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 25 

Abstract 26 

This paper deals with the numerical simulation of two solutions of brick infill walls 27 

developed at University of Minho under out-of-plane loading. The new solution of brick 28 

infills intend to represent an enhancement of the seismic performance of this 29 

constructive element.  The numerical simulation is based on an innovative discrete 30 

macro-modelling strategy proposed by Caliò et al. (2014). This method is based on a 31 

hybrid approach by which the frame is modelled using concentrated plasticity beam-32 

column elements, whereas the non-linear behaviour of masonry infill is modelled by 33 

means of a 3D discrete macro-element. 34 

The main goals of this work are: (1) calibrate a numerical model based on the 35 

experimental results of the out-of-plane tests on two types of brick masonry infill walls; 36 

(2) assess the efficiency of the macro-modelling approach by comparing the numerical 37 

results; (3) assess the main influencing material and geometric parameters in the out-of-38 

plane behavior of brick infill walls. 39 

The results of the numerical simulation enabled to assess the good performance of the 40 

macro-modelling approach in simulating the seismic response of brick infill walls and 41 

predicting the failure mechanisms. In addition, it was possible to identify the main 42 

influencing parameters in the out-of-plane behavior of brick infill walls. 43 

 44 

Keywords: Brick infill wall, numerical simulation, macro-modelling approach, 45 

parametric study 46 

47 
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1  Introduction 48 

The out-of-plane response of infilled frames due to earthquake actions was under 49 

scrutiny of different researchers to find out the main influencing parameters. The 50 

relevance of studying the out-of-plane behavior of brick infill walls was brought to light 51 

in the recent earthquakes occurred in Europe such as L’Aquila earthquake in 2009 52 

(Braga et al. ,2011), where severe damages developed in the infill walls in comparison 53 

to some minor cracks observed in the surrounding structure. It was observed that no 54 

immediate occupancy was possible due to the generalized damage in the masonry 55 

infills. From several examples, it was seen that the ground motion was not strong 56 

enough to cause structural damage but due to improper anchorage and interaction of the 57 

infill walls with surrounding frame, the exterior walls tore away and the concrete beam 58 

and columns were exposed. In spite of the out-of-plane behavior of masonry infilled 59 

frames have attracted less attention from the research community than masonry infill 60 

under in-plane loading, some studies on the out-of-plane behavior of masonry infilled rc 61 

frames can be found in literature (Drysdale and Essawy,1988; Chuang et al., 2010; 62 

Flanagan and Bennett, 1999).    63 

Experimental studies have been presented in literature in order to investigate the non-64 

linear response of unreinforced masonry infills surrounded by reinforced concrete 65 

frames, subjected to actions orthogonal to their own plane. These tests have been 66 

performed by applying monotonic and cyclic uniform static loads to the infill, in order 67 

to simulate the effects of the inertia forces (Angel et al., 1994, Furtado et al., 2016, 68 

Akhoundi et al., 2016) or applying dynamic excitations (Tu et al., 2010). 69 

A detailed numerical simulations of the out-of-plane response of infill frames requires 70 

computational expensive nonlinear finite element models, able to predict the damage on 71 
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the masonry infill and the complex non-linear infill-frame interaction (Madan et al., 72 

1997; D’Ayala et al., 1997; Singh et al., 1998; Asteris, 2008; Macorini and Izzuddin,  73 

2011). However, these rigorous models are often unsuitable for practical applications 74 

due to its huge computational cost. With the aim to develop operative tools, capable of 75 

simulating the collapse mechanisms of large structures with a sufficient approximation, 76 

many authors have developed simplified methodologies (macro-models). They try to 77 

predict the global structural behaviour without obtaining a detailed representation of the 78 

non-linear local behavior of the material. The most used macro-model practical 79 

approach is the ‘diagonal strut model’, where the infilled masonry is replaced by a 80 

single unidirectional bar. Since its original formulations, in which only the in-plane 81 

behaviour of the infill was considered, this approach has been extended in order to 82 

include the out-of-plane behaviour (Furtado, 2016; Asteris et al., 2017; Di Trapani et 83 

al., 2017).  84 

Following the need to have safer masonry infills, two solutions of brick masonry infill 85 

walls were developed at University of Minho. After the validation of the experimental 86 

behavior of both types of masonry infill walls under in-plane and out-of-plane loading, 87 

it was decided to calibrate a numerical model based on macro-modelling approach to 88 

describe the out-of-plane behavior. In this paper, the influence of the in-plane damage 89 

on the out-of-plane response of IFS is neglected. However, the latter is a key aspect in 90 

order to fully understand and simulate the response of real structures subjected to 91 

earthquake actions, as demonstrated by experimental (Angel et al., 1994; Oliaee and 92 

Magenes, 2016; Ricci et al., 2018) and numerical (Di Trapani et al., 2017) studies. 93 

Therefore, further investigations will be needed to complete the results here presented, 94 

including combined in-plane and out-of-plane loading scenarios.    95 
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In this work, an innovative 2D discrete macro-modelling strategy, proposed by (Caliò et 96 

al. ,2014), is employed. This method is based on a hybrid approach by which the frame 97 

is modelled using concentrated plasticity beam-column elements, whereas the non-98 

linear behaviour of masonry infill is modelled by means of a 3D discrete macro-99 

element, introduced and validated in Pantò et al. (2017). The non-linear interaction 100 

between the masonry infill and the surrounding frame is modelled by a 3D discrete non-101 

linear interface elements, able to simulate the in-plane and out-of-plane flexural and 102 

sliding mechanisms (Pantò et al., 2018).     103 

Therefore, the main goals of this work are: (1) to calibrate a numerical model based on 104 

the experimental results of the out-of-plane tests on two types of brick masonry infill 105 

walls; (2) to assess the efficiency of the discrete macro-modelling approach by 106 

comparing the numerical results obtained with the macro-model with the results 107 

obtained by a meso-scale modeling approach; (3) to assess the main influencing 108 

material and geometric parameters in the out-of-plane behavior of brick infill walls. 109 

This paper is organized in three main parts: (1) review of the main experimental results 110 

of the out-of-plane tests on the brick infill walls; (2) derivation of material properties, 111 

numerical simulation of the out-of-plane behavior of the brick infill walls and 112 

assessment of the efficiency of the macro-modelling approach; (3) parametric study to 113 

evaluate the influence of different parameters in the out-of-plane response of the brick 114 

infill walls.  115 

2 Brief overview of the masonry infills constructive systems  116 
 117 

As mentioned above, one the main objectives of the present paper is to use a macro-118 

model approach to simulate the out-of-plane behavior of brick masonry infills that were 119 

recently developed in the scope a research project (Insysme Project, 2017). These brick 120 
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infills intend to result in a better behavior under seismic loading when compared to the 121 

traditional ones.  122 

The first solution for masonry infill walls is called Uniko System (System-1). This 123 

system is a single-leaf masonry wall, with 100mm thickness, composed of a vertical 124 

perforated clay unit, see Figure 1. This unit has a tongue and groove system along the 125 

perforation direction. The masonry units are laid aligned in the vertical direction 126 

creating a continuous vertical interlocking joint, see Figure 1a. This intends to take 127 

advantage of sliding between masonry units, improving possibly the energy dissipation 128 

ability of the masonry infill. With this arrangement, it is intended that masonry infill can 129 

withstand inter-storey drift without damage for lateral drift for which traditional infills 130 

are already damaged. Aiming at enhancing the out-of-plane behaviour of the brick infill, 131 

it was decided to add steel rebars in the external recesses at the external faces of 132 

masonry units. These steel bars should be connected at top and bottom reinforced 133 

concrete beams. The masonry infill has dry vertical joints and mortared bed joints, for 134 

which a general-purpose M10 mortar is recommended. 135 

 
(a) 

 
(b) 

Figure 1 – Masonry infill systems: (a) System1, (b) System2 136 
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The second solution (System2) is called Térmico system, use the concept of maintaining 137 

the infill rigidly attached to the frame, using internal reinforcement and connectors 138 

between the infill and frame. This system is composed of a single-leaf clay masonry 139 

wall made with a commercial vertical perforated masonry unit produced in Portugal, see 140 

Figure 1b. The proposed system recommends a M10 mortar for the bed joints and dry 141 

head joint with interlocking. To improve the in-plane and out-of-plane performance of 142 

masonry infill walls, truss reinforcements was used in the bed joints. Additionally, the 143 

walls are connected to the columns by metallic connectors at each two rows where bed 144 

joint reinforcement is applied (see Figure 1b). The masonry infill panel was built with 145 

