
Carla Maria Alves Ferreira

Janeiro de 2007

The Unsymmetric Tridiagonal

Eigenvalue Problem

Universidade do Minho

Escola de Ciências



Tese de Doutoramento em Ciências
Área de Conhecimento - Matemática

Trabalho efectuado sob a orientação de
Emeritus Professor Beresford Neill Parlett

Professor Doutor Rui Manuel Silva Ralha

Carla Maria Alves Ferreira

Janeiro de 2007

The Unsymmetric Tridiagonal

Eigenvalue Problem

Universidade do Minho

Escola de Ciências



É AUTORIZADA APENAS A CONSULTA DESTA TESE PARA EFEITOS DE 
INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, 
QUE A TAL SE COMPROMETE.

Carla Maria Alves Ferreira



Acknowledgments

The author would like to express her extreme gratitude to Professor Beresford Parlett for

sharing his precious time and for making the work of this thesis so rewarding. His expertise,

vision and clarity of thought greatly improved this work, as well as its presentation. Our

discussions, over many afternoons, have proven enormously valuable in the development of

this work and in shaping new ideas for future investigation.

The author is also grateful to Professor Rui Ralha for introducing her to the field

of numerical linear algebra and for all the opportunities of research he has offered her,

especially the initial encouragement for a long-term visit to the University of California at

Berkeley. His suggestions and comments were always important.

The author is also thankful to many friends in the Mathematics Department of the

University of Minho, particularly the ones with whom she had the chance to work in the

last two academic years.

The author would like to thank to Professor Lisa Santos, Chair of the Mathematics

Department, for having been extremely helpful with all the formalities that have made

possible the completion of this thesis.

The author could never forget to express many thanks to her mother for her uncondi-

tional love and emotional support in every single stage of her journey. Also many thanks

to her brothers for their constant advice and understanding.

The author also thanks all her friends who have made life in Berkeley an enriching

experience.

Finally, the author is appreciative to the Center of Mathematics of the University of

Minho for the financial support for this research.

iii





The Unsymmetric Tridiagonal Eigenvalue Problem

Abstract

The development of satisfactory methods for reducing an unsymmetric matrix to

tridiagonal form has been greatly hampered by the fact that there is not an accepted

good algorithm for exploiting this form. Nevertheless, recently, promising elimination

techniques for achieving a stable reduction to this form have been developed. But the

standard QR algorithm destroys it immediately. Our work aims to fill this gap in the

armoury of software tools for the matrix eigenvalue problem and so encourage the

refinement of methods to reduce a matrix to tridiagonal form.

The progressive quotient difference algorithm with shifts (qds) was presented by

Rutishauser as early as 1954. It is equivalent to the shifted LR algorithm written in a

special notation for tridiagonals. The much more recent differential qds (dqds) is a sophis-

ticated variant of qds. The first contribution of this thesis is a new algorithm, 3dqds, that

consists of three dqds steps performed implicitly and such that real arithmetic is maintained

in the presence of complex eigenvalues. One advantage of our algorithm over the Hessenberg

QR algorithm is that it preserves the tridiagonal form and thus reduces both storage and

time. We present some accuracy results comparing a Matlab implementation of 3dqds

with the function eig of that software. These preliminary results suggest the robustness of

3dqds algorithm.

In contrast to the symmetric case, unsymmetric matrices can have a mixture of

eigenvalues, some robust in the face of perturbations while others extremely sensitive. We

present several condition numbers, some new, that take advantage of tridiagonal form.

Ideally an algorithm should report these numbers along with each computed eigenvalue.

On the theoretical side, we present a rigorous proof of a surprising result. It is well known

that the greater the ratio of adjacent eigenvalues, the faster LR converges. Nevertheless, in

exact arithmetic, LR still converges even when all the eigenvalues are equal and the Jordan

form is one big block.
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Cálculo de Valores Próprios de Matrizes Tridiagonais

Não Simétricas

Resumo

O desenvolvimento de métodos satisfatórios para reduzir uma matriz não simétrica à forma

tridiagonal tem sido fortemente travado pelo facto de que não existe um bom algoritmo

aceite para explorar esta forma. Contudo, recentemente, promissoras técnicas de elimi-

nação para realizar esta redução de maneira estável foram desenvolvidas. Mas o algoritmo

QR standard destrói a forma tridiagonal imediatamente. O nosso trabalho pretende col-

matar esta lacuna no conjunto das ferramentas computacionais para o problema de cálculo

de valores próprios e assim encorajar o aperfeiçoamento de métodos para redução de uma

matriz à forma tridiagonal.

O algoritmo qds (progressive quotient difference with shifts) foi introduzido por

Rutishauser e remonta a 1954. É equivalente à versão shifted do algoritmo LR escrita

numa notação especial para matrizes tridiagonais. O muito mais recente algoritmo dqds

(differential qds) é uma versão sofisticada do qds. Uma contribuição desta tese é um novo

algoritmo, 3dqds, que consiste em três passos do dqds realizados implicitamente e tal que

a aritmética real é mantida na presença de valores próprios complexos. Uma vantagem do

nosso algoritmo em relação ao Hessenberg QR é que preserva a forma tridiagonal e assim

reduz a necessidade de espaço em memória e o tempo de execução. Apresentamos alguns

resultados numéricos comparando uma implementaçao do 3dqds em Matlab com a função

eig daquele software. Estes resultados preliminares sugerem a robustez do algoritmo 3dqds.

Em contraste com o caso simétrico, matrizes não simétricas podem ter um misto de

valores próprios, alguns resistentes em face de perturbações enquanto outros extremamente

senśıveis. Apresentamos vários números de condição, alguns novos, que tiram partido da

forma tridiagonal. Idealmente, um algoritmo deve fazer acompanhar com estes números

cada valor próprio calculado.
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Do ponto de vista teórico, apresentamos também uma demonstração rigorosa de um

resultado surpreendente. É bem conhecido que quanto maior for a razão entre valores

próprios adjacentes, mais rapidamente o algoritmo LR converge. No entanto, em aritmética

exacta, o algoritmo LR também converge mesmo quando todos os valores próprios são iguais

e a forma de Jordan é um único bloco.
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Introduction

A great deal of effort in science and engineering goes into eigenvalue computations. The

symmetric case is well studied and there are good methods available. The unsymmetric

case is intrinsically harder. The Matlab 1 system [33] lets the user compute eigenvalues

with one line of code, but this system, although wonderful for developing new numerical

methods is too inefficient for day to day work in design and manufacturing. In addition, it

cannot deal with the really large matrices, with order greater than 10000, that occur more

and more often in applications.

So, we begin with the assumption that good algorithms are needed for real unsymmetric

square matrices. Such algorithms have to be iterative in nature. When all eigenvalues are

wanted then the preferred methods employ a sequence of similarity transformations which

preserve the eigenvalues and gradually change the matrix to upper triangular form.

The reader might object at this point and say that the obvious strategy is to find

the characteristic polynomial in a finite number of steps and then find the zeros of the

polynomial. This approach died in the 1950’s when it was appreciated that the coefficients

of the characteristic polynomial are a too compact representation of the matrix eigenvalues;

the eigenvalues are extremely sensitive to any uncertainty in the coefficients.

The next most compact pratical representation of a matrix is a tridiagonal form (all

entries (i, j) are zero unless |i − j| ≤ 1). All matrices can be reduced to such a form in a

finite number of steps but the reduction is much easier in the symmetric case than in the

unsymmetric one.

1Matlab, shortcut for “Matrix Laboratory”, is a commercial program sold by The Mathworks, Inc.
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Now any iterative method will be much more efficient if the matrix is tridiagonal and if

this form is preserved at each step. For example, Matlab does not preserve this form and

that is the reason why it is not suitable for large matrices.

Now comes the question: is the tridiagonal form, in the unsymmetric case, also too

sensitive, just as the companion matrix that gives the characteristic polynomial? If it is too

sensitive, then, in general, there are two avenues of escape. Either we can try to determine

classes of tridiagonals that do determine their eigenvalues to adequate accuracy or we can

accept that the Hessenberg form is as far as we should go in reducing a full matrix to a

more compact form.

No one really knows the answer to this question. Some work has been done in defining

suitable measures of sensitivity, called condition numbers, but no one has studied them

carefully. The formulae for the sensitivity of polynomial zeros as functions of the coefficients

showed immediately that the condition numbers were going to be huge as soon as the degree

goes into the hundreds. For tridiagonals the situation is not so clear. We explore this

question in more detail in our study.

The differential quotient difference algorithm with shifts (dqds) was introduced by

Fernando and Parlett in 1994 [16] to compute singular values of bidiagonal matrices to

high relative accuracy but it may also be used to compute eigenvalues of tridiagonal

matrices. In this thesis, based on previous work of Z. Wu [64], we propose a new algo-

rithm for finding all the eigenvalues of a real unsymmetric tridiagonal matrix. This new

algorithm, triple dqds (3dqds), incorporates three dqds steps implicitly. The motivation

for 3dqds is to keep real arithmetic in the presence of complex shifts, efficiency and some

elegance. One advantage of 3dqds over the standard Hessenberg QR (used by Matlab) is

this property: it preserves the tridiagonal form. The preliminary numerical results show

that 3dqds is a vital tool in the context of eigenvalue problems.

It is possible that perturbations to the tridiagonal entries have just as much effect as

perturbing entries far from the diagonal. That is where the more refined condition numbers

we are also presenting come in, particularly the ones based on the derivative of an eigenvalue
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with respect to various matrix entries.

The reader will find that there is a great deal of technical detail in this thesis. The

algorithms that we will present are quite complicated and it was necessary to get all the

details correct in order for the programs to work properly.

Next we are going to sketch an outline of this thesis.

In Chapter 1 we introduce notation, give some background and explain the importance

of the unsymmetric tridiagonal eigenvalue problem.

Chapter 2 describes different representations for tridiagonal matrices beginning with

the LU factorization. Then, new relative condition numbers for measuring the sensitivity

of eigenvalues of tridiagonals are presented, to see if tridiagonal form plays a big role in a

perturbation study.

In Chapter 3 we describe the LR algorithm, giving emphasis to the implicit double

shifted version on an Hessenberg matrix. Then we explain the qds algorithm and show the

relation to shifted LR on a tridiagonal matrix with superdiagonal entries of 1’s.

Chapter 4 deals with convergence results for basic LR algorithm. The central part of this

chapter is the proof of a new convergence result of basic LR algorithm on a real unreduced

tridiagonal matrix with a one-point spectrum. The Jordan form is one big Jordan block.

Chapter 5 shows all the details of the derivation of a first version of the triple dqds - an

algorithm that performs implicitly three steps of simple dqds keeping real arithmetic in the

presence of complex shifts.

Chapter 6 explores the connection between dqds and the Gram-Schmidt orthogonaliza-

tion process to reveal new results about triple dqds. These results lead to the more elegant

and more efficient final version 3dqds.

Chapter 7 gives a preliminary numerical comparison between 3dqds and existing

Matlab’s function eig. Although the set of test matrices is small, the numerical

results permit us to conclude that 3dqds is a competitive algorithm.

Finally, in Chapter 8 we present a summary of our work and briefly set up some plans

for future work.





Chapter 1

Setting the scene

This chapter describes notation, introduces definitions and some basic results, discusses

canonical forms and perturbation theory in the context of eigenvalue problems. Then

devotes attention to the unsymmetric tridiagonal eigenvalue problem describing the

connection to the general unsymmetric eigenvalue problem and to Bessel matrices.

1.1 The eigenvalue problem

The eigenvalues of matrices or linear operators play a part in a very large number of

applications, both theoretical and practical. In Chatelin [5, Chapter 3] we can find examples

from diverse disciplines that show the extent of applications: they range from mathematics

to chemistry, and to the dynamics of structures, even on economics. The determination

of matrix eigenvalues is generally called the eigenvalue problem and it is a central topic in

numerical linear algebra. From Golub [22] we quote what follows.

The eigenvalue problem for square matrices A, that is the determination of

nontrivial solutions of Ax = λx, is inherently nonlinear and this leads to many

computational problems. Computation of the eigenvalues λ via the characteristic

equation

det(A − λI) = 0

5
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is, except for very special cases, not an option since the coefficients of the char-

acteristic equation cannot be computed from determinant evaluations in a nu-

merical stable way. And even if the characteristic equation could be determined

accurately, then the computation of its roots, in finite precision, may be highly

unstable since small perturbations in the coefficients may lead to large pertur-

bations of the roots.

The numerical computation of the associated eigenvectors and generalized eigen-

vectors is even more delicate, in particular when eigenvectors of A make small

angles with each other. In the limiting case, when the matrix is defective, A

can be reduced to the Jordan canonical form, but arbitrary small perturbations

in A may yield a nondefective matrix. This leads to many challenging numer-

ical questions, which give rise to the central problem: how can we compute

eigenvalues and eigenvectors in an efficient manner and how accurate are they?

[...]

A method that is of great significance and serves as the basis for many algorithms

is the Power iteration. It is still in use, but most frequentely as (implicit) part

of more efficient techniques, e.g., krylov methods, inverse iteration, QR-method.

What becomes clear is that all these methods are of an iterative nature, and

this is necessarily the case, since if there were a method of computing the eigen-

values of an nth order matrix in a finite number of computations, depending

only on n, then this would be in contradiction with the fundamental theo-

rem of Abel-Ruffini (and also a well-known result in Galois theory) that no

such algorithm exists for the computation of the roots of a general polynomial

of degree greater than 4. Hence, an algorithm for a matrix with a general

structure (that is, not a diagonal matrix or a triangular matrix or alike) is

necessarily iterative and the problem is to identify iterative algorithms which

have a fast rate of convergence and lead to accurate results.
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1.2 Notation, definitions and basic results

We describe the notation used hereafter and briefly set up well-known definitions and basic

facts needed in this thesis.

The vector space of all real m× n matrices is denoted by R
m×n and the vector space of

real column n-vectors by R
n. Similarly, C

m×n denotes the vector space of m × n matrices

with complex entries and C
n the vector space of complex column n-vectors.

Generally, we will have

capital letters A,H,∆ for matrices

(double) subscripted lower case letters aij , hij , δij for matrix elements

boldfaced lower case letters x, c, h for column vectors

subscripted lower case letters xk, ck, hk for vector elements

lower case Greek letters α, β, γ, θ for scalars

We may also denote a matrix A = (aij) ∈ C
m×n by its columns, that is, we may choose

to say A =
[
a1 a2 · · · an

]
. For instance, the n × n identity matrix will be denoted by

In and we have In =
[
e1 e2 · · · en

]
.

We denote the transpose of A by AT and, if A is complex, the conjugate transpose

by A∗, not AH . A square matrix A is symmetric when A = AT , otherwise is said to be

unsymmetric or nonsymmetric. If A = A∗ then A is an hermitian matrix.

A square matrix A is upper triangular (lower triangular) if aij = 0 when i > j (i < j).

And A is said to be diagonal if aij = 0, i 6= j. A diagonal matrix will be written

diag(a11, a22, . . . , ann) and, for d = (di) ∈ C
n, we define diag(d):=diag(d1, . . . , dn).

Other definitions and notation will be introduced when needed.

Precise proofs of the results that will be presented in the following sections can be found

in [51, Chapter 6], [34, Chapter 3], [21, Chapter 7], [11, Chapter 4] or [45, Chapter 12].
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1.2.1 Eigenvalues

The notions of eigenvalue and eigenvector do not depend on length, angle or inner product.

Definition 1.2.1 Let A ∈ C
n×n and x ∈ C

n. Then x is a (right) eigenvector of A for the

eigenvalue λ if x satisfies

Ax = λx, x 6= 0. (1.1)

Each nonzero multiple of x is also an eigenvector for λ and λ − µ is an eigenvalue of

A − µI with eigenvector x, for every scalar µ.

Fact 1.2.1 Eigenvectors corresponding to distinct eigenvalues are linearly independent.

By the theory of linear equations, (1.1) has a non-zero solution x if and only if the

characteristic polynomial of A, χ, defined by

χ(λ) ≡ χA(λ) ≡ det(A − λI),

verifies χ(λ) = 0.

The roots of χ are then the eigenvalues1 of A and are also called the characteristic

values, characteristic roots or latent roots of A.

Polynomial χ is of degree n and its leading term is (−1)nλn. So A can at most have n

eigenvalues, some of which may be repeated.

