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a b s t r a c t 

In this work, a novel Bacterial NanoCellulose (BNC) producing strain, from Kombucha tea, was isolated and 

characterized. Based on 16S rRNA analysis the strain was identified as Komagataeibacter rhaeticus . Under static 

culture, K. rhaeticus K3 produces membranes with a relaxed structure, as observed by Scanning Electron Mi- 

croscopy (SEM). The addition of 2% (v/v) ethanol to the culture media enhanced by more than 3-fold of the BNC 

yield. 

Response surface methodology (RSM) was performed with K. rhaeticus K3 , using a new low cost Eucalyptus 

Biomass Hydrolysate (EBH). The maximum experimental BNC yield was of 5.46 g/L, obtained with the following 

composition: 31.4 g/L of EBH; 2.89% (v/v) of ethanol and 10.8 g/L of Yeast extract/peptone. 

Texture Profile Analysis (TPA) of BNC membranes obtained using Hestrin-Schramm culture (HS) medium and 

optimized medium from EBH showed that membranes from EBH had higher resistance to compression, higher 

cohesiveness and resilience. 
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. Introduction 

Bacterial Nanocellulose (BNC) is a form of cellulose naturally synthe-

ized by several species of Acetobacteraceae . Among the several BNC syn-

hesizing bacteria, the most potent and most extensively studied are the

omagataeibacter xylinus and Komagataeibacter hansenii ( Gama, Dourado

 Bielecki, 2016 ). Due to its high purity, high porosity, high crys-

allinity, high degree of polymerization, high water holding capac-

ty, low density, biocompatibility, non-toxicity and biodegradability,

his biopolymer shows enormous economic potential in medical and

omposites applications, cosmetic and food industries and electronics

 Campano, Balea, Blanco & Negro, 2016 ). 

Despite the unique properties and interesting application potential,

here are still strong limitations associated with its industrial produc-

ion due to the high operational costs and low BNC yields. Extensive

esearch has been done to promote higher productivities/yield by us-

ng low-cost raw materials such as rotten fruits, milk whey, carob and

aricot bean and corn steep liquor as nitrogen source, molasse as carbon

ource, waste beer yeast, beverage industrial waste, fruit peels, rice bark

nd fruit juices as food industrial waste ( Bilgi, Bayir, Sendemir-Urkmez

 Hames, 2016 ; Campano et al., 2016 ; Fan et al., 2016 ; Jozala et al.,
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016 , Jozala et al., 2015 ). The use of wastewaters from textiles, pulp and

aper and agricultural has also been reported ( Campano et al., 2016 ;

hen et al., 2017 ; Cheng, Yang, Liu, Liu & Chen, 2017 ; Jahan, Kumar &

axena, 2018 ; Jozala et al., 2016 ; Yan et al., 2012 ). 

In parallel to the use of low-cost substrates, several researchers

ave been isolating, identifying and improving high-cellulose produc-

ng strains, including K. xylinus BPR 2002, K. xylinus BPR 2003, K.

ylinus AS6, K. xylinus KJ-1, K. hansenii P2A, K. swingsii DSTGL01T, K.

haeticus DSTGL02T, K. rhaeticus P1463, K. oxydans, K. oboediens and K.

ersimmonis , which display different characteristics in terms of bacteria

otility, BNC morphology and yield (up to 9.49 g/L in the case of K.

haeticus P1463, using apple juice as substrate) ( Campano et al., 2016 ;

emjonovs et al., 2017 ). Therefore, the discovery of new strains may rep-

esent unique opportunity towards achieving high BNC yield and novel

orphological and mechanical properties that may better suit different

pplications in cosmetics, food and biomedicine. 

In this work, Komagataeibacter rhaeticus K3, isolated from Kombucha

ea, was studied and compared with Komagataeibacter hansenii ATCC

3582 and Komagataeibacter xylinus E25. Also, the BNC production un-

er static culture with the isolated strain was optimized using a low-cost

ubstrate, a eucalyptus wood enzymatic hydrolysate, provided by RAIZ

 Forest and Paper Research Institute (Portugal). The morphology and
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extural properties of the BNC produced by all of the above-mentioned

trains was compared. 