294x187x140mm bricks with vertical perforation, using murfor RND 0.5 100 146 

reinforcement and in each two rows, and murfor L +100 anchors to connect the infill 147 

and RC frame at the same levels of reinforcements.  148 

The idea in Térmico system is making the infill and the frame one system, increasing 149 

the initial stiffness by using connectors and reinforcement, which not only helps to 150 

increase the maximum load, as to control cracking and the out-of-plane collapse. 151 

3 An overview of the experimental Infill Frame Prototype out-of-plane behaviour 152 

One of the steps of the validation of the two brick infill systems was the experimental 153 

testing under out-of-plane loading. For this, an experimental model was designed 154 

composed of a reinforced concrete (rc) frame (one bay, one storey) and a brick infill 155 

with one of the two solutions described previously. The reinforced concrete frame was 156 

built according to  the actual building practice in Portugal. The dimensions of the 157 

prototype were defined based on an extensive work carried out on a database of 158 

buildings from different cities in Portugal: (a) rc frame was defined having a length of 159 

4.50m and a height of 2.70m; (b) the cross section of rc columns was 0.3m x 0.3m 160 
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(length x height) and (c) the cross section of rc beams was 0.3m x 0.5m. The reinforcing 161 

schemes were defined based on EC8 (NP EN 1998-1, 2010) recommendations. Due to 162 

the laboratory limitations, it was decided to test reduced scale specimens. For this, 163 

Cauchy’s Similitude Law was considered (Akhoundi et al., 2018). Therefore, the 164 

geometry of the frame was reduced to 2/3 times of the prototype rc frame and the 165 

reinforcing scheme of columns and beams was updated in relation to the reinforcing 166 

schemes of the rc frame prototype, see Figure 2. The frame has 2735 mm in length and 167 

2175 in height. The dimensions of beams and columns sections are 270×160 mm and 168 

160×160 mm, respectively. The brick infills were built according to the details 169 

previously described. For each solution, a reinforced and a non-reinforced brick infill 170 

was considered so that the performance of the reinforcing schemes could be assessed. 171 

  

Figure 2 – Details and dimensions of experimental RC frame. 172 

The rc frames with brick infill solutions were tested under out-of-plane loading 173 

according to the procedure pointed out by (Akhoundi, 2016). The out-of-plane loading 174 

was applied by means of an airbag that was connected to an external supporting frame. 175 

The time cyclic load history used in the out-of-plane tests was adapted from the 176 

procedure recommended in (FEMA 461, 2007) for in-plane. It consists of a cyclic 177 

procedure composed of two cycles of load and unloading for increasing levels of out-of-178 

plane displacement. The increments of displacement at each two cycles i+1 is about 1.4 179 
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times the displacement corresponding to the previous two cycles i. The out-of-plane test 180 

was carried out under displacement control by imposing the load displacement history 181 

at the central point of the brick infill (mid span and mid height). The loading was 182 

performed in one direction to monitor the deformation of the infill, propagation of 183 

cracks and assessment of the separation of the brick infill in relation to the rc frame. 184 

The monotonic envelops of the experimental cyclical responses of the brick walls 185 

(reinforced and unreinforced) are presented in Figure 3 With reference to the first 186 

(continuous line) and second cycle (dashed line).  187 

The maximum resistance obtained in the unreinforced Sistem1 wall (US1) was equal to 188 

52.50kN, corresponding to a lateral 20.01mm of displacement. The maximum 189 

displacement before collapse was 53mm (Figure 3a). The test stopped because of the 190 

collapse of infill, followed also by a reduction of resistance. The lateral resistance 191 

attained in the second cycle is very close to resistance recorded in the first cycle, 192 

particularly in the elastic range of the wall. After these first steps, it is possible to see a 193 

small reduction of lateral force in second cycle, being of approximately 7.1%. The 194 

addition of vertical steel bars to the brick infill with vertical continuous joints (US2) 195 

resulted in a significant increase of the out-of-plane resistance (Figure 3b).  196 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3 - Load-displacement envelope curve for first and second loading cycle for; (a) solution 197 

1 – non-reinforced (US1); (b) solution 1 reinforced (US2); (c) solution 2 –non-reinforced (TS1); 198 

(d) solution 2 – reinforced (TS2). 199 

 200 

In this case, the maximum resistance was equal to 76kN for 18.81mm of displacement, 201 

representing an increment of 44,8% in comparison with the unreinforced wall.  202 

The maximum displacement applied before collapse was around 27mm. The test 203 

stopped due to the localized collapse of infill in a vertical joint due to the failure of 204 

interlocking system. The force response during the second cycle is almost the same of 205 

first cycle until the cracking occurs. After this stage, there is a degradation of the lateral 206 

resistance in the second cycle of loading of about 13.6%.  207 

In the case of brick infill system2, it is seen that the out-of-plane resistance of the 208 

unreinforced specimen (TS1) was 100.15kN, attained for an out-of-plane displacement 209 

of 39.67mm, see Figure 3c. The maximum displacement applied before collapse was 210 

68.71mm. The test stopped due to the collapse of the infill. The out-of-plane force 211 

during the second cycle is almost the same of first cycle until the onset of cracking. 212 

After this stage, it is possible to see the reduction for second cycle. For the reinforced 213 

System2 brick masonry infill (TS2), an increase of about 16,9% of out-of-plane 214 

resistance was observed, see Figure 3d. For this masonry infill wall, the maximum 215 

resistance was equal to 117.05kN, achieved for a lateral displacement at the central 216 



 11 

point of the infill of about 53.6mm. The maximum displacement applied was around 217 

64mm corresponding to a stage near to wall collapse. The test stopped because the 218 

imminent collapse of infill. 219 

The presence of reinforcement changes the crack patterns observed in both types of 220 

brick infills, see Figure 4. The presence of reinforcement results in a more distributed 221 

crack pattern, particularly in case of system 1. In the unreinforced brick infill (US1) the 222 

cracks develop at mid height of the wall, mainly along the mortar bed joints. There is 223 

also a concentration of damage close to the columns characterized by crushing of some 224 

brick units. This crack pattern appears to be associated to a predominant one-way 225 

vertical bending. Conversely, the cracking developed in reinforced masonry infill is 226 

more associated to the development of two way bending. In spite of the cracks develop 227 

along the horizontal bed joints, they develop along the adjacent are of diagonal struts. 228 

 
(a) 

 

(b) 
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(c) 

 

 (d) 

Figure 4 – (a) Cracking pattern of US01 at  out-of-plane displacement of 53mm; (b) Cracking pattern of 

US02 at out-of-plane displacement of 26.98mm; (c) Cracking pattern of TS01 at out-of-plane displacement 

of 68.70mm; (d) Cracking pattern of TS02 at out-of-plane displacement (max disp.) of  64.37mm. 

 

The cracking in the masonry infill with termico brick units starts along the central bed 229 

joint and progress along diagonals of the walls, which result from the development of 230 

two way bending mechanism. At the end of the test, crushing of the brick units close to 231 

the columns occur. In case of the reinforced brick infill, it appears that the two-way 232 

bending mechanism also develop, but the cracking is less severe. Besides, there is no 233 

signs of crushing of the brick units. This means that the addition of horizontal 234 

reinforcement and connectors allow a better control of damage in the infill wall for the 235 

same levels of displacement. In both cases, some microcracks develop in the rc frame, 236 

particularly in the columns. This should result from the much higher level of out-of-237 

plane resistance of this type of infill and appears to demonstrate a higher interaction 238 

between the brick infill and the rc frame. It should be noticed that in case of System1 239 

any cracks appears in the rc frame. 240 
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4 The Macro-modelling approach  241 
 242 

In order to numerically simulate the experimental tests on the unreinforced and 243 

reinforced infill frame prototypes, an innovative discrete macro-modelling strategy, 244 

proposed by (Caliò et al., 2014), is employed. This method is based on a hybrid 245 

approach by which the frame is modelled using concentrated plasticity beam-column 246 

elements, while the non-linear behaviour of masonry infill is modelled by means of a 247 

3D discrete macro-element, introduced and experimentally validated in (Pantò et al. 248 