Let λ1, λ2, . . . , λm be the distinct eigenvalues of A. Then χ can be represented as

χ(λ) = (λ1 − λ)n1 · · · (λm − λ)nn ,

where the ni are positive integers with
∑m

i=1 ni = n. The number ni is the algebraic

multiplicity of λi, i = 1, . . . , m. If ni = 1, then λi is called simple.

Since the characteristic polynomial of a real matrix has real coefficients, the complex

eigenvalues of a real matrix occur in conjugate pairs.

1In German the word eigen means characteristic or special.
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The set of the eigenvalues λi, i = 1, . . . , m, in the complex plane, constitutes the

spectrum of A and it will be denoted by spec(A). We call

ρ(A) ≡ max{|λ| : λ ∈ spec(A)}

the spectral radius of A.

Fact 1.2.2 spec(A∗) = {λ̄ : λ ∈ spec(A)}.

This result states that if λ is an eigenvalue of A, there is a nonzero vector y such

that A∗y = yλ̄, or, equivalently, y∗A = λy∗. We say that y∗ is a row eigenvector of A.

Commonly, y is called a left eigenvector of A. This means that ȳ is a right eigenvector of

AT .

Fact 1.2.3 For right and left eigenvectors x and y associated with a simple eigenvalue λ,

y∗x 6= 0.

Fact 1.2.4 If λ and µ are two distinct eigenvalues with right and left eigenvectors xλ and

yµ, respectively, then y∗
µxλ = 0.

For an eigenvalue λ with right and left eigenvectors x and y, respectively, {λ, x} is

called an eigenpair and {λ,x,y∗} an eigentriple.

1.2.2 Canonical forms

Most of the computational methods involve reducing a matrix into simpler or even canonical

forms, from which it is easy to compute its eigenvalues and eigenvectors. These transforma-

tions are called similarity transformations. The two most common canonical forms are the

Jordan form and the Schur form. For historical reasons we will also refer to the Frobenius

canonical form. The Schur canonical form is the one that is more useful for pratical use.

Fact 1.2.5 Let B = SAS−1. Then A and B have the same eigenvalues and x is a right

eigenvector of A if and only if Sx is a right eigenvector of B.
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The mapping A 7→ SAS−1 is a similarity transformation of A. If S is unitary

(orthogonal in the real case), that is, S−1 = S∗ (S−1 = ST ), we say that the transformation

is a unitary (orthogonal) similarity transformation. Matrices A and B = SAS−1 are called

similar matrices.

To motivate the Jordan and Schur forms, let us just recall that for a diagonal or a

triangular matrix the eigenvalues are easy to compute: they are simply its diagonal entries.

Below we will see that a matrix in Jordan or Schur form is triangular.

Another particularly important form is the quasi-triangular form, which is a special

case of the block triangular form. A square matrix A is block upper triangular if it can be

partitioned in the form

A =




A11 A12 . . . A1l

0 A22 . . . A2l

...
...

. . .
...

0 0 . . . All




, (1.2)

where each diagonal block Aii is square. If each diagonal block is of order at most two, then

A is said to be in quasi-triangular form. Because det(A−λI) =
∏l

i=1 det(Aii−λI) we have

spec(A) =
l⋃

i=1

spec(Aii).

Next theorem introduces Jordan canonical form and it is followed by some related facts

that we will need in our convergence proofs in Chapter 4.

Theorem 1.2.1 Jordan canonical form. Given A ∈ C
n×n, there exists an invertible

matrix X such that X−1AX = J , where J is in Jordan canonical form. This means that J

is block diagonal, with J = diag(Jn1
(λ1), Jn2

(λ2), . . . , Jnk
(λk)) and

Jni
(λi) =




λi 1 0

. . .
. . .

. . . 1

0 λi




ni×ni

.
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J is unique, up to permutations of its diagonal blocks.

There is a good deal of terminology associated with Jordan canonical form. First, each

block Jni
(λi) is called a Jordan block with eigenvalue λi. The determinants

det(λIni
− Jni

) = (λ − λi)
ni

are called the elementary divisors of A. If ni = 1 the elementary divisor is called linear.

If all the elementary divisors are linear, so that J is diagonal, A is said to be

diagonalizable or nondefective; otherwise A is called defective.

If we denote matrix X, that reduces A to Jordan form, as

X =
[
x

(1)
1 . . . x

(1)
n1

x
(2)
1 . . . x

(2)
n2

. . . x
(k)
1 . . . x

(k)
nk

]

then, for each Jordan block Jni
(λi), the corresponding vectors x

(i)
1 , . . . ,x

(i)
ni , i = 1, . . . , k,

satisfy

Ax
(i)
1 = λix

(i)
1

Ax
(i)
j+1 = λix

(i)
j+1 + x

(i)
j , j = 1, . . . , ni − 1.

Vectors x
(i)
j+1, j = 1, . . . , ni − 1 are called generalized eigenvectors or principal vectors of

grade j + 1, verifying

(A − λiI)j+1x
(i)
j+1 = 0, (A − λiI)jx

(i)
j+1 = x

(i)
1 6= 0.

Fact 1.2.6 If all the eigenvalues of a matrix A are distinct, then A is diagonalizable.

A defective matrix does not have n linearly independent eigenvectors.

Fact 1.2.7 A Jordan block has one right eigenvector e1 =
[
1 0 · · · 0

]T
and one left

eigenvector en =
[
0 0 · · · 1

]T
.
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The number of linearly independent eigenvectors associated with an eigenvalue λ is

called the geometric multiplicity of λ and does not exceed its algebraic multiplicity. It

corresponds to the number of Jordan blocks associated with λ.

A matrix is defective if and only if the geometric multiplicity of at least one of its

eigenvalues is less than the algebraic multiplicity - in this case, commonly, we call these

eigenvalues briefly as multiple eigenvalues.

A matrix A is nonderogatory if every eigenvalue has geometric multiplicity 1. This

means that different Jordan blocks Jni
correspond to distinct λi.

The (i, j) minor of a square matrix A is defined as the determinant of the submatrix

obtained by removing the ith row and the jth column of A. The kth leading principal minor

is the determinant of the first k rows and k columns of A.

The Companion matrix of a monic polynomial

p(λ) ≡ λn + an−1λ
n−1 + . . . + a1λ + a0

is the matrix

Cp :=




0 −a0

1 0 −a1

. . .
. . .

...

. . . 0 −an−2

1 −an−1




.

Since p(λ) = (−1)n det(Cp − λI) = det(λI − Cp), the zeros of the polynomial p are the

eigenvalues of Cp. It is easy to see that Cp is a nonderogatory matrix: for all λ, the (1, n)

minor of Cp −λI is always 1; consequently rank(Cp − λI) ≥ n− 1 and the dimension of the

null space of Cp−λI is either 0 (when λ is not an eigenvalue) or 1 (when λ is an eigenvalue);

this means that there is only one linearly independent eigenvector to each eigenvalue.

Fact 1.2.8 A matrix A is similar to the companion matrix of its characteristic polynomial

if and only if A is nonderogatory.
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A m × n matrix R = (rij(x)) whose elements rij are rational functions, that is, ratios

of polynomials, is a rational matrix.

Theorem 1.2.2 Frobenius, or rational, canonical form Given A ∈ C
n×n, there

exists an invertible matrix P such that P−1AP = F , where F is in Frobenius canonical

form. This means that F is the direct sum of the companion matrices of the elementary

divisors of λIn − A.

If A ∈ R
n×n, the Frobenius canonical form of A depends on which field (R or C) over

which it is considered.

This form does not say much about eigenvalues but it is, by construction, the matrix

with fewest nonzero entries that can be achieved by rational operations on the data, but it

is too condensed. The Jordan canonical form tells us all we want to know about eigenvalues

but can not be computed stably in general. So, it is used in theory but is very hard to

compute because it is very unstable in the face of uncertainty. Thus, these two forms are

not used in eigenvalue computations and most of the algorithms will aim to compute the

Schur form instead.

Theorem 1.2.3 Schur canonical form. Given A ∈ C
n×n, there exists a unitary matrix

Q and an upper triangular matrix T such that Q∗AQ = T .

A matrix A is said to be normal if AA∗ = A∗A.

Fact 1.2.9 A matrix A is normal if and only if there exists a unitary matrix Q such that

Q∗AQ = diag(λ1, . . . , λn).

As said before, a real matrix A can have complex eigenvalues and, therefore, there is

not always a real triangular matrix with the same eigenvalues as A. So, we must either use

complex numbers or sacrifice the triangular canonical form. Because it will be cheaper to

compute, we prefer a canonical form that uses only real numbers and we will settle for a

quasi-triangular form.
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Theorem 1.2.4 Real Schur canonical form. If A ∈ R
n×n, there exists a real

orthogonal matrix V such that V T AV = T is real quasi-upper triangular. Its eigenvalues

are the eigenvalues of its diagonal blocks. The 1 × 1 blocks corresponds to real eigenvalues

and the 2 × 2 blocks to complex conjugate pairs of eigenvalues.

1.2.3 Perturbation theory

In what follows we will discuss how changes in the entries of a matrix A affect the spectrum.

If λ is a simple eigenvalue of A, for a given matrix δA, we can identify an eigenvalue λ + δλ

of the perturbed A + δA corresponding to λ: the closest one to λ.

So, we want to relate the size of the matrix perturbation to the size of the eigenvalue

change. The norms most widely used in matrix computations are the 1−norm, the Frobenius

norm and the ∞-norm. Unlike the 2−norm (an example of a p−norm and also of great

importance) the former matrix norms are easy to calculate. And for a consistent matrix

norm ‖.‖ we have, for any matrix A of order n,

ρ(A) ≤ ‖A‖ .

For a real matrix A and a matrix norm ‖.‖, the quantity

cond(A) ≡ ‖A‖
∥∥A−1

∥∥

defines the condition number of the matrix A. Note that cond(A) = cond(τA) for any

scalar τ 6= 0, that is, cond is scaling invariant by multiplication.

Next theorem relates eigenvalue condition numbers to the condition number of the

matrix of all eigenvectors.

Theorem 1.2.5 Bauer-Fike (classical version). If µ is an eigenvalue of

A + δA ∈ C
n×n and X−1AX = D = diag(λ1, . . . , λn), then

min
λ∈spec(A)

|λ − µ| ≤ condp(X) ‖δA‖p

where ‖.‖p denotes any of the p-norms.



15

Extreme eigenvalue sensitivity for a matrix A cannot occur if A is normal. On the other

hand, nonnormality does not necessarily imply eigenvalue sensitivity. Indeed, a nonnormal

matrix can have a mixture of well-conditioned and ill-conditioned eigenvalues. For this

reason, it is beneficial to refine the perturbation theory so that it is applicable to individual

eigenvalues and not the spectrum as a whole.

Theorem 1.2.6 Let λ be a simple eigenvalue of A with right eigenvalue x and left eigen-

value y, normalized so that ‖x‖2 = ‖y‖2 = 1. Let λ + δλ be the corresponding eigenvalue

of A + δA. Then

|δλ| ≤ ‖δA‖
|y∗x| + O(‖δA‖)2 =

‖δA‖
cos

(
θ(y,x)

) + O(‖δA‖)2

where θ(y, x) is the acute angle between y and x. In other words, κλ ≡ 1

|y∗x| is the

condition number of the eigenvalue λ. It is known as Wilkinson’s condition number.

If the eigenvectors are not normalized the condition number κλ is given by

κλ =
‖x‖ ‖y‖
|y∗x| .

Each eigenvalue has its own condition number. Some eigenvalues can be well-conditioned

and some can be ill-conditioned. A big condition number means sensitivity; ill-conditioned

eigenvalues are hard to compute accurately because they are not well-defined.

The right and left eigenvectors of a Jordan Block are orthogonal, and so Wilkinson’s

condition number of its eigenvalue λ will be κλ = ∞. At the other extreme are the normal

matrices which have condition number κλ = 1. So, the symmetric eigenvalue problem is

always a well-conditioned problem.

Theorem 1.2.6 is useful only for sufficiently small ‖δA‖. Next theorem increases the

condition number by a factor on n but is true for any modification δA.
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Theorem 1.2.7 Bauer-Fike. Let A have all simple eigenvalues, i.e., be diagonalizable.

Call these eigenvalues λi, i = 1, . . . , n, and let xi and yi be the right and left eigenvectors

for λi, respectively, normalized so that ‖xi‖2 = ‖yi‖2 = 1. Then the eigenvalues of A + δA

lie in disks Bi, where Bi has center λi and radius
n

|y∗
i xi|

‖δA‖2.

More generally, we can say that

∀λ̃ ∈ spec(A + δA) : min
i

|λ̃ − λi| ≤ n max
i

1

|y∗
i xi|

‖δA‖2 .

The proof of this theorem uses a useful inclusion result for eigenvalues, the

Gerschgorin theorem, which we write below.

Theorem 1.2.8 Gerschgorin. For a matrix A = (aij) ∈ C
n×n it holds that

spec(A) ⊂
n⋃

i=1

Di with Di :=



λ ∈ C : |λ − aii| ≤

∑

j 6=i

|aij |



 , i = 1, . . . , n.

Disks Di are called Gerschgorin disks of the matrix A.

The proof of the theorem shows not only that each eigenvalue of A must lie in a

Gerschgorin disk, but also that if the ith component of an eigenvector is maximal, then

the corresponding eigenvalue must lie in the ith disk.

Theorem 1.2.9 If k Gerschgorin disks of the matrix A are disjoint from the other disks,

then exactly k eigenvalues of A lie in the union of the k disks.

Since a multiple eigenvalue has infinite Wilkinson’s condition number, being close to a

matrix which has multiple eigenvalues implies ill-conditioning. The bigger is the condition

number of an eigenvalue, the closer is the matrix to one with a multiple eigenvalue.

Theorem 1.2.10 Let λ be a simple eigenvalue of A, with unit right and left eigenvectors x

and y and condition number c =
1

|y∗x| . Then there is a δA such that A+δA has a multiple

eigenvalue at λ and
‖δA‖2

‖A‖2

≤ 1√
c2 − 1

.
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When c ≫ 1, that is the eigenvalue is ill-conditioned, then the upper bound on the distance

is
1√

c2 − 1
≈ 1

c
, the reciprocal of the condition number.

Finally, we relate the condition numbers of the eigenvalues to the smallest possible

condition number cond(S) of any S that diagonalizes A.

Theorem 1.2.11 Let A be diagonalizable with eigenvalues λi and right and left eigenvectors

xi and yi, respectively, normalized so that ‖xi‖2 = ‖yi‖ = 1. Let us suppose that S satisfies

S−1AS = ∆ = diag(λ1, . . . , λn). Then

max
i

1

|y∗
i xi|

≤ ‖S‖2

∥∥S−1
∥∥

2
.

If we choose S =
[
x1 x2 · · · xn

]
then

‖S‖2

∥∥S−1
∥∥

2
≤ n max

i

1

|y∗
i xi|

,

that is the condition number of S is within a factor of n of its smallest value.

1.2.4 Relative errors and model of arithmetic

Let σ̂ be an approximation to a real number σ. The most useful measures of the accuracy

of σ̂ is the absolute error

Eabs(σ̂) = |σ − σ̂|,

and its relative error

Erel(σ̂) =
|σ − σ̂|
|σ| , σ 6= 0.

Writing

σ̂ = σ(1 + ρ),

an equivalent definition of relative error will be Erel(σ̂) = |ρ|. Some authors omit the

absolute values from these definitions.

In scientific computation, where answers to problems can vary enormously in magnitude,

it is usually the relative error that is of interest, because it is scale independent: scaling

σ → ασ and σ̂ → ασ̂ leaves Erel(σ̂) unchanged.



18

Relative error is connected with the notion of correct significant digits. But while the

number of correct significant digits provides a useful way in which to think about the

accuracy of an approximation, the relative error is a more precise measure.

Floating point arithmetic

The maximum relative representation error in a floating point arithmetic with p digits and

base β is 1
2β1−p. When the true value of a computation a ⊙ b (where ⊙ is one of the four

binary operations +, −, ∗ and /) cannot be represented exactly as a floating point number,

it must be approximated by a nearby floating point number. We denote this approximation

by fl(a⊙ b). The difference (a⊙ b)− fl(a⊙ b) is called the roundoff error. If a⊙ b is within

the exponent range (otherwise we get overflow or underflow), then we assume the model of

arithmetic

fl(a ⊙ b) = (a ⊙ b)(1 + δ), |δ| ≤ ε. (1.3)

The quantity ε is called variously unit roundoff, machine precision or macheps. If we round

as accurately as possible, ε is equal to the maximum relative representation error 1
2β1−p.