. Materials and methods 

.1. Isolation, medium and growth conditions 

This strain was isolated from inoculums from Kombucha tea. The

ea was prepared using 5 g of green tea, 50 g of glucose and 500 mL

f water. Fifty mL of Kombucha starter culture was added to the tea.

he culture was incubated at room temperature for 10 days. One hun-

red mL of the suspension was transferred into 0.9 mL of 0.85% NaCl

Chempur, Poland). Serial dilutions from 10° to 10 − 10 were prepared

sing sterilized saline solution. An aliquot of 0.1 mL of each dilution

as plated on Petri dishes with solid Hestrin-Schramm culture medium

HS) ( Schramm & Hestrin, 1954 ) and incubated at 30 °C for 4 days. Sin-

le colonies were then picked and grown statically in liquid HS medium

t 30 °C for 4 days. The novel strain was then identified (as described

elow) and used for cellulose production and characterization. The mi-

roorganism Komagataeibacter rhaeticus was labelled as K3 and it was

eposited in Institute of Agricultural and Food Biotechnology (IAFB),

ollection of Industrial Microbial Cultures, Warsaw, Poland with the

egistration number 2955. 

.2. Identification of Komagataeibacter rhaeticus 

The new strain was identified by performing gram staining and

olony morphology. The genomic DNA of Komagataeibacter rhaeticus

as isolated according to the manufacturer’s protocol (Gene MATRIX

acterial and Yeast Genomic DNA Purification Kit and GeneMatrix Ba-

ic DNA Purification Kit, EURx, Poland), sequenced (unpublished data)

nd identified by using 16S rRNA sequence. A phylogenetic tree based

n 16S rDNA gene sequences of type strains of the species of the family

omagataeibacter was constructed with the MEGA 7.0 ( Kumar, Stecher

 Tamura, 2016 ). Neighbour-joining tree was constructed with 35 se-

uences. 

.3. Bacterial cell culture conditions and growth media 

For comparison purposes, K. xlylinus E25 (a private strain from Bowil

iotech Ltd., W ł adys ł awowo, Poland) and K. hansenii ATCC 53582 (pur-

hased from American Type Culture Collection) were also used, the for-

er being representative of an immotile strain and the later a motile

ne ( Florea, Reeve, Abbott, Freemont & Ellis, 2016 ; Jacek et al., 2019 ;

rystynowicz et al., 2002 ; Ryngaj łł o, Jacek, Cielecka, Kalinowska &

ielecki, 2019 ). All strains were cultivated in Hestrin–Schramm (HS)

edium at 30 °C ( Schramm & Hestrin, 1954 ), either in the liquid form

for BNC production under static culture), or in solid culture (for colony

rowth), with 2.0% (w/v) agar (Difco, USA). The HS medium contains

per liter): 20.0 g glucose (POCH, Poland), 5.0 g yeast extract (BTL,

oland), 5.0 g bacterial peptone (BTL, Poland), 2.7 g sodium phos-

hate dibasic (Chempur, Poland), 1.15 citric acid (Chempur, Poland)

nd 0.5 g magnesium sulphate (Chempur, Poland). The pH was adjusted

o 5.7 with 80% (v/v) acetic acid (Chempur, Poland) before sterilization

which was done at 121 °C for 20 min). 

.4. Bacterial swarming motility assay 

Pre-cultures of K. xylinus , K. hansenii and K. rhaeticus strains were

iluted with 0.85% NaCl to reach an optical density of 0.1 at 600 nm.

ext, 2 𝜇L portions from each equilibrated culture were inoculated onto

ve HS plates containing 0.6% agar and 2% (v/v) cellulase (to prevent

ellulose accumulation). After 4 days of incubation at 30 °C, the diam-

ter of the colonies was measured using Makroaufmassprogram software

 https://ruedig.de/tmp/messprogramm.htm ). 
2 
.5. Scanning electron microscopy (SEM) of BNC 

For structural analysis, BNC membranes obtained after 7 days static

ulture of K. xylinus , K. hansenii and K. rhaeticus strains in HS medium,

s described in 2.6, were purified by washing with 4% SDS (at 70 °C)

Sigma-Aldrich, Denmark) solution, 0.1% NaOH (Chempur, Poland) and

hashed with distilled water until neutral pH ( Fang, Kawano, Tajima

 Kondo, 2015 ). The membranes were freeze-dried in a Christ Alpha

odel 1–4 LSC plus (Christ, Germany) and coated with gold. A scan-

ing electron microscope FEI QUANTA 250 FEG (Thermo Fisher Sci-

ntific, MA, USA), operating at 2 kV, was used for the observation of

hree biological replicates from each strain at magnifications of 5000 ×,

0,000 × and 40,000 × . Representative micrographs were taken in trip-

icates for each magnification. The diameters of the cellulose fibers

nd pores were determined with the Makroaufmassprogram software

 https://ruedig.de/tmp/messprogramm.htm ), from 50 different sites on

ach of the SEM micrographs. 

