ·
∫ ∞

x

(
1−Qik−ik−1(uik−1 , ]0, x])

)

×
k−1∏
j=2

Qik−j−ik−j+1(uik−j , duik−j+1) dFX(ui1)

∼ x−kα + x−α/cik−i1
,

and thus ηX{i1,...,ik
} = max(1/k, cik−i1). We also have η

(X)
m = max(1/2, cm−1), already

obtained in [1]. More generally, for any A ⊆ Dm,

ηXA = max

(
1

|A| , c
ζ(A)−ς(A)

)
,

with ζ(A) and ς(A) denoting the maximum and minimum of A, respectively. Therefore,
by (14), the lag-m blocks AIFI of {Xn} is

(17) η(X,Dm) =
max(1/m, cm−1)

s

s∑
j=1

min

(
|Ij |, 1

cζ(Ij )−ς(Ij)

)
.

The lag-m blocks AIFI of {Yn}, {Zn}, and {Wn} are now straightforward from Proposi-
tion 3.5.
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Remark 4.1. Let {Un} be a stationary sequence presenting some dependence, e.g., of
Markov type, such as

P(Un = 1 | Un−1 = 1) = φ and P(Un = 1 | Un−1 = 0) = ϕ,

and thus rendering a process, where the probability of failure depends uniquely on whether
a failure has just occurred. Only the formulas of the TDC in (3), and consequently of the
s, k-extremal coefficients and the fragility indexes, are affected for sequences {Yn} and {Wn}.
See Remark 3.1. Indeed, denoting the transition matrix by

P =

[
p00 p01
p10 p11

]
=

[
1− ϕ ϕ
1− φ φ

]
,

and taking without loss of generality A = {i1, . . . , ik}, by (12), we have

P

(⋂
i∈A
{Yi > x}

)
= P

(⋂
i∈A
{Xi > x}

)
P

(⋂
i∈A
{Ui = 1}

)

= P

(⋂
i∈A
{Xi > x}

) k∏
j=2

p
(ij−ij−1)

11 p1,

where p
(ij−ij−1)

11 is the respective p11 element of the transition matrix P ij−ij−1 , for each
j = 2, . . . , k, and p1 = P(Un = 1) = ϕ/(1− φ+ ϕ).

Applying (13) and stating I = {i(I)1 , . . . , i
(I)
l } with l � k, we have

P

(⋂
i∈A
{Wi > x}

)
=

∑
I⊆A

P

(⋂
i∈I
{Xi > x}

)
P

(⋂
i∈I
{Ui = 1}

)

×P

(⋂
i∈I
{X(1)

i > x}
)
P

(⋂
i∈I
{Ui = 0}

)

=
∑
I⊆A

P

(⋂
i∈I
{Xi > x}

) l∏
j=2

p
(i

(I)
j
−i

(I)
j−1

)

11 p1

×P

(⋂
i∈I
{X(1)

i > x}
) k−l∏

j=2

p
(i

(I)
j
−i

(I)
j−1

)

00 (1− p1),

where p
(ij−ij−1)

11 and p
(i

(I)
j
−i

(I)
j−1

)

00 are the respective p11 element of the transition matrix

P
i
(I)
j
−i

(I)
j−1 , for each j = 2, . . . , l, and the p00 element of the transition matrix P

i
(I)
j
−i

(I)
j−1 , for

each j = 2, . . . , k − l.

Other types of dependence within {Un} and between {Xn} and {Un} also may be
interesting to consider. This will be addressed in a future work.
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