The terms accuracy and precision are often confused or used interchangeable, but it

is worth making a distinction between them. Accuracy refers to the absolute or relative

error of an approximate quantity. Precision is the accuracy with which the basic arithmetic

operations +,−, ∗, / are performed and for floating point arithmetic is measured by the unit

roundoff (1.3).

The IEEE standard for binary arithmetic is now common. It includes two kinds of

floating point numbers: single precision (32 bits long) and double precision (64 bits long)

that allow 24 and 53 p bits of precision, respectively.

Normally the “big oh” notation O implies a limiting process. However, in this thesis O
will be a synonym for “of the order of magnitude of” and the usage will be clear from the

context. For example, O(ε) will mean “of the order of magnitude of machine precision”.
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1.3 The unsymmetric tridiagonal eigenvalue problem

Tridiagonal matrices have received a great deal of attention since the 1950’s. In the sym-

metric case, every matrix can be stably reduced to a similar tridiagonal matrix by a finite

number of elementary orthogonal similarity transformations. In the unsymmetric case, re-

duction to tridiagonal form is also possible but we have to use non-orthogonal similarities

transformations and the reduction may not be stable.

But why should we be interested in tridiagonal matrices? There is a need for eigen-

value methods capable of exploiting and respecting the elegant structure of an unsymmetric

tridiagonal matrix so that the development of methods for tridiagonal reduction could be

encouraged.

Unsymmetric tridiagonal matrices arise naturally as a result of the execution of the

two-sided Lanczos algorithm (see, for instance, Parlett [39]). When applied to a matrix, the

two-sided Lanczos algorithm builds a k × k unsymmetric tridiagonal matrix at the end of

the Lanczos step k. This is a candidate method for the reduction of a nonsymmetric matrix

to tridiagonal form but in practice it is confined to large sparse matrices. Other methods

to perform this task have been proposed in Geist [20], Dongarra [13] and, more recently, in

Sidje [50].

Tridiagonals also appear as primary data. For example, they are related to orthogo-

nal polynomials because there is a remarkable three-term recurrence relation among these

polynomials. In particular, there are the special Bessel polynomials, which also satisfy a

three-term recurrence relation. Tridiagonals also arise in other numerical methods such as

exponential interpolation [1].

The eigenvalues and eigenvectors of a real nonsymmetric matrix A traditionally have

been computed by first reducing A to Hessenberg form H and then computing the eigen-

decomposition of H by the QR method. But the approach of beginning by reducing the

initial matrix to nonsymmetric tridiagonal form is attractive because finding eigenvalues

of a tridiagonal matrix is much faster than for a Hessenberg matrix. So, the development

of an algorithm for the nonsymmetric tridiagonal eigenvalue problem is therefore a major
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topic of research.

In contrast to the symmetric eigenproblem, that is always well-conditioned, the unsym-

metric eigenproblem can be effectively very ill-posed. However, there is also a need for a

careful study of the sensitivity of eigenvalues of tridiagonals to perturbations.

1.3.1 Orthogonal polynomials

From [38, Chapter 7]. Important in applied mathematics are real functions φ, ψ, . . . of one

real variable and, in particular, the set Pn of polynomials of degree not exceeding n. We

shall not consider the general integral inner products

(φ, ψ) ≡
∫ b

a
ω(x)φ(x)ψ(x) dx

but go straight to the discrete case

(φ, ψ) ≡
n∑

i=1

ωiφ(ξi)ψ(ξi). (1.4)

To each set of n distinct real numbers {ξ1, . . . , ξn} and possible weights {ω1, . . . , ωn : ωi > 0}
there corresponds one, and only one, inner product function as defined by (1.4).

Polynomials are rather special functions and for each inner product there is a unique

family of monic orthogonal polynomials {φ0, φ1, . . . , φn−1}; that is, φj has degree j, leading

coefficient 1 and (φj , φk) = 0 for j 6= k. This family is the distinguished basis of the inner

product space Pn−1 enriched with the given inner product.

Tridiagonal matrices come into the picture because there is a remarkable three-term

recurrence relation among the φ′s; for j = 1, 2, . . . , n − 1 and β0 = 0,

φj(ξ) = (ξ − αj)φj−1(ξ) − β2
j−1φj−2(ξ).

Once such a relationship has been guessed, it is straightforward to verify what the α’s and

β’s must be

αj+1 =(ηφj , φj)/(φj , φj), j = 0, . . . , n − 1

β2
j =(ηφj−1, φj)/(φj−1, φj−1), j = 1, . . . , n − 1,
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where η denotes the identity function η(ξ) ≡ ξ. These numbers may be put into an unre-

duced symmetric tridiagonal matrix T in the obvious way,

T =




α1 β1

β1 α2 β2

. . .
. . .

. . .

βn−2 αn−1 βn−1

βn−1 αn




,

and then, for j = 1, . . . , n, we have

φj(ξ) = det(ξIj − Tj)

where Ij denotes the identity matrix or order j and Tj denotes the jth principal submatrix

of T , that is, Tj is the submatrix obtained with the the first j rows and j columns of T .

Thus the ξ′s and the ω′s determine the unique T .

The question we pose now is how to determine the ξ’s and the ω′s from a given T . In

other words, which inner products make the φj , j = 0, 1, . . . , n, mutually orthogonal?

Theorem 1.3.1 Let T = SΛS∗ be the spectral decomposition of an unreduced symmetric T

with S =
[
s1 s2 · · · sn

]
and Λ = diag(λ1, . . . , λn). Then the associated inner product

of the form (1.4) is given by

ξi = λi, ωi = γs2
i1, i = 1, . . . , n,

for any positive γ. And γ =
∑n

1 ωi.

It is customary to take γ = 1.

The question “how much of this result extends to the unsymmetric case?” has been

studied under the tittle “formal orthogonal polynomials”, but that is outside the scope of

this thesis. See [26].
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1.3.2 The ordinary and generalized Bessel polynomials

The definition of the generalized Bessel polynomials (GBP) is given in terms of the

associated family of differential equations

z2u
′′

+ (az + b)u′ − n(n + a − 1)u = 0, n ∈ N, a, b ∈ C. (1.5)

It is known [44] that nontrivial polynomial solutions of equation (1.5) exist for every n ∈ N

and a, b ∈ C. If b 6= 0, there exists a unique polynomial solution u
(a,b)
n that satisfies

the condition u
(a,b)
n (0) = 1. The polynomials u

(a,b)
n defined in this way are precisely the

generalized Bessel polynomials. They can be represented in the form

u(a,b)
n (z) =

n∑

k=0

c
(a,b)
n,k zk, (1.6)

where

c
(a,b)
n,k :=

(
n

k

)
(n + k + a − 2)[k]

bk
, k = 0, 1, . . . , n, (1.7)

with

(x)[0] := 1, (x)[k] := x(x − 1) · · · (x − k + 1), k ∈ N.

Moreover, it can be shown that they satisfy the following recurrence relations,

(n + a − 1)(2n + a − 2)u
(a,b)
n+1 (z) =

[
(2n + a)(2n + a − 2)

z

b
+ a − 2

]
.

.(2n + a − 1)u(a,b)
n (z) + n(2n + a)u

(a,b)
n−1 (z) (1.8)

z2(2n + a − 2)u(a,b)
n

′
(z) = [n(2n + a − 2)z − bn]u(a,b)

n (z) + bnu
(a,b)
n−1 (z). (1.9)

An important result is that for every n ∈ N, a ∈ C and b ∈ C\{0}, the GBP u
(a,b)
n has only

simple zeros.

Formulas (1.7) and (1.8) show that the constant b is a scaling factor and almost all

authors assume b = 2; and the case a ∈ R is the most investigated one in literature. Taking

a = b = 2 in (1.5) and (1.6) leads to the particular case of the ordinary Bessel polynomials.
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Let z
(a,b)
ni be the zeros of the GBP’s u

(a,b)
n and consider the problem of computing these

zeros.

Matrices whose eigenvalues are the zeros z
(a,b)
ni can be derived either from the coefficients

c
(a,b)
n,k of the polynomials u

(a,b)
n in (1.6), or from the three-term recurrence relation (1.8). The

former procedure leads to the so-called Companion matrices which are Hessenberg matrices.

The latter procedure is the classical one, usually adopted to compute the zeros of orthogonal

polynomials. The matrix one gets this way is tridiagonal and if denoted by B
(a,b)
n , we have

B(a,b)
n =




α
(a,b)
1 γ

(a,b)
1

β
(a,b)
1 α

(a,b)
2 γ

(a,b)
2

. . .
. . .

. . .

β
(a,b)
n−2 α

(a,b)
n−1 γ

(a,b)
n−1

β
(a,b)
n−1 α

(a,b)
n




,

where

α
(a,b)
1 := −a

b
, γ

(a,b)
1 := −α

(a,b)
1 , β

(a,b)
1 :=

α
(a,b)
1

a + 1
,

and

α
(a,b)
j := −b

a − 2

(2j + a − 2)(2j + a − 4)
, j = 2, . . . , n,

γ
(a,b)
j := b

j + a − 2

(2j + a − 2)(2j + a − 3)
,

β
(a,b)
j := −b

j

(2j + a − 1)(2j + a − 2)
, j = 2, . . . , n − 1.

Several methods can be adopted to calculate the eigenvalues of B
(a,b)
n .





Chapter 2

Representations and measures of

sensitivity

This chapter devotes attention to the unsymmetric tridiagonal eigenvalue problem beginning

with various representations for tridiagonal matrices. Our first contribution is to provide

new measures of eigenvalue sensitivity that exploit the tridiagonal form.

2.1 LU factorization

From Higham [27, Chapter 9]. Much insight into Gaussian Elimination (GE) is obtained

by expressing it in matrix notation. The strategy of GE is to reduce the initial matrix

A1 := A to an upper triangular matrix using elementary row operations. Let Ak = (ak
ij),

i, j = 1, . . . , n, denote the matrix obtained in the kth stage of GE. The purpose of the kth

stage of the elimination is to annihilate the elements below the diagonal in the kth column

of Ak. This is accomplished by the operations

ak+1
ij = ak

ij − mika
k
kj , i = k + 1, . . . , n, j = k + 1, . . . , n

where mik = ak
ik/ak

kk, i = k + 1, . . . , n, are the so-called multipliers. At the end of the

(n − 1)st stage An−1 is upper triangular.

25
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We can write

Ak+1 = MkA
k :=




Ik−1

1

−mk+1,k 1

−mk+2,k
. . .

...
. . .

−mn,k 1




Ak.

The matrix Mk can be expressed compactly as Mk = I − mke
T
k , where ek is the kth unit

vector and mk =
[
0 . . . 0 mk+1,k . . . mnk

]T
. We have eT

i mk = 0 for i ≤ k. To invert

Mk, just flip the signs of the multipliers: M−1
k = I + mkek. Overall,

Mn−1Mn−2 . . . M1A = An =: U,

and so

A =M−1
1 M−1

2 . . . M−1
n−1U

=(I + m1e
T
1 )(I + m2e

T
2 ) . . . (I + mn−1e

T
n−1)U

=

(
I +

n−1∑

i=1

mie
T
i

)
U

=




1

m2,1 1

m3,1 m3,2
. . .

...
...

. . .

mn,1 mn,2 . . . mn,n−1 1




U =: LU.

The conclusion is that GE computes an LU factorization of A : A = LU , where L is

unit lower triangular and U is upper triangular.

There are two problems with the method described. First, there is a break-down with

division by zero if ak
kk = 0. Second, if we are working in finite precision and some multiplier
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mik is large, there is a possible loss of significance: in the subtraction ak
ij−mika

k
kj , low-order

digits of ak+1
ij could be lost. These observations motivate the strategy of partial pivoting.

Let Ak denote the kth leading principal submatrix of A, that is Ak is the submatrix of

the first k rows and first k columns of A.

Theorem 2.1.1 There exists a unique LU factorization of A ∈ R
n×n if and only if Ak is

nonsingular for k = 1, . . . , n− 1. If Ak is singular for some 1 ≤ k ≤ n− 1 the factorization

may exist, but if so it is not unique.

2.1.1 LU and LDU factorizations of a tridiagonal

A n×n matrix H = (hij) is said to be upper Hessenberg (lower Hessenberg) if hij = 0 when

i > j + 1 (i < j − 1). It is unreduced, or irreducible, if hi,i−1 6= 0 (hi−1,i 6= 0), i = 2, . . . , n.

And H is said to be tridiagonal if it is both upper and lower Hessenberg, that is, hij = 0

when |i − j| > 1. A tridiagonal matrix is unreduced if hi,i−1hi−1,i 6= 0, i = 2, . . . , n.

Let C be a real nonsymmetric tridiagonal matrix,

C =




a1 c1

b1 a2 c2

. . .
. . .

. . .

bn−2 an−1 cn−1

bn−1 an




∈ R
n×n. (2.1)

Whenever convenient we will adopte the notation

C = tridiag(b,a, c),

where a = (ak), k = 1, . . . , n, and b = (bk), c = (ck), k = 1, . . . n − 1.

Assume that C has an LU factorization C = LU . Next we will consider details of this

factorization as well as the LDU factorization.
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LU factorization

A matrix B = (bij) is said to be upper bidiagonal (lower bidiagonal) if bij = 0 for i 6= j and

i 6= j − 1 (i 6= j + 1).

Assuming there are no break-downs, matrices L and U of the factorization of C are

lower bidiagonal and upper bidiagonal, respectively, and will be given by

L =




1

l1 1

l2 1

. . .
. . .

ln−2 1

ln−1 1




, U =




u1 c1

u2 c2

u3 c3

. . .
. . .

un−1 cn−1

un




. (2.2)

GE for computing L and U is described by the recurrence relations

u1 = a1,
li−1 = bi−1/ui−1

ui = ai − li−1ci−1



 i = 2, . . . , n. (2.3)

For A = (aij), let |A| denote the matrix whose entries are |aij |. An error analysis says

that, in matrix terms, the computed factors L̃ and Ũ satisfy

A = L̃Ũ + δA, |δA| ≤ ε|L̃||Ũ |,

where ε is the unit roundoff. See Higham [27, p.174]
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LDU factorization

Assume that ui 6= 0, i = 1, . . . , n − 1. Then the factorization C = LDU is immediate: in

(2.2) leave L unchanged, define D := diag(d1, . . . , dn) with d = (ui), and redefine

U =




1 c1
u1

1 c2
u2

1 c3
u3

. . .
. . .

1 cn−1

un−1

1




(2.4)

If C is a symmetric matrix we must have U = LT and thus C = LDLT .

2.2 Representations of tridiagonals

One of the powerful ideas in matrix computations is factorization. And the power of methods

come from representations, especially in the tridiagonal case. Naturally, we can represent

a tridiagonal matrix by exhibiting explicitly its entries. Alternatively, we may decompose

the matrix into a product of certain factors and give the entries of these factors.

2.2.1 Normalization

Consider a tridiagonal matrix C = tridiag(b,a, c) as given in (2.1). If for some k, ck (or bk)

is zero then C can be split into two tridiagonal matrices, say C1 of order k and C2 or order

n−k. The eigenvalues and eigenvectors of C can be recovered from those of C1 and C2 and

in this way the computation may be reduced to finding the eigenvalues and eigenvectors of

smaller tridiagonal submatrices which are unreduced. So, there is no loss of generality in

confining attention to the unreduced case, that is, when bkck 6= 0, k = 1, . . . , n − 1.
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If C is unreduced, the nullity (dimension of the null space) of C − λI can not exceed 1.

Notice that the minor of the (1, n) element of C −λI is b1b2 . . . bn−1 6= 0 and, consequently,

rank(C − λI) ≥ n − 1. So, the dimension of the null space of C − λI is either 0 (when λ is

not an eigenvalue) or 1 (when λ is an eigenvalue).

Fact 2.2.1 Unreduced tridiagonal matrices are nonderogatory.

It is known that the eigenvalues are determined by the diagonal elements and the products

of the off-diagonal elements.

In the eigenvalue computation context there is no loss of generality in supposing that

tridiagonals are normalized so that all entries in positions (i, i+1) are 1. So we may assume

that ck = 1, k = 1, . . . , n − 1. In fact,

Lemma 2.2.1 Any tridiagonal matrix C that does not split (unreduced) is diagonally

similar to a form with 1’s above the diagonal.

Proof. If we consider the diagonal matrix

D = diag(1, c1, c1c2, . . . , c1 · · · cn−1),

then the similar matrix DTD−1 has the form



a1 1

b1c1 a2 1

. . .
. . .