.6. Effect of ethanol on BNC yield 

For each strain, a single bacterial colony grown on HS agar seed

edium was transferred to 5 mL of liquid HS medium and incubated at

0 °C for 4 days. Five% of the inoculum culture was added to a 250 mL

rlenmeyer flask containing 50 mL of HS medium supplemented with

ither 1% or 2% ethanol. The cultures were then incubated at 30 °C for 7

ays. After incubation, the BNC membranes were picked and soaked in

% NaOH solution overnight, and next in 1.5% acetic acid solution for

 h. Afterwards, the membranes were washed with distilled water un-

il neutral pH was reached. Then the membranes were dried at 55 °C

n an oven to constant weight. The BNC yield was quantified, using

q. (1) (see Section 2.9 ). For each strain, a control without ethanol was

sed as a reference. 

.7. Inoculum preparation and static culture fermentation 

For the response surface methodology (RSM) assays (further detailed

n 2.8), K. rhaeticus inoculum was grown in 1 L conical flasks, containing

00 mL of HS medium, for 48 h at 30 °C. Then, the formed cellulose pel-

icle was shaken to release the bacteria entrapped within the cellulose

atrix into the residual media, which were used for further inoculations

t 10% (v/v) of the final fermentation volume. The inoculated fresh me-

ia were incubated at 30 °C for 15 days (at a fixed culture medium depth

f 2.5 cm height in 250 mL beakers). For the optimization of the compo-

ition of the culture medium, Eucalyptus Biomass Hydrolysate medium

EBH) was used, a sugar-rich liquor obtained by enzymatic hydrolysis of

ucalyptus wood (RAIZ - Forest and Paper Research Institute, Portugal)

see conditions in Section 2.8 ). The medium thus contains the same com-

onents as the HS medium except for glucose, being replaced by EBH

EBH medium). As controls for RSM, BNC membranes were produced

nder the same conditions as above, but with HS (standard medium)

nd EBH media, both having 20.0 g/L of carbon (glucose equivalent)

 Table 2 ). 

.8. Optimization of BNC fermentation by K. rhaeticus K3 using central 

omposite design - Response Surface methodology (CCD-RSM) 

RSM consists of a group of mathematical and statistical techniques

sed in the development of an adequate relationship between a response

nd a number of a known associated parameters ( Khuri & Mukhopad-

yay, 2010 ). A statistically designed study was conducted to investi-

ate the individual and interactive effect of three medium components

n the BNC yield: Glucose on EBH hydrolysate, yeast extract/peptone

YE/P; 50% of each) and ethanol. For this purpose, design expert 7.1.5

Stat-Ease. Inc. USA. Windows operating system) was used for the exper-

mental design and CCD-RSM statistical analysis of EBH medium with

. rhaeticus . Tables 1 and 2 show the experimental design used for the

https://ruedig.de/tmp/messprogramm.htm
https://ruedig.de/tmp/messprogramm.htm
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Table 1 

Level of factors chosen for the experimental central composite design response surface methodology for EBH 

medium. 

Factor Name Low actual High actual Low coded ( − 1) High coded ( + 1) Mean Std. Dev 

A Carbon (g/L) 12.0 35 4.2 42.8 23.5 9.8 

B Ethanol% (v/v) 1.0 3.5 0.2 4.4 2.3 1.1 

C Nitrogen (g/L) 5.0 15.0 1.6 18.4 10.0 5.5 

Table 2 

BNC yield results EBH medium for CCD-RSM. 

Run Carbon: Glucose equivalent (EBH) (g/L) Ethanol (%v/v) YE/P (g/L) BNC yield (g/L) 

1 12.0 1.0 5.0 3.62 ± 0.06 

2 23.5 4.4 10.0 5.57 ± 0.04 

3 23.5 2.25 10.0 5.44 ± 0.307 

4 23.5 0.15 10.0 3.93 ± 0.10 

5 12 1.0 5.0 3.69 ± 0.067 

6 23.5 2.25 1.6 3.09 ± 0.23 

7 4.2 2.25 10.0 1.88 ± 0.059 

8 35 3.5 5.0 5.21 ± 0.50 

9 12 3.5 15.0 4.25 ± 0.14 

10 23.5 2.25 10.0 5.34 ± 0.35 

11 35 1.0 15.0 4.73 ± 0.15 

12 35 3.5 5.0 5.14 ± 0.41 

13 23.5 2.25 18.4 5.28 ± 0.34 

14 23.5 2.25 10.0 5.63 ± 0.29 

15 12 3.5 15.0 4.20 ± 0.11 

16 42.8 3.5 5.0 5.56 ± 0.06 

17 23.5 2.25 10.0 5.81 ± 0.29 

18 23.5 2.25 10.0 5.85 ± 0.19 

19 35.0 1.00 15.0 4.87 ± 0.50 

20 40.0 2.00 10.0 5.44 ± 0.19 

21 40.0 2.00 20.0 5.70 ± 0.13 

22 40.0 2.00 30.0 5.19 ± 0.06 

23 40.0 4.00 10.0 4.85 ± 0.06 

24 40.0 4.00 20.0 4.96 ± 0.06 

25 40.0 4.00 30.0 4.74 ± 0.06 

Control EBH 20.0 2.00 10.0 5.27 ± 0.12 

Control HS 20.0 2.00 10.0 3.44 ± 0.04 
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ptimization. All the runs in table 2 were tested in triplicate and all com-