,2017). The model is able to simulate the axial-2D out-of-plane bending moment 249 

interaction on unreinforced masonry panels loaded orthogonally to own plane with 250 

different external bond conditions. The non-linear interaction between the frame and the 251 

infill is modelled by means of discrete non-linear interface elements which simulate the 252 

tensile cracking, the crush of the masonry and the sliding between masonry and frame. 253 

In order to take into account the complex out-of-plane interaction mechanisms between 254 

the infill and frame elements, a new 3D discrete interface was developed in (Pantò et al 255 

2018).  256 

4.1 The Discrete Macro Model (DMM) for masonry infills 257 

The three-dimensional discrete element used to simulate the masonry is based on an 258 

innovative macro-element introduced by (Caliò et al. ,2012), originally developed to 259 

simulate the in-plane non-linear response of unreinforced masonry walls, later extended 260 

to the mixed concrete-masonry structures and infill frame structures (Caliò and Pantò, 261 

2014). The extension of the existing model to a 3D kinematic model was introduced and 262 

numerically validated in (Pantò et al. ,2017). This model is represented by means of a 263 

simple discrete mechanical scheme consisting of an articulated quadrilateral (panel) 264 

with four rigid edges and a diagonal link, connected to the corners, to simulate the 265 
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masonry shear behaviour (Figure 5a). Each side of the panel interacts with other panels, 266 

frame elements and or ground supports by means of a discrete distribution of nonlinear 267 

springs, denoted as interface. Each interface is constituted by a m x n grid of non-linear 268 

springs, orthogonal to the panel edge (Figure 5b). In addition, at the same interface, a 269 

longitudinal in-plane spring controls the relative sliding in the direction of the panel 270 

edge, whereas two longitudinal out-of-plane longitudinal springs control the out-plane 271 

sliding and the torsion behaviour (Figure 5c). 272 

(a)  (b) (c) 273 
 274 

Figure 5 - Discrete macro-element: (a) mechanical scheme; (b) representation of the orthogonal springs;  275 

(c) representation of the longitudinal in-plane and out-of-plane springs. 276 

 277 

The kinematic of this spatial macro-element is governed by seven degrees of freedom, 278 

able to describe the rigid body motions and the in-plane shear deformability of the 279 

panel. The calibration procedures of each non-linear link material properties are based 280 

on simple mechanical equivalences imposed between the discrete macro-model and the 281 

equivalent continuous homogenised models. 282 

The orthogonal links of the interfaces intend to describe the flexural/axial behaviour of 283 

the masonry which is assumed as an orthotropic homogeneous media material. Each 284 

link inherits the nonlinear behaviour of the corresponding fibre along each main 285 

direction of the material (see Figure 6a). Each spring is calibrated assuming that the 286 

masonry strip is a homogeneous elasto-plastic material, according to the procedure 287 
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reported in (Caliò et al., 2012) and (Pantò et al., 2017). A linear softening behaviour 288 

governs the post-yielding response under tension and compression, ruled by fracture 289 

energy values in tension (gt) and compression (gc), to which the corresponding ultimate 290 

displacements ut and uc are associated, see Figure 6b.  291 

The shear in-plane and out-of-plane springs are modelled respectively by means of a 292 

rigid and an elasto-plastic constitutive law governed by the Mohr–Coulomb yielding 293 

surface. A linear relationship between stress and sliding describes the post-peak 294 

behavior governed by the shear fracture energy (gs). 295 

The capability of this model to simulate the structural behaviour until collapse has been 296 

validated by (Marques and Lourenço, 2014) and (Pantò et al., 2017) with reference to 297 

multi-storey mixed buildings and by (Pantò et al., 2016) with reference to monumental 298 

structures.  299 

(a) 

ut
k

uc

f c

f t

(b) 

Figure 6 Definition of the material properties of orthogonal links ; (a) Two generic orthogonal links and 300 

the corresponding fibre representations ; (b) constitutive law associated to the transversal springs. 301 

 302 

4.2 The Modelling of the frame-masonry interaction  303 

The frame elements interact with the masonry panels along the entire length by means 304 

of non-linear orthogonal links, uniformly distributed into contact with infill-frame 305 

interfaces. Each interface, as those between masonry panels, includes n x m orthogonal 306 

links, a single longitudinal in-plane non-linear link and two out-of-plane longitudinal 307 
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links. In order to simplify comprehension, Figure 7a shows the in-plane degrees of 308 

freedom governing the in-plane panel-frame interaction, while Figures 7b 7c and 7d 309 

show the 3D mechanical scheme distinguishing flexural (Figure 7b), in-plane sliding 310 

(Figure 7c) and out-of-plane sliding interaction (Figure 7d). In the figures, the afference 311 

area associated to each link, obtained discretizing the transversal cross section of the 312 

panel, is also reported. The interface links are characterised by an elasto-plastic 313 

constitutive law with linear-softening branch, calibrated from the macroscopic 314 

mechanical properties of masonry and the afference volume of the link (Pantò et al., 315 

2018). In particular, the flexural transversal links are characterized by the tensile and 316 

compression masonry strengths (ft, fc) and the corresponding fracture energies (gt, gc). 317 

The ultimate strength of the in-plane and out-of-plane sliding links is determined by the 318 

masonry cohesion (c) and friction factor () through a Mohr-Coulomb domain. Finally, 319 

the ultimate capacity displacement of the sliding links is determined assigning the 320 

sliding fracture energy (gsl). More details on the model kinematics and on the link 321 

calibration procedures can be found in (Pantò et al. 2018). 322 

(a)  323 
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 324 

Figure 7 - Mechanical scheme of the in-plane masonry-frame interaction (a); mechanical scheme of the 325 

out-of-plane masonry-frame interaction: flexural (b), in-plane sliding (c) and out-of-plane sliding (d) 326 

interface links.  327 

 328 

This macro-model is particularly appropriate to simulate the flexural and sliding forces 329 

shared between the frame and masonry panel providing a reliable prediction of the 330 

bending moment distribution on the frame (Caliò and Pantò, 2014). For the sake of 331 

clarity, in Figure 8 a simple structural prototype constituted by a full infilled regular 332 

brick-wall frame (Figure 8a) is modeled by a 3x3 mesh of macro-elements (Figure 8b). 333 

The ultimate frame bending moment corresponding to a horizontal in-plane force 334 

applied at the top beam (Caliò and Pantò, 2014), is reported in Figure 8c.   335 

(a) (b) (c) 336 

Figure 8 Infill frame structure: (a) typological geometrical scheme; (b) macro-modelling of the infilled 337 

frame by means of a 3x3 mesh of macro-elements; (c) typical bending moment prediction associated to 338 

horizontal actions.    339 

(b) (c) (d) 
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4.3 2D macro-modelling approach versus the equivalent strut model  340 

In this section, the 2D Discrete Macro-Model is compared with the equivalent strut-341 

model which represents one of the most used macro-model approach both for 342 

engineering and research purposes. In particular, a strut model formulation, recently 343 

proposed to simulate the in-plane and out-of-plane behaviour of IFS (Di Trapani et al., 344 

2017), is considered. This model is composed of four struts: two diagonal struts plus 345 

two horizontal/vertical elements. Each strut consists of two fiber-section beam-column 346 

elements characterized by a rectangular section with in-plane width (w) and thickness 347 

(t). The mechanical behaviour of the fiber is characterized by the Kent and Park model 348 

(Kent and Park, 1971) assigning the peak (fm0) and residual stress (fmu) and the 349 

corresponding strain (m0, mu). More details on the calibration of the model can be 350 

found in (Di Trapani et al., 2017).     351 

The two models are compared in terms of capacity curves considering the test-1 352 

performed by Angel (Angel et al., 1994) on a single bay, one storey, infilled reinforced 353 

concrete frames with brick-clay masonry infill. The test was performed monotonically 354 

by applying a uniform out-of-plane pressure across the infill surface after applying the 355 

vertical loads consisting of two concentrated forces of 200 kN at the top section of each 356 

column.  357 

The strut model is calibrated according to (Di Trapani et al., 2017) with reference to the 358 

test-2 of the Angel’s campaign, characterised by the same frame geometry and masonry 359 

typology of the tes-1, here considered. The geometric and mechanical parameters 360 

characterizing the struts are reported in Figure 9a. The analyses are performed in 361 

OpenSees (McKenna, 2011) using Force-Based Beam-Column Element (Taucer et al., 362 

