
Experiences on Teaching Alloy with an
Automated Assessment Platform

Nuno Macedo1,2, Alcino Cunha1,2, José Pereira2, Renato Carvalho1,2, Ricardo
Silva2, Ana C. R. Paiva1,3, Miguel Sozinho Ramalho1,3, and Daniel Silva3

1 INESC TEC, Portugal
2 University of Minho, Portugal
3 University of Porto, Portugal

Abstract. This paper presents Alloy4Fun, a web application that en-
ables online editing and sharing of Alloy models and instances (including
dynamic ones developed with the Electrum extension), to be used mainly
in an educational context. By introducing secret paragraphs and com-
mands in the models, Alloy4Fun allows the distribution and automated
assessment of simple specification challenges, a mechanism that enables
students to learn the language at their own pace. Alloy4Fun stores all
versions of shared and analyzed models, as well as derivation trees that
depict how they evolved over time: this wealth of information can be
mined by researchers or tutors to identify, for example, learning break-
downs in the class or typical mistakes made by Alloy users. Alloy4Fun has
been used in formal methods graduate courses for two years and for the
latest edition we present results regarding its adoption by the students,
as well as preliminary insights regarding the most common bottlenecks
when learning Alloy (and Electrum).

Keywords: Teaching formal methods · Alloy · Automated assessment

1 Introduction

Alloy [6] is a popular formal specification language, accompanied by a toolkit, to
describe and reason about software design. It is taught in several undergraduate
and graduate courses in formal methods, including graduate courses taught by
some of the authors at University of Minho (UM) and University of Porto (UP),
in Portugal. One of the reasons for this popularity is the support for automated
analysis provided by the Alloy Analyzer, an easy to download and install self-
contained executable written in Java. The Analyzer also allows instances (either
witness scenarios or counter-examples) to be graphically depicted using user-
customized themes, a popular feature both for experienced users and students.
Alloy is very effective in the specification and analysis of the static structures
that pervade software design, but requires the employment of well-established
idioms, that introduce an explicit notion of state or time, if mutability is to be
considered and temporal properties analyzed. To avoid this cumbersome and
error-prone process, several extensions to Alloy have been proposed, including

2 N. Macedo et al.

one by authors of this paper – Electrum [7] – which extends the Alloy language
with variable structures and linear temporal logic (including past operators), also
adding bounded and unbounded model checking engines to the Analyzer.

Despite such streamlined toolkit, over the many years we taught and researched
with Alloy we identified some missing features and functionalities that could
further ease its adoption and its usage in an educational context. The first is the
lack of a straightforward mechanism to share simple Alloy models, instances4
and associated themes. This would be particularly useful for students trying
to get feedback from the tutors about specific counter-examples, or to submit
exercise resolutions for evaluation. The second is the absence of some automated
assessment functionality or online judge system for students to independently
check the correctness of their exercise resolutions. Due to some limitations of the
visualizer packaged with the Analyzer, we also felt the need for a more decoupled
infrastructure to test alternative instance visualization features.

To address these limitations we developed Alloy4Fun, a web application that
enables online editing and sharing of Alloy and Electrum models5 and instances,
including simple specification challenges in the form of duels where students
attempt to discover a secret specified by the tutors. Such online platform also
provided us the opportunity to collect information regarding Alloy usage patterns
from an extended user base: one of the features of Alloy4Fun is thus the ability
to record every interaction with the (anonymous) user, information that is made
available to the creator of the challenges for subsequent analysis. Over the last
two years, Alloy4Fun has been used in 3 editions of graduate courses on formal
methods and a tutorial at an international venue, which has allowed us to quickly
obtain insight on how students use the language, namely identify typical mistakes
or learning breakdowns in the class.

This paper presents Alloy4Fun and reports on its application in teaching
Alloy, starting with an overview of (and rationale for) its current features in
Section 2. Section 3 reports on its deployment in a formal methods graduate course
(Section 3.1), including our experience on defining exercises, results regarding
usage and adoption of the platform (Section 3.2), and some preliminary insights
on Alloy usage patterns and learning pitfalls (Section 3.3). Finally, Section 4
concludes the paper and presents some ideas for future work. Knowledge of Alloy
is not required to understand the paper, but can help better appreciate some of
the features of Alloy4Fun.

2 Alloy4Fun overview

The core of Alloy4Fun mimics in a web application the main features of the
standalone Alloy Analyzer. After accessing alloy4fun.inesctec.pt (the URL
4 In Alloy literature, specifications are usually referred to as models, and the results of
animation/verification commands as model instances.