. . .

bn−2cn−2 an−1 1

bn−1cn−1 an




. ¤

Such tridiagonals will be denoted by J . Lets say we will always have

J =




a1 1

b1 a2 1

. . .
. . .

. . .

bn−2 an−1 1

bn−1 an




. (2.5)
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This is called the qd form.

2.2.2 Products of bidiagonals

Most, but not all, such J permit triangular factorization

J = LU

where L and U are bidiagonal matrices of a special form that will play a leading role. Precise

forms are shown below: L is a lower bidiagonal matrix with 1’s in positions (i, i) and U is

an upper bidiagonal matrix with 1’s in positions (i, i + 1),

L =




1

l1 1

l2 1

. . .
. . .

ln−2 1

ln−1 1




, U =




u1 1

u2 1

u3 1

. . .
. . .

un−1 1

un




.

The attractive feature here is that, in the n × n case, because the 1’s need not be

represented explicitly the factored form of J requires no more storage than J itself: L and

U together are defined by 2n − 1 parameters, exactly the same degree of freedom as in J .

Later we will argue that the pair L, U is preferable to J itself.

The pair L,U determines two triangular matrices: first

J = LU =




u1 1

l1u1 l1 + u2 1

l2u2 l2 + u3 1

. . .
. . .

. . .

ln−2un−2 ln−2 + un−1 1

ln−1un−1 ln−1 + un




,
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and second

J ′ = UL =




u1 + l1 1

u2l1 u2 + l2 1

u3l2 u3 + l3 1

. . .
. . .

. . .

un−1ln−2 un−1 + ln−1 1

unln−1 un




.

Note that both tridiagonals have their superdiagonal entries, that is, entries (i, i + 1),

equal to 1. Also note that J ′ = L−1JL, that is, J and J ′ are similar.

The inertia of a symmetric matrix A is the triple of integers

Inertia(A) ≡ (ν, ζ, π),

where ν is the number of negative eigenvalues of A, ζ is the number of zero eigenvalues of

A and π is the number of positive eigenvalues of A.

If X is a nonsingular matrix, we say that XT AX and A are congruent.

If X is orthogonal, then XT AX are similar and so have the same eigenvalues. When X

is only nonsingular, XT AX will generally not have the same eigenvalues of A, but the next

theorem tells us that the two sets of eigenvalues will at least have the same signs.

Theorem 2.2.1 Sylvester’s inertia theorem. Let A be symmetric and X be nonsingular.

Then A and XT AX have the same inertia.

A proof of this result can be found, for instance, in Demmel [11, p. 202].

In the past most attention has been paid to the positive case: li > 0,

i = 1, . . . , n − 1, uj > 0, j = 1, . . . , n − 1. Remember the following standard results.
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Lemma 2.2.2 If liui > 0, i = 1, . . . , n − 1, then J = LU is symmetrizable by a diagonal

similarity and the number of positive (negative) ui is the number of positive (negative)

eigenvalues.

Proof. Consider the diagonal matrix

D = diag
(
1,

√
l1u1,

√
l1u1l2u2, . . . ,

√
l1u1l2u2 · · · ln−1un−1

)
.

Then the ith subdiagonal and superdiagonal entries of the tridiagonal matrix T ≡ D−1JD

are equal to
√

liui, i = 1, . . . , n − 1.

Now, notice that

T = D−1JD = D−1LUD = (D−1LD)(D−1UD) = L′U ′,

where L′ ≡ D−1LD and U ′ ≡ D−1UD is the LU decomposition of T . The symmetry of T

permits us to write

T = L′D′L′T

where D′ = diag(u1, u2, . . . , un). So, we have that J and T are similar and T and D′ are

congruent. By Sylvester’s inertia theorem, J and D′ have the same inertia. The eigenvalues

of D′ are the values ui and, then, the number of positive (negative) ui is the number of

positive (negative) eigenvalues of J . ¤

Lemma 2.2.3 If liui+1 > 0, i = 1, . . . , n−1, then J ′ = UL is symmetrizable by a diagonal

similarity and the number of positive (negative) ui is the number of positive (negative)

eigenvalues.

The proof of this lemma is entirely analogous to the proof of the previous lemma.

2.2.3 Balancing

Ordinarily, balancing improves the conditioning of the initial matrix, enabling more ac-

curate computation of eigenvectors and eigenvalues. It is an attempt to concentrate any

ill-conditioning of the eigenvector matrix into a diagonal scaling.
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Let A = (aij) ∈ C
n×n be a n × n matrix and let AT = (a′ij) be its transpose. We say

that A is balanced if ‖ai‖2 = ‖a′

i‖2, i = 1, . . . , n, that is, ith column and ith row of A have

the same norm.

Lemma 2.2.4 Any unreduced tridiagonal matrix C ∈ C
n×n may be balanced by a diagonal

similarity transformation.

Proof. Note that we now consider complex matrices. Let

C = tridiag(b,a, c)

be an unreduced tridiagonal matrix so that

D ≡ diag

(
1,

√
c1

b1
,

√
c1c2

b1b2
, . . . ,

√
c1c2 · · · cn−1

b1b2 · · · bn−1

)

is defined. Then the similar matrix DCD−1 is symmetric,

DCD−1 =




a1

√
b1c1

√
b1c1 a2

√
b2c2

. . .
. . .

. . .
√

bn−2cn−2 an−1

√
bn−1cn−1

√
bn−1cn−1 an




,

and, thus, balanced. ¤

In practice, balancing only attempts to make the norm of each row equal to the norm

of the corresponding column and, usually, can not turn a real nonsymmetric matrix into a

real symmetric matrix.

So, any unreduced tridiagonal matrix C may be symmetrizable. If C is real and bici > 0,

i = 1, . . . , n, then DCD−1 is also real and, thus, hermitian. In this case, all eigenvalues of C

are real. Otherwise, DCD−1 will have complex entries and may have complex eigenvalues.

Symmetrizing is not the only way to balance a matrix. If we consider the diagonal

similarity defined by

D ≡ diag

(
1,

√∣∣∣∣
c1

b1

∣∣∣∣,
√∣∣∣∣

c1c2

b1b2

∣∣∣∣, . . . ,
√∣∣∣∣

c1c2 · · · cn−1

b1b2 · · · bn−1

∣∣∣∣

)
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the matrix DCD−1 will also be balanced. It will be equal to




a1 eiϕ1

√
|b1c1|

eiθ1

√
|b1c1| a2 eiϕ2

√
|b2c2|

. . .
. . .

. . .

eiθn−2

√
|bn−2cn−2| an−1 eiϕn−1

√
|bn−1cn−1|

eiθn−1

√
|bn−1cn−1| an




,

(2.6)

where bi = eiθi |bi| and ci = eiϕi |ci|, i = 1, . . . , n − 1, with θi, ϕi ∈ [0, 2π[, and i is the

imaginary unit.

Lemma 2.2.5 Any unreduced tridiagonal matrix C ∈ R
n×n is diagonally similar to a form

∆T where T is symmetric and ∆ = diag (δ1, δ2, . . . , δn), δi = ±1.

Proof. Consider the diagonal similarity shown in (2.6) and let B = DCD−1. Since C is

real, ϕi and θi are either π or 0, for all i. So, eiθi = sign(bi) and eiϕi = sign(ci). Let

δ1 = 1, δk =δk−1 sign(bk−1ck−1), k = 2, . . . , n.

γ1 = sign(c1), γk =δk sign(ck), k = 2, . . . , n − 1.

Notice that sign(δkγk) = sign(ck), k = 1, . . . , n − 1, and sign(δkγk−1) = sign(bk−1),

k = 2, . . . , n.
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Now we can write B as B = ∆T where ∆ = diag (δ1, δ2, . . . , δn), and

T =




δ1a1 γ1

√
|b1c1|

γ1

√
|b1c1| δ2a2 γ2

√
|b2c2|

. . .
. . .

. . .

γn−2

√
|bn−2cn−2| δn−1an−1 γn−1

√
|bn−1cn−1|

γn−1

√
|bn−1cn−1| δnan




.

And C = D−1∆TD. ¤

Matrix ∆ is called a signature matrix.

Consider the following 5 × 5 example.

Example 2.2.1 We have




1 −2

3 2 2

−1 3 −2

3 4 2

−1 5




= D−1




1

−1

1

−1

1







1 −
√

6

−
√

6 −2 −
√

2

−
√

2 3 −
√

6

−
√

6 −4 −
√

2

−
√

2 5




D,

where

D =




1 √
2
3 √

4
3 √

8
9 √

16
9




. ⋄
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2.3 Generalized eigenproblem

A generalized eigenvalue problem is an eigenproblem involving more than one matrix. In

this section we will only give the definition and a result relating this problem to the standard

one.

The standard eigenvalue problem asks for which scalars λ the matrix A−λI is singular;

these scalars are the eigenvalues. This notion generalizes in several important ways.

If A and B are m × n matrices, A − λB is called a matrix pencil or just a pencil.

Definition 2.3.1 If A and B are square matrices and det(A− λB) is not identically zero,

the pencil A−λB is called regular. Otherwise it is called singular. When A−λB is regular,

p(λ) ≡ det(A − λB) is called the characteristic polynomial of A − λB and the eigenvalues

of A − λB are defined to be

1. the roots of p(λ) = 0,

2. ∞ (with multiplicity n − deg p) if deg p < n.

Matrix pencils arise naturally in many mathematical models of physical systems and the

generalized eigenvalue problem is, in principle, more difficult than the standard one. The

next fact relates the eigenvalues of a regular pencil A − λB to the eigenvalues of a single

matrix.

Fact 2.3.1 Let A−λB be regular. If B is nonsingular, all eigenvalues of A−λB are finite

and the same as the eigenvalues of AB−1 or B−1A. If B is singular, A−λB has eigenvalue

∞ with multiplicity n − rank(B). If A is nonsingular, the eigenvalues of A − λB are the

same as the reciprocals of the eigenvalues of A−1B or BA−1, where a zero eigenvalue of

A−1B corresponds to an infinite eigenvalue of A − λB.

For a proof see [11, p. 174].

For a balanced matrix ∆T the standard eigenvalue problem (∆T−λI)v = 0 is equivalent

to the generalized eigenvalue problem

(T − λ∆)v = 0.
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In fact, we have

(∆T − λI)v = 0 ⇐⇒ ∆(∆T − λI)v = 0 ⇐⇒ (T − λ∆)v = 0.

Both T and ∆ are real and symmetric and, so, we are in the presence of a symmetric

generalized eigenvalue problem. If either T or ∆ is positive definite then the eigenvalues

must be real. Usually T is not symmetric positive definite. Thus, the case of interest here

is when neither T nor ∆ is positive definite (both indefinite) and so there may be complex

eigenvalues. See Parlett [38, Chapter 15].

2.4 Measures of sensitivity

Nonsymmetric matrices can have a mixture of poorly and well conditioned eigenvalues.

Small perturbations in the matrix, such as roundoff errors, can lead to large changes in the

eigenvalues.

In this section we present several measures, some new, for the sensitivity of eigenvalues

of a tridiagonal matrix. Tridiagonal matrices may be represented as products of bidiagonals

in various ways depending on properties such as symmetry and positive definiteness, and

different representations lead to different measures of sensitivity. These are relative condi-

tion numbers (relative perturbation results) for a simple eigenvalue λ 6= 0 of products of

bidiagonals. The constraint that λ 6= 0 is always a weakness of a relative approach. When

λ = 0 the relative approach looses its meaning and we go back to the absolute approach.

Recall that for A = (aij), |A| denotes the matrix whose entries are |aij |. No use will be

made of norms.

2.4.1 Balanced product of bidiagonals T∆ = LDU

As shown above, any unreduced tridiagonal matrix C may be transformed into a balanced

form by a diagonal similarity transformation. So, in this section we will restrict our attention

to balanced tridiagonal matrices in the form B = ∆T (specially relevant for the computation
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of eigenvectors) and such that symmetric tridiagonal matrix T admits the product

T = LDLT

where L = I + L̊,

L̊ =




0

l1 0

. . .
. . .

ln−2 0

ln−1 0




and D = diag(d1, . . . , dn).

Since ∆−1B∆ = ∆−1∆T∆ = T∆, matrices B and T∆ are similar. Thus we will be

interested in the factorization of T∆ that will be

T∆ = LDU

where U = (I + L̊T )∆. As observed before, when T is real, ∆ = diag(1,±1, . . . ,±1).

In detail, we are just saying that an unreduced tridiagonal matrix C is always diagonally

similar to a form T∆ where T is symmetric,

C = D−1
1 BD1 = D−1

1 ∆TD1 = D−1
1 ∆T∆∆−1D1 = (D−1

1 ∆)(T∆)(D−1
1 ∆)−1.

Now, let us concentrate on the factorization T∆ = LDU for the real case. The off-

diagonal entries of T∆ are ±ljdj . The perturbations will be of the form

li → li(1 + αi), di → di(1 + βi),

with |αi| ≤ η, |βi| ≤ η. In matrix terms,

L → L + δL, D → D + δD,

with δL = diag(α1, . . . , αn)L̊ and δD = diag(β1, . . . , βn)D. However the αi and βi play no

role because we majorize such terms by η.
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Then, element by element, we write

|δL| ≤ η|L̊|, |δD| ≤ η |D| , |δU | ≤ η|L̊T ∆| = η|L̊T |.

Matrix ∆ does not change.

Consider the change in a simple eigenvalue λ 6= 0 satisfying

LDUx = xλ, y∗LDU = λy∗, y∗x 6= 0. (2.7)

The perturbed values satisfy

(L + δL)(D + δD)(U + δU)(x + δx) = (x + δx)(λ + δλ). (2.8)

If η is small enough then, after multiplying out the factors in (2.8) and using (2.7), we

obtain

(LDδU + LδDU + δLDU)x + LDUδx + O(η2) = xδλ + δxλ + O(η2). (2.9)

Multiply (2.9) on the left by y∗ to get

y∗ (LDδU + LδDU + δLDU)x + y∗LDUδx = y∗xδλ + y∗δxλ + O(η2).

Now use (2.7) to see that y∗LDUδx = y∗δxλ so that

δλy∗x = y∗ (LDδU + LδDU + δLDU)x + O(η2). (2.10)

There are two ways to proceed. First insert δU , δD, and δL and majorize to find

|δλ||y∗x| ≤ η|y|T
(
|LD||L̊T | + |L||D||U | + |L̊||DU |

)
|x| + O(η2).

Use the fact that L = I + L̊, U = I + L̊T ∆ to find

|δλ||y∗x| ≤ η|y|T
(
|D| + 3|L̊DL̊T | + 2|DL̊T | + 2|L̊D|

)
|x| + O(η2).

Defining G1 ≡ |D| + 3|L̊DL̊T | + 2|DL̊T | + 2|L̊D| we have

|δλ|
|λ| ≤ η

|y|T G1|x|
|y∗x||λ| + O(η2).
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This gives the first relative condition number

relcond1(λ; LDU) :=
|y|T G1|x|
|y∗x||λ|

and

G1 =




|d1| 2|d1||l1|
2|d1||l1| |d2| + 3|d1||l1|2 2|d2||l2|

. . .
. . .

. . .

2|dn−2||ln−2| |dn−1| + 3|dn−2||ln−2|2 2|dn−1||ln−1|
2|dn−1||ln−1| |dn| + 3|dn−1||ln−1|2




.

