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Abstract. Stationary splitting iterative methods for solving AXB = C are considered in this

paper. The main tool to derive our new method is the induced splitting of a given nonsingular matrix

A = M−N by a matrix H such that (I − H)−1 exists. Convergence properties of the proposed

method are discussed and numerical experiments are presented to illustrate its computational effi-

ciency and the effectiveness of some preconditioned variants. In particular, for certain surface-fitting

applications our method is much more efficient than the progressive iterative approximation

(PIA), a conventional iterative method often used in computer aided geometric design (CAGD).
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1. Introduction. Consider the matrix equation

AXB = C, (1.1)

where A ∈ Rn×n, B ∈ Rm×m and X,C ∈ Rn×m. This matrix equation plays an

important role in many practical applications such as surfaces fitting in computer

aided geometric design (CAGD), signal and image processing, photogrammetry, etc.,

see for example [14, 19, 20, 30, 31] and a large literature therein. Given the existence

of many and important applications, the theory and algorithms for matrix equations

have intrigued the researchers for decades, see [7, 9, 15, 21, 28, 29, 30, 31, 34, 37].

A recent survey on the major numerical algorithms for the solution of the more general

linear matrix equation AXE +DXB = C, for given square matrices A,B,D,E and

conformable matrix C, and related problems is presented in [33].

The matrix equation (1.1) can be treated as a standard linear system with mul-

tiple right-hand sides as pointed out in [33, p.380]. More precisely, it is possible,

for instance, to split the initial problem into two matrix equations, AY = C and

BTXT = Y T , to be considered in succession. In practice, instead of solving each

of the linear systems independently, by using the LU decomposition method or some
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iterative method, it is more efficient to use a block solver, especially when the matrices

involved are dense. See [13, 32, 38].

Equation (1.1) is also mathematically equivalent to the larger linear system

(BT ⊗A)x = c, (1.2)

where ⊗ denotes the standard Kronecker product symbol, x = vec(X) and

c = vec(C) are two column-stacking vectors of the matrices X and C, respectively.

The order of the coefficient matrix in (1.2) is mn, which becomes very large when

m,n are large.

It is useful to consider the general linear system (1.2) in a theoretical analysis but

it is impractical to solve this system to obtain a numerical solution to (1.1), since it

is computationally expensive and it can be ill-conditioned. Thus, it is attractive to

get the solution for (1.1) from itself. Moreover, the Level 3 BLAS operations can be

performed on high performance computers [8].

In this paper we focus our attention in methods developed directely from the

original matrix equation (1.1). There are two main types of methods for solving

this problem: direct methods and iterative methods. When the matrices A and

B are small and dense, direct methods such as QR-factorization-based algorithms

[9, 36] are attractive. However, these direct algorithms are quite costly and suffer

from numerical instability when A and B are large and ill-conditioned. Therefore,

considerable attention has recently been paid to iterative methods, see for instance

[15, 28, 29, 34, 35, 37] and references therein.

In the context of this problem, Tian et al. in [34] developed some Jacobi and

Gauss-Seidel-type iterative methods for solving (1.2). Let us roughly summarize their

schemes as follows in terms of the original problem (1.1).

We say that the representation A =M−N is a splitting of A ifM is nonsingular.

The splitting A =M−N is called convergent if ρ(H) < 1, where H =M−1N is the

iteration matrix and ρ(H) denotes the spectral radius of the matrix H.

Let A = F − G and B = F̂ − Ĝ be the splittings of A and B, respectively.

Then the four basic iteration sequences defined in [34] can be equivalently written as

follows:

X(k+1) = F−1GX(k) + F−1CB−1, (1.3)

X(k+1) = X(k)ĜF̂−1 +A−1CF̂−1, (1.4)

X(k+1) = F−1GX(k) +X(k)ĜF̂−1 − F−1GX(k)ĜF̂−1 + F−1CF̂−1 (1.5)
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and

X(k+1) = X(k) + F−1
(
C −AX(k)B

)
F̂−1. (1.6)

The iterations (1.3) and (1.4) are referred as modified iterations and some of their

convergence theories as well as related algorithms were discussed in [34].

In fact, if A−1 or B−1 is available or it is easy to obtain, then the matrix equation

(1.1) can be reduced into a general linear system with multiple right-hand sides.

In this situation, iteration sequence (1.3) or (1.4) can be employed to obtain an

approximate solution to (1.1), otherwise they are useless in practice. We therefore

focus on iterations (1.5) and (1.6). We refer to iteration (1.5) as the direct splitting

iteration and to iteration (1.6) as the residual-updating iteration (cf. [2]).

It is known that the iteration sequences (1.3) and (1.4) converge to the exact

solution of (1.1) if and only if ρ(F−1G) < 1 and ρ(ĜF̂−1) < 1, respectively. In what

respects to the iteration sequence (1.5), this condition is not suficient for convergence.

It was shown in [21], exhibiting a numerical example, that even if both ρ(F−1G) < 1

and ρ(ĜF̂−1) < 1 hold simultaneously, the method may not converge. In this paper

we recall the sufficent conditions for convergence of (1.5) that were established in [21]

(see Theorem 2.10) and develop a new iterative scheme that also deals with the cases

when convergence is not ensured immediatley.

The splittings considered in the iterative methods described in [34] were the

particular splittings of Jacobi and Gauss-Seidel of the matrix BT ⊗ A. The method

we propose works with the original matrices A and B, whose size is much smaller if

m and n are large, and it can be applied to any convergent splitting of these matrices.

