Platform for the creation of cross-platform voice
applications

Rita Canavarro and Anténio Nestor Ribeiro

HASLab, INESC TEC and University of Minho
Largo do Paco, Braga, Portugal
a74484Cuminho.pt, anr@di.uminho.pt

Abstract. Due to the growth in the usage of digital assistants there
was a need to expand their functionalities in order to cater to a wider
range of users and their necessities. This need led to the creation of voice
applications. Voice applications are still relatively new and as such there
are still not that many tools, established architectural patterns or even
a standard methodology that can be used in the development process.
This problem is even bigger if we are addressing cross-platform appli-
cations, given that there is nowadays a plethora of different vendors of
integrated digital assistants. The lack of a standardized methodology
means that the developers will end up using the methodology(ies) that
seems the most adequate concerning the purpose of obtaining a stable
product. With this in mind, a research about the different application
models for voice applications was conducted. This research led to the
creation of a platform, with an incorporated visual editor, that promotes
a platform-independent development process of cross-platform voice ap-
plications and its automatization. This platform allows a developer to
create a language model template that will later be used to generate
platform-specific models to define the frontend and boilerplate code to
develop the backend functionality. By using this platform, the developers
will be able to create and deploy voice applications for Amazon Alexa
and Google Assistant from a single source of information despite the
differences in their application models and, most important, resorting
primarily to the intended requirements and not only to technological
aspects.

Keywords: Voice applications - Digital assistants - Software engineering

1 Introduction

Digital assistants have as main objective to help people on their daily tasks such
as sending a text message [6] or through voice commands or autonomously due to
the gathering and processing of a particular type of data. In order to extend their
functionalities, making them more appealing to the consumers market, compa-
nies such as Amazon and Google decided to provide SDKs for the development
of voice applications. Voice applications can act as an interface for mobile/web
applications through voice commands [6] or be independent applications that
exist only for voice-first platforms.

Nowadays, what is happening in the field of voice applications is similar to
what happened when mobile applications first appeared. When developers try to
develop a voice application they feel tempted to apply, for instance, the method-
ologies that they use when developing web/mobile applications, which might not
be a good idea due to the transient and invisible nature of voice applications.
In this field, there are already some development tools and methodologies avail-
able yet a standard methodology, that defines a set of rules and the models that
can be developed to specify certain components of the application such as the
conversation model, still hasn’t been defined. The focus on platform-specific tool-
s/methodologies and the absence of a standard methodology makes the develop-
ment of cross-platform voice applications more complex and time-consuming and
might make the developer more focused on the different technological aspects
rather than on the application requirements.

A platform that aims to promote the development process of cross-platform
voice applications and its automatization is proposed in this paper. The objective
is to provide a platform, with an incorporated visual editor, for the creation
of voice applications, where from a generic specification it should be possible
to generate and deploy them to various systems. This platform will be built
towards the digital assistants Amazon Alexa and Google Assistant, given that
the differences on their application models don’t prevent the use of the proposed
platform-independent development process. The frameworks Jovo and Violet will
also be supported in order to allow the use of this development process and one
of those frameworks together.

The platform core component is a cross-platform language model template,
whose primary goal is to allow the specification of the application. The internal
structure of the template is going to be transparent to the developer, which
means that he can be focused on what he wants to specify in each component,
via the visual editor, and not on how the whole template should be structured
in order to be cross-platform. The template allows the definition of the frontend
and also the generation of boilerplate code for the initial development of the
backend. High-level UML activity diagrams, which allow the definition of the
conversational model and the outlining of the application functionalities, were
also developed to help in the definition of the components of the language model.

This paper describes the steps that were taken towards the development of
the platform. The remnant of the paper is organized as follows. Section 2 will
cover the necessary background regarding the aforementioned digital assistants
and frameworks and the components of a voice application. Section 3 will present
the general steps for developing a single-platform voice application, the high-level
activity diagrams and the platform. Lastly, section 4 will conclude the paper.

2 Background

This section presents a brief review of the background relevant to the work
present in this paper. The background will be focused on the digital assistants
and frameworks chosen and on the structural components of a voice application.

2.1 Digital Assistants and Frameworks

Amazon Alexa This assistant was officially released in November 2014 [3],
which makes it one of the oldest digital assistants next to Siri and Cortana.
Amazon was the first company to provide open-source tools to developers in
order for them to be able to develop voice applications, which Amazon named
Skills [7]. By making this decision, Amazon allowed Alexa to grow rapidly in
terms of functionalities available to its users in comparison with the rest of the
digital assistants present in the market [15].