inations of the fermentation medium included 3.39 g/L of Na 2 HPO 4 

nd 1.26 g/L of citric acid. The initial pH used was set to 5.5 in all

edia. The model was evaluated using the Fisher´s statistical test for

nalysis or variance (ANOVA). Finally, three-dimensional curves of the

esponse surfaces were generated using the same statistical approach.

ll the runs were made in triplicates and the values of the BNC yield

epresent the average and standard deviation of the values retrieved.

he average and standard deviations were calculated with GraphPad

rism 7. The results from the CCD experiments are shown in table 2 . 

.9. Bacterial nanocellulose yield and water retention capacity 

After 15 days of fermentation, the BNC produced was washed with

aOH 0.1 M at room temperature. Afterwards, the membranes were

ashed with distilled water, also at room temperature, until the pH

ecame that of the distilled water. The washed membranes were then

eighed before and after drying to constant mass at 37 °C, to calculate

he volumetric yield of BNC (g/L) and water retention capacity (WHC),

ccording to the following equations: 

NC ( g∕L ) = 

𝑑𝑟𝑖𝑒𝑑 𝐵 𝑁𝐶 ( 𝑔 ) 
𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑚𝑒𝑑𝑖𝑢𝑚 𝑣𝑜𝑙𝑢𝑚𝑒 ( 𝐿 ) 

(1)

WHC ( g water removed ∕ g of dried BNC ) 

= 

𝑤𝑒𝑡 𝐵 𝑁𝐶 ( 𝑔 ) − 𝑑𝑟𝑖𝑒𝑑 𝐵 𝑁𝐶 ( 𝑔 ) 
𝑑𝑟𝑖𝑒𝑑 𝐵 𝑁𝐶 ( 𝑔 ) 

(2) 

HC measurements were done in triplicates. All values represent the

verage and standard deviation of the values retrieved. 
3 
.10. Textural profile analysis 

Texture profile analysis (TPA) was performed using a Texture anal-

ser HD plus C. For comparison, BNC membranes from K. hansenii ,

. xylinum and K. rhaeticus , were produced with HS medium (as de-

cribed in Section 2.7 ). Ethanol (2% v/v) was used only for K. xylinum

nd K. rhaeticus . For each BNC membrane, a 7.5 cm diameter com-

ression plate (P/75) was used and compression tests were done un-

er the following specifications: 50% of strain (of original height); a

rosshead pre-test of 1 mm/s, a test speed of 0.5 mm/s, a post-test speed

f 0.5 mm/s and a trigger force of 5 g. These analyses were processed

ith Exponent Stable micros Systems (Windows), which allowed to as-

ess the hardness (g), springiness (%), cohesiveness (%) and resilience

%) of the BNC membranes. Further explanation on how was determined

ach parameter, can be found in supplemental material (Fig. S2.). The

easurements were made in sextuplicates. All values represent the av-

rage and standard deviation of the values retrieved. 

.11. Analytical methods 

.11.1. Total sugar and protein quantification 

High Performance Liquid Chromatography (HPLC) with the Aminex

PX-87H IEX column, PU-2080 Plus pump (JASCO), DG-2080-53 de-

asser (JASCO), AS2057-Plus automatic sample injector (JASCO) and

 2031 Plus RI detector (JASCO) was used to identify and quantify the

oncentrations of cellobiose, glucose and xylose in EBH hydrolysate and

he initial and residual sugars in culture medium. The following condi-

ions were used: mobile phase (5 mM H 2 SO 4 ) flow rate at 0.05 ml/min;

olumn temperature 35 °C. The injected volume was 20 𝜇L. Cellobiose,
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Fig. 1. Phylogenetic tree based on the sequence of 16S rRNA genes from bac- 

terial cellulose producers using the neighbour-joining method. 
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Fig. 2. Swarming plate assay conducted for K. xylinus E25, K. hansenii ATCC 

53582 and K. rhaeticus K3. The images were taken on the 4th day of incubation. 
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lucose and xylose concentrations were determined based on calibration

urves obtained using the pure compounds with concentrations ranging

rom 0.01 g/L to 25 g/L. The obtained sugar composition in EBH hy-

rolysate was glucose 131 g/L, xylose 13.2 g/L and cellobiose 3.70 g/L.