Thus, our method is broader in what respects to the type of splitting that may be

considered and enables an improvement of the performance speed if m and n are

large.

In our numerical experiments we first consider Gauss-Seidel splittings of A and B

and antecipate possible divergence, even if conditions ρ(F−1G) < 1 and ρ(ĜF̂−1) < 1

both hold. These cases where not considered in [34] and, thus, with these numerical

results we intend to give a complementary study to [34] rather than to provide a

comparison of the different methods.

We present the details of the implementation of our method in Matlab and in

our numerical studies we also consider sucessive overrelaxation Gauss-Seidel (SOR)

splittings and preconditioned versions of our method.

This paper is organized as follows. In the next section we recall some preliminary

results used in the sequel. Then, in Section 3, we introduce stationary splittings and

discuss the convergence of the resulting induced splitting iteration. Some precondi-

tioned variants of this iteration are also presented in Section 3. The first numerical
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experiments are presented in Section 4 to exhibit the effectiveness of our method.

An example of an application to surface-fitting is described in Section 5 and more

numerical results are shown. A brief conclusion is drawn in Section 6, and the ac-

knowledgements are writen in the last section.

2. Preliminaries. In this section, we review some definitions, notation and

known results needed in the remaining parts of this paper.

Definition 2.1. ([3, 14]) A matrix A = (aij) ∈ Rn×n is called

• a Z-matrix, if aij ≤ 0, for i, j = 1, . . . , n, i 6= j;

• a monotone matrix, if A−1 ≥ 0;

• an M -matrix, if A is a monotone Z-matrix.

Definition 2.2. ([10]) Let A = (aij) ∈ Cn×n. Let 〈A〉 = (αij) ∈ Rn×n be

defined by the following conditions:

• αii = |aii| for i = 1, . . . , n;

• αij = −|aij | for i, j = 1, . . . , n, i 6= j.

Matrix 〈A〉 is called the comparison matrix of A.

Definition 2.3. ([10]) Let A = (aij) ∈ Cn×n. If its comparison matrix 〈A〉 is

an M -matrix, then A is called an H-matrix.

Definition 2.4. ([3, 14, 27]) Let A ∈ Rn×n. The splitting A =M−N is called

• weak regular if M−1 ≥ 0 and M−1N ≥ 0;

• regular if M−1 ≥ 0 and N ≥ 0;

• P-regular if M∗ +N is positive definite;

• M-splitting if M is an M-matrix, and N ≥ 0;

• H-splitting if 〈M〉 − |N | is an M-matrix;

• H-compatible splitting if 〈A〉 = 〈M〉 − |N |.

The following results about matrix splittings can be found in [3, 10, 14, 24, 27].

Theorem 2.5. Let A =M−N be an hermitian positive definite matrix, where

M is a invertible hermitian matrix. Then ρ(M−1N ) < 1 if and only if the splitting

A =M−N is P-regular.

Theorem 2.6. Let A be hermitian, and let the splitting A =M−N be P-regular.

Then ρ(M−1N ) < 1 if and only if A is positive definite.

Lemma 2.7. Let A ∈ Rn×n be a monotone matrix. If A = M−N is a weak

regular splitting, then ρ(M−1N ) < 1.

Lemma 2.8. Let A be an n× n H-matrix.
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• If the splitting A =M−N is an H-splitting, then ρ(M−1N ) < 1.

• If the splitting A = M− N is an H-compatible splitting, then it is an H-

splitting and thus convergent.

We remark here that an M-matrix is certainly an H-matrix but the converse is not

true, and that all strictly or irreducibly diagonally dominant matrices are H-matrices.

The following conclusion is often used in the analysis of iterative methods.

Lemma 2.9. ([17, 24]). Given a nonsingular matrix A and H such that (I−H)−1

exists, there exists a unique pair of matrices MH, NH, such that H =M−1H NH and

A = MH − NH, where MH is nonsingular. It is said that A = MH − NH is an

induced splitting of A by H.

The following theorem concerns the convergence of iteration sequence (1.5).

Theorem 2.10. ([21, Theorem 2.8]) Let A = F − G and B = F̂ − Ĝ be two

splittings of A and B, respectively. Let H = F−1G and Ĥ = ĜF̂−1. If

ρ(H) <
√

3− 1, ρ(Ĥ) <
√

3− 1 (2.1)

and

[ρ(H) + 1]2 + [ρ(Ĥ) + 1]2 < 4, (2.2)

then iteration sequences (1.5) and (1.6) converge to the exact solution of (1.1).

3. The induced splitting iteration. In this section we develop a new iterative

method for solving the matrix equation (1.1) and analyze the convergence properties

of this new method. A preconditioned variant of this method will also be described.

3.1. Iterative scheme and convergence results. We first introduce induced

splittings of the matrices A and B.

Let the splittings A = F −G and B = F̂ − Ĝ be convergent splittings. Defining

H = F−1G, H̃ = F̂−1Ĝ and Ĥ = ĜF̂−1,

we have ρ(H) < 1 and ρ(Ĥ) = ρ(H̃) < 1, since, for any two square matrices S and

T , ST and TS have the same eigenvalues.