5 Electrum is retro-compatible with Alloy: models without temporal features are valid
Alloy, apart from protected keywords. For readability we will simply refer to Alloy
throughout the paper, unless some Electrum-specific feature is being discussed.

alloy4fun.inesctec.pt

Experiences on Teaching Alloy with an Automated Assessment Platform 3

Fig. 1: A failed attempt to solve a challenge in the CV exercise.

where Alloy4Fun is currently deployed) the user gets an empty online editor
(with syntax highlighting) where Alloy models can be written. An Alloy model
consists of a sequence of paragraphs: each paragraph is either a signature (and
the respective fields) declaration, a fact with a constraint that is assumed to
hold, an assertion with a constraint to be checked, or an auxiliary predicate or
function definition. Signatures introduce sets of elements (known in Alloy as
atoms) and fields establish relations of arbitrary arity between those sets. Disjoint
subset signatures can be declared by extension, and the parent signature can be
marked as abstract, if it should only contain atoms present in its extensions. For
example, the Alloy4Fun screen capture shown in Fig. 1 shows a model of an online
Curriculum Vitae (CV) platform, an example that was used as an exercise in
classes. This model declares a signature Source that is partitioned in two subsets,
User and Institution. Two more signatures are declared in this example: Id
and Work. We also have several fields that relate atoms of these signatures. For
example, ids is a binary relation that associates each atom of Work with its
set of Ids. Signature and field declarations can have multiplicities attached to

4 N. Macedo et al.

impose cardinality constraints. For example, the some in the declaration of field
ids imposes that each Work should have at least one Id.

Formulas in facts, assertions, and predicates, are written in Relational Logic
(RL), an extension of First-Order Logic (FOL) with operators that can be used
to combine relations (aka predicates in FOL). The most frequently used one is
the relational composition (written as .), an operator that allows us to “navigate”
through a relation: for example, in predicate Inv2 of Fig. 1, expression u.profile
denotes the set of atoms of signature Work associated with User u. In Alloy
every signature and field is immutable. With the Electrum extension they can be
declared as mutable, and formulas can also be specified with Linear Temporal
Logic (LTL) operators.

A distinctive feature of Alloy is that analysis commands can also be declared
as paragraphs in a model. There are two kinds of commands: run commands,
that verify the satisfiability of the declared facts and can be used to get witness
scenarios; and check commands, that verify the validity of an assertion (assuming
the facts to hold) and, if that is not the case, return a counter-example. All the
analysis commands operate in a bounded domain: there is a user-defined scope
imposed on every signature that limits the maximum number of elements that
will be considered by the automatic verification procedures. In Alloy4Fun the
topmost right button allows analysis commands to be executed: the command to
be executed can be selected in the drop-down immediately above. If witnesses (in
the case of run) or counter-examples (in the case of a check) are found, they are
depicted below the editor as graphs that, likewise in Analyzer, can be customised
with user-defined themes.

Besides these core functionalities, Alloy4Fun has some new features (and some
improvements to existing ones) when compared to the Analyzer, as described in
the sequel. Currently, it also has some limitations, most notably the inability to
choose the underlying SAT solver used to perform a given analysis, not being able
to display an unsatisfiable core, and lack of support for Alloy’s module system
(except for the standard modules distributed with Alloy, which can be used).
In the specific case of Electrum, Alloy4Fun lacks the more sophisticated trace
exploration options available in the Electrum Analyzer [3], as described next.

Instance visualization and navigation When compared to the Analyzer, Alloy4Fun
follows a more lightweight approach to the user interface, allowing the most
common theme customizations (like changing the color of the atoms of a given
signature) to be performed quickly through a right-click menu on atoms or edges.
We also stripped down a bit theme features to a subset that we identified as
those more commonly used. Alloy4Fun themes allow color, shape, stroke, and
visibility parametrization for signatures and fields, signature projection, and the
display of fields as attributes inside atoms. Among the unsupported features we
have, for example, the customization of the atom labels for each signature or the
ability to hide only unconnected atoms of a particular signature. A new feature is
the ability to select different layout algorithms to automatically organize nodes,
which the user can then manually move. Unlike in the Analyzer, atom positions
are preserved between the frames of projected instances, and when navigating

Experiences on Teaching Alloy with an Automated Assessment Platform 5

the different states of a trace in the case of an Electrum (mutable) instance. In
Fig. 1 a counter-example of a check command named Inv2OK is being depicted
with a user-defined theme. Unlike in the Analyzer, besides navigating to the
next instance the user can also re-visit previously presented instances. In the
case of Electrum, Alloy4Fun only allows one state of an instance trace to be
visualised at a time (the Electrum Analyzer depicts two states side by side), and
it is only possible to ask for a different next trace (the Electrum Analyzer has
more sophisticated trace exploration options, for example it is possible to ask for
trace with the same prefix up to the displayed state, but a different next state).

Sharing models and instances The standard Alloy Analyzer provides limited
support for model and instance sharing: they can be saved in separate files, which
can then be shared using external tools (email, online repositories, etc), to be
again opened at the destination for inspection or editing. When a visualization
theme has been developed to ease the interpretation of instances, it must also
be shared in an additional file. This sharing by saving / opening files rapidly
becomes tedious and time consuming in some contexts, in particular for tutors of
large classes that interact frequently with students (typically by email) to clarify
doubts. Alloy4Fun provides the ability to easily share models and instances. After
pressing the “share model” button a permalink is generated, that can later be
used to access the model. Any theme defined by the user is also preserved when
sharing, thus allowing instances of shared models to be depicted as intended
by their creators. Concrete instances can also be shared via permalinks. The
theme and positions of the depicted atoms and relations at the time of sharing
are also preserved. This is a very handy feature since, likewise in the Analyzer,
the positioning of atoms by the automatic layout mechanism is often not ideal,
requiring manually rearrangement for better comprehension. For instance, the
instance presented in Fig. 1 can be shared as depicted6.