. Results and discussion 

.1. Phylogenetic analysis and motility assays of the isolated strain 

A BLAST search of the GenBank database using 1486 bp 16 S rRNA

ene sequence of strain K3 showed its similarity with many members

f the genus Komagataeibacter. A phylogenetic tree ( Fig. 1 ) based on

6S rRNA gene sequences of members of the genus Komagataeibacter

as constructed according to the bootstrap test of neighbour-joining al-

orithm method of Saitou and Nei (1987) with MEGA7 ( Kumar et al.,

016 ). This tree shows the close phylogenetic association of strain K3

ith certain other Komagataeibacter species. Phylogenetic analysis in-

icated that the strain K3 consistently falls into a clade together with

omagataeibacter rhaeticus strains DSM 16663, JCM 17122, DST GLO2

ith a similarity of 100% ( Fig. 1 ). 

To describe the motility of K. rhaeticus, K. xylinus - an immotile strain

 and K. hansenii - a motile strain - were used as controls. Soft-agar motil-

ty assay was performed to analyse the swarming motility of bacteria

trains ( Ha, Kuchma & O’Toole, 2014 ). Briefly, density-equilibrated cul-

ures of examined strains were spotted on a semi-solid agar medium.

he spreading of the ‘colonies’ was measured every day in millimetres

mm). 

We observed that K. rhaeticus is motile, as the diameters of

. hansenii and K. rhaeticus spots on agar plates begun to spread on

he third day of incubation. For K. rhaeticus , the mean diameter of the

olony after 4 days was of 24 mm, whereas for K. hansenii it was of

0 mm ( Fig. 2 ). Regarding the dimensions of the bacteria, K. hansenii ,
4 
. xylinus and K. rhaeticus cells had lengths of ~ 5.2 𝜇m, ~ 3.9 𝜇m and

2.0 𝜇m, respectively (Fig S1). 

.2. Characterization of BNC pellicle produced by K. rhaeticus K3 

The structure of BNC membranes synthesized by all studied strains

as compared by SEM analysis on both the upper and bottom surfaces.

lso, of the pore size and thickness of the fibres were measured. These

esults ( Fig. 3 ) show that when all strains were cultured in HS medium,

he BNC membrane from K. rhaeticus , has much higher porosity and

hicker fibres than the ones from the other strains. Wild-type strains

rom the genus Komagataeibacter have been observed to produce mem-

ranes with a compact and densely packed structure without visible

ores in the upper part of the membrane ( Vazquez, Foresti, Cerrutti &

alvagno, 2013 ). However, the morphology of the BNC membranes is

nown to change according to the composition of the culture medium

 Al-Shamary & Al-Darwash, 2013 ; Molina-Ramírez et al., 2017 ). 

.3. Effect of ethanol on BNC yield 

From a literature review, ethanol was observed to increase the

NC production yield. Certain Komagataeibacter strains are known

o use ethanol as an additional carbon source. Supplementing a

ulture medium with ethanol allowed also to repressing the spon-

aneous mutations of BNC, while increasing cells´ ATP production

 Krystynowicz et al., 2002 ; Naritomi, Kouda, Yano & Yoshinaga, 1998 ;

ark, Jung & Park, 2003 ). To evaluate the impact of ethanol on the BNC

ield, static culture assays were done with all strains, in HS medium sup-

lemented with either 1% or 2% ethanol ( Section 2.6 ). The produced

NC membranes from K. rhaeticus and K. xylinus showed an irregular

op surface. However, adding ethanol to the culture medium of K. rhaeti-

us , allowed the formation of membranes with a smoother top surface

 Fig 4 b). Both K. rhaeticus and K. xylinus produced more cellulose with

thanol supplementation. The addition of 2% ethanol caused more than

 3-fold increase in the BNC production by K. rhaeticus ( Fig. 4 b), reach-

ng 5.55 g/L of dry mass after 7 days. The addition of ethanol to the

. hansenii culture, did not affect the BNC yield. As for K. xylinus , the

ddition of 2% ethanol allowed for 7.5 times increased in the BNC yield.
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Fig. 3. Characteristics of BNC membranes. Left 

column- scanning electron micrographs of top 

and bottom sides of membranes produced by 

K. xylinus E25, K. hansenii ATCC 53582 and K. 

rhaeticus K3 strains after 7 days static culture 

in Hestrin-Schramm medium. Middle column- 

fibre diameter. Right column- pore diameter. 