Using the above notation, iteration (1.5) may be written as

X(k+1) = HX(k) +X(k)Ĥ −HX(k)Ĥ + F−1CF̂−1. (3.1)

If this iteration sequence does not converge (conditions (2.1) and (2.2) in Theorem

2.10 are not satisfied simultaneously), then we proceed as follows.
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We first estimate ρ = ρ(H) and ρ̂ = ρ(Ĥ) using the power iteration. If ρ < 1,

then the sequence ρp converges to 0 with p and, thus, for any arbitrarily small ε1 > 0,

there exists a positive integer N1 such that ρp ≤ ε1, when p ≥ N1. Let p ≥ N1 be

fixed and let H = Hp. Then ρ(H) = ρp < 1 and I −H is invertible. By Lemma 2.9,

this H induces a unique splitting of A, that is,
A =M−N ,

M−1 =

(
p−1∑
i=0

Hi

)
F−1 with M−1N = H.

(3.2)

Observe that, since this splitting of A yields A−1 = (I − H)−1M−1 and the first

splitting of A gives A−1 = (I −H)−1F−1, we obtain

M−1 = (I −H)A−1 = (I −Hp)(I −H)−1F−1 = (I +H + · · ·+Hp−1)F−1.

This formula for M−1 can also be directly derived from a two-stage iteration for

solving Ax = b with outer splitting A = A−O, where O denotes the zero matrix, see

[6, 10, 17, 24].

We refer to (3.2) as a p-degree induced splitting of A by H.

Similarly, if ρ̂ < 1, then, for any arbitrarily small ε2 > 0, there exists a positive

integers N2 such that ρ̂q ≤ ε2, when q ≥ N2. Let H̃ = H̃q and Ĥ = Ĥq for a fixed

q ≥ N2. Then ρ(H̃) = ρ(Ĥ) = ρ̂q < 1 and, by Lemma 2.9, analogously to what was

considered for A, matrices H̃ and Ĥ induce unique splittings of B, given, respectively,

by 
B = M̃ − Ñ

M̃−1 =

(
q−1∑
i=0

H̃i

)
F̂−1 with M̃−1Ñ = H̃,

(3.3)

and 
B = M̂ − N̂ ,

M̂−1 = F̂−1
q−1∑
i=0

Ĥi with N̂M̂−1 = Ĥ.
(3.4)

Observe that the splitting (3.4) is derived from the relations B−1 = M̂−1(I − Ĥ)−1

and B−1 = M̂−1(I − Ĥ)−1, both combined to obtain the expression for M̂−1. Also

observe that M̂−1 = M̃−1.

The splittings (3.3) and (3.4) are referred to as q-degree induced splittings of

B, by H̃ and Ĥ, respectively.

Now, we can use the induced splittings (3.2) and (3.4) to construct the iteration

schemes corresponding to (3.1),

X(k+1) = HX(k) +X(k)Ĥ − HX(k)Ĥ+M−1CM̂−1, (3.5)
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and the iteration scheme corresponding to (1.6),

X(k+1) = X(k) +M−1
(
C −AX(k)B

)
M̂−1. (3.6)

We remark here that if p = q = 1, then iterations (3.5) and (3.6) reduce to (3.1) and

and (1.6), respectively.

We refer to iterations (3.5) and (3.6) as induced splitting iterations.

Going to a numerical implementation, we chose to develop the algorithm for the

induced splitting iteration (3.6), since it is computationally more efficient. If we let

A1 =M−1A, B1 = BM̂−1, C1 =M−1CM̂−1, (3.7)

iteration (3.6) becomes

X(k+1) = X(k) +
(
C1 −A1X

(k)B1

)
, (3.8)

resulting that only two matrix multiplications are needed per iteration.

We are now in conditions to write the arguments we discussed above as a conver-

gence theorem for iterations (3.6) (and (3.5)).

Theorem 3.1. Consider convergent splittings A = F −G and B = F̂ − Ĝ. Let

H = F−1G, Ĥ = ĜF̂−1, ρ = ρ(H) and ρ̂ = ρ(Ĥ). Then there exist two positive

integers N1 and N2 such that ρp and ρ̂q satisfy (2.1) and (2.2) for all p ≥ N1 and

q ≥ N2. In this case, the iteration (3.6) converges to the exact solution of (1.1), for

any given guess X(0).

Proof. It follows from the hypothesis that ρ = ρ(H) < 1 and ρ̂ = ρ(Ĥ) < 1.

Thus, given any two positive integers p and q, for H = Hp and Ĥ = Ĥq, we have

ρ(H) = ρp < 1, ρ(Ĥ) = ρ̂q < 1 and, by Lemma 2.9, H and Ĥ induce the splittings

A =M−N and B = M̂ − N̂ , given by (3.2) and (3.4), respectively. We also know

that there always exist positive integers p = N1 and q = N2 for which ρ(H) and ρ(Ĥ)

are arbitrarily small, for all p ≥ N1 and q ≥ N2, and then satisfy (2.1) and (2.2). By

Theorem 2.10, we therefore conclude that the iteration (3.6) converges to the exact

solution of (1.1), for any given guess X(0).

As a consequence of Theorem 3.1, we have the following result.

Corollary 3.2. Let A and B be Hermitian positive definite or H-matrices.

Let A = F − G and B = F̂ − Ĝ be their Gauss-Seidel splittings*, let H = F−1G,

Ĥ = ĜF̂−1, and let ρ = ρ(H) and ρ̂ = ρ(Ĥ). Then there exist two positive integers

*The splitting A = (D−L)−U is the Gauss-Seidel splitting of A, where D is the diagonal matrix

consisting of the diagonal entries of A, L and U are the strictly lower triangular and the strictly

upper triangular parts of A, respectively.
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N1 and N2 such that ρp and ρ̂q satisfy (2.1) and (2.2) for all p ≥ N1 and q ≥ N2.