Anonymous interaction In Alloy4Fun there are no user accounts nor means
to recover the permalinks of previously shared models and instances. The user
is responsible for keeping track of relevant permalinks using some external
mechanism (Alloy4Fun provides a “copy to clipboard” button to ease this task).
The anonymity, namely the absence of user accounts, was a design choice made
in order to keep the interaction with the web application as simple as possible, to
maximize user exposure, and also to avoid dealing with privacy and security issues,
namely the hassle of storing and managing user credentials and of implementing
mandatory regulations concerning data protection.

Automatic assessment Although the Alloy specification language has very neat
and simple syntax and semantics, many students struggle with its declarative
nature, in particular those used to procedural programming [2]. One way to
overcome this difficulty is by independently solving exercises proposed by tutors,
but, even with automated analysis and visual feedback, it is often difficult for

6 http://alloy4fun.inesctec.pt/8Q4Sbjqj4KzHuvuNC

http://alloy4fun.inesctec.pt/8Q4Sbjqj4KzHuvuNC

6 N. Macedo et al.

students to assess whether they reached the correct answer, and tutors are required
to inspect and interpret the solutions (something not scalable for large classes).
These problems could be mitigated with automatic assessment functionalities,
allowing students to solve exercises at their own pace and without the constant
need for face-to-face time with tutors. In recent years, auto-graders and online
judges have become widely popular for learning how to program [10], and we
believe this success could be replicated in the learning of formal methods in
general, and Alloy in particular.

With this in mind, the user in Alloy4Fun has the ability to mark any paragraph
of a model as secret, by adding the special comment //SECRET immediately before.
When sharing a model with secret paragraphs two permalinks are generated: a
private one that, when accessed, reveals the full model, including secrets; and a
public one that, when accessed, only shows public paragraphs, but internally still
considers the secret in analyses and still allows the execution of secret commands
(whose names are public). Using a comment instead of a new keyword to mark
secret paragraphs ensures compatibility with Alloy’s default syntax, allowing
users to copy and paste models from Alloy4Fun to the standalone Analyzer, and
vice versa. Section 3.1 will describe how this feature can be used to create simple
specification exercises in the form of duels, where the user / student tries to reach
a secret specification. The instance shown in Fig. 1 was obtained precisely by
accessing the public permalink of an exercise, and failing to solve a challenge, for
which a counter-example was returned.

Mining derivation trees A possible way to gain insight about the students’ learning
process is to have access to their attempts at solving the proposed exercises,
and tool support to mine this corpus for useful data [8]. Again, such feature
would also be useful for research, and was one of the reasons that led Microsoft
to develop the www.rise4fun.com web service, that allows researchers to easily
deploy their tools on the web and collect human-tool interactions for posterior
mining [1] (besides other advantages of web tools, like increased exposure, since
the need for downloading and installing is eliminated, and promoting reliability
given the large amount of test cases that can be collected). One of the most
popular examples available via Rise4Fun, and the inspiration for developing
Alloy4Fun, is www.pex4fun.com, a web-based educational gaming environment
for learning programming, where students can engage in coding duels where
they attempt to write code equivalent to a tutor’s secret implementation [12].
Pex [11], an advanced white box test-generation tool, is used on the background
to find inputs that show discrepancies between the student’s code and the secret
implementation. However, the interaction with the outcome of the tools has
limitations in Rise4Fun, which would prevent the implementation of key Alloy
features such as instance iteration and customization. This has led us to implement
our own solution rather than integrate Alloy in this service.

Every shared model and instance is stored by Alloy4Fun in its database.
However, to enable the proponents of challenges to mine the submissions for
useful information, every model for which a command was executed is also stored,
along with the respective result (e.g., whether satisfiable or not, or whether errors

www.rise4fun.com
www.pex4fun.com

Experiences on Teaching Alloy with an Automated Assessment Platform 7

were thrown). Moreover, for each model, the identifier of the model from which it
derives and a time-stamp are also stored. This means that all the models that are
developed after accessing a shared permalink end up forming a derivation tree. In
the case of a permalink with secrets / challenges, a branch in this tree typically
corresponds to an interactive session where one user / student is trying to solve
the different challenges defined inside, and can be analyzed to determine, for
example, how many challenges were solved or how many attempts were needed
to solve each one. Every fork in branch represents a point where a user generated
a new permalink for a model which was subsequently accessed multiple times.
Alloy4Fun allows anyone in possession of the secret permalink of a model to
download the respective derivation tree in an easy to process JSON format.

Implementation Alloy4Fun was developed [9] with Meteor, a full-stack isomorphic
JavaScript framework for developing web applications based on Node.js. The client
uses CodeMirror as text editor and the Cytoscape.js graph visualization library
to depict instances. Models and instances are stored in a MongoDB document-
oriented database at the server. To execute commands, we encapsulated the Alloy
Analyzer in a RESTful web service implemented in Java. Seamless deployment of
both the application and the service in a server is performed using Docker. All the
Alloy4Fun code is open-source and available at github.com/haslab/Alloy4Fun.