1991) both for the frame and the struts and considering 40x40 fiber-grid discretization 363 
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for each cross section. The concrete is modelled by the Kent and Park model while the 364 

steel bars are modelled by the Menegotto and Pinto constitutive law (Menegotto and 365 

Pinto, 1973).  366 

The numerical out-of-plane capacity curve obtained by means of the 2D macro-model is 367 

reported in (Pantò et al. 2018) and here shown in Figure 9b, compared with the results 368 

obtained by the strut model and the experimental findings. These capacity curves are 369 

expressed in terms of lateral displacement of the central point of the infill against the 370 

applied external force. Both models provide a satisfactory prediction of the 371 

experimental response. In particular, the two numerical curves are very close to each 372 

other in terms of initial stiffness and ultimate strength. In the non-linear pre-peak phase, 373 

the strut model and the 2D macro model tend respectively to overestimate and 374 

underestimate the experimental response. However, the differences between the two 375 

models are less than 15% and both lead to a very good prediction of the peak load 376 

(about 5% of error). Larger differences are observed in the post-peak phase where the 377 

2D macro-model, coherently to the experiment, presents a softening behaviour not 378 

provided by the strut model.     379 

Strut 

w t  fmo fmu mo mu 

(mm) (MPa) (%) 

Diag. 203 230 2,25 1,35 0,15 0,80 

Vert. 679 48 

10,85 6,51 0,15 0,80 

Horiz. 454 48 

(a) 
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2D macro model

Strut model 

(b) 

Figure 9 Mechanical calibration of the equivalent strut model (a); comparison between the experimental 380 

response and the numerical predictions of the two macro-models (b).    381 

 382 
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5 Simulation of the out-of-plane behaviour of the unreinforced prototypes    383 
 384 

In this section, the discrete macro-model described in section 4 is employed to 385 

numerically simulate the experimental behaviour of the masonry brick infill solutions, 386 

previously described in section 2 (system 1 and system 2). According to this modelling 387 

strategy, the orthotropic behaviour of the masonry material is taken into account by 388 

means of the calibration of the interface non-linear links. With this aim, two different 389 

one-dimensional constitutive laws are considered to characterize the masonry along the 390 

horizontal and vertical direction (or parallel and orthogonal directions to the bed joints). 391 

More details on these procedures can be found in (Pantò et al. ,2017). The numerical 392 

simulations aim at providing the capability of the macro-model in predicting lateral 393 

stiffness, ultimate strengths and failure mechanisms of the infill frame prototypes. The 394 

results of the numerical analyses and the comparisons with the experimental findings 395 

are reported and critically commented in the following.  396 

A detailed mesh of macro-elements with size 15cm x 15cm is considered for both 397 

prototypes (Figure 10) in order to accurately simulate the out-of-plane behaviour of the 398 

infill panels and to obtain a high detailed representation of the collapse mechanism and 399 

plastic damage distribution. Each model is constituted by 150 macro-elements, 400 

corresponding to 1050 degrees of freedom, and by 35 beam elements, corresponding to 401 

204 degrees of freedom (Figure 10).  402 
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 403 

Figure 10 Mesh of discrete macro-elements 404 

In order to evaluate the performance of the macro-model, in section 5.4 the results 405 

obtained by the latter model are compared with those obtained by a meso-scale 406 

modelling approach which enables a 3D representation of the effective brick 407 

arrangement of the two masonry systems. The comparisons are presented and critically 408 

discussed in terms of capacity curves and failure mechanisms. 409 

The frame is modelled using elastic beam/column elements fully restrained at the base 410 

section of the two columns, neglecting the foundation beam. The choice to neglect the 411 

nonlinear behaviour of the frame is justified by the slight or inexistent damage observed 412 

in the out-of-plane tests.  413 

For each model, representative of one masonry typology, the structural response is 414 

obtained performing non-linear incremental static analyses (pushover), where two 415 

distinct loading stages are considered: (a) self-weight loads and additional vertical 416 

forces of 200 kN, applied on the top of each column; (b) uniform pressure distribution 417 

applied orthogonally to the masonry infill wall with monotonic increasing intensity. The 418 

gravity/vertical loads are applied with the infill present in order to transfer the 419 

compression stress to the masonry. 420 
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The analyses are performed by the structural software HISRA, HIstorical STRuctural 421 

Analyses), where the 3D macro model have been implemented (Histra, 2015). An 422 

iterative Newton-Raphson method with arch-length algorithm is employed in order to 423 

highlight the softening behaviour of the materials.  424 

 425 

5.1 Estimation of key material mechanical properties  426 

The flexural stiffness (EI) of the frame columns and beams are obtained considering a 427 

homogenized cross section and a secant Young modulus (E) of the concrete equal to 428 

16.500 MPa, being representative of a cracked section. 429 

The masonry compression strength is estimated from compression tests performed on 430 

masonry wallets within the research framework described in section 2. The flexural and 431 

sliding mechanical parameters of masonry, necessary to calibrate the non-linear links of 432 

the macro-model, are estimated from the out-of-plane bending tests performed on 433 

system 1 and system 2.  434 

         435 

5.1.1 Flexural parameters  436 

 437 

In order to characterize the flexural behavior of masonry along the parallel and 438 

perpendicular directions to the bed joints, three out-of-plane bending specimens were 439 

tested in each direction according to (EN1052-2, 1999) for both types of brick masonry. 440 

The masonry specimens were laid on general purpose mortar and for the head joints 441 

both systems present interlocking joints. In the case of System1, the masonry specimens 442 

had 1300x765mm2 and 1000x750mm2 for the parallel and perpendicular direction to the 443 

bed joints respectively, see Figure 11 a,b. In the case of System2, the masonry 444 

specimens had 1000x600mm2 and 1200x800mm2 for the parallel and perpendicular 445 
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direction to the bed joints, see Figure 11 c,d. Four lvdt’s were used to control the 446 

displacement of the specimen, two under the loading sections (lvdt1 and 3) and two on 447 

the middle span (lvdt 2 and lvdt4) of the specimen (one on each side), see Figure 11. 448 

The force is measured using a loading cell attached at the end of the hydraulic actuator. 449 

(a) 

(b) 

(c) 
(d) 

Figure 11 Specimens used for flexural tests; (a) System1 – parallel direction to the bed joints; (b) System1 450 

– perpendicular direction to the bed joints; (c) System2 – parallel direction to the bed joints; (d) System2 451 

– perpendicular direction to the bed joints. 452 

 453 

The masonry Young modulus, parallel (E//) and perpendicular ( E ) to the bed joints, is 454 

estimated by fitting the initial stiffness obtained from the experimental force-455 

displacement diagrams whereas the masonry tangential modulus (G) is assumed 40% of 456 

the Young modulus. According to (Lourenco, 1997), the tensile strength of masonry (ft) 457 

along the main directions of the material is estimated from the ultimate bending moment 458 

(Mu) obtained through the corresponding flexural test, using the expression: 459 

 ft = Mu / 2W = Fu b / 4W   (1) 460 
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where Fu is the ultimate external load recorded during the test (average value from all 461 

specimens), b is the distance between the application point of external force F and the 462 

supports (see Figure 11) and W is the cross-section modulus. The tensile fracture energy 463 

gt, associated to the experiment, is given by Eq. (2) where u represents the current 464 

deflection of the loaded point corresponding to the external force F and At the cross 465 

section of the specimen. The results are summarized in Table 1. The symbol (//) and (  ) 466 

are used to indicate the test parallel and perpendicular to the bed joints respectively.   467 

1
( )t

t

g F u du
A

           (2) 468 

Table 1 - Determination of the masonry tensile strength and fracture energy. 469 

Typology test 
Fu                                           

[kN] 

Gt 

[kNmm] 

Mu                                           

[kNmm] 

310A                                             

[mm2] 

410W 
 [mm3] 

ft                                            

[Mpa] 

gt                                           

[N/mm] 