Analyses were done using Scanning Electron 

Microscope FEI, Quanta FEG 250. All views 

with ETD detector under 40,000 × magnifica- 

tion. 
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According to Basu et al. ( Basu, Vadanan & Lim, 2018 ), there is a

orrelation between motility and the efficiency of BNC production, the

ore motile strains producing more cellulose. While not excluding the

ynergistic impact of nutrient sources, our results also confirm these ob-

ervations, since, as observed above ( Fig. 2 ), with HS medium (without
5 
thanol), both K. rhaeticus and K. hansenii , being mobile strains, exhibit

igher BNC yield than K. xylinus ( Fig. 4 b). The same pattern was also

bserved by using HS media with 1% v/v and 2% v/v ethanol, where

igher BNC yields were observed with motile strains ( K. rhaeticus and

. hansenii ) ( Fig. 4 b). 
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Fig. 4. Effect of ethanol on BNC production by K. xylinus E25, K. hansenii ATCC 53582 and K. rhaeticus K3: (a) purified BNC membranes after 7 days culture in HS 

medium, (b) comparison of cellulose production efficiency in HS medium with addition of 1% and 2% ethanol after 7 days. 

Table 3 

ANOVA analysis of the model obtained for EBH. 

Source Sum of squares Df Mean square F value p -value Prob > F 

Model 8.69 9 0.97 12.20 < 0.0001 Significant 

A-carbon 3.93 1 3.93 49.63 < 0.0001 Significant 

B-ethanol 1.62 1 1.62 20.51 0.0006 Significant 

C-nitrogen 0.019 1 0.019 0.24 0.6324 

AB 0.089 1 0.089 1.12 0.3084 

AC 0.095 1 0.095 1.20 0.2925 

BC 1.559E − 004 1 1.559E − 004 1.970E − 003 0.9653 

A 2 2.27 1 2.27 28.68 0.0001 Significant 

B 2 2.34 1 2.34 29.52 0.0001 Significant 

C 2 0.37 1 0.37 4.68 0.0498 Significant 

Lack of Fit 0.87 10 0.087 1.61 0.3824 

R 2 0.8942 

Adj R 2 0.8209 

Pred R 2 0.6366 

Adeq. Precision 11.225 
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.4. Optimization of culture medium with K. rhaeticus K3 by response 

urface methodology-central composite design 

CCD-RSM has been widely used with the goal of maximizing BNC

ield ( Bilgi et al., 2016 ; Ha et al., 2014 ; Naritomi et al., 1998 ; Park et al.,

003 ; Mohammadkazemi, Azin & Ashori, 2015 ). A graphical and numer-

cal optimization was made to achieve the highest BNC production yield

sing EBH with K. rhaeticus (see experimental design; Table 2 ). 

Before CCD-RSM, an analysis of the BNC yield from each run was

erformed. The highest values were obtained with runs 2, 8, 12, 13, 16,

0, 21, 22 and the control EBH ( p < 0.05) ( Table 2 ). No significant dif-

erences in the values of the BNC yield were observed between the men-

ioned runs ( p > 0.5), resulting in an overall average yield of 5.46 g/L

NC. In all these cases, EBH medium was used at glucose, nitrogen and

thanol concentrations higher than, respectively, 20 g/L,10 g/L and 2%

v/v). Regarding the control assays, a lower BNC yield ( p < 0.5) was

btained using HS medium (3.44 ± 0.04 g/L), as compared to EBH con-

rol. The micro-nutrients that putatively exist in EBH enhanced the BNC

roduction, as compared to the HS medium. Similar observations were

bserved in the literature for other alternative substrates ( Bilgi et al.,

016 ; Rodrigues et al., 2019 ; Silva et al., 2019 ). 

Equation 1 ∶ BNC _ yield _ EBH = −0 . 0962 + 2 . 25 ∗ Carbon 

+ 1 . 55 ∗ ethanol + 0 . 524 ∗ Nitrogen − 0 . 0585 ∗ Carbon ∗ ethanol 

+ 0 . 113 ∗ Carbon ∗ nitrogen − 3 . 84E − 003 ∗ ethanol ∗ nitrogen 

−0 . 368 𝐶𝑎𝑟𝑏𝑜 𝑛 2 − 0 . 256 ∗ 𝑒𝑡ℎ𝑎𝑛𝑜 𝑙 2 − 0 . 269 ∗ 𝑛𝑖𝑡𝑟𝑜𝑔𝑒 𝑛 2 

{Degree of freedom = 9; F -value = 12.20; p -value < 0.0001;

 