Google Assistant This digital assistant was officially released in May 18, 2016
[9]. The Assistant is the successor of Google Now, being that it inherited all
of its research capabilities and still added some new functionalities [11] due to
Google advances in the area of Artificial Intelligence. Moreover, the Assistant
also improved the interaction with the user by being able to talk with him
[10] and at the same time learn the user preferences [11]. Google, in order to
be competitive in the digital assistants market, also allows the development of
voice applications, to which it refers as Actions [13].

Jovo Jovo is a cross-platform framework that was created to allow a developer
to develop voice applications, from the same codebase, for Amazon Alexa and
Google Assistant. Given that these two assistants share some structural simi-
larities, this framework makes use of that characteristic and allows developers
to develop generic JavaScript (Node.JS) code without losing the ability to use
platform-specific backend functionalities[3]. However, even though Jovo provides
a proprietary language model for the development of platform-specific language
models, the developer will have to specify it entirely by hand in a JSON file,
which can become quite cumbersome the more complex the application becomes.
Additionally, if there is the need for platform-specific functionalities, the devel-
oper will have to add to the Jovo model the proprietary language models of
each assistant. This implies that, if in the future, the developer wishes to make a
single-platform functionality present in both assistants, he might have to refactor
a considerable portion of its language model by hand.

Violet Violet is a cross-platform framework that was created in order to ease
the development of high-end voice user experiences by helping developers in
the definition and use of conversational flows. This framework offers support to
the development of conversational bots and voice applications [14]. Violet uses
JavaScript (Node.JS) and a HTML-inspired language to develop the conversa-
tional flow between the user and the application. Furthermore, it also allows
the use of plugins to ease the call to external APIs, such as a plugin to make
a connection to a PostgreSQL database. It should also be mentioned that the
language models generated by Violet for Google Assistant are still not well struc-
tured. The generated model for Google Assistant lacks the arguments and their
types, that are defined in the backend code, which means that the developer will

have to specify them by hand on the DialogFlow console and also correct the
phrases where they were supposed to appear. Lastly, Violet is still in the beta
development phase and it’s currently in version 0.16.

2.2 Components of a voice application

In order to be able to develop the proposed platform, it was conducted a study
about the necessary components in a voice application for Alexa and Google
Assistant. The frontend is developed by defining a language model, that de-
scribes how the application can be invoked, what it can do and how the user can
ask for the functionalities available. By defining this model, the developer will
provide the assistant with a wide range of important information along with a
mapping tool that allows the assistant to map each one of the user requests to
its corresponding function on the backend. The information can be the phrases
that can be used to request a functionality or the data that is necessary, from
the user side, to fulfill its request. The conducted study led to the conclusion
that both assistants have the same components in their language models, even
though they have different structures and some components have different de-
nominations. Figure 1 presents a UML domain model diagram, that specifies the
language model components and the relations that they maintain among them.

» can have B’W
0.1

0.* » can have 1

¥ stores

¥ has VY has

#has
1 1
1

Fig. 1. Components of the language model

— Invocation name, that corresponds to the name that the user will use to
invoke the voice application;

— Intent, that represents a functionality of the application. Each one of the
Intents will be composed by a name and by a set of sample phrases, which
Amazon denominates of utterances and Google of User expressions, that
represent what the user will normally say to invoke the functionality;

— Inputs, which Amazon denominates slots and Google entities, that represent
the data that the user must provide in order for the application to be able to
fulfill its request. The Inputs are associated with the sample phrases as they
must be placed in the phrase in the place that is most likely for the user to
say them. Each one of the Inputs is composed by a name and a type;

— Input Types, that allow the definition of developer defined types;

— A type that is composed by a name and by a set of values that the Input
might take. Furthermore, these values can have synonyms, that are defined
in order to increase the number of ways that the user has of saying a certain
word and therefore provide a certain field [1]. This makes the dialogue more
flexible.

The backend will be constituted by handler functions that will support all the
functionalities of the application and by a routing handler that will handle the
incoming HTTP POST requests. There might also be the need to persist in-
formation in a database that will, for instance, improve the future use of the
application or store the current conversational state that the application is in,
so that the application may know which handler function to execute. Addition-
ally, the backend might also have to use external APIs in order to have access
to more resources and/or extra functionalities.