The second approach avoids the presence of |λ| in the denominator. The division by |λ|
will be done implicitly and, thus, more elegantly. So, return to (2.10) and use the relations

(the constraint λ 6= 0 implies that U is invertible)

y∗LD = λy∗U−1, y∗L = λy∗U−1D−1, Ux = D−1L−1λx and DUx = L−1λx

to find

δλy∗x = λy∗
(
U−1δU + U−1D−1δDD−1L−1λ + δLL−1

)
x + O(η2). (2.11)

In order to majorize each term we will use the fact that L̊ is a nilpotent matrix. We have

L̊n = (L̊T )n = O, and then

(
I + L̊

)−1
=

∞∑

i=0

(
−L̊

)i
=

n−1∑

i=0

(
−L̊

)i
, (2.12)

(
I + L̊T

)−1
=

∞∑

i=0

(
−L̊T

)i
=

n−1∑

i=0

(
−L̊T

)i
. (2.13)

Thus

∣∣U−1
∣∣ =

∣∣∣∣
[(

I + L̊T
)

∆
]−1

∣∣∣∣ =

∣∣∣∣
(
I + L̊T

)−1
∣∣∣∣ ≤

n−1∑

i=0

|L̊T |i =
(
I − |L̊T |

)−1
(2.14)
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and

∣∣L−1
∣∣ =

∣∣∣(I + L̊)−1
∣∣∣ ≤

n−1∑

i=0

|L̊|i =
(
I − |L̊|

)−1
(2.15)

Since |δU | ≤ η|L̊|T ,
∣∣U−1δU

∣∣ ≤ η|L̊|T
(
I − |L̊|T

)−1
, (2.16)

and, since |δL| ≤ η|L̊|,
∣∣δLL−1

∣∣ ≤ η|L̊|
(
I − |L̊|

)−1
. (2.17)

Finally, since |δD| ≤ η |D|, we have

∣∣U−1D−1δDD−1L−1
∣∣ ≤ η

(
I − |L̊|T

)−1 ∣∣D−1
∣∣ |D|

∣∣D−1
∣∣
(
I − |L̊|

)−1

= η
(
I − |L̊|T

)−1
|D|−1

(
I − |L̊|

)−1
. (2.18)

Insert these three values, (2.16), (2.17) and (2.18), in (2.11) to find

∣∣∣∣
δλ

λ

∣∣∣∣ ≤
η|y|T
|y∗x|

[
|L̊|T

(
I − |L̊|T

)−1
+

(
I − |L̊|T

)−1
|D|−1

(
I − |L̊|

)−1
|λ| +

+|L̊|
(
I − |L̊|

)−1
]
|x| + O(η2). (2.19)

It is easy to see that |L̊|T and
(
I − |L̊|T

)−1
comute, so we can write

∣∣∣∣
δλ

λ

∣∣∣∣ ≤
η|y|T
|y∗x|

(
I − |L̊|T

)−1 [
|L̊|T

(
I − |L̊|

)
+ |D|−1 |λ|+

+
(
I − |L̊|T

)
|L̊|

] (
I − |L̊|

)−1
|x| + O(η2). (2.20)

Now, using the fact that

|L̊|T
(
I − |L̊|

)
+

(
I − |L̊|T

)
|L̊| = |L̊|T + |L̊| − 2|L̊|T |L̊|

and that
(
I − |L̊|T

)−1
=

[(
I − |L̊|

)−1
]T

,

we define

G2 ≡ |D|−1 |λ| − 2|L̊|T |L̊| + |L̊|T + |L̊|.
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Note that G2 is scaling invariant because it is a sum of scaling invariant matrices. This is

important because the relative error is scaling invariant and, then, the formulae should also

be scaling invariant. When we multiply the matrix T by a nonzero scalar α, the eigenvalue

changes to αλ and the factor D to αD,

αT = L(αD)LT .

Factor L does not change neither does |D|−1 |λ|, i.e., |αD|−1 |αλ| = |D|−1 |λ|.

So (2.20) can be written as

|δλ|
|λ| ≤ η

|y|T
[(

I − |L̊|
)−1

]T

G2

(
I − |L̊|

)−1
|x|

|y∗x| + O(η2).

Our second relative condition number is

relcond2(λ; LDU) :=
vT G2w

|y∗x|

where v and w are the solutions of the lower bidiagonal systems

(
I − |L̊|

)
v = |y| and

(
I − |L̊|

)
w = |x|

and

G2 =




|λ||d1|−1 − 2l21 |l1|
|l1| |λ||d2|−1 − 2l22 |l2|

. . .
. . .

. . .

|ln−2| |λ||dn−1|−1 − 2l2n−1 |ln−1|
|ln−1| |λ||dn|−1




.

Both condition numbers are computable when x and y are known. The former requires only

the use of a tridiagonal matrix while the second also requires the solution of two bidiagonal

systems with no divisions.
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2.4.2 Product of bidiagonals J = LU

Consider a simple eigenvalue of a tridiagonal matrix J represented by LU (relevant for the

computation of eigenvalues) where

L = I + L̊ and U = N + diag(u) (2.21)

with u = (u1, u2, . . . , un)T ,

L̊ =




0

l1 0

. . .
. . .

ln−2 0

ln−1 0




and N =




0 1

0 1

. . .
. . .

0 1

0




.

Both N and L̊ are nilpotent matrices, Nn = L̊n = O.

Without loss of generality we assume that ui 6= 0, i = 1, 2, . . . , n − 1. We also assume

that λ 6= 0.

A simple eigenvalue λ has right and left eigenvectors satisfying

LUx = xλ, y∗LU = λy∗, y∗x 6= 0. (2.22)

There is no need to normalize x and y.

The perturbations of interest are relative:

li → li(1 + αi), ui → ui(1 + βi),

with |αi| ≤ η, |βi| ≤ η. Early in the analysis we will majorize the perturbations |αi| and

|βi| by η << 1.

In terms of matrices, the perturbations are

L → L + δL, U → U + δU,

with δL = diag(α1, . . . , αn)L̊ and δU = diag(β1, . . . , βn)diag(u).
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Then, element by element, we write

|δL| = |δL̊| ≤ η|L̊|, |δU | = |δdiag(u)| ≤ η|diag(u)|. (2.23)

We are now ready to make a first order analysis in terms of η. The perturbed values

satisfy

(L + δL)(U + δU)(x + δx) = (x + δx)(λ + δλ). (2.24)

If η is small enough then, after multiplying out the factors in (2.24) and using (2.22),

we obtain

LδUx + δLUx + LUδx + O(η2) = xδλ + δxλ + O(η2). (2.25)

Premultiply by y∗ to get

y∗LδUx + y∗δLUx + y∗LUδx = y∗xδλ + y∗δxλ + O(η2).

Now use (2.22) to find

δλy∗x = y∗ (LδU + δLU)x + O(η2). (2.26)

There are two ways to proceed. To first order, after using (2.23),

|δλ||y∗x| ≤ η|y|T
(
|L||diag(u)| + |L̊||U |

)
|x| + O(η2). (2.27)

Use the fact that L = I + L̊, U = N + diag(u) to find

|δλ||y∗x| ≤ η|y|T
(
|diag(u)| + 2|L̊||diag(u)| + |L̊|N

)
|x| + O(η2).

Defining M1 ≡ |diag(u)| + 2|L̊||diag(u)| + |L̊|N we have

|δλ|
|λ| ≤ η

|y|T M1|x|
|y∗x||λ| + O(η2).

This gives the first relative condition number for the form J = LU ,

relcond1(λ; LU) :=
|y|T M1|x|
|y∗x||λ|
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and

M1 =




|u1|
2|l1||u1| |l1| + |u2|

. . .
. . .

2|ln−2||un−2| |ln−2| + |un−1|
2|ln−1||un−1| |ln−1| + |un|




.

The second approach tries to bring λ into the right side. Return to (2.26) and, from (2.22),

use the relations

Ux = L−1xλ and y∗L = λy∗U−1

to find

δλy∗x = λy∗
(
U−1δU + δLL−1

)
x + O(η2). (2.28)

After using (2.23), we have

|δλ||y∗x| ≤ η|λ||y|T
(∣∣U−1

∣∣ |diag(u)| + |L̊|
∣∣L−1

∣∣
)
|x| + O(η2). (2.29)

In order to majorize the term |L̊|
∣∣L−1

∣∣ we will use the fact that L̊ is a nilpotent matrix.

We have L̊n = (L̊T )n = O, and then

L−1 =
(
I + L̊

)−1
=

n−1∑

i=0

(
−L̊

)i
. (2.30)

Note that the supports of the powers of L̊ are disjoint. Hence, term by term,

∣∣L−1
∣∣ ≤

n−1∑

i=0

|L̊|i =
(
I − |L̊|

)−1
. (2.31)

Then

|L̊|
∣∣L−1

∣∣ ≤ |L̊|
(
I − |L̊|

)−1
=

(
I − |L̊|

)−1
− I. (2.32)
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To majorize
∣∣U−1

∣∣ |diag(u)| =
∣∣U−1diag(u)

∣∣, note first that U−1diag(u) =
(
diag(u)−1U

)−1
.

Hence

diag(u)−1U =




1 u−1
1

1 u−1
2

. . .
. . .

1 u−1
n−1

1




.

It is convenient to define the nilpotent matrix

Ů =




0 u−1
1

0 u−1
2

. . .
. . .

0 u−1
n−1

0




.

So, Ůn = O and diag(u)−1U = I + Ů . There is no addition or subtraction of scalars in

expanding the inverse of I + Ů and from that it follows that

(
diag(u)−1U

)−1
=

(
I + Ů

)−1
=

n−1∑

i=0

(
−Ů

)i
. (2.33)

And, term by term,

∣∣U−1diag(u)
∣∣ ≤

n−1∑

i=0

|Ů |i =
(
I − |Ů |

)−1
. (2.34)

Now insert majorations (2.34) and (2.32) into (2.29) to find

∣∣∣∣
δλ

λ

∣∣∣∣ |y
∗x| ≤ η|y|T

{(
I − |Ů |

)−1
+

[(
I − |L̊|

)−1
− I

]}
|x| + O(η2). (2.35)

But matrix
(
I − |L̊|

)−1
− I is not invertible.

We define

M2 ≡
(
I − |Ů |

)−1
+

[(
I − |L̊|

)−1
− I

]
.
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So (2.35) can be written as

|δλ|
|λ| ≤ η

|y|T M2|x|
|y∗x| + O(η2).

Our second condition number is

relcond2(λ; LU) :=
|y|T M2|x|

|y∗x|

where

M2 =




1 |u1|−1 |u1u2|−1 |u1u2u3|−1 . . . · |u1u2 . . . un−1|−1

|l1| 1 |u2|−1 |u2u3|−1 . . . · |u2 . . . un−1|−1

|l1l2| |l2| 1 |u3|−1 . . . · |u3 . . . un−1|−1

...
...

...
. . .

...
...

...

|l1 . . . ln−2| |l2 . . . ln−2| |l3 . . . ln−2| · . . . 1 |un−1|−1

|l1 . . . ln−1| |l2 . . . ln−1| |l3 . . . ln−1| · . . . |ln−1| 1




.

We do not need this matrix explicitly. Instead we can solve two bidiagonal systems. Going

back to (2.35) we can write

|δλ|
|λ| ≤ η

|y|T
(
I − |Ů |

)−1
|x| + |y|T

[(
I − |L̊|

)−1
− I

]
|x|

|y∗x| + O(η2)

= η
|y|T (v + w)

|y∗x| + O(η2)

where v is the solution of the system

(
I − |Ů |

)
v = |x|

and w satisfies

[(
I − |L̊|

)−1
− I

]
|x| = w ⇐⇒

(
I − |L̊|

)
(w + |x|) = |x|.

If we solve the system
(
I − |L̊|

)
z = |x|
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then w = z − |x|.

We may be bothered by the fact that Ů is not scaling invariant. This defect is a

consequence of the normalization in the representation LU that keeps the superdiagonal

entries at the value 1. In other words the eigenvectors x and y have to change along with

L and U . In more detail, the matrix 10LU has representation

D−1(10LU)D = (I + 10L̊)(10diag(u) + N)

where D = diag(1, 10−1, 10−2, . . . , 101−n).

The qd representation is not scaling invariant. The factors L and U will change if we

multiply the matrix J by a scalar; and the condition number will change too. We need a

diagonal scaling.

2.4.3 Derivatives from ∆T = ∆LΩLT

In this section, from Parlett [42], we will describe sensitivity in terms of the generalized

singular value decomposition. We will present formulas that state the relative sensitivity of

the eigenvalues of ∆LΩLT to L’s entries.

Any real tridiagonal is diagonally similar to ∆T , where ∆T is real symmetric and

∆ = diag(δ1, δ2, . . . , δn), δi = ±1. This similarity transformation is an instance of balancing

a nonsymmetric matrix. We assume that the eigenvalues λi are distinct but we allow them

to be complex. Thus

Tsi = ∆siλi, i = 1, . . . , n

S =
[
s1, . . . , sn

]
, possibly complex. (2.36)

Suppose such matrix T may be written as

T = LΩLT , (2.37)

where L is lower bidiagonal and Ω is diagonal.
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If T is positive definite then Ω = I and T = LLT is the Cholesky factorization of T . If

T is indefinite and has the factorization

T = L1DLT
1 ,

with D = diag(d1, . . . , dn) and

L1 =




1

l1 1

. . .
. . .

ln−2 1

ln−1 1




,

then, defining

D1 := diag(
√

|d1|, . . . ,
√

|dn|) and Ω := diag(ω1, . . . , ωn), ωi = sign(di),

we can obtain the factorization (2.37). We will have

T = L1D1ΩD1L
T
1 = LΩLT (2.38)

with L ≡ L1D1. This is the closest factorization to the Cholesky factorization that we can

get.

A standard normalization for the eigenvectors is

ST ∆S = I. (2.39)

Let Λ = diag(λ1, . . . , λn) and denote by Λ1/2 the principal square root of Λ. That is, if

λi = ρi e
i2θi then λ

1/2
i = ρ

1/2
i eiθi , −π

2 < θi ≤ π
2 and

Λ1/2 = diag(λ
1/2
1 , . . . , λ1/2

n ).

As in the symmetric case there is an indefinite singular value decomposition of L,

L = ∆SΛ1/2P T (2.40)
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defining P which is complex in general. This is a generalization of the familiar singular

value decomposition UΣV T of L.

Note first that from (2.36), we have

TS = ∆SΛ ⇔ (∆S)−1T = ΛS−1 (2.41)

Also note that

P T ΩP =Λ−1/2(∆S)−1LΩLT (∆S)−T Λ−1/2, by (2.40),

=Λ−1/2(∆S)−1T (∆S)−T Λ−1/2, by (2.38),

=Λ−1/2
[
ΛS−1(∆S)−T

]
Λ−1/2, by (2.41)

=I, by (2.39).

So, P is defined by (2.40) as

P = LT (∆S)−T Λ−1/2.

With ∆ and Ω fixed we will study how Λ depends on L. Write

L =




a1

b1 a2

. . .
. . .

bn−2 an−1

bn−1 an




and let P :=
[
p1, . . . ,pn

]
. So, P T ΩP = I and, from (2.40),

L(ΩP ) = ∆SΛ1/2P T ΩP = ∆SΛ1/2.

Also, using (2.39),

ST L = (∆S)−1L = Λ1/2P T ,
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Consider a typical singular triple (λ, s, pT )

L(Ωp) = (∆s)λ1/2 (2.42)

sT L = λ1/2pT .

Recall that we use to note p = (pk) and s = (sk), k = 1, . . . , n.

We can now state the relative sensitivity of the eigenvalues of ∆T = ∆LΩLT to L’s

entries. The expressions may be complex.

Theorem 2.4.1 Let ∆ = diag(δ1, δ2, . . . , δn), δi = ±1, and Ω = diag(ω1, . . . , ωn), ωi = ±1.

If ∆T has distinct eigenvalues and (2.37) holds then, for λ 6= 0,

1

2

aj

λ

∂λ

∂aj
=

j∑

k=1

δks
2
k −

j−1∑

m=1

ωmp2
m =

n∑

m=j

ωmp2
m −

n∑

k=j+1

δks
2
k, (2.43)

1

2

bj

λ

∂λ

∂bj
=

j∑

m=1

[
ωmp2

m − δms2
m

]
=

n∑

m=j+1

[
δms2

m − ωmp2
m

]
. (2.44)

For a proof see [42, p. 430 ].

2.4.4 Derivatives from ∆T = ∆LDLT

From Z. Wu [64]. In this section we will give theoretical evidence that eigenvalues may

be determined to high relative accuracy by the bidiagonals. Consider a tridiagonal matrix

written in the balanced form ∆T , where T is symmetric and ∆ = diag(δ1, δ2, . . . , δn) with

δi = ±1. Consider a typical eigenpair (λ,v) of ∆T with the normalization v∗v = 1. That

is,

∆Tv = λv ⇐⇒ (T − λ∆)v = 0 (2.45)

Lemma 2.4.1 If ℑλ 6= 0 then v∗∆v = v∗Tv = 0

Proof. Since (T − λ∆)v = 0, we have

v∗(T − λ∆)v = 0. (2.46)
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Also, since v∗Tv is a scalar and T is real and symmetric, we have

v∗Tv = vT Tv =
(
vT Tv

)T
= v∗Tv

Using the same arguments, we have that v∗∆v is also real. So, from (2.46),

λv∗∆v = v∗Tv,

that is, λv∗∆v is also real. Let λ = a + bi, where a = ℜλ and b = ℑλ. Then

λv∗∆v = av∗∆v + (bv∗∆v)i

and, therefore, if b 6= 0, we must have v∗∆v = 0. ¤

First consider the two following basic facts.