2 = 0.8942} 
6 
Table 3 displays the ANOVA analysis of the model built by CCD-

SM for BNC yield optimization of K. rhaeticus . In addition, the sig-

ificance of each parameter (CS, NS and ethanol) and the interaction

etween them were assessed. Analysis of variance (ANOVA) statistical

nalysis was carried out followed by Fisher’s Least Significant Differ-

nce (LSD) test. Regarding the RSM analysis of BNC yield with K. rhaeti-

us with EBH medium, a second polynomial order model was obtained

 Eq. (1) ). According to Table 3 , the F -value of 12.20 and of p -value Prob

 F ( < 0.0001) imply that this model is adequate (i.e. there is only 0.01%

robability that the value of “Model F-Value ” is due to noise). The “Lack

f Fit-F-Value ” (test for comparing lack-of-fit variance with pure error

ariance) of 1.61 and the p -value Prob > F of 0.3824 indicates that

he Lack of Fit is non-significant ( > 0.05) relative to the pure error, i.e.

here is 38.24% chance that a "Lack of Fit F-value" could occur due to

oise. For the controlled terms, “A-Carbon ”, “B-ethanol ”, “A 

2 -Carbon 2 ”

nd “B 

2 -ethanol 2 ” these were all significant ( p -value Prob > F < 0.05,

able 3 ). Higher R 

2 values indicate better correlation between the pre-

icted and experimental data. It was suggested that the R 

2 value should

e at least of 0.80, for a good model fitness ( Joglekar & May 1987 ).

he obtained R 

2 was of 0.8942, which indicates that 10.58% of the to-

al variation could not be explained by the empirical model ( Table 3 ).

hus, the response surface model developed in this study for predicting

he BNC production may be considered satisfactory. The signal to noise

atio was measured by Adeq Precision value (11.225). This is higher

han 4, indicating that this model can be used to navigate the design

pace. Therefore, the individual and interactive effect of model terms on

NC production can be interpreted by the 3D graphs of CCD provided in

ig. 5 , which represents a saddle-like curve for the studied parameters. 
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Fig. 5. 3D graphs of K. rhaeticus RSM optimization with EBH culture medium; surface curve for BNC yield (a) as a function of carbon and ethanol. (b) as a function 

of carbon and nitrogen. (c) as a function of nitrogen and ethanol and (d) optimization graph as a function of carbon and ethanol. 

Table 4 

Predicted and experimental values of BNC yield with EBH medium for K. rhaeticus K3 strain, under optimized culture conditions. 

Assay Carbon (g/L) Et-OH% (v/v) Nitrogen (g/L) Predicted BNC yield (g/L) Experimental BNC yield (g/L) 95%CL low 95%CL high 

1 23.5 2.25 13.5 5.59 5.36 + 0.22 5.36 5.89 

2 31.4 2.89 10.8 5.80 5.44 + 0.55 5.56 6.04 

3 23.5 2.25 10.0 5.57 5.36 + 0.88 5.32 5.83 

4 35.0 2.25 20.0 5.76 6.55 + 0.90 5.51 6.02 
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After numerical optimization, several solutions were found with the

ighest yields. EBH concentration of 23.5 g/L or higher provided the

ighest BNC yield ( Fig. 5 ). However, the increase of EBH, which in-

reases glucose concentration, may lead to a higher production of glu-

onic acid, known to decrease the medium’s pH, thus inhibiting BNC

roduction ( Tsouko et al., 2015 ). The same effect was perceived with

thanol, where the highest BNC yield was obtained with ethanol, up

o a concentration of 3% (v/v) ( Fig. 5 ). BNC yield increased by 45%

ith optimized ethanol supplementation and by 211% with optimized

BH addition ( Fig. 5 and Table 3 ) An opposite effect has been reported

ith K. xylinus ATCC 700178 ( Rodrigues et al., 2019 ; Silva et al., 2019 ).

he more promising medium compositions were used in additional fer-

entation assays ( Table 4 and Fig. 5 ). ANOVA analysis with the ex-

erimental results showed that all experimental results after RSM op-

imization were similar ( p > 0.20). Also, ANOVA analysis of experi-

ental and predicted values, showed a lack of significance in all EBH

edium tested ( p > 0.20). Therefore, the second polynomial model was

alidated. 

.5. Texture profile analysis of BNC membranes 

Texture analysis of the membrane was also performed with the

oal of understanding the differences between strains ( K. rhaeticus vs

. hansenii vs K. xylinus ) and between the culture media used ( K. rhaeti-

us HS vs K. rhaeticus EBH). Due to the lack of significance within the

our assays from Table 4 and these being representative of the best con-
7 
itions to maximize BNC production ( Table 4 ), assays 1 and 2 were cho-

en for further analysis ( Table 4 ). For comparison, BNC membranes were

roduced by K. rhaeticus , K. xylinus and K. hansenii with HS medium (see

xperimental section of TPA). All BNC membranes produced were anal-

sed through TPA and WHC measurements. 