3 Methodology

In this section, the development steps of the platform and of the high-level activ-
ity diagrams, will be described alongside with a general explanation about the
development of a voice application for the digital assistants Alexa and Assistant.

3.1 Single-platform development

In order to expose the similarities and differences that exist among the applica-
tion models of Alexa and Assistant and to enhance how the developed platform
took said similarities and used them to promote a platform-independent develop-
ment process, a tabular explanation (Table 1, Table 2), that focus on the general
development steps of a single-platform voice application, was elaborated.

3.2 High-level activity diagrams

Typically, when developers begin the definition of the conversation model of
their voice application, they are faced with several approaches and one of them
is the definition of high-level flow diagrams [4][5]. Regarding the high-level flow
diagrams, not all developers feel confident in developing them due to the high
probability of committing the mistake of iterating too much the definition pro-
cess. This mistake happens when the developer tries to describe every possible
next step in the conversation between the user and the application. Such task
can end up being a potential infinite exercise given that the users have freedom
of speech when they are using the application. If this mistake isn’t revised, the
voice application will be very similar to an interactive voice response and not to
a natural dialogue with another person [2]. A different approach to the definition

Table 1. Development of the Frontend of voice applications

Digital
assistants

Language Model

Application responses

Amazon Alexa

Definition through a visual
editor or a single JSON
file.

Define the responses on the backend code
and send them on the response output.
Can also define a dialog model to handle
confirmation of an Intent and gathering
and confirmation of an Input value.

Google Definition through a visual|Define the responses on the backend code
Assistant editor or multiple JSON |and send them on the response output or
files (two for each Intent|define them on the model schema.
and Input).
Table 2. Development of the Backend of voice applications
Digital Similarities Differences
assistants

Amazon Alexa

Start with importing all
the necessary modules and
performing the needed con-

Each handler is going to be composed by
two different functions.
A function denominated canHandle,

figurations. that allows the definition of the
Develop a handler for each|activation rules, and a function
functionality. denominated handle, that has the code

that will fulfill the user’s request.

The handler is composed by only one
function, that fulfills the user’s request,
given that there is no need for activation
rules.

End with the definition of
a routing handler to

establish the entry point
for HTTP POST requests.

Google
Assistant

of the conversation model is proposed in this paper. This approach consists in
the development of high-level UML activity diagrams given that they provide a
well-defined notation and development rules, help in the standardization of the
development process and are a platform-independent tool. However, the devel-
opment of activity diagrams follows a certain set of rules that might not give the
developer enough freedom to express what its voice application is going to do.
Additionally, if the developer has never used UML he will have to spend some
time learning the notation and rules inherent to the development of activity di-
agrams. Nonetheless, it’s considered that, despite the possible disadvantages of
using UML activity diagrams, they are still an acceptable approach when com-
pared to high-level flow diagrams. The activity diagrams will be used to specify
the application functionalities, an example of a phrase that can be used to in-
voke the functionality, and the main flow of conversation between the user and
the application. These diagrams will help in the development of the language
model components (section 2.2) because the developer will already have a solid
notion of the functionalities (Intents) and their sample phrases and if they will
need to receive arguments (Inputs) from the user in order to fulfill its request.

Furthermore, the activity diagrams can also be used to demonstrate the interac-
tions between the user and the application during the fulfillment of a request (a
more detailed flow of conversation), so that the developer can specify what he
wants its application to respond back to the user when a certain functionality
is being performed. The activity diagram (Fig.2) presents the main menu of a

User Digitalassistant
"Open Inforum [Starts application] Welcome
2019" Intent
User says [First ir i |
something /™

['When is Inforum?",.v]@l\

Intent

['What is happening now?",..](\
__Intent)/

Intent matching Intent matched

['Yes",.] Yes
Intent PR
[Interaction is finished]
['No",..]
Action taken
[Help".. ;.7

["Exit"..] [Stop
Untent)

| ['Cancel"..] Cancel
Intent
['Repeatit",..] Repeat
Intent

['Shops near me",.](Fallback \ |
Intent

[Follow up interaction] é.s

Digital assistant
responds
accordingly

Fig. 2. Conversation flow between user and application

voice application that tells the user the general information about INForum and
its schedule. By developing this type of diagram, the developer can specify what
the user can do in the application without having to detail all its possible steps.
For instance, the user can go to the Schedule Intent after being welcomed into
the application and to demonstrate it, it wasn’t necessary to specify that before
he might, or not, have asked for another Intent. To specify the inner path of
a functionality, that corresponds to the flow of conversation between the user
and the application during its fulfillment, as it was aforementioned the developer
should specify a more complete activity diagram. Therefore, this tool allows the
developer to specify the main flow of conversation of the application and the
functionalities that it will offer, without having to make prior commitments of
what paths must necessarily be followed in order for a request to be fulfilled.