3 Experiences on teaching with Alloy4Fun

In the first semester of the 2018/19 academic year we did a preliminary evaluation
of Alloy4Fun in two graduate formal methods courses at UM and UP. The former
taught Alloy for 6 weeks and had 22 students enrolled, and the latter for 4 weeks
and had 156 students enrolled. Both courses had one weekly lecture and one
weekly lab session. This experiment – which recorded almost 5000 interactions –
allowed us to test a beta version of the application in a medium-sized audience
to detect and fix bugs and identify possible design improvements. One major
identified design improvement regarded a special “lock” comment available in
the beta version to prevent the accidental editing of certain paragraphs that
could render the challenges unsolvable (or trivially solvable). However, we noticed
students rarely tried to change the model outside of the challenge predicates, and
opted to remove this feature for simplicity and efficiency7. These first experiences
also allowed us to identify which classes of exercises are better suited to be
explored in Alloy4Fun, as well as how the visualization features can be explored
to provide more intuitive feedback to the students.

From this process resulted the first official release of Alloy4Fun, which has
been used in the 2019/20 academic year in the UM graduate course and on
an Alloy/Electrum tutorial at the World Congress on Formal Methods8, with
a refined set of specification exercises with challenges. The remainder of this
section reports on the usage of the platform by the students during this latest
7 Note that Alloy4Fun was only used for self-study and not for student grading.
8 http://haslab.github.io/TRUST/tutorial.html

http://github.com/haslab/Alloy4Fun
http://haslab.github.io/TRUST/tutorial.html

8 N. Macedo et al.

instance of the UM graduate course, including preliminary results regarding the
most common mistakes and difficulties when learning Alloy.

3.1 Alloy4Fun exercises

The model secrets supported by Alloy4Fun can be used to create simple specifi-
cation challenges in the form of duels, where the user / student tries to reach
a secret specification. Such models – which we refer to as exercises – can have
a public predicate that the student must fill-in, together with a secret check
command that asserts (for a given scope) that such predicate is equivalent to the
desired specification (typically in a separate secret predicate). Although useful for
practicing the usage of logic (either relational or temporal) in the specification of
properties, there are certain classes of problems for which the approach based
on secret specifications is not well-suited, namely modeling exercises where the
student is expected to freely declare signatures and fields.

The model shown in Fig. 1 was obtained precisely by accessing the public
permalink of the CV exercise, which contains 4 challenges (in this case, simple
problems where a natural language description of a desired property of the model
is given for each of them). After filling the empty predicate (e.g., Inv2), the
student can check whether it is a valid solution (e.g., by running secret command
Inv2OK, for the case of Inv2), which will either return a “no counter-example
found” message, meaning the challenge is solved, or a counter-example otherwise
(as is the case in Fig. 1, showing that the specification of Inv2 is still not correct).

Figure 2 shows the secret implementation of challenge Inv2: predicate Inv2o
specifies a correct solution for the challenge and command Inv2OK checks the
equivalence between both. In exercises such as CV where several desired (and
natural) properties of the model are solved in different challenges, we opted to
check this equivalence assuming that the remaining properties hold: if that was
not the case the student would get many counter-examples where it would not be
clear why their specification failed, since they would be "polluted" with distracting
problems corresponding to failures of other properties. This conditional check is
the reason to include Inv1o, Inv3o, and Inv4o as assumptions in the equivalence
check Inv2OK. Notice that in the preamble to the exercise the students are warned
that they can assume the properties in the remaining challenges to be true when
solving a particular challenge.

During the course we also noticed that the students found it hard to distinguish
whether the provided counter-example represents a scenario where their solution
was over-specified or under-specified. For this reason, in the challenges used later
in the course we opted to include two special atoms in the counter-example
instance that signal whether an instance that should have been rejected or
accepted by a correct specification, meaning their solution is under- or over-
specified, respectively. As seen in Fig. 2 this can be achieved by introducing
a singleton signature whose possible values are either ShouldBeRejected or
ShouldBeAccepted and through a simple trick in the equivalence check, namely
making the verification conditional to the existence of the ShouldBeRejected
atom when the student solution incorrectly holds (or vice-versa).

Experiences on Teaching Alloy with an Automated Assessment Platform 9

//SECRET
abstract one sig RejectedBy {}
//SECRET
sig ShouldBeRejected, ShouldBeAccepted extends RejectedBy {}
. . .
pred Inv2 { // A user profile can only have works added by himself or some external institution

}
//SECRET
pred Inv2o { all u : User | u.profile.source in Institution+u }
//SECRET
check Inv2OK {
(Inv1o and Inv3o and Inv4o and (some ShouldBeRejected iff (Inv2 and not Inv2o))) implies

(Inv2 iff Inv2o) }

Fig. 2: The secret for the challenge Inv2 of CV from Fig. 1.

The challenges used in this course were based on 6 different problems:

– Trash, a model of a file system trash bin.
– Classroom, a model a classroom management system.
– Graph, a specification of several standard properties of unlabeled graphs.
– LTL, a specification of several standard properties of labeled transition sys-

tems.
– Production, a model of an automated production line in a factory.
– CV, the Curriculum Vitae model used as running example in this paper.