System1 
// 2,64 37,56 396 76,5 127 0,14 0,501 

  1,55 35,29 193 75,0 125 0,07 0,460 

System2 
// 2,49 3,84 373 84,0 196 0,08 0,046 

  6,52 15,26 1059 112,0 261 0,16 0,135 

 470 

Figure 12 and Figure 13 show the experimental and numerical flexural force-deflection 471 

curves, both in the parallel and perpendicular direction to the bed joints. The numerical 472 

results were obtained for different values of fracture energy. Hence, the results highlight 473 

the high influence of the fracture energy in the numerical response, mainly in the post-474 

peak branches. On the contrary, little influence is observed until the peak-load is 475 

attained. 476 
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(a) (b) 477 
Figure 12 Numerical simulation of the bending tests carried out in System1; (a) direction parallel to bed 478 

joints;  (b) direction perpendicular to bed joints  479 

(a) (b) 480 
Figure 13 Numerical simulation of the bending tests carried out in System2; (a) direction parallel to bed 481 

joints; (b) direction perpendicular to bed joints 482 

 483 

5.1.2 The sliding properties 484 

 485 

The mechanical parameters characterizing the sliding behaviour of the masonry bed 486 

joints are estimated through the numerical simulation of the flexural tests parallel to the 487 

bed joints (Figure 11a,c) by means of a meso-scale modelling approach, here performed 488 

employing the DMM described in section 4, as described in section 5.4. The flexural 489 

behaviour of the interfaces is calibrated according to the results obtained in the previous 490 

section, while their sliding behaviour is characterised assuming a constant friction 491 

coefficient =0,57, representative of the residual friction factor. The cohesion (c) and 492 

sliding fracture energy (gsl) of the mortar joints are estimated fitting the experimental 493 

results of each system. Subsequently, parametric analyses are performed in order to 494 
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estimate the influence of these parameters on the global response. The results of the 495 

parametric analyses, with reference to system-2, are shown in Figure 14. More in detail, 496 

the influence of the fracture energy is assessed by keeping the cohesion constant 497 

(0,15MPa) and varying the sliding energy (0,025-0,050N/mm) (Figure 14a). The 498 

influence of the cohesion is analysed by keeping the fracture energy constant 499 

(0,025N/mm) and by varying the values of cohesion (0,15MPa and 0,23MPa) (Figure 500 

14b). The set parameters which led to the best approximation of the experimental results 501 

were c=0,40MPa and gsl=0,1N/mm for System1 and c=0,15MPa and gsl=0,025N/mm 502 

for System2.  503 

  (a)  (b) 504 

Figure 14 Influence of the sliding fracture energy (a) and cohesion (b) on the out-of-plane flexural 505 

behaviour of the system-2 brick masonry. 506 

 507 

The masonry compressive strengths (fc) and the fracture energy in compression (gc) are 508 

assessed using the results of compression tests performed on masonry wallets within the 509 

same research framework. In the numerical analyses, the same value of gc=0,5N/mm is 510 

assumed for both masonry typologies. The other mechanical masonry parameters, 511 

adopted in the numerical simulations of the infill frame prototypes, are reported in Table  512 

for System1 and in Table  for System2. 513 
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Table 2 - Mechanical property of the System-1. 514 

Direc. 

E 

 [N/mm2] 

G 

 [N/mm2] 

fc 

 [N/mm2] 

ft 

 [N/mm2] 

gc 

 [N/mm] 

gt 

 

[N/mm] 

c 

 [N/mm] 



 [-] 

gsl 

 [N/mm] 

Parallel 1200 

450 

3,00 0,14 

0,5 

0,50 

0,4 0,57 0,10 

Perpen. 250 1,00 0,07 0,46 

Table 3 - Mechanical property of the System-2. 515 

Direc. 
E 

 [N/mm2] 

G 

 [N/mm2] 

fc 

 [N/mm2] 

ft 

 [N/mm2] 

gc 

 [N/mm] 

gt 

[N/mm] 

c 

 [N/mm] 



 [-] 

gsl 

 [N/mm]

Parallel 750 

300 

1,50 0,08 

0,5 

0,04 

0,15 0,57 0,025 

Perpen. 750 1,50 0,16 0,14 

 516 

5.2 Numerical simulation of the out-of-plane behaviour of the System 1(unreinforced) 517 

The performance of the macro-modelling approach applied in the numerical simulation 518 

of the rc frame with masonry infill System1 (unreinforced) is compared with the 519 

experimental force-displacement diagrams (monotonic capacity curves) and damage 520 

patterns, see Figure 15 and Figure 16.    521 

From the comparison of the numerical and experimental capacity curves, it is seen that 522 

the response of the models is close to the experimental curve, both in terms of lateral 523 

stiffness and ultimate strength. In particular, the numerical curve follows the 524 

experimental envelope in the pre-peak stage and in the first part of the post-peak branch 525 

with a very reasonable approximation. However, at 30mm of lateral displacement the 526 

numerical analysis is prematurely interrupted due to numerical convergence problems. 527 

Figure 16a presents the mesh deformation of the macro-model at the last step of the 528 

analysis, while Figure 16b shows the corresponding damage scenario in terms of normal 529 

plastic deformation and sliding mechanisms. The first are represented by a grey color-530 
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map scale, defined according to (Pantò et al. ,2017), while the sliding is indicated by red 531 

lines. 532 
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 533 

Figure 15 Comparison of the numerical and experimental capacity curves of the unreinforced prototype. 534 

 535 

The numerical failure mechanism highlighted in Figures 15 is substantially coherent to 536 

the experimental observations briefly summarised in section 2. The tensile cracking is 537 

concentrated in the central part of the infill, where the highest bending moments are 538 

reached. A spread damage, characterised by plastic sliding, is observed along the 539 

diagonal directions of the infill and at the frame corner areas.  540 

(a) (b) 

 541 

Figure 16 Macro-modelling of the rc frame with System 1 (unreinforced): (a) deformed mesh and (b) 542 

plastic damage at the last step of  the analysis. 543 

 544 
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5.3 Numerical simulation of the out-of-plane behavior of the System 2 (unreinforced) 545 

The experimental behaviour of masonry infill System2 was characterised by sliding 546 

between the infill and the top beam of the frame. In the numerical analyses this aspect is 547 

well simulated when the infill-beam cohesion (cm-f) is assumed to be equal to 65% of the 548 

masonry cohesion (c=0.15MPa). Figure 17 presents the numerical capacity curve 549 

obtained by means of the macro-model, together with the experimental envelope. It is 550 

considered that the model satisfactorily reproduces the experimental response until the 551 

lateral drift of 25mm although a slight underestimation of the initial lateral stiffness is 552 

observed. On the contrary, a good prediction of the ultimate strength of the system is 553 

provided.  554 

In the post-peak stage, the numerical macro-model shows a sharper strength 555 

degradation, underestimating the actual ductility which the system exhibited during the 556 

experiment. This difference may be caused by the inability of the model to reproduce 557 

the large masonry deformations characterising the post-peak infill response since the 558 

hypothesis of small displacements and small deformations are accepted in the numerical 559 

simulations.     560 

 561 

Figure 17 Comparison of the numerical and experimental capacity curve of the Unreinforced Infill Frame. 562 
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The plastic damage corresponding to the peak-load state is composed by tensile cracks 563 

concentred at the centre of the infill (Figure 18a) and at the base (Figure 18b). 564 

Widespread sliding develops in the horizontal and vertical interfaces along the 565 

diagonals of the infill. The last step of the analysis is characterized by widespread 566 

tensile cracking formed at the centre of the front face panel, at approximately 1/3 of the 567 

height from the base, and two vertical cracks, located at the 1/3 of the infill span from 568 

the columns (Figure 19a). Tensile cracks are concentred at the base section of the back 569 

face of the specimen (Figure 19b). The numerical collapse mechanism, described above, 570 

is substantially coherent with the experimental observations, both in terms of shape 571 

lateral deformation and plastic damage distribution.    572 

  (a)  (b) 573 
Figure 18 Damage distribution of the unreinforced infill frame at the peak load value: (a) front face ; (b) back face  574 

  (a) (b) 575 
Figure 19 Damage distribution of the unreinforced infill frame at the last step: (a) front face ; (b) back face 576 

 577 
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5.4 Meso-scale numerical simulations  578 

In order to validate the performance of the macro-model, two meso-scale models are 579 

developed. In these models, the actual masonry texture of each system is reproduced as 580 

shown in Figure 20b and 20c. According to this modelling strategy (Dolatshahi and 581 

Aref, 2011) (Macorini and Izzuddin, 2011) the masonry units are modelled using 582 

continuum solid or rigid elements, whereas the mortar layers are modelled by means of 583 

non‐linear zero-thickness interface elements.  584 

In the present study, the meso-scale models are developed employing the same macro-585 

element described in section 4, calibrated in order to transfer the shear and normal 586 

masonry deformation to the diagonal and interface links. Each discrete element is 587 

defined to represent a single brick and is assigned to represent both the brick and the 588 

surrounding mortar joint properties according to the correspondence reported in Figure 589 