In this case, the iteration (3.6) converges to the exact solution of (1.1), for any given

guess X(0).

Proof. It is sufficient to show that ρ < 1 and ρ̂ < 1. If A and B are Hermitian

positive definite and the splittings A = F −G and B = F̂ − Ĝ are the Gauss-Seidel

splittings, these are P-regular splittings. Then, by Theorem 2.5 or Theorem 2.6, we

have ρ < 1 and ρ̂ < 1. Similarly, If A and B are H-matrices, and the splittings

A = F − G and B = F̂ − Ĝ are the Gauss-Seidel splittings, these are H-compatible

splittings. Then, by Lemma 2.8, we also have ρ < 1 and ρ̂ < 1.

We may now present our algorithm based on iteration (3.8). Observe that in this

scheme an estimate for the error E(k) = X(k+1) −X(k) is immediately available.

Algorithm 1. An approximated solution to (1.1) is obtained in two stages.

Preparatory stage:

– determine the splittings A = F − G and B = F̂ − Ĝ (SOR splittings, for

example) and then compute H = F−1G and Ĥ = ĜF̂−1;

– obtain estimates ρ = ρ(H) and ρ̂ = ρ(Ĥ) and search for two positive integers

p and q such that ρp and ρ̂q satisfy (2.1) and (2.2);

– once some p and q are determined, compute M−1 and M̂−1 given in (3.2)

and (3.4), respectively;

– compute A1, B1 and C1 according to (3.7).

Iterative stage: Given an initial guess X(0), for k = 0, 1, 2, · · · , until {X(k)}
converges,

• compute E(k) = C1 −A1X
(k)B1 and X(k+1) = X(k) + E(k);

• compare ‖E(k)‖ with the desired error tolerance.

In Section 4 we describe some details considered in our Matlab implementation

of Algorithm 1 in which we included the SOR splittings.

We remark here that if A and B are Hermitian positive definite or H-matrices,

then a block version of Algorithm 1 with block Gauss-Seidel splittings can be easily

developed, which is appealing for solving large matrix equations on parallel architec-

tures, see [1].

3.1.1. Finding p and q. When we find p and q that satisfy (2.1) and (2.2),

then we can also consider greater values and the greater p and q are, the smaller the

spectral radii ρ(H) and ρ(Ĥ) are and thus the smaller the number of iterations is

(required for Algorithm 1 to converge for a given tolerance). However, increasing p

and q means increasing the computational complexity (the number of matrix-matrix
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multiplications) to obtain M−1 and M̂−1 which will only be compensated by the

reduction of the number of iterations up to a certain level, namely if the orders m

and n of the matrices A and B are not small.

Thus, it is important to consider the question: for given matrices A and B and

convergent splittings of these matrices, are there optimal values for p and q? Certainly,

the optimal values, if they exist, will depend on the specific structures and orders of

the matrices A and B as well as on the properties of the splittings considered. We

regard that a theoretical study of this question is beyond the scope of this paper.

We tested different choices for p and q and there is computational evidence that the

procedure we next describe gives very good results.

Assuming ρ = ρ(H) < 1 and ρ(Ĥ) = ρ̂ < 1, we solve

ρp <
√

3− 1 and ρ̂q <
√

3− 1, (3.9)

for p and q, and take the smallest positive integers p1 and q1 that satisfy

these inequalities. If condition (2.2) for ρp1 and ρ̂q1 ,

(ρp1 + 1)2 + (ρ̂q1 + 1)2 < 4, (3.10)

is not satisfied, we let p1 and q1 be set to p1 + 1 and q1 + 1, respectively, and test

condition (3.10) again. We repeat this step until condition (3.10) is satisfied.

Alternatively to this procedure, in the case ρ ≈ ρ̂ or ρ̂ < ρ, we could consider

solving for p the inequality (
ρp + 1

)2
< 2,

and take the smallest positive integer solution p2. Then we would let p = max{p1, p2}
and q = max{q1, p2}. Condition (3.10) should be verified (approximately).

Analogously, if ρ < ρ̂, we would consider(
ρ̂q + 1

)2
< 2,

find the smallest positive integer solution q2 and let p = max{p1, q2} and

q = max{q1, q2}.

The important observation here is that the difference between p and q will come

from conditions (3.9) and not from condition (3.10).

In Section 4 we report some numerical experiments exhibiting the CPU time

needed for convergence for different values of p and q in Example 4.2.

3.1.2. Sucessive overrelaxation splittings. In the sucessive overrelaxation

Gauss-Seidel (SOR) iterative method, we introduce a parameter ω, the relaxation
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parameter, which often makes an improvement in the rate of convergence. The value

of this parameter should be chosen so that the rate of convergence is maximized, but

the optimal value of ω is known only for some special classses of matrices. In the

case of positive definiteness it is known that 0 < ω < 2 is a necessary and sufficent

condition for convergence.

In the preparatory stage of Algorithm 1, for a given value of 0 < ω < 2, we

consider the matrix equation

(ωA)X(ωB) = ω2C

and the splittings

ωA = F −G = (D + ωL)− [D − ω(D + U)],

ωB = F̂ − Ĝ = (D̂ + ωL̂)− [D̂ − ω(D̂ + Û)]

for A = D + L + U and B = D̂ + L̂ + Û , with D, D̂ diagonal matrices, L, L̂ strictly

lower triangular and U , Û strictly upper triangular.

For ω = 1, the method obviously reduces to Gauss-Seidel method.