For some of these problems we developed more than one variant (or exercise)
focusing on different features of the language. Each variant was provided as a
shared model to students and contained multiple challenges, as summarized in
Table 1. The table lists the permalink and total number of challenges of each
exercise (the columns F1 to F9 will be discussed in Section 3.3).

Challenges in these exercises range from trivial (e.g., asking to enforce simple
inclusion dependencies or multiplicities), to more complex ones requiring the use
of nested quantifiers or closures. As expected, the introduction of the Alloy (and
Electrum) language and underlying logics in classes was gradual: FOL constructs
were first presented, followed by the full set of RL operators, and finally the
LTL operators specific to Electrum. To try to understand the impact of using
relational operators, we introduced two variants of the first two problems: one
where challenges were to be solved using only the FOL subset of Alloy, and
another, introduced when students already had knowledge of RL, where they
could use all the standard Alloy operators to solve the challenges. For the Trash
problem we also created a mutable variant, where challenges required the usage
of the LTL operators of Electrum to be solved. Hence the total of 9 exercises
described in Table 1. As an example, exercise CV (containing 4 challenges) is the
one shown in Fig. 1.

3.2 Student usage and adoption

In the 2019/20 edition 17 students attended the UM course. Alloy was taught
for 5 weeks and, for the first time in this course, Electrum was also taught for

10 N. Macedo et al.

Table 1: Alloy4Fun exercises shared for the 2019/20 year.
Id Exercise Permalink Chall. F1 F2 F3 F4 F5 F6 F7 F8 F9
1 Trash FOL zA2MMSGy6iW8Mihep 10 0 1 2 0 0 0 0 0 0
2 Classroom FOL Pdvipvrpr5hg7JKbs 15 6 6 9 4 0 0 0 0 0
3 Trash RL WJdLnDL78m7mM7W4J 10 0 1 2 0 0 0 0 0 0
4 Classroom RL i5u2pjKJt6Bz227QT 15 5 6 9 4 1 0 0 0 0
5 Graphs 28fwdmjL79X4SQ9EP 8 1 0 0 0 2 1 0 0 0
6 LTS gqS3qTTn4B62NYmJX 7 4 2 6 6 0 2 0 0 0
7 Production PKy7chamCieZyCix5 4 1 1 3 0 1 0 1 0 0
8 CV X72J6js9fA3CKYQWX 4 3 0 3 0 0 1 0 0 0
9 Trash LTL irRLJn7qbQq3xMFGp 20 0 0 1 0 0 0 0 5 14

4 additional weeks. In each week, a 1h lecture was followed by a 2h lab session.
Alloy4Fun was used in the lab sessions that followed the lectures that introduced
FOL, RL, and LTL, mainly as a way to practice the usage of these logics to
specify natural language requirements.

In the lab sessions that addressed other aspects of the Alloy language and
analysis not amenable for automated assessment, such as solving problems that
required the development of a full model from scratch, students were expected to
still use the Alloy Analyzer and locally manage their models. In principle, they
could also have used Alloy4Fun to develop most of the problems addressed in
those sessions, but we also wanted students to gain some experience in using
the standard Analyzer, particularly since the current limitations of Alloy4Fun
(presented in the beginning of Section 2, such as the lack of module support or
the lack of sophisticated trace exploration options in the case of Electrum) might
prove problematic for some more realistic problems. Thus, Alloy4Fun was only
used in 4 lab sessions, each introducing a particular set of exercises – 1 session
with Trash FOL and Classroom FOL after the FOL lecture, 2 sessions with
Trash RL, Classroom RL and Graphs after the RL lecture, and 1 session with
Trash LTL after the LTL lecture. Extra exercises (namely LTS, Production,
and CV) were made available in the course website for the students to freely
explore. Moreover, all exercises were kept available throughout the semester so
that students could independently practice outside of the classes. During the
course there were 3 evaluation points involving Alloy: a medium-size modeling
project (developed with the standard Analyzer outside of the classes in groups of
two students), an individual written exam, and finally a supplementary exam for
students failing the first attempt.

After concluding the course, the main question we tried to answer was whether
students found Alloy4Fun useful as an automated assessment platform while
learning Alloy. More specifically: 1) have the students used Alloy4Fun regularly
outside classes? 2) in particular, have they used it when studying for the exams?
3) have they found the sharing feature useful? 4) were the counter-examples useful
to reach the correct solution? To answer these question we used two methods:
an anonymous questionnaire and analysis of the data collected by Alloy4Fun.

http://alloy4fun.inesctec.pt/zA2MMSGy6iW8Mihep
http://alloy4fun.inesctec.pt/Pdvipvrpr5hg7JKbs
http://alloy4fun.inesctec.pt/WJdLnDL78m7mM7W4J
http://alloy4fun.inesctec.pt/i5u2pjKJt6Bz227QT
http://alloy4fun.inesctec.pt/28fwdmjL79X4SQ9EP
http://alloy4fun.inesctec.pt/gqS3qTTn4B62NYmJX
http://alloy4fun.inesctec.pt/PKy7chamCieZyCix5
http://alloy4fun.inesctec.pt/X72J6js9fA3CKYQWX
http://alloy4fun.inesctec.pt/irRLJn7qbQq3xMFGp

Experiences on Teaching Alloy with an Automated Assessment Platform 11

The questionnaire was answered by 13 of the 17 students, and, over the duration
of the course, we collected almost 11000 interactions with the exercises, most
of them resulting from the execution of commands (checking the correctness of
challenges) and a small portion from sharing of models9.