20a. The interface nonlinear links are delegated to represent the mortar joints and the 590 

deformability of bricks according to the influence area of each link (Caliò and Pantò, 591 

2014).      592 

(a) 593 
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 (b)  (c) 
Figure 20 Meso-scale modelling approach: mechanical scheme of the discrete model (a); discretization 594 

mesh of System-1 (b) and System-2(c). 595 

Figure 21 shows the failure mechanism (last step of the analysis) obtained by means of 596 

the meso-scale model for the system-1 with the distribution of the plastic damage on the 597 

interfaces. Similarly to the macro-model, the plastic deformations normal to the joints 598 

are represented by a gray colour map, while the sliding is represented by red lines. The 599 

numerical failure mechanism is characterised by tensile cracking at the central part of 600 

the infill and sliding at the beam/column joint areas. Due to the particular disposition of 601 

the bricks, the sliding mechanisms appear mainly along the vertical interfaces with a 602 

typical "zig-zag" shape, frequently observed in the brick masonry typologies.  603 

(a)         (b) 604 

Figure 21 Meso-scale model of the rc frame with System 1 (unreinforced): (a) deformed mesh (b) collapse 605 

mechanism 606 

  607 

It is interesting to notice that in this case, the horizontal cracks are more close to the 608 

base of the walls, similarly to the crack pattern visible in the specimens tested 609 
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experimentally. This appears to indicate that in this constructive solution, the meso-610 

scale modelling strategy can be more appropriate for the simulation.  611 

The failure mechanisms of system-2 predicted by the meso-scale discretization, 612 

considering three different values of infill-frame cohesion cmf = 35% (model 1), 65% 613 

(model 2) and 100% (model 3) of the cohesion considered for the masonry joints, are 614 

reported in Figure 22. A significant influence of this parameter on the plastic damage 615 

distribution is observed: in model 1, the damage is more concentrated at the panel base 616 

and 3/4 of the panel height with two main horizontal tensile cracks and sliding along the 617 

horizontal mortar joints. Decreasing the cohesion (model 2, model 3), the plastic 618 

damage moves towards the top part of the infill wall. 619 

  620 

Figure 22 Plastic damage at the last step of the analysis for the model 1 (a), model 2 (b) and model 3 (c). 621 

 622 

The comparisons between the numerical capacity curves are reported in Figure 23, 623 

where the experimental curves are also reported. A substantial agreement between the 624 

two models can be observed, mainly for the system-1 where the two numerical curves 625 

are very close to each other. With regards to the system-2, a slight overestimation of the 626 

lateral strength is observed by the meso-scale model 3 (cmf = c) if compared with the 627 

macro-modelling and the specimen. However, all three meso-scale models are rather 628 

close to the experimental curve providing a more reliable prediction of the initial lateral 629 

stiffness of the system, in comparison to the macro-model. However, the analyses 630 
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performed on the meso-scale models are precociously concluded, approximately at 631 

30mm, for problems concerning numerical stability of the solution.        632 

 (a)  (b) 633 

Figure 23 Capacity curves of the meso-scale models of the System-1 (a) and System-2 (b).   634 

In conclusion, the comparisons reported in this sub-section confirmed that the macro-635 

model is able to simulate the out-of-plane behaviour of brick infill frame systems with 636 

an accuracy comparable to the one obtained employing more refined meso-scale 637 

moelling strategies.        638 

6 Simulation of the out-of-plane behaviour of the reinforced prototypes    639 
 640 

As already described in section 2, two different reinforcing techniques have been 641 

considered and experimentally tested for the two brick masonry infill solutions. The 642 

reinforcement of system-1 is constituted by vertical steel bars applied on the two 643 

external faces of the bricks through cementitious mortar to guarantee the tangential 644 

adherence between the bars and bricks. System2 has been reinforced by means of 645 

horizontal steel bars located inside the mortar bed joints and mechanical connections 646 

between the infill and the columns. 647 

Two different modelling approaches are used to simulate the behaviour of the two 648 

reinforced systems. In the case of System1, the reinforcing steel bars are explicitly 649 

modelled by means of additional macro-elements interacting to the other elements of the 650 

model by means of non-linear interfaces able to simulate the normal and tangential bond 651 
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interaction between the reinforcing bars and masonry. For System2, since the 652 

reinforcement is embedded within the bed mortar joints, it is not possible to explicitly 653 

consider it by the macro-modelling strategy. For this reason, the reinforced infill is 654 

modelled as an equivalent homogenised material with increased flexural mechanical 655 

properties related to the ones adopted to model the unreinforced infill.  656 

 657 

6.1 The System1 prototype  658 

The reinforcement is modelled following the approach proposed by (Caddemi et al.,  659 

2017), in which the reinforcing steel bars are simulated by means of piecewise rigid 660 

plates interacting to the masonry by means of zero thickness non-linear discrete 661 

interfaces. The latter simulate the cohesive behaviour of the mortar layer connecting the 662 

bars to the masonry, in normal and tangential directions. Each interface is made of a 663 

row of n transversal N-Links which simulate the normal interaction (kn) and of a single 664 

longitudinal N-Link which simulates the shear behaviour (ks). Figure 24 presents a 665 

simplified modelling scheme of a portion of the reinforced masonry infill through an 666 

assemblage of macro-elements and rigid plates corresponding to the reinforcement 667 

system.  668 

 669 

Figure 24 Modelling scheme of the reinforced system.   670 

 671 
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Each plate is characterized by three degrees of freedom, associated to the two 672 

translations of its barycentre (u,v) and to the rotation of the plate (). According to the 673 

philosophy of the macro-modelling approach, the rigid plates are discretized by a mesh 674 

compatible to the mesh of the macro-elements (Figure 24). The plates interact with each 675 

other by means of unidirectional links (kt) working only in traction which reproduce the 676 

deformability and strength of the bars under tension. This mechanical behaviour is 677 

described by an elastic-brittle constitutive law characterised by the elastic Young 678 

modulus (Es) and yield stress (fy) of the steel and the area of the bar (At).  679 

An elasto-plastic bond-slip constitutive law with linear softening behaviour, 680 

characterised by the yield tangential stress (s) and the ultimate fracture energy (gs), is 681 

employed to simulate the debonding failure mechanism of the reinforcements. The 682 

geometrical and mechanical parameters of steel bars and the bond-slip constitutive 683 

parameters, necessary to mechanically calibrate the model, are estimated according to 684 

(Caddemi et al. ,2017) and reported in Table 4.  685 

 686 

Table 4 - Mechanical parameters of the reinforcing steel bars and the bond-slip constitutive law  687 

Tensile behaviour  Bond-slip behaviour 

Es [MPa] fy [MPa] At [mm2] ks  [ N/mm3] s [MPa] gs [N/mm] 

210000 547.35 28 600 0,4 0,5 

 688 

Figure 25 shows the plastic damage distribution at the last step of the pushover analysis. 689 

It can be observed that the plastic damage is constituted by masonry flexural cracking 690 

on the infill masonry and sliding between masonry and reinforcements. The latter, 691 

mostly concentrated at the bottom part of the front face panel (Figure 25a), is indicated 692 

by red lines, similarly to the representation adopted for the sliding mechanisms between 693 
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two masonry panels. At the back face, tensile cracking occurs at the base section of the 694 

infill and near the columns, while sliding is activated in correspondence of the interfaces 695 

between the infill and the columns (Figure 25b).  696 

This failure mode is rather different from the collapse mechanism exhibited by the 697 

unreinforced brick masonry infill. The widespread tensile cracking at the central part of 698 

the panel and sliding at the corners, observed in the unreinforced model, are here 699 

strongly restricted by the confinement action of the reinforcements.  700 

 (a)    (b) 701 

Figure 25 Damage distribution at the last step of the analysis; front face (a), back face (b).  702 

 703 

The numerical capacity curve is reported in Figure 26 compared to the experimental 704 

monotonic envelope. From this, it is possible to observe a good agreement between 705 

numerical and experimental response in terms of lateral stiffness, ultimate load and 706 

displacement capacity. Two phases can be recognized in the numerical response: (1) 707 

from zero to approximately 55kN, numerical and experimental response are very close; 708 