The parameter “hardness ” measures the degree of stiffness of the

NC membrane (maximum force in the first compression). BNC from

. rhaeticus EBH_Assay1, showed the highest hardness value ( p < 0.05).

he lowest hardness values were found with K. rhaeticus HS ( p < 0.05).

pringiness describes how well the BNC membrane springs back after

he first deformation occurred. The highest value was obtained with BNC

rom K. hansenii ( p < 0.001), the BNC membranes produced by other

trains showing a much lower and similar springiness values ( p > 0.4)

 Fig. 6 ). Cohesiveness is defined by how well the BNC membrane with-

tands a second compression relative to its resistance under the first de-

ormation. Membranes produced by K. hansenii and K. rhaeticus cultured

n EBH medium presented similar ( p > 0.10) cohesiveness, although the

alues were relatively low (30%) ( Fig. 6 ). Lower values of cohesive-

ess were found on membranes produced by K. xylinus and K. rhaeticus

S ( p < 0.004) ( Fig. 6 ). Moreover, K. xylinus and K. rhaeticus HS mem-

ranes presented similar cohesiveness ( p > 0.70) ( Fig. 6 ). The resilience

easures the ability to regain the original height after 5 s of the first

ompression. All membranes showed very low resilience ( Fig. 6 ). It is

nown that BNC membranes can reswell to some extent after compres-

ion, but this is a very slow process. Overall, all membranes assessed

n Fig. 6 present low cohesiveness and resilience. The more relevant
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Fig. 6. Hardness, springiness, cohesiveness, resilience, firmness and WHC analysis of BNC membranes produced by K. rhaeticus in different culture medium and by 

K. hansenii and by K. xylinus in HS medium. 
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ifferences observed in the textural properties concern the lower hard-

ess of K. rhaeticus HS, the higher springiness of K. hansenii and the dif-

erences (in hardness, cohesiveness and resilience) between BNC mem-

ranes produced with different culture medium ( K. rhaeticus HS vs K.

haeticus EBH) ( Fig. 6 ). More specifically, membranes produced with

BH medium displayed higher hardness, cohesiveness and resilience

han membranes produced with HS medium. The use of different cul-

ure media can indeed interfere on the BNC membrane production dur-

ng static fermentation. Similar behaviour was encountered in Khum-

ar’s et al. ( Kumbhar, Rajwade & Paknikar, 2015 ) work, as the use of

 low cost substrates formulation (pineapple and watermelon peel) led

o higher hardness, cohesiveness and resilience, in comparison to HS

edium. Membranes from K. hansenii and K. rhaeticus with EBH medium

isplayed similar WHC ( Fig. 6 ), despite being cultured under different

edium culture compositions. Chung and Shyu ( Chung & Shyu, 1999 )

howed that BNC membranes with lower WHC had higher resistance to

ompression (higher hardness). Indeed, a straightforward rational relat-

ng the textural properties (in particular the more relevant differences

ointed out above) could not be found. Thus, we suggest that structural

eatures of the membranes (porosity, network crosslinking, interconnec-

ions between the several BNC layers) may justify the noted differences.

oth the culture medium ( K. rhaeticus HS vs K. rhaeticus EBH) and the

train used ( K. hansenii vs K. rhaeticus vs K. xylinus ) may lead to signif-

cant differences. This is a relevant feature concerning the exploitation

f BNC in the development of fruit mimetics ( Dourado et al., 2016 ). Al-

hough the well-known Nata de Coco is used for human consumption

or many years, there is relatively little exploitation of BNC in the food

ndustry ( Klemm et al., 2018 ). This product may be further developed

y using different additives, such as soluble polysaccharides, in order to
8 
une the textural properties, mimetizing for instance different kinds of

ruit. This will be further developed in future work. 

. Conclusion 

In this work, a novel bacterial cellulose (BNC) producing strain, K.

haeticus K3, isolated from Kombucha tea was characterized by SEM and

6S rRNA analysis. The effect of ethanol on the BNC production yield

nder static culture was studied. Also, a CCD-RSM analysis of BNC pro-

uction with K. rhaeticus and EBH medium was performed. The highest

verage BNC yield was 5.46 g/L. In terms of textural properties, the

se of EBH medium allowed to produce membranes with higher resis-

ance to compression, higher cohesiveness and resilience. On the other

and, the use of HS medium allowed to produce BNC with higher wa-

er retention capacity (WHC). Therefore, it is possible to produce BNC

embranes with different textural characteristics with K. rhaeticus, de-

ending on the desired application. 
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