Concerning the first question, of the 13 students that answered the question-
naire, 9 said they used Alloy4Fun frequently outside classes, 3 only used it rarely,
and 1 never used it. To the second question all of the 12 students that used
it outside classes answered that they used it to study for the exam. Of these,
9 mentioned that when studying for the exam they actually repeated some of
the exercises they had already solved before. The data collected throughout the
semester, shown in Fig. 3, seems to corroborate these answers. Figure 3a depicts
the usage of the platform over time, highlighting the classes where Alloy4Fun
was mandatory and the evaluation points (first the project deadline, and later
in the semester the two exams). Each entry in the dataset is either a correct
(unsatisfiable) check, a wrong (satisfiable) check, an analysis that threw an error
(e.g., parsing) or a model stored for sharing. Despite the peak of usage during the
Alloy4Fun classes, we can see that the students have indeed relied on Alloy4Fun
outside the classes, and in particular when studying for the written exam.

Figures 3b and 3c present statistics per exercise (below each exercise number
we recall the number of challenges inside). Chart 3b presents the same execution
information as chart 3a (except shares), with the addition of the number of
successful analyses (i.e., without error) that threw a warning. This information
is normalised taking into account the number of challenges in each exercise (i.e.,
the graph shows the average number of executions per challenge). This chart
provides some evidence that most of the students attempted to solve all exercises,
including some of those not used in class. For example, averaging the executions
per challenge and per student, we have a maximum of around 10 for exercise 1
and a minimum of around 3 for exercise 7, and an overall average of around 6
attempts per challenge per student. Even taking into account failed attempts
and repeated attempts to solve exercises already previously solved, it is relatively
safe to infer that such numbers can only have resulted from having most of the
class attempting to solve all exercises.

Chart 3c presents information regarding solving “sessions”. Recall that a
session is a branch in the derivation tree, typically recording the interaction of
a student with Alloy4Fun while solving the challenges inside an exercise. For
each exercise we depict how many session solved all its challenges, some of
its challenges, or none. Of course, some students might have multiple sessions
recorded for each attempt to solve an exercise, since they might not solve all the
challenges in a single continuous session and access the original shared permalink
several times, instead of generating a new permalink of a partial resolution for
later resuming the work. Overall we identified 430 sessions, with an average
of 48 sessions per exercise. Even with all the uncertainty, it is safe to say that
indeed most students should have used Alloy4Fun frequently outside the classes
(from our observation, during classes students mainly used a single session per

9 This dataset is freely available in the Alloy4Fun GitHub repository.

12 N. Macedo et al.

0

500

1000

1500

09
-2

4
09

-2
7

09
-3

0
10

-0
3

10
-0

6
10

-0
9

10
-1

2
10

-1
5

10
-1

8
10

-2
1

10
-2

4
10

-2
7

10
-3

0
11

-0
2

11
-0

5
11

-0
8

11
-1

1
11

-1
4

11
-1

7
11

-2
0

11
-2

3
11

-2
6

11
-2

9
12

-0
2

12
-0

5
12

-0
8

12
-1

1
12

-1
4

12
-1

7
12

-2
0

12
-2

3
12

-2
6

12
-2

9
01

-0
1

01
-0

4
01

-0
7

01
-1

0
01

-1
3

01
-1

6
01

-1
9

01
-2

2

Evaluation A4F Classes Share Error Wrong Correct

(a) Executions over time.

0

50

100

150

200

1
(10)

2
(15)

3
(10)

4
(15)

5
(8)

6
(7)

7
(4)

8
(4)

9
(20)

Warning Error Wrong Correct

(b) Average challenge execution per exercise.

0

25

50

75

100

1
(10)

2
(15)

3
(10)

4
(15)

5
(8)

6
(7)

7
(4)

8
(4)

9
(20)

Shared None Some All

(c) Sessions per exercise.

Fig. 3: Alloy4Fun usage statistics by 17 students over a semester for 9 exercises.

exercise), including repeated attempts to solve exercises already previously solved
(as reported in the questionnaire): for example, for Trash FOL around 50 sessions
were recorded where all the challenges were solved, a strong indicator that each
student should have solved it at least twice.

Concerning permalinks, 7 students mentioned that they generated them
frequently to store their own solutions for later access, 3 did it rarely, and,
somehow surprising, 3 never did it. Generating permalinks for the purpose of
sharing with colleagues and tutors was even less common: only 5 students did it
frequently, 4 rarely and 4 never. Figure 3c also depicts how many session had
at least one permalink generated, and indeed we can see that, for most of the
exercises, the number of permalinked sessions is clearly less than the number of
students. Surprisingly, the share instance feature has not been used: there were
only 2 generated permalinks for instances. These results seem to suggest that
one of our main goals for Alloy4Fun – to simplify the sharing of models and
instances – may actually not be that popular in an educational setting, but of
course a more comprehensive study must be conducted to clarify that.