(2) after the out-of-plane resistance of 55kN, the numerical response is characterised by 709 

an irregular path with continuous loss of strength, due to the sliding mechanism 710 

involving the reinforcement. This leads to numerical values of out-of-plane resistance 711 

slightly lower than the ones recorded in the experimental test. 712 
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 713 

Figure 26 Numerical and experimental capacity curve of the reinforced prototype.  714 

 715 

A more refined mesh of the reinforcing steel bars would be necessary to more 716 

accurately follow the progressive loss of reinforcement adherence. Nevertheless, the 717 

adopted mesh discretization gives a satisfactory prediction of the global strength of the 718 

reinforced system, coherently to the simplified character of the modelling approach.     719 

The difference between the experimental strength and the numerical prediction is 720 

approximately 10%. This level of approximation is considered to be adequate to the 721 

scope of the numerical investigation.  722 

 723 

6.2 The System2 prototype 724 

The contribution of the steel reinforcements, applied within the horizontal bed joints, is 725 

modelled increasing the masonry tensile strength and fracture energy, along the 726 

direction parallel to the bed joints. Furthermore, in order to take into account, the steel 727 

connections between infill and frame, the sliding motion at the masonry-column 728 

interfaces is inhibited. The new flexural parameters of the masonry are estimated by 729 

simulating the flexural tests performed on reinforced specimens and fitting the 730 

experimental results. The tensile strength (ft) of the reinforced masonry was evaluated 731 
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yet again as Mu /2W resulting in the value of 0,83 MPa, being the ultimate moment Mu  732 

equal to 4371 KNmm. The corresponding tensile fracture energy (gt) that adequately 733 

provides the experimental results is 4,00 N/mm. Figure 27 shows the influence of the 734 

fracture energy on the force-deflection bending test response. It is important to notice 735 

that the reinforcing system produces an extreme increase of the masonry ductility when 736 

compared to the unreinforced masonry system.   737 

 738 

Figure 27 Numerical simulation of the bending tests on the reinforced masonry walls : influence of the tensile 739 

fracture energy  740 

 741 

Figure 28 shows the failure mechanism and the corresponding plastic damage 742 

distribution of the reinforced system. The numerical damage scenario is substantially 743 

coherent to the results of the experiments. In order to better clarify the difference 744 

between the unreinforced and reinforced system, the ultimate lateral displacements 745 

obtained with and without reinforcements are compared, see Figure 29. The two 746 

scenario are sensibly different: in the unreinforced masonry infill (Figure 29a) the peak 747 

lateral displacement is recorded below the central section of the panel; in the reinforced 748 

prototype (Figure 29b) the peak lateral drift is achieved at the top of the infill. It is seen 749 
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that in both cases the detachment of the walls from the top beam occurs but the failure 750 

of the reinforced model is more influenced by sliding between the infill and the top rc 751 

beam.  752 

(a) (b) 753 
Figure 28 Damage distribution of the unreinforced infill frame at the last step: (a) front face (b) and back face.  754 

(a)   (b) 755 

Figure 29 Comparison of the ultimate deformed shape of: (a) unreinforced masonry infill wall ; (b) and reinforced 756 

masonry infill wall. 757 

 758 
The considerable increment of the tensile strength and ductility of masonry along the 759 

horizontal direction due to the reinforcing system, lead to predominant horizontal 760 

bending. This enabled the infill to carry increment of lateral load although large 761 

horizontal cracks are developed by means an horizontal bending moment transfer 762 

mechanism. 763 

The comparison between numerical and experimental capacity curve, is reported in 764 

Figure 30, from which it is possible to see that a substantial agreement between the 765 

responses, both in terms of initial lateral stiffness and ultimate load-carrying capacity. 766 
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  767 
Figure 30 Numerical capacity curve compared to the experimental results. 768 

 769 

Up to the lateral displacement of 15 mm, the numerical and experimental curves are 770 

very close to each other. After this point, the numerical model begins to overestimate 771 

the lateral stiffness of the system, reaching the peak load before the specimen, at a 772 

lateral drift of approximately 35mm. The model then shows a softening branch, which 773 

leads the numerical prediction towards the experimental curve. The discrepancies 774 

between the numerical and experimental curve can be justified by the simplicity of 775 

constitutive law employed to simulate the out-of-plane sliding mechanism. A non-linear 776 

plastic constitutive law, instead of the elasto-plastic here considered to calibrate the 777 

longitudinal interface links, may give a better approximation of the experimental 778 

response. Nevertheless, it is considered that the current modelling accuracy level is 779 

satisfactory to interpret the global structural behaviour of the system and suitable to be 780 

used in real structures for seismic vulnerability assessments. 781 

 782 

7 Parametric analyses 783 

In order to assess the sensitivity of brick masonry infill walls on the main mechanical 784 

and geometrical parameters and evaluate how they influence the lateral stiffness and 785 
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strength of the system, it was decided to perform a parametric study. This study refers to 786 

System2 which can be considered representative of traditional masonry infills. Five 787 

aspects are considered, as shown in Table 5: infill geometry including thickness (t) and 788 

infill aspect ratio (L/H); masonry strength including compression strength (fc), tensile 789 

strength (ft), tensile fracture energy (gt), cohesion (c), friction coefficient () and sliding 790 

fracture energy (gs); masonry stiffness (Em, Gm); opening effects; vertical loads, applied 791 

in the columns (Q) and in the top rc beam (q). Regular opening distribution, constituted 792 

by a single central door or window opening, characterized by different geometrical ratio 793 

AO/Am, where AO is the area of opening and Am the area of the masonry infill wall, is 794 

here considered.  795 

A set of three values is taken into account for each parameter investigated namely, an 796 

average value (vm) and two upper/lower values (vinf / vsup) obtained by an increase or a 797 

decrease of 50% to 100% of the average value, vm. The numerical analyses were 798 

performed considering the variability of a singular parameter, whereas the others were 799 

kept constant and equal to the average values as reported in Table 5. 800 

 Table 5 - Geometrical parameters considered in the sensitivity analysis (N-mm). 801 

 

Aspect 

investigated 

parameter symbol measure 

unit 

values 

vinf vm vsup 

Infill 

geometry 

thickness T - 100 140 210 

In-plane shape ratio   L/H - 1,00 1,50 2,00 

Masonry 

strength 

compression strength  fc MPa 1,20 1,80 2,40 

tensile strength  

(isotropic behaviour) 

ft MPa 
0,10 0,25 0,50 

tensile fracture energy   

(isotropic behaviour) 

gt N/mm 
0,03 0,30 0,90 

cohesion  c MPa 0,10 0,15 0,20 

friction factor  - 0,4 0,55 0,70 

sliding fractural energy   gs N/mm 0,025 0,05 0,10 

Masonry 

stiffness 

Young modulus  Em MPa 600 1200 2400 

shear modulus  Gm MPa 150 300 600 

Openings windows opening ratio  AO/Am % 0 13 28 
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door opening ratio AO/Am % 0 23 37 

Vertical loads  
column loads Q kN 50 200 300 

beam loads q kN/m 25 50 100 

 802 

 803 

The results of the parametric analyses on the full infilled frames are reported in 804 

Figure 31 in terms of capacity curves expressed as base shear vs maximum lateral 805 

displacement. The strength parameters characterizing the sliding behaviour and, in 806 

particular, the sliding fracture energy (gs), cohesion (c) and the friction factor (), 807 

influence the ultimate lateral strength of the system, see Figure 31g, h, i. The increase 808 

on the infill compression strength results in a slight increase of the peak system strength 809 

and ductility capacity (Figure 31e).  810 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 
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(m) 

 
(n) 

 
(p) 

Figure 31 Sensitivity analysis of the macro-model: Young modulus (a); tangential modulus (b); thickness of infill 811 

(c); compression strength (d); tensile strength (e); tensile fracture energy(f); cohesion (g); friction coefficient (h); 812 

fractural sliding energy (i); infill shape ratio (m); vertical beam load (n); vertical loads on the column (p).  813 

 814 

A low sensitivity of the model on the tensile fracture energy is observed (Figure 31f) 815 

while tensile strength influences only the post-peak response (Figure 31d). The initial 816 

stiffness is greatly influenced by the thickness of the infill (Figure 31c) and slightly 817 

influenced by the Young masonry modulus (E) as shown in Figure 31a. Conversely, 818 

shear modulus (G) influences only post-peak response of the system (Figure 31b). 819 