3.2. Preconditioned variants. Here we present a preconditioned variant of the

iterative method described above. We assume that A or B in (1.1) is an

M -matrix and consider the preconditioned version of the iteration (3.6), by using

some of the recently developed preconditioners devised to improve the convergence

rate of the classic iteration methods for solving linear systems with M -matrices as

coefficient matrices, see for example [16, 18, 25, 26, 34] and references therein.

Two of the popular preconditioners for an M -matrix A = (aij) ∈ Rn×n are

P1,µ =


1 0 · · · · · · 0

−µ2a21 1 · · · · · · 0

−µ3a31 0 1 · · · 0
...

... · · · · · ·
...

−µnan1 0 · · · · · · 1

 , (3.11)

and

P2,µ =


1 −µ1a12 · · · · · · 0

0 1 −µ2a23 · · · 0

0 0 · · · · · · 0
...

... · · · · · · −µn−1an−1,n
0 0 · · · · · · 1

 , (3.12)
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where µi ∈ [0, 1].

If A in (1.1) is an M -matrix, then multiplying (1.1) by P on the left-hand side

yields

ĀXB = C̄ (3.13)

where Ā = PA and C̄ = PC. In this case, we can directly apply Algorithm 1 to

(3.13) to get a preconditioned variant of Algorithm 1.

If B in (1.1) is an M -matrix, then we rewrite (1.1) as

AY B̄ = C, (3.14)

where Y = XP−1, B̄ = PB. Again, we can use Algorithm 1 to solve the equation

(3.14) for Y and then we obtain X = Y P . This gives another preconditioned variant.

Similarly, if both A and B are M -matrices, then, combining (3.13) with (3.14)

yields the third preconditioned variant of Algorithm 1,

ĀY B̄ = C̄. (3.15)

Note that either in (3.13) or in (3.14) the preconditioner P denotes P1,µ or P2,µ and

in (3.15) the preconditioner for A do not have to be the same as for B.

4. Numerical examples. Our algorithms were implemented in Matlab

(R2018b) in a computer LAPTOP-KVSVAUU8 (Intel(R) Core(TM) i5-8250U CPU,

1.60GHz, 64 bits under Windows 10 Home. In this section we first mention some

implementation details of Algorithm 1, concerning the Preparatory stage, and then

show some examples of its performance.

• For the Gauss-Seidel splittings, matrices F and −G, the lower triangular part

of A and the strictly upper triangular part of A, respectively, are obtained

using the built-in Matlab functions tril and triu, with the commands

F=tril(A) and G=-triu(A,1). Matrices F̂ and Ĝ, related to the same de-

composition of B, are obtained in a similar way.

For the SOR splittings with a given parameter ω, we replace matrices A, B

and C with ωA, ωB and ω2C, respectively. Then matrices F and −G are

obtained with the Matlab commands F=diag(diag(A))+w*tril(A,-1) and

G=(1-w)*diag(diag(A))-w*triu(A,1). Similarly for matrices F̂ and Ĝ.

• The computation of the matrices H and Ĥ is done using the backslash or left

matrix divide operator and the slash or right matrix divide operator, respec-

tively, with the Matlab commands H = F\G and Ĥ = Ĝ/F̂ , which consist

of calling the function mrdivide to compute the solution of the triangular

matrix equations F ∗H = G, for H, and F̂T ĤT = ĜT , for ĤT .
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• The estimates for ρ = ρ(H) and ρ̂ = ρ(Ĥ) are computed using the built-in

function eigs called in the form ρ=abs(eigs(H,1)) and ρ̂=abs(eigs(Ĥ,1)),

which returns the largest magnitude eigenvalue of the matrices H and Ĥ,

respectively (and then we take its absolute value).

Assuming that ρ < 1 and ρ̂ < 1, in order for condition (2.1) to be satisfied,

we set the values for p and q to be the smallest positive integers such that

p > max
{

1, ln(
√

3− 1)/ ln ρ
}

and q > max{1, ln(
√

3− 1)/ ln ρ̂}.

If condition (2.2) for ρp and ρ̂q is not as well satisfied, for those first values of

p and q, we increase p and q by one, in turn, until this condition is satisfied

(using a while loop).

• Once some p is determined, to compute M−1 we rewrite (3.2) in the form

M−1 = (Hp−1 + · · ·+H + I)F−1 =
(
(· · · ((H + I)H + I)H + · · · )H + I

)
F−1

which is computationally more efficient. Here the inverse F−1 is also obtained

using the Matlab left matrix divide command F\I.

We proceed similarly for the computation of M̂−1.

Example 4.1. In this example we have

An2×n2 =


T −I
−I T −I

. . .
. . .

. . .

−I T −I
−I T

 , Bm2×m2 =


T̂ −I
−I1 T̂ −I

. . .
. . .

. . .

−I1 T̂ −I
−I1 T̂


where, for a given value c, I1 = (1 + c)I,

T =


4 −1

−1 4 −1
. . .

. . .
. . .

−1 4 −1

−1 4

 , T̂ =


4 + 2c −1

−1− c 4 + 2c −1
. . .

. . .
. . .