Concerning the last question, 10 students mentioned that counter-examples
were frequently useful to help find the correct answer, but of these 4 only found
them useful if they had the atoms that signal whether the shown counter-example

Experiences on Teaching Alloy with an Automated Assessment Platform 13

should have been rejected or accepted by a correct specification. Unfortunately
we have no data to corroborate this, but in principle Alloy4Fun could be used to
check whether those atoms are indeed helpful or not, for example by giving two
different versions of an exercise to different sets of students and then analyzing
the results. This is one of the studies we intend to conduct in the near future.

Finally we also asked the students the overall question of whether they found
Alloy4Fun useful for learning Alloy and Electrum: all of them agreed that was
the case, with 8 of the 13 strongly agreeing.

3.3 Insights on learning Alloy

Taking advantage of the collected data, we also tried to get some insights about
how students learn Alloy, and in particular determine which features of the
language pose more difficulties and should thus be addressed more carefully in
lectures. To this end, we started by classifying a normalized version10 of each
challenge according to a set of required concepts, namely whether it requires:

F1 using more than 10 logic or relational operators
F2 a simple restriction of the multiplicity of a relation
F3 nested quantifications (ignoring multi-variable quantifications)
F4 manipulating ternary relations
F5 transitive closure over fields
F6 transitive closure over expressions (either relational expressions or relations

by comprehension)
F7 reasoning about total orders (i.e, using the ordering module)
F8 a single temporal operator
F9 nested temporal operators

For each exercise, Table 1 presents the number of challenges that fall into each
of these (non-exclusive) categories. Figure 4 compares the results of challenge
execution classified under each category (also listing the total number of challenges
for each). For each of the 9 categories, the number of correct (green) and wrong
(red) executions are presented. Additionally, entry F0 collects the results of
challenges that require none of the above concepts, and category All the results
for all challenges. Of all the 7689 executions without errors, 3682 were correct
(48%), meaning that in average each challenge required two attempts to be solved
(after solving possible errors).

As expected, challenges requiring none of the listed concepts (F0) were
simpler (71% success rate), and those requiring more than 10 operators (F1)
were notoriously more difficult (18% success rate). Contrary to our expectations,
given that Alloy has special syntax for that purpose, challenges that required
restricting the multiplicity of relations (F2) were only slightly easier than average
(52%). As expected, the need to use nested quantifiers (F3) increases the difficulty
of challenges (33% success rate). Concerning closures, usage of a closure operator
10 Normalized specifications were expanded into almost pure FOL (or FO-LTL when

temporal logic was required), using no relational operators except for closures.

14 N. Macedo et al.

3682
1906

403
750

1039
292

93
47

6
170

339

4007
796

1874
695

2093
1282

132
536

31
123

729

All (148)
F0 (34)
F1 (20)
F2 (17)
F3 (35)
F4 (14)

F5 (4)
F6 (4)
F7 (1)
F8 (5)

F9 (14)

0% 25% 50% 75%

Fig. 4: Executions per class of challenge.

over a relation (F5) was not very problematic (41% success rate), but challenges
that required applying a closure operator to a relational expression (F6) were the
most difficult to solve (8% success rate). We had some anecdotal evidence that
closures were difficult for students, but this discrepancy between the two cases
was rather surprising, meaning that special attention should be given to the later
case in lectures. Other problematic concepts were the manipulation of ternary
relations (F4) (19% success rate), and usage of the standard ordering module
(F7) (16% success rate), both frequently used in Alloy specifications. The first
result is aligned with our anecdotal evidence, and we already had special care with
higher arity relations in lectures. The second is a bit more surprising, meaning
that, likewise to closures of relational expressions, we should invest more lecture
time in explaining how to use this module. Concerning Electrum, students seem
to understand well the usage of a single temporal operator (F8) (58% success
rate), but, as expected and likewise quantifiers, specifications requiring nesting
of several temporal operators (F9) were more difficult (32% success rate).

We also collected statistics about typical errors and warnings, with Tables 2
and 3 presenting the 10 most commonly found error and warning messages,
respectively. Concerning errors, as expected, the most frequent are basic pars-
ing errors (corresponding to messages 1, 2, and 8, and including, for example,
parenthesis problems or misspelled identifiers), totaling around 44% of the errors.
Of the remaining, the most frequent are incorrectly applying logic operators
to relational expressions and vice-versa (messages 3, 5, and 7), in total 28% of
the errors, and simple typing errors related to arity (messages 4, 6, 9, and 10),
in total 26% of the errors. The reader unacquainted with Alloy could find the
frequency of the former rather surprising, but this is a rather frequent error
due to the syntactic similarity between some logical and relational operators
(for example, not for negation vs. no for emptiness check or && for conjunction
vs. & for intersection). Fortunately, Alloy has alternative syntax for many logic
operators (for example, and for conjunction) and maybe instructors should rec-

Experiences on Teaching Alloy with an Automated Assessment Platform 15

Table 2: Most common error messages.
Message #

1 There are . . . possible tokens that can appear here. 747
2 The name . . . cannot be found. 444
3 This must be a formula expression. 432
4 in can be used only between 2 expressions of the same arity. 277
5 This must be a set or relation. 277
6 This cannot be a legal relational join. 220
7 This expression failed to be typechecked. 117
8 The "all x" construct is no longer supported. 85
9 ∼ can be used only with a binary relation. 58
10 This must be a unary set. 50