Fact 2.4.1 Let V =
[
v1, v2, . . . ,vn

]
be the matrix of eigenvectors of ∆T . If λi 6= λj, i 6= j,

then V is invertible.

The proof of this fact rests on the invertibility of the Vandermonde matrix (eigenvectors

corresponding to distinct eigenvalues are linearly independent).

Fact 2.4.2 If λi 6= λj for i 6= j, then vT
i ∆vj = 0.

Proof. From (2.45), suppose that λi 6= λj and vectors vi and vj satisfy

Tvj = ∆vjλj and Tvi = ∆viλi.

Then

vT
i Tvj = vT

i ∆vjλj and vT
j Tvi = vT

j ∆viλi. (2.47)

Note that, since we are dealing with scalars and T is symmetric,

vT
i Tvj =

(
vT

i Tvj

)T
= vT

j Tvi and vT
i ∆vj =

(
vT

i ∆vj

)T
= vT

j ∆vi.

Now, subtracting in (2.47) , we get

0 = vT
i ∆vj(λj − λi)
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and, since λi 6= λj , we obtain that

vT
i ∆vj = 0. ¤

Lemma 2.4.2 Let vi, i = 1, . . . , n be eigenvectors of ∆T . Assume that λi 6= λj for i 6= j.

Then vT
i ∆vi 6= 0, i = 1, . . . , n.

Proof. Using both facts above, we have that V T ∆V is a diagonal matrix with diagonal

entries vT
i ∆vi, i = 1, . . . , n. Thus

det(V T ∆V ) =

n∏

i=1

vT
i ∆vi.

Since both V and ∆ are invertible, we must have det(V T ∆V ) 6= 0 and, therefore,

vT
i ∆vi 6= 0, i = 1, . . . , n. ¤

Theorem 2.4.2 Assume that T admits the factorization T = LDLT , where L is unit

bidiagonal with subdiagonal elements l1, l2, . . . , ln and D = diag(d1, d2, . . . , dn). Suppose

that all the eigenvalues of ∆T are distinct. Then for λ 6= 0 and corresponding eigenvector

v = (vj) we have, for k = 1, . . . , n,

dk

λ

∂λ

∂dk
=

(
vT Lek

) (
eT

k L−1∆v
)

vT ∆v

and, for k = 1, . . . , n − 1,

1

λ

∂λ

∂lk
=

2vk+1

(
eT

k L−1∆v
)

vT ∆v
,

And

eT
k L−1∆v = δkvk − δk−1vk−1lk−1 + (−1)2δk−2vk−2lk−1lk−2+ . . . + (−1)k−1δ1v1lk−1lk−2 . . . l1,

k = 1, . . . , n,

vT Lek = vk + vk+1lk, k = 1, . . . , n − 1,

vT Len = vn.
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Proof. Differentiate

Tv = λ∆v (2.48)

with respect to dk to obtain

∂

∂dk
(Tv) =

∂

∂dk
(λ∆v).

Since we have T = LDLT it follows that

∂(LDLT )

∂dk
v + T

∂v

∂dk
=

∂λ

∂dk
∆v + λ

∂(∆v)

∂dk
. (2.49)

Since
∂D

∂dk
= eke

T
k ,

∂L

∂dk
=

∂LT

∂dk
= O and λ

∂(∆v)

∂dk
= λ∆

∂v

∂dk
, from (2.49) we get

Leke
T
k LT v + (T − λ∆)

∂v

∂dk
=

∂λ

∂dk
∆v.

Now, multiplying by vT on the left,

vT Leke
T
k LT v + vT (T − λ∆)

∂v

∂dk
=

∂λ

∂dk
vT ∆v.

From this we obtain

∂λ

∂dk
=

(
vT Lek

) (
eT

k LT v
)

vT ∆v
,

because vT (T − λ∆) = [(T − λ∆)v]T = 0, since T and ∆ are symmetric, and vT ∆v 6= 0 by

lemma (2.4.2). And multiplying both sides by dk,

dk
∂λ

∂dk
=

(
vT Lek

) (
dke

T
k LT v

)

vT ∆v
.

To make λ appear in the denominator, note that, using (2.48) we can write

dke
T
k LT v = eT

k DLT v = eT
k L−1LDLT v = eT

k L−1Tv = ekL
−1∆vλ. (2.50)

Then when λ 6= 0,

dk

λ

∂λ

∂dk
=

(
vT Lek

) (
eT

k L−1∆v
)

vT ∆v
.
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The second relation is obtained similarly. Differentiating (2.48) with respect to lk we

obtain

∂(LDLT )

∂lk
v + T

∂v

∂lk
=

∂λ

∂lk
∆v + λ

∂(∆v)

∂lk
. (2.51)

Since
∂D

∂lk
= O,

∂L

∂lk
= ek+1e

T
k ,

∂LT

∂lk
= eke

T
k+1 and λ

∂(∆v)

∂dk
= λ∆

∂v

∂dk
, it follows that

ek+1e
T
k DLT v + LDeke

T
k+1v + (T − λ∆)

∂v

∂lk
=

∂λ

∂lk
∆v.

Again, pre-multiplying by vT and using the same arguments as before,

∂λ

∂lk
=

vT ek+1

(
eT

k DLT v
)

+
(
vT LDek

)
eT

k+1v

vT ∆v

=
vk+1

(
eT

k DLT v
)

+
(
eT

k DLT v
)T

vk+1

vT ∆v

Using again (2.50) it follows

1

λ

∂λ

∂lk
=

2vk+1

(
eT

k L−1∆v
)

vT ∆v
.

Finally, the result

eT
k L−1∆v = δkvk − δk−1vk−1lk−1 + (−1)2δk−2vk−2lk−1lk−2+ . . . + (−1)k−1δ1v1lk−1lk−2 . . . l1,

k = 1, . . . , n,

vT Lek = vk + vk+1lk, k = 1, . . . , n − 1,

vT Len = vn.

follows from direct calculations. ¤

Notice that dk, like λ, is proportional to ‖T‖ while lk is not. That is, if we multiply T

by µ 6= 0, then L(µD)LT = µT . Consequently, it is natural to consider relative changes to

dk but absolute changes to lk. In particular, when k = 1,

d1

λ

∂λ

∂d1
=

(v1 + v2l1)δ1v1

vT ∆v

1

λ

∂λ

∂l1
=

2v2δ1v1

vT ∆v
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Theorem (2.4.2) permits us to define the following condition numbers

relcond(λ, dk;∆LDLT ) :=

∣∣vT Lek

∣∣ ∣∣eT
k L−1∆v

∣∣
|vT ∆v|

and

relcond(λ, lk;∆LDLT ) :=
2|vk+1|

∣∣eT
k L−1∆v

∣∣
|vT ∆v|

A comparative study of all these measures of sensitivity we just presented with the more

general ones would be useful and is part of the next stage of our study. Classical Bauer-

Fike theorem states one condition number for all the eigenvalues and must certainly be too

crude. Wilkinson’s condition number gives one condition number,

‖y∗‖ ‖x‖
|λ||y∗x| ,

for each eigenvalue but must also be pessimistic. It is still too general. The condition

numbers we gave are more refined because they exploit the tridiagonal form. The hope is

that they will be realistic estimates of sensitivity, not just bounds.





Chapter 3

LR and dqds

The focus of this chapter is the description of LR and qds algorithms showing the connection

between them. The dqds version demands a little more of arithmetic effort than qds but

has compensating advantages - it enjoys the property of mixed high relative stability.

3.1 LR algorithm

For more than forty years the standard algorithm for calculating eigenvalues has been the

QR algorithm of Francis [18]. But historically the LR algorithm preceded the QR algorithm.

The whole field had its genesis in 1957 with Rutishauser’s quotient-difference algorithm

[46, 47], which Rutishauser then generalized to the LR algorithm [48]. The QR algorithm

followed shortly thereafter. Surprisingly, the quotient-difference algorithm has had a recent

revival. In 1994, Fernando and Parlett [16] introduced new versions for finding singular

values of bidiagonal matrices and eigenvalues of symmetric tridiagonal matrices but it may

also be used in the unsymmetric tridiagonal case.

Contrary to QR, the LR algorithm preserves bandwith and thus it is one of the most

efficient methods for calculating all the eigenvalues of a nonsymmetric tridiagonal matrix.

Most of the improvements that have been incorporated into QR over the years such as

implicit double-shift iterations, deflation, splitting, and arbitrary shifts, can also be used in

59
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the context of LR iteration.

LR algorithm

The LR transformation gives a reduction of a general matrix to triangular form by means

of non-unitary similarity transformations. It is based on the LU decomposition of a matrix.

Under mild conditions a square matrix admits triangular factorization, A = LR, where L

is unit lower-triangular and R is upper triangular.

The method bases essentially on the fact that by starting with the given matrix A =: A1,

the infinite sequence of similar matrices A1, A2, A3, . . . , generated by

LR algorithm

A1 = A

for i = 1, 2, . . .

Factor Ai = LiRi (LU factorization)

Ai+1 = RiLi

end

(3.1)

converges to a triangular or diagonal matrix Ainf , under reasonable assumptions.

In words, we decompose Ai and multiply the factors in reverse order to obtain a matrix

Ai+1 that is similar to A. This process is repeated until convergence occurs. In fact,

Ai+1 = RiLi = L−1
i (LiRi)Li = L−1

i AiLi

and then, by induction, Ai+1 is similar to A1.

If A is symmetric and positive definite, and if the decomposition of Ai into LiRi is

such that Li is lower triangular and matrix Ri is the transpose of Li for any i (Cholesky

decomposition), then lim
i→∞

Ai exists and is diagonal. A proof of this is given in Rutishauser

[48].

But not every matrix has an LU decomposition and difficulties arise when we are close

to a matrix that has no LU decomposition. The LR algorithm may not be stable. Stability
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can be improved markedly by the introduction of pivoting but this destroys the bandwith

structure. Wilkinson [60] uses the LR method with row and column interchanges to produce

an algorithm which is stable and requires no more arithmetic than the basic LR. In practice,

this variation seems both fast and accurate but no convergence proof has been published yet

nor is it apparent how to adapt the technique to give, economically, the complex eigenvalues

of real matrices.

3.2 QR algorithm

A standard approach in computing the eigenvalues of a general square matrix is to reduce

the matrix first to Hessenberg form by a sequence of orthogonal transformations, and then

to determine the eigenvalues of the Hessenberg matrix through an iterative process known

as the QR algorithm. The reduction to Hessenberg form requires O(n3) operations, where

n is the order of the matrix, and the subsequent iterative phase also requires O(n3) opera-

tions. The function eig of Matlab uses this scheme to compute all of the eigenvalues and

eigenvectors of a general matrix.

If the original matrix is symmetric, then the symmetry can be preserved in the initial

reduction, so the reduced matrix is tridiagonal. Although the reduction to tridiagonal form

still requires O(n3) operations, the subsequent iterations preserve the tridiagonal form and,

hence, are much less expensive, so that the total cost of the iterative phase is reduced to

O(n2) operations.

The attractively low operation count obtained when iterating with a tridiagonal matrix

suggests that the tridiagonal form would be extremely beneficial in the nonsymmetric case

as well. Such an approach presents two difficulties, however. First, QR iteration does not

preserve the structure of a nonsymmetric tridiagonal matrix. This problem can be overcome

by using LR iteration, which preserves the tridiagonal form. Second, it is difficult to reduce a

nonsymmetric matrix to tridiagonal form by similarity in a numerically stable manner. But

promising methods to improve the stability of this reduction have been developed recently.

See Sidje [50]. See also Dongarra [13] and Geist [20].
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QR algorithm

As implemented in the late 1950’s and early 1960’s, LR proved insufficiently reliable and was

displaced by the QR algorithm in the mid 1960’s. The QR algorithm, developed by Francis

[18], is closely related to the LR algorithm. Based on the use of unitary transformations,

the QR algorithm avoids the possible instability of the original LR transformation but it

is slower. However, in many respects, this has proved to be the most effective of known

methods for the solution of the general algebraic eigenvalue problem. In comparison with

current reliable methods, the QR technique is fast and highly satisfactory.

QR algorithm

A1 = A

for i = 1, 2, . . .

Factor Ai = QiRi (QR factorization)

Ai+1 = RiQi

end

Orthogonal similarities give stability to the QR algorithm and preserve symmetry as well

as the Hessenberg form; thus, the symmetric tridiagonal form is also preserved.

Lemma 3.2.1 Let A = QR be the QR decomposition of A and

Â = QT AQ

be its QR transformation. If A is tridiagonal, symmetric and non-singular, then Â is also

tridiagonal, symmetric and non-singular.

The QR algorithm does not preserve the tridiagonal form in the non-symmetric case.

If A is non-symmetric tridiagonal, then Â will be upper Hessenberg. But it never breaks

down.

Convergence of the basic QR algorithm may be too poor for pratical computations.

Convergence rates depend on the ratios of eigenvalues and to speed up convergence, shifts

of origin should be incorporated.
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QR algorithm with a shift

A1 = A

for i = 1, 2, . . .

Choose a shift σi

Factor Ai − σiI = QiRi (QR factorization)

Ai+1 = QiRi + σiI

end

Ideally we want to shift by the eigenvalues. If σi is an exact eigenvalue of Ai, then

the QR iteration converges in one step. See Demmel [11, p.162]. So, shifts σi close to

eigenvalues hasten convergence. Note that near convergence to a real eigenvalue, the last

diagonal element of Ai = (a
(i)
kj ) is close to that eigenvalue, so σi = a

(i)
nn is a good choice for

a shift.

3.3 Shifted LR algorithm

So, in order to accelerate convergence (and also to be able to treat indefinite symmetric

matrices) the simple decomposition-recombination procedure (3.1) of LR algorithm must

be modified in the following way:

LR algorithm with a shift

A1 = A

for i = 1, 2, . . .

Choose a shift σi

Factor Ai − σiI = LiRi (LU factorization)

Ai+1 = RiLi + σiI

end
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Notice that matrices Ai and Ai+1 continue to be similar,

Ai+1 = RiLi + σiI = L−1
i (LiRi + σiI)Li = L−1

i AiLi, (3.2)

and we call the transformation shift restoring.

By proper choice of σi, the last diagonal element a
(i)
nn of Ai will, in general, converge to

the smallest eigenvalue of A. If σi is chosen to be close to an eigenvalue of Ai then Ai −σiI

has an eigenvalue close to zero.

There are no simple expressions for convergence rates in shifted LR algorithm because

it depends on all shifts σi’s.

Lemma 3.3.1 If A− σI is singular and A− σI = LR is the LU decomposition of A− σI,

then the transformation Â = L−1AL deflates in one step.

Proof. Let A be of order n. Since A − σI is singular, if L = (lij) and R = (rij) are the

factors of its LU factorization, then, by theorem 2.1.1 (page 27), we must have rnn = 0.

Therefore,

L−1AL = L−1(LR + σI)L = RL + σI.

But eT
nR = 0T and then

eT
n (RL + σI) = 0T + σeT

n = σeT
n . ¤

To say that Â = L−1AL deflates in one step, means that the first eigenvalue σ is

obtained and the remaining eigenvalues of A are the eigenvalues of the submatrix that

results from discarding the last row and the last column of Â. This reduction of the order

of the eigenproblem is called deflation.

In the general case, with LR algorithm there is still much work to be done in finding

clever shift strategies that approach an eigenvalue in a stable way. The development of

reliable shift strategies is an open domain.
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3.4 Implicit double shifted LR algorithm

When A =: A1 is a real unsymmetric matrix and has complex eigenvalues, to speed up the

convergence to a complex eigenvalue it is necessary to choose a shift close to an eigenvalue

and hence to choose a complex shift. If on iteration i we take a complex shift σi, then the

resulting matrix Ai+1 = RiLi + σiI will be complex. This means that all arithmetic has to

be complex, increasing the cost by a factor of about 4. Since complex eigenvalues of real

matrices occur in complex conjugate pairs, we can shift by σi and σi at the same time. It

turns out that this will permit us to maintain real arithmetic. This double shift technique

was developed by Francis for the QR algorithm: it uses real arithmetic and converges to

real Schur canonical form. For the details on the implicit double shifted QR algorithm see

Demmel [10, pp.170-172]. In this section we will describe a similar technique for the LR

algorithm.