−1− c 4 + 2c −1

−1− c 4 + 2c


and a random matrix Cn2×m2 . Matrix A is associated with the centered difference

scheme for a two-dimension Poisson’s equation and matrix B is associated with a two-

dimension convection-diffusion equation where the centered and backward difference

schemes for the second and first order derivatives are used, respectively, see [8, 32].
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In Table 4.1, for the cases c = 0.5, c = 0 and c = −0.5 and for various values of

m = n, we show the performance of Algorithm 1 with the Gauss-Seidel splitting - the

values of p and q required for convergence, the spectral radii ρ(Hp) and ρ(Ĥq), the

number of iterations, the total CPU time and the CPU time used in the preparatory

stage (in seconds). The required accuracy was 10−8.

n = m p, q ρ(Hp), ρ(Ĥq) Iter CPU CPU prep

10 10, 8 0.4374, 0.3722 58 0.02 0.01

20 29, 20 0.5213, 0.2820 70 0.50 0.17

c = 0.5 30 54, 29 0.5738, 0.2271 82 4.86 1.58

40 84, 37 0.6104, 0.1777 92 26.5 10.73

50 119, 43 0.6365, 0.1468 103 145.05 65.77

10 11, 11 0.4026, 0.4026 59 0.03 0.02

20 40, 39 0.4072, 0.4072 70 0.51 0.26

c = 0 30 86, 86 0.4128, 0.4128 76 6.19 3.54

40 150, 150 0.4141, 0.4141 80 46.4 34.95

50 233, 232 0.4128, 0.4144 83 248.81 185.50

10 8, 6 0.5160, 0.3003 66 0.03 0.01

20 23, 12 0.5965, 0.1858 85 0.58 0.14

c = −0.5 30 44, 15 0.6359, 0.1465 106 5.64 2.03

40 70, 18 0.6627, 0.1080 123 35.9 10.50

50 101, 21 0.6815, 0.0778 138 149.76 44.34

Table 4.1 Performance of Algorithm 1 with Gauss-Seidel splitting and required accuracy 10−8.

The results in Table 4.1 show that a significative part of the computation time

is used in the preparatory stage - in some cases more than 50% and in most cases

between 25% and 50%. As expected, for all values of the parameter c, the bigger is

m = n, the closer to 1 are the spectral radii ρ(H) and ρ(Ĥ) and thus the bigger must

be p and q so that the conditions for convergence are satisfied.

We also analysed the performance of Algorithm 1 using SOR splittings with

ω = 1.7 for the problem in Example 4.1. We report our results in Table 4.2 for

c = 0.5 and c = 0 and the values of m = n considered in Table 4.1. The required

accuracy was 10−8.

We can observe that SOR splittings with ω = 1.7 produced a significative reduc-

tion in the values of p and q which means that the inicial spectral radii ρ(H) and

ρ(Ĥ) were much smaller than the ones given by the Gauss-Seidel splitting. The total
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number of iterations increased by a factor of about 2.5 in the case c = 0.5 but the

total CPU time, when m and n are big, can be considered comparable. For the case

c = 0, the number of iterations increased by a factor of about 3 but the total CPU

time is even shorter when m = n = 50 and comparable for the other orders.

For this example we can conclude that when we use Gauss-Seidel splitting, p and

q increase and thus more time is needed in the preparatory stage, but the number of

iterations is reduced, when compared to the relaxation Gauss-Seidel splitting. This is

expected since the bigger are p and q the more advanced is the process of convergence

when the iterative part starts. Overall, we can say that both the splittings are equally

good since the CPU time is comparable.

n = m p, q ρ(Hp), ρ(Ĥq) Iter CPU

10 3, 3 0.3430, 0.3430 123 0.12

20 5, 3 0.4383, 0.3430 183 0.90

c = 0.5 30 9, 4 0.5625, 0.2401 211 8.77

40 14, 5 0.6127, 0.1681 232 43.10

50 20, 6 0.6416, 0.1177 249 162.21

10 3, 3 0.3430, 0.3430 129 0.06

20 6, 5 0.3716, 0.4383 227 1.05

c = 0 30 14, 14 0.4086, 0.4086 240 9.80

40 26, 25 0.4027, 0.4170 252 46.93

50 40, 40 0.4116, 0.4116 264 188.91

Table 4.2 Performance of Algorithm 1 with SOR splitting with ω = 1.7.

The following example suggests that it is not always true that when we consider

greater values for p and q than the minimum values needed for the convergence con-

ditions (2.1) and (2.2) to be satisfied, although the number of iterations is reduced,

the total computational efficiency, measured by the CPU time, reduces as well.

Example 4.2. With this example we wanted to observe how the computational

efficiency of Algorithm 1, with Gauss-Seidel splitting, varies with increasing values of

p and q for the problem described in Example 4.1.

In Table 4.3 we present the results for n = m = 40 and c = 0. In this case

ρ(H) = ρ(Ĥ) = 0.99414 are close to 1 and the minimum values of p and q that ensure

convergence are p = q = 150. We show the CPU time in seconds and the number of

iterations for increasing values of p and q. The required accuracy was 10−8.

In the same table we also show the results for the case c = 0.5 and n = m = 30,
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for which ρ(H) = 0.98976, ρ(Ĥ) = 0.95017, initial p = 54 and initial q = 29, and

for the case c = 0.5 and n = m = 40, with ρ(H) = 0.99414, ρ(Ĥ) = 0.95437, initial

p = 84 and intial q = 37. The required accuracy was 10−8.

c = 0 c = 0.5

n = 40

p, q
Iter CPU

n = 30

p, q
Iter CPU

n = 40

p, q
Iter CPU

150 80 46.5 54, 29 82 4.75 84, 37 92 26.77

151 79 55.5 55, 30 79 4.64 85, 38 90 38.44

152 79 53.2 56, 31 77 4.65 86, 39 88 41.09

153 78 54.4 57, 32 74 4.57 87, 40 86 50.65

154 77 50.8 58, 33 72 4.87 88, 41 84 43.04

155 76 52.9 59, 34 70 4.47 89, 42 83 37.78

156 76 54.4 60, 35 68 4.39 90, 43 81 37.21

157 75 52.9 61, 36 66 5.47 91, 44 80 37.27

158 74 56.0 62, 37 65 5.11 92, 45 78 36.91

159 74 56.7 63, 38 63 4.32 93, 46 77 35.25

160 73 55.2 64, 39 61 5.02 94, 47 75 34.18

Table 4.3 Algorithm 1 for increasing p and q, with c = 0, n = m = 40 and with c = 0.5, n = m = 30 and

m = n = 40.