Table 3: Most common warning messages.
Message #

1 The join operation here always yields an empty set. 213
2 Subset operator is redundant, because the left & right subexpressions are always disjoint. 123
3 This variable is unused. 121
4 ^ is redundant since its domain and range are disjoint. 25
5 = is redundant, because the left & right expressions always have the same value. 11
6 <: is irrelevant because the result is always empty. 10
7 & is irrelevant because the two subexpressions are always disjoint. 8
8 = is redundant, because the left & right expressions are always disjoint. 8
9 The value of this expression does not contribute to the value of the parent. 6
10 Subset operator is redundant, because the right subexpression is always empty. 3

ommend using that alternative instead. Concerning warnings, all but the third
most common message (unused variables, 23% of the total warnings) are warnings
about potentially irrelevant expressions – formulas that are trivially true or false
or expressions that always denote an empty set – a testimony to the usefulness
of Alloy’s sophisticated type system [5].

4 Concluding remarks and future work

We briefly presented Alloy4Fun, a web application for online editing and sharing
of Alloy models and instances, that also allows the automated assessment of
simple specification challenges. Its main intended use is in an educational context,
and our preliminary evaluation in a graduate formal methods course provided
evidence that students found the automated assessment feature useful for learning
Alloy and Electrum (and the sharing feature less so). We also collected evidence
that some features of the Alloy language are particularly problematic for students,
and should be addressed with particular care by tutors.

We intend to continue using Alloy4Fun in our formal methods courses in the
upcoming years, collecting more data to support more detailed and informed
analyses about the language usage. Concerning the application itself, we intend
to develop tools to simplify the mining of useful data from the derivation trees,
possibly to be run server-side at the click of a button (with results visualized
in the browser), to enable the timely identification of learning breakdowns. We
also intend to incorporate in Alloy4Fun an alternative instance visualizer more
amenable for dynamic systems [4].

16 N. Macedo et al.

Acknowledgements We would like to thank Daniel Jackson for the helpful com-
ments and suggestions about the design of Alloy4Fun. This work is financed by
National Funds through the Portuguese funding agency, FCT - Fundação para a
Ciência e a Tecnologia, within project UIDB/50014/2020. The third and forth
authors were financed by the ERDF – European Regional Development Fund
through the Operational Programme for Competitiveness and Internationalisation
- COMPETE 2020 Programme and by National Funds through the Portuguese
funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project
POCI-01-0145-FEDER-016826. The second author was also supported by the
FCT sabbatical grant with reference SFRH/BSAB/143106/2018.

References

1. Ball, T., de Halleux, P., Swamy, N., Leijen, D.: Increasing human-tool interaction
via the web. In: Proceedings of the 11th ACM SIGPLAN/SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering. pp. 49–52. ACM (2013)

2. Boyatt, R., Sinclair, J.: Experiences of teaching a lightweight formal method.
In: Proceedings of the 1st Workshop on Formal Methods in Computer Science
Education. pp. 71–80 (2008)

3. Brunel, J., Chemouil, D., Cunha, A., Macedo, N.: Simulation under arbitrary tem-
poral logic constraints. In: Proceedings of the 5th Workshop on Formal Integrated
Development Environment. EPTCS, vol. 310, pp. 63–69 (2019)

4. Couto, R., Campos, J.C., Macedo, N., Cunha, A.: Improving the visualization of
Alloy instances. In: Proceedings 4th Workshop on Formal Integrated Development
Environment. EPTCS, vol. 284, pp. 37–52 (2018)

5. Edwards, J., Jackson, D., Torlak, E.: A type system for object models. In: Pro-
ceedings of the 12th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. p. 189–199. ACM (2004)

6. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2nd edn. (2012)

7. Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight spec-
ification and analysis of dynamic systems with rich configurations. In: Proceedings
of the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. pp. 373–383. ACM (2016)

8. Mangaroska, K., Giannakos, M.N.: Learning analytics for learning design: A sys-
tematic literature review of analytics-driven design to enhance learning. IEEE
Transactions on Learning Technologies 12(4), 516–534 (2019)

9. Pereira, J.: A web-based social environment for Alloy. Master’s thesis, Universidade
do Minho, Escola de Engenharia (2016)

10. Sioson, A.A.: Experiences on the use of an automatic C++ solution grader system.
In: Proceedings of the 4th International Conference on Information, Intelligence,
Systems and Applications. pp. 1–6. IEEE (2013)

11. Tillmann, N., de Halleux, J.: Pex – White box test generation for .NET. In:
Proceedings of the 2nd International Conference on Tests and Proofs. LNCS,
vol. 4966, pp. 134–153. Springer (2008)

12. Tillmann, N., de Halleux, J., Xie, T., Bishop, J.: Pex4Fun: A web-based environment
for educational gaming via automated test generation. In: Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineering. pp.
730–733. IEEE (2013)

	Experiences on Teaching Alloy with an Automated Assessment Platform