Finally, in-plane infill aspect ratio (L/H) considerably influences the peak and post-peak 820 

response, Figure 31m.  821 

Distributed beam load (q) significantly influences the ultimate resistance of the 822 

system, see Figure 31n. High values of the distributed load results in a significant 823 

decrease on the out-of-plane resistance of the masonry wall. This is associated to the 824 

direct transfer of the vertical load to the brick infill, increasing the masonry compression 825 

stress state. Since flexural behaviour and arching mechanism prevail on the infill 826 

response, it is affected by the increase on the compression stress levels due to the 827 

development of anticipated crushing mechanism when out-of-plane load is applied. This 828 

brings to light the issue of deformability of the rc beams/slabs, inducing additional 829 

compressive stresses to the infill walls and reducing its out-of-plane resistance. On the 830 

other hand, it is observed that the vertical column forces (F) slightly influence the 831 
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global response of the brick infill (Figure 31p), since such loads transferred directly by 832 

the stiffer r/c columns to the foundation. 833 

The influence of the infill shape ratio was investigated keeping a constant height (H) 834 

while changing the system length (L). Typical damage patterns of brick infill, for two 835 

different aspect ratios are reported in Figure 32. The failure mode changes from the 836 

formation of two vertical and horizontal tensile cracks (case L/H=1) to the formation of 837 

a widespread horizontal crack in the case of L/H=2. In the first case a 2D-bending 838 

mechanism develops, whereas in the second case, a unidirectional (vertical) flexural 839 

mechanism predominates. 840 

(a)     (b) 841 
Figure 32 Failure modes associated to the geometry ratio L/H=1(a) and L/H=2(b) 842 

 843 

The responses of the masonry infills with different types of openings (windows and 844 

doors) and different percentages of opening area are shown in Figure 33. It is observed 845 

that the presence of openings produces a significant invariably reduction of the initial 846 

lateral stiffness of the system. A lateral strength reduction is observed in the door-open 847 

systems. On the contrary, window-opening results indicate no significant influence in 848 

the out-of-plane strength, despite the decrease of lateral stiffness.  849 
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(a) 

 
(b) 

Figure 33 Capacity curves of the infill frame with opening; (a) windows opening; (b) doors opening.  850 

 851 
The collapse mechanisms observed for different openings are shown in Figure 34. The 852 

damage is concentrated mainly at the lateral sides of the openings. A more evident 853 

damage concentration is observed in the upper spandrel where infills are characterized 854 

by low opening ratio (windows 13% and door 23%). 855 

 856 

  857 

                 (window 13%)           (window 28%) 858 

  859 

            (door 23%)                             (door 37%) 860 

Figure 34 Collapse mechanisms of the infilled frame with opening. 861 

 862 
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7.1 Variation of the out-of-plane stiffness and strength  863 

Taking into account the most influential parameters in the out-of-plane behavior of the 864 

investigated brick infill walls, it was decided to perform a deeper investigation on their 865 

influence in the variation of the ultimate strength (Fu) and initial stiffness (KI), the latter 866 

evaluated at 30% of load level with respect to the peak. 867 

Four dimensionless parameters are considered: (i) relative masonry-concrete 868 

deformation ratio (Em/Ec) considering a constant concrete module EC=30GPa; (ii) in-869 

plane infill shape ratio (L/H); (iii) thickness ratio (t/H) and (iv) distributed vertical beam 870 

load (q) referred to the specific masonry self-weight (qm=Htw). The values of the 871 

investigated parameters and the corresponding strength and stiffness are reported in 872 

Table 7. 873 

Table 7 – Initial stiffness [kN/mm] and ultimate lateral load [kN]. 874 

Thickness 

ratio 

t / H  0,04 0,05 0,06 0,07 0,08 0,09 0,10 0,12 

KI 3.41 3.30 3.92 4.73 5.51 5.72 6.25 6.57 

Fu 23.94 35.47 49.04 63.79 78.83 95.62 113.97 140.98 

In-plane 

aspect  

L/H 1,0 1,2 1,4 1,6 1,8 2,0 2,5  

KI 7,07 6,40 6,23 6,49 5,91 6,21 5,43  

Fu 110,36 104,26 100,15 100,64 96,00 98,37 93,23  

Masonry 

deformation 

Em / Ec  0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,10 

KI 5,35 5,55 5,76 5,90 6,00 6,08 6,15 6,21 

Fu 84,99 89,50 96,.87 100,71 104,52 106,74 108,91 110,20 

Vertical 

load 

q/qm 0,05 0,15 0,3 0,5 0,65 0,05   

KI  6,09 6,20 6,38 6,63 6,82 6,34   

Fu  118,59 121,92 121,94 123,21 117,32 104,89   

 875 

The out-of-plane resistance is clearly affected by the thickness ratio of the walls, being 876 

higher for increasing values of the thickness. The out-of-plane lateral stiffness also 877 

increases but at a lower rate. The masonry elastic modulus contributes to the increase of 878 
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both stiffness and ultimate resistance however, at a lower rate than that associated to the 879 

increasing thickness ratio. 880 

The vertical load applied in the rc beam has little influence on the out-of-plane strength 881 

for high load values. On the other hand, additional vertical loads make the system 882 

stiffer. The in-plane aspect ratio has an important influence in the out-of-plane 883 

resistance and lateral stiffness.  884 

 885 

8 Conclusions 886 

This paper presented the results of the numerical simulation of the mechanical 887 

behaviour of two modern solutions of brick masonry infill walls submitted to out-of-888 

plane loading. The solutions of masonry infill walls intended to improve its behaviour 889 

under seismic loads. The numerical simulations are based on an innovative discrete-890 

macro-modelling approach, able to simulate the in-plane and out-of-plane behaviour of 891 

infill frames with a reduced computational effort if compared to refined non-linear finite 892 

element approaches. Following this strategy, the frame is modelled by lumped plasticity 893 

beam/column elements whereas the infill is discretized by means of macro-elements 894 

consisting in articulated quadrilaterals connected to each other and to the frame through 895 

non-linear discrete interface elements, simulating both the axial/flexural and sliding, in-896 

plane and out-of-plane, interactions.  897 

In order to limit the sources of uncertainty, associated to the calibration of the model, 898 

the present study has been restricted on the simulation of the out-of-plane behaviour of 899 

undamaged systems. Thus, the influence of the in-plane motion and damage on the out-900 

of-plane behaviour was neglected. Further investigations are needed to assess the in-901 

plane out-of-plane interaction mechanisms and its numerical simulation.          902 
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Based on the results achieved, it is possible to drawn the following conclusions: 903 

(a) it was possible to obtain the major mechanical properties to calibrate the 904 

numerical macro-element model developed for both infill masonry walls 905 

(unreinforced and reinforced) based on the results of the flexural tests; 906 

(b) good agreement between experimental monotonic envelops and numerical 907 

pushover curves was attained, namely at the level of initial stiffness and out-of-908 

plane resistance. After peak load is attained, the responses are more divergent 909 

which can be associated to the predominant arching mechanism observed in the 910 

experimental campaign and that cannot be described through the macro-element 911 

method. 912 

(c) the crack and deformation patterns obtained in the numerical models were 913 

mostly compatible with the crack patterns and deformation paths obtained in the 914 

experimental out-of-plane tests. 915 

(d) the parametric analysis revealed that geometrical features of the masonry infill 916 

walls play a central role on the out-of-plane behaviour of the brick infills, 917 

namely the length to height aspect ratio and the thickness to height ratio. 918 

Increasing values of the L/H ratio lead to the decrease on the out-of-plane 919 

resistance, which is justified by the changing on the governing resisting 920 

mechanism from two way bending to one way being. In addition, the out-of-921 

plane stiffness decreases with increasing values of L/H. Besides, it is clear that 922 

low values of thickness to height ratio results (slenderness), result in very low 923 

values of out-of-plane resistance. 924 

(e) the out-of-plane performance of brick infills is negatively affected by the 925 

uniformly distributed load on the top rc beam. In general, no additional vertical 926 
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loads are supposed to be applied on the brick infills, given that they are 927 

considered to be non-structural. However, if for constructive imperfections or 928 

long-term behaviour additional loads are induced in the brick infills, these can 929 

contribute to increase its seismic vulnerability. 930 
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