From the results in Table 4.3 it is not obvious to say that there are optimal values

for p and q. Another observation is that the differences in CPU time are not very

significative and the results for the minimum values for p and q are already very good

and seem to be right away a good choice.

Next we compare the performances of Algorithm 1 and its preconditioned variants

described in Section 3.2 for the problem in Example 4.1. Preconditioner P1,µ in (3.11)

produced no improvements and for this reason we don’t show any results. This was

expected since matrices A and B in Example 4.1 have first column with almost all

entries equal to zero and then P1,µ is close to the identity matrix when µi ∈ [0, 1].

We only consider the preconditioner P2,µ in (3.12).

Example 4.3. We studied the problem presented in Example 4.1 for c = 0.5 and

c = 0 for which matrices A and B are M-matrices. We tested preconditioner P2,µ

for different values of the parameter µi ∈ {0, 0.1, 0.2, . . . , 0.9, 1} and considered the

three preconditioned variants of Algorithm 1. See Table 4.4 for the results on variant

(3.15). The required accuracy was 10−8. It was considered the Gauss-Seidel splitting.
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P2,µA; P2,µB

n = m µi;A µi;B p, q Iter CPU

0.8 0.4 3, 3 33 0.02

10 0.8 0.3 3, 4 35 0.04

0.5 0.5 3, 2 46 0.03

0.6 0.7 8, 6 50 0.45

20 0.7 0.7 6, 5 51 0.45

0.5 0.5 8, 5 72 0.35

0.8 0.5 7, 5 72 3.61

c = 0.5 30 0.8 0.3 9, 8 73 3.78

0.5 0.5 16, 7 83 4.37

0.8 0.4 12, 9 80 16.01

40 0.8 0.3 13, 11 82 17.23

0.5 0.5 26, 9 90 19.50

0.8 0.5 15, 8 91 81.51

50 0.8 0.4 17, 10 92 76.92

0.5 0.5 37, 11 98 101.39

0.6 0.8 3, 3 33 0.02

10 0.8 0.6 3, 3 34 0.02

0.5 0.5 4, 3 59 0.02

0.6 0.8 7, 5 65 0.46

20 0.5 0.6 12, 11 66 0.64

0.5 0.5 13, 13 69 0.74

0.7 0.7 15, 15 72 4.00

c = 0 30 0.7 0.8 10, 13 73 5.65

0.5 0.5 29, 28 75 8.16

0.8 0.8 16, 16 77 22.03

40 0.7 0.8 23, 18 78 23.73

0.5 0.5 50, 50 79 34.44

0.8 0.8 25, 25 81 65.49

50 0.8 0.7 29, 35 82 76.39

0.5 0.5 78, 77 82 112.20

Table 4.4 Preconditioned variant (3.15) of Algorithm 1 with preconditioner P2,µ.
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For all cases considered in Table 4.4 we show the results for the choice µi = 0.5,

both in P2,µA and P2,µB. We observe that this choice always produces a significative

reduction of the values p and q and, although the number of iterations do not change

much, the CPU time is similar and sometimes better, when compared to the results

without preconditioning in Table 4.1. For instance, for c = 0, m = n = 40, where

p and q where reduced from 150 to 50, the CPU time decreased by a factor of 25%;

and for c = 0, m = n = 50, where the reduction of p and q was from 233 and 232 to

78 and 77, respectively, the CPU time was shortened in aprroximatly 55%; and for

c = 0.5, m = n = 50, p and q diminished from 119 and 43 to 37 and 11, respectively,

and the CPU time dropped by a factor of 30%. These results, once more, reveal that

a significative part of the computation in Algorithm 1 is related to the preparatory

stage.

In Table 4.4 we also show other choices for µi - the choices that lead to the

smallest number of iterations and to the shortest time, which coincide for all cases

(except for c = 0.5, n = m = 20 and n = m = 50, but the differences are very

small). Choices of µi that produce similar results to the best ones are also presented.

For example, for the case c = 0 and m = n = 40 the values µi,A = µi,B = 0.8 and

µi,A = 0.7, µi,B = 0.8 both lead to a reduction of more than 50% of the CPU time.

The most significative difference in efficiency occurred for c = 0 and m = n = 50

with the CPU time being reduced to a fourth of the initial time. In fact, the greater

n = m is, the more gain we see in preconditioning.

We decided not to show any results for the other preconditioned variants (3.13)

and (3.14). We did several experiments but, although in most cases there was an

improvement in terms of efficiency, it was never so good as using the variant (3.15).

5. Application to surface-fitting. In this section we consider applications

of Algorithm 1 to surfaces-fitting. Let us first recall the details for the conventional

iterative methods for tensor product surface-fitting. Let (φ0, . . . , φn) and (ψ0, . . . , ψm)

be two normalized totally positive bases. Then, given a sequence of control points

{Pij}, i = 0, 1, . . . , n and j = 0, 1, . . . ,m. A parametric tensor product surface can

be defined as

S(α, β) =

n∑
i=0

m∑
j=0

Pijφi(α)ψj(β).