3.3 Platform

In the current approaches, the development of a cross-platform voice application
implies the definition of the same language model for each digital assistant that
the application will be in. Given that those models will most likely have different
structural rules, the developer will have to spend part of its time performing
duplicate work. The platform proposed in this paper (Fig.3) aims to remove the

duplicate work and to streamline the definition process by allowing the definition
of a cross-platform language model template (e.g listing.1.1) that can be used
to generate platform-specific language models and boilerplate code for the inital
development of the backend functionality. Furthermore, the platform also allows
the deployment of the language model to the Alexa Developer Console and
DialogFlow and the source code to AWS Lambda, as well as the deployment of
both the language model and the source code through Jovo. The deployment
process consists in gathering the necessary credentials from the user and in
generating the corresponding language model and source code files. These files
will then be deployed to the chosen digital assistant(s) and cloud-server platform.

Platform
Generates 1 or 2
Source code files depending
generator on the platform
chosen (Alexa, Read and
Assistant,...) Write files)
% Persistency
Language
p\Creales/Vicws model -
template Wwritefiles | Generated files
veer 9 directory
Language Generates 1to N
model models depending
generator on the platform
chosen(Alexa,
Assistant,...)

Fig. 3. Platform Layout

Cross-platform language model The cross-platform language model tem-
plate, proposed in this paper, is based on the models of Amazon Alexa and
Google Assistant. Regarding the frameworks, Jovo’s language model wasn’t con-
sidered as it’s inspired in the model of Alexa, and given that Violet doesn’t have
a proprietary language model and uses the models of Alexa and Assistant, it
wasn’t considered as well. It was decided to name the language models, that the
platform uses and that the developers will specify, language model templates be-
cause they will serve as a starting point to the generation of the platform-specific
language models and boilerplate code. The idea for the cross-platform template
originated from the study that was conducted upon the language models of both
digital assistants (Subsection 2.2). As it was aforementioned, this study led to
the conclusion that the language models of both assistants share the same struc-

tural components. This characteristic confirmed that it was indeed possible to
define and generate a cross-platform template of the language models. However,
even though they have the same components, the structural rules for the output
of the model in JSON files differed among them (Table.1). In order to surpass
this difference, it was decided that three different language model generators
should be developed, so that the structural rules of both digital assistants and
Jovo would be respected. Regarding the cross-platform template, it will have the
common structural components of the language models and the necessary rela-
tionships among them. This template (Listing 1.1) will then be used to feed the
generation process (Fig.3) in order for the language model generators to be able
to produce their corresponding platform-specific models (Listing 1.2). The class
diagram (Fig.4) depicts the components of the cross-platform language model
template and their relationships. The platform has two types of templates, the

intent
template L has Sam) * samplePhrases
K = ¢ plephrases 1.
-Name : String has_Intents AT Sy -Phrase : String

ific : String 1
-InputState : String
-OutputState : String

-Description : String 1 1.7
-generatedToPlatforms : String[]
-invocationName : String

1.*'| -samplePhrases

1 has_InputTypes
A 1.* Phrase_Input

0.*

defaultTemplate customTemplate o has_Inputs 0% g
Version - i -CreationDate : Date - input
Version : int i S e nputType . -Name : String

) St is_used_by_Inputs 1. P
-Name : String = =t -InputTypeUsed : String
1 . |-UsedBylntent : String[]
1 -inputs
has_Values
1.
value
-Name : String

-Synonyms : String[]

Fig. 4. Components of the cross-platform language model template

default templates and the custom templates. The default templates will come
with the platform and will serve as examples to the developer. These templates
are read-only, but it’s possible to generate platform-specific language models
and/or source code and also deploy them. The custom templates correspond to
the new language model templates (e.g listing 1.1) that the developer can spec-
ify using the visual editor provided by the platform. In order to provide more
options, the developer can also mark a functionality as platform-specific, which
means that it will only appear in the language model of the intended assistant.
Furthermore, the platform also makes available a list of built-in Intents and In-
put Types, that are provided by the digital assistants, so the developer can use
them as if they where platform-independent.