Implicit double shifted LR algorithm

We will see in detail how to combine two consecutive iterations of LR algorithm choosing

successive complex shifts σ and σ such that the result after this double shift is again real.

Considering the first two steps, the result of shifting by σ and σ in succession are

A1 − σI =L1R1

A2 =R1L1 + σI so A2 = L−1
1 A1L1 (3.3)

A2 − σI =L2R2

A3 =R2L2 + σI so A3 = L−1
2 A2L2 = L−1

2 L−1
1 A1L1L2 (3.4)

The real part of σ will be denoted by ℜσ and the imaginary part by ℑσ.

Lemma 3.4.1 Consider the application of two steps of LR algorithm with successive shifts

σ and σ. Then

(L1L2)(R2R1) = A2
1 − 2(ℜσ)A1 + |σ|2I.
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Proof. Since L2R2 = A2 − σI and L1R1 = A1 − σI, we get

L1L2R2R1 = L1(A2 − σI)R1

= L1(L
−1
1 A1L1 − σI)R1

= (A1 − σI)L1R1

= (A1 − σI)(A1 − σI)

= A2
1 − 2(ℜσ)A1 + |σ|2I. ¤

Define M ≡ A2
1 − 2(ℜσ)A1 + |σ|2I. Thus (L1L2)(R2R1) is the LU decomposition of the

real matrix M and so (L1L2) and (R2R1) are both real. This means that

A3 = (L1L2)
−1A1(L1L2)

is also real.

Moreover, the first column of L1L2 is proportional to the first column of M :

Me1 = (L1L2R2R1)e1

= r(L1L2)e1,

where r is the element in position (1, 1) of upper triangular matrix R2R1 (remember that

e1 is the first unit vector).

Our implementation of double shifted LR iteration will depend on the following theorem,

known as the Implicit L Theorem. We will suppose that a reduction of the initial matrix

A to Hessenberg form has been performed. Thus, we will be considering double shifted LR

on an Hessenberg matrix which is also a form that is preserved by this algorithm.

Theorem 3.4.1 Implicit L theorem Suppose that L is unit lower triangular and

L−1AL = H is unreduced upper Hessenberg. Then columns 2 through n of L are deter-

mined uniquely by the first column of L.

Proof. Let lj and hj , 1 ≤ j ≤ n, be the columns of unit lower triangular matrix

L = (lij)1≤i,j≤n and upper unreduced Hessenberg matrix H = (hij)1≤i,j≤n, respectively.
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Thus,

L =
[
l1 l2 l3 · · · ln

]
and H =

[
h1 h2 h3 · · · hn

]

=




1

l21 1

l31 l32 1
...

...
. . .

. . .

ln1 ln2 · · · ln,n−1 1




=




h11 h12 h13 · · · h1n

h21 h22 h23 · · · h2n

h32 h33 · · · h3n

. . .
. . .

...

hn,n−1 hnn




.

Equating entries on each side of the equation

AL = LH

shows, for the first column, that

Al1 = Lh1 = l1h11 + l2h21. (3.5)

Then, looking at the first and second elements of Al1, we get

eT
1 Al1 = h11 and eT

2 Al1 = l21h11 + h21.

So, given a matrix A and the first column l1 of L, elements h11 and h21 are uniquely

determined. That is, the first column h1 of H is uniquely determined by l1.

Now we can use (3.5) to obtain the second column of L,

li2 = (Al1 − l1h11)i2 /h21, i = 3, . . . , n

since, by assumption, h21 6= 0.

To obtain columns hj and lj+1, 2 ≤ j ≤ n − 1, notice that

Alj = Lhj =

j∑

i=1

lihij + lj+1hj+1,j . (3.6)
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Then, the first j + 1 elements of Alj are

eT
1 Alj = h1j

eT
2 Alj = h1jl21 + h2j

... (3.7)

eT
j Alj = h1jlj1 + h2jlj2 + · · · + hjj

eT
j+1Alj = h1jlj+1,1 + h2jlj+1,2 + · · · + hjjlj+1,j + hj+1,j .

Given columns l1, . . . , lj , these equations determine, in turn, elements h1j , . . . , hj+1,j , that

is, column hj of H. And, since hj+1,j 6= 0, from (3.6) we get column lj+1,

li,j+1 =
1

hj+1,j

(
Alj −

j∑

i=1

lihij

)

i,j+1

, i = j + 2, . . . , n.

Note that if j = n − 1 we have lj+1 = en and there is no need for any calculation.

Finally, for j = n, we obtain the last column of H, hn =
[
h1n . . . hnn

]T
, the same way,

but using only the first j equations in (3.7). ¤

The implicit L theorem implies that in the double shifted LR algorithm, to compute A3

in (3.4) from A1 we will only need to:

1. compute the first column of L1L2 which is proportional to the first column of M and

so can be gotten just by normalizing this column vector.

2. compute other columns of L1L2 implicitly using the implicit L theorem through ele-

mentary transformations.

Next we will describe a technique called bulge chasing that, after performing 1, allow

us to achieve goal 2.

3.4.1 Bulge chasing

The technique of bulge chasing is justified by the implicit L theorem. This theorem plays

the same role as the Implicit Q Theorem [10, p.168] in the implementation of the implicit

double shifted QR algorithm.
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When A = (aij)1≤i,j≤n is upper Hessenberg, then the first column of M is




a2
11 + a12a21 − 2(ℜσ)a11 + |σ|2

a21(a11 + a22 − 2(ℜσ))

a21a32

0
...

0




. (3.8)

We have

A3 = L
−1A1L (3.9)

where L ≡ L1L2 and the first column of L is proportional to (3.8). We will present a 6 × 6

example of bulge chasing to show how we obtain A3 and L from A1.

Example 3.4.1

If we consider n = 6, the transformation of A1 to A3 occurs accordingly to the following

steps.

1. Let l1 =
[
1 ∗ ∗ 0 0 0

]T
be the first column of L, obtained just by normalizing

(3.8). Consider the elementary matrix L1 = I+l
′
1e

T
1 , where l

′
1 =

[
0 ∗ ∗ 0 0 0

]T
,

that is l1 with 0 in first position instead of 1. So, since L
−1
1 = I − l

′
1e

T
1 ,

L
−1
1 A1 =




x x x x x x

x x x x x x

+ x x x x x

x x x x

x x x

x x




and A(1) ≡ L
−1
1 A1L1 =




x x x x x x

x x x x x x

+ x x x x x

+ x x x x

x x x

x x




.

We see that there is a 2 × 1 bulge, indicated by plus signs.
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Next we will apply a sequence of elementary similarity transformations such that each

transformation pushes the bulge one row down and one column to the right. Finally

the bulge is gotten rid of to restore upper Hessenberg form.

2. Form an elementary matriz (Gauss matriz) L
−1
2 which affects only rows 3 and 4

of L
−1
2 A(1), zeroing out entries (3, 1) and (4, 1) of A(1). So, L2 = I + l

′
2e

T
2 with

l
′
2 =

[
0 0 ∗ ∗ 0 0

]T
, L

−1
2 = I − l

′
2e

T
2 and

L
−1
2 A(1) =




x x x x x x

x x x x x x

x x x x x

+ x x x x

x x x

x x




and A(2) ≡ L
−1
2 A(1)

L2 =




x x x x x x

x x x x x x

x x x x x

+ x x x x

+ x x x

x x




.

3. Form an elementary matriz L
−1
3 which affects only rows 4 and 5 of L

−1
3 A(2),

zeroing out entries (4, 2) and (5, 2) of A(2). We will have L3 = I + l
′
3e

T
3 with

l
′
3 =

[
0 0 0 ∗ ∗ 0

]T
, L

−1
3 = I − l

′
3e

T
3 and

L
−1
3 A(2) =




x x x x x x

x x x x x x

x x x x x

x x x x

+ x x x

x x




and A(3) ≡ L
−1
3 A(2)

L3 =




x x x x x x

x x x x x x

x x x x x

x x x x

+ x x x

+ x x




.

4. Form an elementary matriz L
−1
4 which affects only rows 5 and 6 of L

−1
4 A(3),

zeroing out entries (5, 3) and (6, 3) of A(3). We will have L4 = I + l
′
4e

T
4 with
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l
′
4 =

[
0 0 0 0 ∗ ∗

]T
, L

−1
4 = I − l

′
4e

T
4 and

A(4) ≡ L
−1
4 A(3)

L4 =




x x x x x x

x x x x x x

x x x x x

x x x x

x x x

+ x x




.

5. Finally to zero out entry (6, 4) of A(4) we form L5 = I+l
′
5e

T
5 with l

′
5 =

[
0 0 0 0 0 ∗

]T
.

We have L
−1
5 = I − l

′
5e5

T ,

A(5) ≡ L
−1
5 A(4)

L5 =




x x x x x x

x x x x x x

x x x x x

x x x x

x x x

x x




and we are back to upper Hessenberg form.

In the end we have

A(5) = (L1L2L3L4L5)
−1A1L1L2L3L4L5.

In exact arithmetic the implicit L theorem ensures that

A3 = A(5) and L = L1L2 = L1L2L3L4L5. ⋄

The rest of the this chapter is concerned with qd algorithms and its relation to LR

algorithm.
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3.5 The qd algorithms

Consider a tridiagonal matrix normalized into J form as presented earlier in the previous

chapter (page 30), that is, such that all superdiagonal entries are equal to 1. When LR is

rewritten in the LU representation for a J matrix one obtains the (progressive) qd algorithm.

The letters q and d stand for quotient and difference. When we incorporate shifts we have

the qds algorithm.

The differential qd algorithm (dqd) is a variant of qd that requires a little more of

arithmetic effort than qd itself. Shifted version is named dqds. They are new to the scene

of matrix computations and one feature that makes them attractive is that they seem to

be more accurate than their rivals (see Parlett [40]). In particular, in the positive case, all

eigenvalues can be found to high relative accuracy as long as the shifts preserve positivity.

3.5.1 Stationary qd algorithms

Triangular factors change in a complicated way under translation. Given L and U of the

factorization J = LU as presented in section 2.2.2 (page 31),

L =




1

l1 1

l2 1

. . .
. . .

ln−2 1

ln−1 1




, U =




u1 1

u2 1

u3 1

. . .
. . .

un−1 1

un




,

the task here is to compute L̄ and Ū such that

J − σI = LU − σI = L̄Ū

for a given suitable shift σ. Equating entries on each side shows that

li + ui+1 − σ = l̄i + ūi+1, i = 0, . . . , n − 1, l0 = 0, l̄0 = 0,

liui = l̄iūi, i = 1, . . . , n − 1.
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These relations yield the so-called stationary qd algorithm with shift:

stqds(σ) : ū1 = u1 − σ

for i = 1, . . . , n − 1

l̄i = liui/ūi

ūi+1 = li + ui+1 − σ − l̄i

end for.

Naturally it fails if ūi = 0 for some i < n.

An alternative algorithm for L̄ and Ū involves more arithmetic effort and an auxiliary

variable but has some advantages in accuracy for finite-precision arithmetic. To derive this

algorithm we define a variable ti by

ti+1 ≡ ūi+1 − ui+1 = li − l̄i − σ.

Observe that

ti+1 = li − liui/ūi − σ

= li(ūi − ui)/ūi − σ

= tili/ūi − σ.

The associated algorithm is called the differential form of the stationary qds algorithm. We

will name it as dstqds.

dstqds(σ) : t1 = −σ

for i = 1, . . . , n − 1

ūi = ui + ti

l̄i = ui(li/ūi)

ti+1 = ti(li/ūi) − σ

end for

ūn = un + tn.
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In practice the t-values may be written over each other in a single variable t. If the

common subexpression li/ūi is recognized then only one division is needed. Thus the dstqds

exchanges a subtraction for a multiplication, so the extra cost is not excessive.

3.5.2 Progressive qd algorithms

Recall that the product UL = J ′ has the superdiagonal entries also equal to 1. This section

seeks the triangular factorization of J ′ − σI, not J − σI:

J ′ − σI = UL − σI = L̂Û

for a suitable shift σ. Equating entries on each side of the defining equation gives:

ui+1 + li+1 − σ = l̂i + ûi+1, i = 0, . . . , n − 1, l̂0 = 0, ln = 0,

liui+1 = l̂iûi, i = 1, . . . , n − 1.

These relations give the so-called progressive qd algorithm with shift which we will call qds.

qds(σ) : û1 = u1 + l1 − σ;

for i = 1, . . . , n − 1

l̂i = liui+1/ûi

ûi+1 = ui+1 + li+1 − σ − l̂i

end for.

The algorithm qds fails when ûi = 0 for some i < n. When σ = 0 we write simply qd, not

qds.

There is an alternative implementation of qds that is slightly slower than qds but has

compensating advantages. Lets define an auxiliary variable

di+1 ≡ ûi+1 − li+1 = ui+1 − l̂i − σ.

Observe that

di+1 = ui+1 − liui+1/ûi − σ

= ui+1(ûi − li)/ûi − σ

= diui+1/ûi − σ.
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Rutishauser seems to have discovered the unshifted version some years after discovering qd

but he did not make much use of it. He called it the differential qd algorithm (dqd) and the

new shifted version will be called dqds.

dqds(σ) : d1 = u1 − σ

for i = 1, . . . , n − 1

ûi = di + li

l̂i = li(ui+1/ûi)

di+1 = di(ui+1/ûi) − σ

end for

ûn = dn.

By definition, dqd=dqds(0). In practice each di+1 may be written over its predecessor

in a single variable d.

In the positive case (li > 0, i = 1, . . . , n − 1; ui > 0, i = 1, . . . , n) dqd requires no

subtractions and enjoys very high relative stability. In the symmetric case, dqds, even with

the current simple shift strategies, achieves good accuracy in all eigenvalues and is faster

then QR. See Fernando and Parlett [16]. In fact, this algorithm finds the singular values of

a bidiagonal matrix in O(n2) time, but as accurately and rather more efficiently than QR

algorithm. It is the sequential algorithm of choice for singular values and is implemented

in Lapack 1 [2].

In what concerns to an error analysis of dqds, it was proved in [16] that dqds yields

mixed high relative stability. Given matrices L and D and shift σ, suppose that the dqds

algorithm in finite precision produces representable output L̃ and D̃. We introduce ideal

matrices L̂, D̂, L̆ and D̆ such that L̆ and D̆ is the output of dqds acting on L̂ and D̂ in

exact arithmetic. Moreover L̂ and D̂ are small relative perturbations of L and D, and L̆

1Lapack is a library of Fortran 77 subroutines for solving the most common problems in numerical linear

algebra.
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and D̆ are small relative perturbations of L̃ and D̃. See figure bellow. This property is

called mixed stability in [9] but note that the perturbations are relative ones. And dqds

enjoys high mixed relative stability even with element growth.

L,U
dqds−−−−−−−→

computed
L̃, Ũ

change each

lk by 1 ulp

uk by 3 ulps

y
x change each

l̆k, ŭk by 2 ulps

L̂, Û
dqds−−−−−−−→
exact

L̆, Ŭ

Figure 3.1: Effects of roundoff for dqds

The diagram shows that, in the absence of division by zero, underflow or overflow,

the diagram commutes and, for all k, l̂k and ûk differ from lk and uk by 3 and 1 ulps 2,

respectively, and l̃k and ũk differ from l̆k and ŭk, respectively, by 2 ulps, at most.

3.6 Relation of LR algorithm for J matrices to qds

The LR transform of J is J ′ and the LR transform of J ′ is the matrix J ′′ defined in two

steps by

J ′ = L′U ′, J ′′ = U ′L′.

In fact, the first step of the LR algorithm

J = LU, J ′ = UL,

defines J ′ and the second step defines J ′′,

J ′ = L′U ′, J ′′ = U ′L′.

2One ulp, “unit in last place”, of the normalized floating point number y = ±βe
× .d1d2 . . . dt is

ulp(y) = βe
× .00 . . . 1 = βe−t. It is the right unit for discussing relative errors since it avoids reference

to the magnitude of the numbers involved.
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Now qd applied to L and U yields L′ and U ′ and so defines J ′′ implicitly. There is no

need to form J ′ or J ′′.

When shifts are employed the situation is a little more complicated. It is necessary to

look at two successive steps with shifts σ1 and σ2.

In shifted LR we have

J1 − σ1I = L1U1

J2 = U1L1 + σ1I

J2 − σ2I = L2U2

J3 = U2L2 + σ2I.

In other words, the shifts are restored so that J1, J2, J3 are similar. Note that

J2 = U1L1 + σ1I

= L−1
1 L1U1L1 + σ1I

= L−1
1 (J1 − σ1I)L1 + σ1I

= L−1
1 J1L1,

and

J3 = L−1
2 J2L2.