Let the control points Pij be parameterized with the real increasing sequences

t0 < t1 < . . . < tn and s0 < s1 < . . . < sm, where the parameter pair (ti, sj) is

assigned to the control point Pij , for i = 0, 1, . . . , n and j = 0, 1, . . . ,m. Then, an
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initial tensor product surface can be constructed as follows.

S(0)(t, s) =

n∑
i=0

m∑
j=0

P
(0)
ij φi(t)ψj(s),

where P
(0)
ij = Pij , for i = 0, 1, . . . , n and j = 0, 1, . . . ,m. Then the (k + 1)-th tensor

product surface S(k+1)(t, s) for k ≥ 0, can be obtained as follows

S(k+1)(t, s) =

n∑
i=0

m∑
j=0

P
(k+1)
ij φi(t)ψj(s)

with {
∆

(k)
uv = Puv − S(k)(tu, sv),

P
(k+1)
uv = P

(k)
uv + ∆

(k)
uv ,

(5.1)

for u = 0, 1, . . . , n and v = 0, 1, . . . ,m.

The iteration (5.1) is the conventional iterative method for tensor product surface-

fitting and always converges for all normalized totally positive bases. Therefore, the

iteration (5.1) is referred to as the progressive iterative approximation, briefly denoted

by PIA in CAGD, see [19, 20] and references therein.

Let P
(k)
uv be arranged in the following matrix form

P (k) = (P
(k)
00 , P

(k)
01 , . . . , P

(k)
0m , P

(k)
10 , P

(k)
11 , . . . , P

(k)
1m , . . . , P

(k)
n0 , P

(k)
n1 , . . . , P

(k)
nm)T ,

which is a [(n + 1)(m + 1) × 3] matrix. If we denote P (k) = (P
(k)
x , P

(k)
y , P

(k)
z ), then

the first, the second and last columns consist of x-coordinates, y-coordinates and

z-coordinates of all points P
(k)
uv , for u = 0, 1, . . . , n and v = 0, 1, . . . ,m.

Furthermore, let A and B be the collocation matrices of the bases (φ0, . . . , φn),

and (ψ0, . . . , ψm), respectively. Then Equation (5.1) can be written as follows.

P (k+1) = P (k) + [P − (B ⊗A)P (k)], (5.2)

or 
P

(k+1)
x = P

(k)
x + [Px − (B ⊗A)P

(k)
x ],

P
(k+1)
y = P

(k)
y + [Py − (B ⊗A)P

(k)
y ],

P
(k+1)
z = P

(k)
z + [Pz − (B ⊗A)P

(k)
z ].

(5.3)

The iteration sequences of (5.3) is mathematically equivalent to Richardson iterations

(see [4, 5]) for solving the following linear systems

(B ⊗A)x = Px, (B ⊗A)y = Py and (B ⊗A)z = Pz. (5.4)
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From the viewpoint of numerical linear algebra, it is preferable to solve

AXBT = C1, AY BT = C2 and AZBT = C3, (5.5)

where vec(X) = x, vec(Y ) = y, vec(Z) = z, vec(C1) = Px, vec(C2) = Py and

vec(C3) = Pz.

Example 5.1. In this example we compare Algorithm 1, using Gauss-Seidel

splitting, with PIA for the tensor product surface-fitting problem described in this

section. Here we consider the cubic B-spline basis whose collocation matrices are

H-matrices and have the following form

An×n =


1 0

4−λ
24

8+λ
12

4−λ
24

. . .
. . .

. . .
4−λ
24

8+λ
12

4−λ
24

0 1

 , B = AT ,

for −2 ≤ λ ≤ 1. We solve the three matrix equations in (5.5) for λ = −1 and for

several values of n. In all cases, we use the minimum values for p and q, p = 2 and

q = 1, and require the accuracy of 10−3. The results are shown in Table 5.1.

n PIA Algorithm 1

10 0.009 0.004

20 0.093 0.004

30 0.321 0.026

40 1.433 0.034

50 4.883 0.045

60 15.73 0.051

70 34.24 0.056

80 102.51 0.073

90 183.61 0.077

100 315.88 0.111

Table 5.1 CPU time in seconds for Algorithm 1 an PIA.

Our results in Example 5.1 clearly show that Algorithm 1 converges significatively

faster than PIA. In Figure 5.1 we show the interpolating surface for the case λ = −1

and n = 20.
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Fig. 5.1 Interpolating surface for Example 5.1 when λ = −1 and n = 20.

6. Conclusions. In this paper we introduced an algorithm to solve the matrix

equation AXB = C, based on a p-degree induced splitting of A and on a q-degree

induced splitting of B. We discussed possible choices for the positive integers p and q

so that not only the conditions for convergence are satisfied but also the convergence

is fast. We implemented our method in Matlab, with several concerns with respect

to computational costs, and preliminary numerical results show the robustness of our

method. In our numerical experiments we also considered preconditioned variants for

the case when A and/or B are M -matrices. The value in the interval [0, 1] for the

parameter defining the preconditioner considered, even when chosen at random to be

0.5, produced very satisfying improvements. Furthermore, we used Algorithm 1 to

solve tensor product surface-fitting problems with the cubic B-spline basis. For our

examples the numerical tests show that our method is significatively faster than PIA.
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