Lo o)
" _Name": "INForum2019",
"_Description": "Voice application for the Inforum

symposium",
" _GeneratedToPlatforms": ["All","Jovo"],

10

" _InvocationName": "inforum guide",
" _Has_Intents": [(...)
{" _Name": "ScheduleIntent",
"IsPlatformSpecific": "All",
"InputState": "",
"OQutputState": "Schedule",
"_Has_Samplephrases": [{"_Phrase": "what is the
schedule for {location} on {datel}"}, {"_Phrase": "where
{paperNamel} is being presented"},(...)],
"_Has_Inputs": [{"_Name": "topicName",
" _InputTypeUsed": "TopicsINForum",

"_UsedByIntent": ["ScheduleIntent"],(...)
PolooodlBpoloocsd

}

Listing 1.1. Language model template of the Inforum voice application
{"invocation":"inforum guide",
"intents": [{

"name":"SchedulelIntent",
"phrases": [
"where {paperNamel} is being presented",
"tell me what is going to be presented at
{location} on the {date} at {timel}",
(...)],"inputs": [{
"name":"topicName",
"type":"TopicsINForum"},

"name":"date",
"type":{"alexa":"AMAZON.DATE",
"dialogflow":"@sys.date"}
PolooodlPs Cooodly
"inputTypes":[{"name":"TopicsINForum",
"values":[{"value":"Mobile and Ubiquitous Computing",
"synonyms":["Mobile
Computing",(..)1},C...0},(C...0],
C...)%r
Listing 1.2. Platform generated language model example for the Inforum voice
application

Generation of boilerplate code The information present in the cross-platform
language model template allows the generation of boilerplate code for the ini-
tial development of the backend functionality of a voice application. In order to
generate the boilerplate code, three code generators were implemented. There is
the need for three different generators because, like in the output representation
dilemma, each digital assistant and framework has a different approach to the
codification of the backend. A code generator for Violet wasn’t developed as this

11

framework is still in beta (section 2.1). In this case, the template (Listing 1.1)
will also be used to feed the generation process of boilerplate code (Fig.3). The
boilerplate code will be generated for JavaScript (Node.JS) given that its sup-
ported by both assistants via a SDK and is the programming language used by
Jovo. Regarding the code structure (Listing 1.3), it will have all the necessary
configurations (e.g routing handler, etc) and the skeleton code of each one of the
functionalites that the developer defined. Furthermore, the setup of a database
and the definition of conversational states will also be supported. Conversational
states are used to maintain the current context of the conversation between the
user and the application in order to be able to know which functionality should
be activated by the user’s request.

const {App} = require(’jovo-framework’);
const {Alexal} = require(’jovo-platform-alexa’);
const {GoogleAssistantl} =
require (’ jovo-platform-googleassistant’) ;
const {JovoDebugger} = require(’jovo-plugin-debugger’);
const app = new App();
app.use(new Alexa() ,new GoogleAssistant () ,new
JovoDebugger ()) ;
app.setHandler ({
LAUNCH() {return this.toIntent (’WelcomeIntent’);},
GeneralIntent (){ },
ScheduleIntent){ 1,
C...)
ENDO{ 3,
Unhandled: function(){this.toIntent(’FallbackIntent’);}
I
module.exports.app = app;

Listing 1.3. Platform generated code example for the Inforum voice application

4 Conclusion

The first step towards the standardization of the development process of cross-
platform voice applications is the creation of platform-independent tools and
mechanisms that can increase the efficiency of the process and reduce the time
that the developer has to spend performing duplicate work because of platform-
specific rules. The absence of standardization makes the development of cross-
platform voice applications more complex and time-consuming for the developer
due to the current plethora of different digital assistants that have their own ap-
plication models and development tools. Regarding the developers perspective,
the insuccess and low retention rate of their voice applications [12] may demo-
tivate them from developing more applications of this type. That may lead to a
general disinterest for this field and thus to a small developer community and
slower advances on this technology. However, the main issue with the absence
of standardization is that the developers don’t have a common language to use
to share ideas or development steps with one another and platform-independent

12

rules to guide them towards the development of voice applications that have a
good user experience across digital assistants. The high-level activity diagrams
are a tool that allows the developers to more easily model the frontend and
communicate ideas with others (e.g client, etc). The proposed platform aims to
promote a platform-independent definition of the frontend and to automatize the
development of cross-platform voice applications, thus making it easier to de-
velop and test them and also to maintain a consistent user experience throughout
devices. The core component of the platform is a cross-platform language model
template that was achieved by analyzing the common components of the digital
assistants’ language models. The platform allows the developers to only have to
define one language model template in order to specify and generate the frontend
and the boilerplate code for the backend functionality, for a cross-platform voice
application. Namely, this will lead to less errors, that could appear due to having
to define the same language model more than once because of digital assistants’
rules, and to a more efficient development process. Lastly, the platform allows
the developer to be more focused on the requirements and fundamental parts
of the voice application (e.g functionalities, user experience, etc) rather than on
platform-specific details.

References

1. A.Coates, D.: Voice Applications for Alexa and Google. Manning (2018)
2. Amazon: Script out. Online, accessed: 2018/11
3. Etherington, D.: Amazon Echo Is A $199 Connected Speaker Packing An Always-
On Siri-Style Assistant. Online, accessed: 2018/12
4. Google: Write sample dialogs. Online, accessed: 2018/11
Goossens, F.: Designing a VUI Voice User Interface. Online, accessed: 2018/10
6. Hoy, M.B.: Alexa, Siri, Cortana, and More: An Introduction to Voice Assistants
37(1), 81-88 (2018)
7. Isbitski, D.: Introducing the Alexa Skills Kit, Enabling Developers to Create En-
tirely New Voice Driven Capabilities. Online, accessed: 2018/11
Konig, Jan., S.A.: Jovo Platform Specific Features. Online, accessed: 2018/11
9. Linley, M.: Google unveils Google Assistant, a virtual assistant thats a big upgrade
to Google Now. Online, accessed: 2018/11
10. Lépez, G., Quesada, Luis, G., A, L.: Alexa vs. Siri vs. Cortana vs. Google Assistant:
A comparison of Speech-Based Natural User Interfaces (2017)
11. Maiolino, T.: Maximus - Automatizando Tarefas por Voz (2017)
12. Marchick, A.: The 2017 Voice Report by Alpine (fka VoiceLabs). Online, accessed:
2018/10
13. Miller, P.: Google Assistant will open up to developers in December with ’Actions
on Google. Online, accessed: 2018/10
14. Sinha, V.: Open Sourcing Violet A Voice Application Framework. Online, accessed:
2018/10
15. VoiceLabs.co: The 2017 Voice Report - Executive Summary p. 12 (2017)

ot

o

5 Acknowledgments

This work is financed by National Funds through the Portuguese funding agency,
FCT - Fundagéo para a Ciéncia e a Tecnologia within project: UID/EEA /50014/2019.

https://developer.amazon.com/ask-resources/guided/conversational-design-workshop#/lessons/4ayCJLArlkBW5eVc_0EVP7hXjXh321vs?_k=ldxp2j
https://www.techcrunch.com/2014/11/06/amazon-echo/
https://www.techcrunch.com/2014/11/06/amazon-echo/
https://designguidelines.withgoogle.com/conversation/conversation-design-process/write-sample-dialogs.html#write-sample-dialogs-sample-dialogs-for-beginners
http://www.uxplanet.org/designing-a-vui-voice-user-interface-c0b3b9b57ace
https://developer.amazon.com/blogs/post/Tx205N9U1UD338H/Introducing-the-Alexa-Skills-Kit-Enabling-Developers-to-Create-Entirely-New-Voic
https://developer.amazon.com/blogs/post/Tx205N9U1UD338H/Introducing-the-Alexa-Skills-Kit-Enabling-Developers-to-Create-Entirely-New-Voic
https://www.jovo.tech/docs/platforms
https://www.techcrunch.com/2016/05/18/google-unveils-google-assistant-a-big-upgrade-to-google-now/
https://www.techcrunch.com/2016/05/18/google-unveils-google-assistant-a-big-upgrade-to-google-now/
https://www.medium.com/@marchick/the-2017-voice-report-by-alpine-fka-voicelabs-24c5075a070f
https://www.theverge.com/2016/10/4/13164882/google-assistant-actions-on-google-developer-sdk
https://www.theverge.com/2016/10/4/13164882/google-assistant-actions-on-google-developer-sdk
https://engineering.salesforce.com/open-sourcing-violet-a-voice-application-framework-744f7c660655

	Platform for the creation of cross-platform voice applications
	Introduction
	Background
	Digital Assistants and Frameworks
	Components of a voice application

	Methodology
	Single-platform development
	High-level activity diagrams
	Platform

	Conclusion
	Acknowledgments