However, if J2 is not to be formed one cannot explicitly add σ1 back to the diagonal.

On the other hand,

J2 − σ2I = U1L1 − (σ2 − σ1) I = L2U2.

In general, we have

Ji+1 − σi+1I = UiLi + σiI − σi+1I

= UiLi − (σi+1 − σi) I = Li+1Ui+1.

Thus, to find L2 and U2 from L1 and U1 it is only necessary to apply qds(σ2 −σ1). In other

words, to get qds equivalent to LR with shifts {σi}∞i=1 it is necessary to use the differences

(σi − σi−1) with qds.
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In LR the shifts should converge to an eigenvalue of the original J or J ′. In qds the

shifts should converge to 0 and un → 0, ln−1 → 0 too and all shifts must be accumulated.

See diagram in Figure 3.2.

J1
- J2

- J3
LR(σ1) LR(σ2)

@
@

@@R ¡
¡

¡¡µ @
@

@@R ¡
¡

¡¡µ @
@

@@R

L1, U1
- L2, U2

- L3, U3

dqds(σ2 − σ1) dqds(σ3 − σ2)

σ1 −σ1 σ2 −σ2 σ3

Figure 3.2: Relation of LR to qds

In the positive case both LR and qds are accurate and efficient.

In practice, the LR algorithm for J matrices avoids explicit calculation of the L’s and

U ’s and the transformation Ji → Ji+1 is effected via a sequence of elementary similarity

transformations. For comparison purposes, two implementations of LR, the explicit and

the implicit shifted versions, can be found in [40, pp.469-471].

We end this section summarizing some advantages and disadvantages of the factored

form LU .

Advantages of the factored form

1. L,U determines the entries of J to greater than working-precision accuracy because

the addition and multiplication of l’s and u’s is implicit. Thus, for instance, the (i, i)

entry of J is given by li−1 + ui implicitly but fl(li−1 + ui) explicitly.

2. The mapping L,U → J is naturally parallel; for example, if l = (li) and u = (ui),

then l ∗u gives the off-diagonal entries of J . In contrast, the mapping J → L,U , that

is, Gaussian elimination, is intrinsically sequential.

3. Singularity of J is detectable by inspection when L and U are given, but only by

calculation from J . So, LU reveals singularity, J does not.
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4. First experiments with the measures of sensitivity presented in Chapter 7 show that

LU defines the eigenvalues better than J does (usually).

5. Solution of Jx = b takes half the time when L and U are available.

Disadvantages of the factored form

The mapping J 7→ L,U is not everywhere defined. Even when the factorization exists

it can happen that ‖L‖ and ‖U‖ greatly exceed ‖J‖. This is very bad for applying the LR

algorithm but harmless when eigenvectors are to be calculated. So, some care is needed

to consider the goal before stigmatizing a process as unstable. Moreover, in the eigenvalue

context we are free to replace J by J − σI = LU for some suitable chosen shift σ that

gives acceptable L and U . And there is a lot that can be done in improving existing shift

strategies so that element growth can be monitored.





Chapter 4

Convergence results for LR

In this chapter we establish a new convergence result for the basic LR algorithm on a real

unreduced tridiagonal matrix with a one-point spectrum - the Jordan form is only one big

Jordan block. First we show the classical convergence results and summarize eigenvector

properties of real unreduced unsymmetric tridiagonal matrices.

4.1 Classical results for the convergence of LR algorithm

The kth iteration of the basic LR method is based on the LU decomposition Ak = LkUk

and on the multiplication of the factors Lk and Uk in reverse order to get the matrix Ak+1.

The sequence of matrices A =: A1, A2, A3, . . . is then generated by

LR algorithm

A1 = A

for i = 1, 2, . . .

Factor Ai = LiRi (LU factorization)

Ai+1 = RiLi

end

It is easy to see that Ak+1 is similar to Ak,

81
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Ak+1 = RkLk = L−1
k (LkRk)Lk, (4.1)

and then, by an inductive argument, Ak+1 is similar to A1.

Lemma 4.1.1 Let A1 := A and {Ai}∞i=1 be the sequence of matrices generated by

LR algorithm, i = 1, 2, . . .. Then

Ai+1 = (L1L2 . . . Li)
−1A1(L1L2 . . . Li), i = 1, 2, ... . . .

Proof. Use (4.1) repeatedly. ¤

Lemma 4.1.2 Let matrices Li and Ui be defined by

Li ≡ L1L2 . . . Li and Ui ≡ RiRi−1 . . . R1.

Then LiUi is the LU decomposition of Ai
1.

Proof. From lemma 4.1.1 we have

L1L2 . . . Li−1Ai = A1L1L2 . . . Li−1. (4.2)

Notice that matrices Li and Ui are unit-lower triangular and upper-triangular, respectively.

Consider the product LiUi. For i = 2, 3, . . ., we have

LiUi = L1L2 . . . Li−1(LiRi)Ri−1 . . . R1

= L1L2 . . . Li−1AiRi−1 . . . R1

= A1L1L2 . . . Li−1Ri−1 . . . R1 (from (4.2))

= A1Li−1Ui−1.

Repeated application of this result shows that

LiUi = Ai
1, (4.3)

so that LiUi gives the LU decomposition of Ai
1. ¤
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Thus, we have

Ai+1 = Li
−1A1Li and LiUi = Ai

1,

that is, i steps of LR applied to A1 are equivalent to a similarity given by a factorization

of Ai
1.

4.1.1 Convergence of LR algorithm in the simplest case

We now restrict ourselves to the case when A1 is nonsingular and has eigenvalues

λi, i = 1, . . . , n, of distinct modulus, so that it necessarily has linear elementary divisors.

We may write

A1 = X diag(λ1, . . . , λn)X−1 =: XDY, (4.4)

where the columns of X are the right eigenvectors of A1 and the rows of Y are the row

eigenvectors of A1.

Suppose we order the eigenvalues λi, i = 1, . . . , n, of A1 so that they satisfy

|λ1| > |λ2| > · · · > |λn|. (4.5)

Then, under certain restrictions, we have

Li → I and Ri → Ai →




λ1 ∗ ∗ ∗
λ2 ∗ ∗

. . .
...

λn




as i → ∞.

Theorem 4.1.1 If A = X diag(λ1, . . . , λn)X−1 and

1. |λ1| > |λ2| > · · · > |λn|,

2. the leading principal minors of X and X−1 are nonzero,
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then

limAi = A∞

exists and is upper triangular with the ith diagonal entry of A∞ equal to λi.

Before writing the proof of this result, observe two simple properties of triangular de-

composition. The triangular decomposition of a nonsingular matrix X, if it exists, is unique.

Further, if

X = I + F

then, if ‖F‖ is sufficiently small, the triangular decomposition of X exists, and if

X = I + F = LU

then

L,U → I as ‖F‖ → 0.

This can be verified if we think in terms of Gaussian elimination.

The proof of theorem 4.1.1 is rather technical (see Wilkinson [59] and [60, pp.487-492])

and it was first given by Rutishauser [49]. It is based on the fact that if matrix X of right

eigenvectors of A admits triangular factorization

X = LXUX

then

Li → LX and Ai = L−1
i−1A1Li−1 → L−1

X A1LX = UXX−1AXU−1
X

= UX diag(λ1, . . . , λn)U−1
X ,

showing that the limiting Ai is upper-triangular with diagonal elements λ1, . . . , λn.

Proof. From (4.3) we have

LiUi = Ai
1 = XDiY (4.6)

and hence LiUi is the LU decomposition of XDiY .
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Since we are assuming that the leading principal minors of X and Y are non-zero, then

X and Y have LU decompositions. We write

X = LXUX and Y = LY UY ,

and attempt to construct the LU decomposition of XDiY . We have

XDiY = XDiY = XDiLY UY = X(DiLY D−i)(DiUY ). (4.7)

If we write

DiLY D−i = I + Fi, (4.8)

with Fi =
(
f

(i)
kj

)
and LY = (lkj), we have

f
(i)
kj =





lkj

(
λk

λj

)i
, k > j

0, k ≤ j
. (4.9)

From relations (4.5) and (4.9) we see that Fi → O as i → ∞. Hence

XDiY = X(I + Fi)D
iUY = LXUX(I + Fi)D

iUY

= LX

(
I + UXFiU

−1
X

)
UXDiUY

= LX(I + Gi)UXDiUY

where Gi → O as i → ∞. Thus, for sufficiently large i, I + Gi has an LU decomposition

which we may write in the form

I + Gi =
(
I + L

(i)
G

)(
I + U

(i)
G

)

where L
(i)
G , U

(i)
G → O as i → ∞.

Finally from (4.6) we have

LiUi = LX

(
I + L

(i)
G

)(
I + U

(i)
G

)
UXDiUY ,

which, from the uniqueness of the LU decomposition, gives

Li = LX

(
I + L

(i)
G

)
→ LX as i → ∞.
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Hence, since Ai+1 = Li
−1A1Li, we have

Ai+1 = Li
−1XDX−1Li → L−1

X LXUXDU−1
X L−1

X LX = UXDU−1
X . (4.10)

The matrix UXDU−1
X is upper-triangular and has diagonal elements λ1, . . . , λn in this order.

¤

According to [59, p.80], we should note that it was assumed that Ai has a triangular

decomposition at all stages. This is not assured by the non-vanishing of the principal minors

of X and Y and hence even when these conditions are satisfied, the LR method can break

down. Such a failure corresponds to the non-existence of a decomposition of I + Gi. Since

I + Gi → O this cannot happen at a late stage in the process.

If we remove the condition that Y has non-vanishing principal minors, a phenomenon

called disorder of latent roots occurs - Ai+1 tends to an upper triangular matrix having as

its diagonal the eigenvalues but no longer in monotonic decreasing order. The eigenvalues

are therefore disordered in the limiting matrix and this phenomenon happens to be unstable

in practice.

The speed of convergence of the LR algorithm is determined essentially by the speed

at which the elements of Fi tend to zero and hence on the quantities
λk

λj
, k > j. If

∣∣∣∣
λk

λj

∣∣∣∣
is close to 1, that is, if the separation of the eigenvalues is poor, convergence may be slow.

So, the speed of convergence of Ai to upper-triangular form depends, particularly, on the

ratios

∣∣∣∣
λk+1

λk

∣∣∣∣ which are the highest.

If we let Li = (l
(i)
kj ), from the relation Li = L−1

i−1Li it can be proved that

l
(i)
kj = O

(
λk

λj

)i

as i → ∞ (k > j).

So if we have λn ≈ 0 then

l
(i)
n,j = O

(
λn

λj

)i

, j < n.

converges quickly to 0, that is, the last line of Li converges quickly to eT
n . Thus Ai+1 = RiLi

will have the last line converging quickly to λneT
n ≈ 0. This explains why it is more
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efficient to apply LR algorithm to A−σI with σ close λn and how shifts of origin accelerate

convergence.

Note that in establishing this result of convergence we made the assumption that all

the eigenvalues are of different magnitude and in this case A can not be a real matrix with

complex conjugate eigenvalues.

4.1.2 Eigenvalues of coincident absolute value

If

∣∣∣∣
λk

λj

∣∣∣∣ = 1 it appears at first sight that we no longer have convergence. But this is not the

case. If the |λi| are not distinct then, loosely speaking, Ai may be said to converge to block

triangular form. See Parlett [41]. More precisely, suppose

|λ1| = |λ2| = . . . = |λp| > |λp+1|.

Strictly speaking, A∞ may not exist but, as i → ∞, A∞ becomes reduced. The elements

in the first p columns may not converge but the characteristic polynomial of the leading

principal submatrix of order p does converge to the monic polynomial with roots λ1, . . . , λp.

The complementary submatrix has eigenvalues which converge to λp+1, . . . , λn. If any of

these eigenvalues have equal modulus then this submatrix will become reduced also. Thus,

as i → ∞, the submatrix blocks which become isolated along the diagonal correspond to

groups of eigenvalues of equal modulus.

In the important case of real matrices with complex conjugate pairs, Ai may be

expected to have along the diagonal, for large i, isolated 2 × 2 real submatrix which yield

the eigenvalues very conveniently.

Theorem 4.1.2 Let A =: A1 be a diagonalizable real square matrix. Suppose that the LU

factorization of Ai exists at every step i = 1, 2, . . . of LR algorithm. Then Ai tends to a

block upper triangular form as i → ∞. The diagonal blocks, say X i
1, Xi

2, . . . , Xi
p, need

not converge but the eigenvalues of Xi
j, j = 1, . . . , p, converge to the set of eigenvalues of

jth largest magnitude. In particular, if the eigenvalues have distinct magnitude, except for
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complex conjugate pairs, then the blocks Xi
j are either 1 × 1 for real eigenvalues, or 2 × 2,

for a complex conjugate pair.

In [59] Wilkinson separates the proof of this result into two parts: equal eigenvalues

having linear elementary divisors and unequal eigenvalues of equal modulus. That is, it is

still assumed that the matrix A is diagonalizable.

For the case of non-linear divisors it is given in the last section of [59] a simple counter-

example that shows immediately that the LR algorithm does not necessarily give conver-

gence to an upper-triangular matrix. The matrix

A =




a 0 0

1 a 0

0 1 a


 , a ∈ R,

is LR invariant, that is, Ai = A for all i.

4.2 Eigenvector properties of an unreduced tridiagonal

Eigenvector matrices of real unreduced symmetric tridiagonal matrices have several attrac-

tive properties and have been studied widely in the literature. See Parlett [38, Chapter 7].

The eigenvalues are real and distinct and key properties are

• the first and last entries cannot vanish; there are very elegant formulae for the squares

of entries of normalized eigenvectors.

• When the off-diagonal entries are all of the same sign, the eigenvector for the right-

most (largest) eigenvalue has no sign changes, for the second largest eigenvalue, the

eigenvector has one sign change, and so on. The eigenvector for the leftmost (smallest)

eigenvalue has the maximal number of sign changes, namely n− 1 for a n×n matrix.

See Gantmakher and Krein [19] and Fiedler [17].

Our interest is in the real unsymmetric case and we expect the matrix spectrum to have

a mixture of real and complex eigenvalues. Of the properties above only the first extends to
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the case of our interest. The proof is identical to the symmetric case and will be omitted. A

new difficulty in our case is that the eigenvalues need not be simple, so the Jordan form may

not be diagonal. In such cases the eigenvector matrix must be filled out with the so-called

generalized eigenvectors with the property that

(C − λI)jv = 0, (C − λI)j−1v 6= 0.

We say v is an eigenvector of grade j (see page 10).

In what follows we shall present some properties of eigenvector matrices that are

sufficient to guarantee convergence of the basic LR algorithm without invoking the ex-

tra hypotheses needed by Rutishauser and Wilkinson for the general case. To the best of

our knowledge these results are new.

Our convergence theory for LR algorithm requires that certain matrices X permit

triangular factorization X = LDU or X = L(DU). This property plays a prominent

role in Linear Systems Theory.

We will say that X is strongly (or completely) regular with the meaning that X and all

its leading principal submatrices are invertible. We shall use the terms “strongly regular”

and “permits LU” interchangeably. To be precise, we note that a singular matrix may permit

triangular factorization but in our work all the matrices of interest will be invertible.

We proceed from the easier cases to the more difficult in stages.

Most of our results extend directly to complex unreduced tridiagonal matrices but we

focus on real matrices for simplicity and because it is the most frequent case in applications.

Consider an unreduced real tridiagonal matrix C = tridiag(b,a, c),

C =




a1 c1

b1 a2 c2

. . .
. . .

. . .

bn−2 an−1 cn−1

bn−1 an




∈ R
n×n

with bici 6= 0, i = 1, . . . , n − 1.
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Define monic polynomials p0, p1, . . . , pn by

p0(τ) = 1, pj(τ) := det(τIj − Cj), j = 1, . . . , n,

where Ij represents the j × j identity matrix and Cj the jth leading principal submatrix of

C.

4.2.1 All eigenvalues distinct

Suppose all eigenvalues of C are distinct and let the spectrum be

Λ = {λ1, λ2, . . . , λn}.

The following matrix plays a key role in our results,

P = PC = [pi−1(λj)]
n
i,j=1 .

The notation means that the (i, j) element of P is equal to pi−1(λj). So the jth column of

P is given by the column vector

p(λj) :=
[
p0(λj) p1(λj) . . . pn−1(λj)

]T
, j = 1, . . . , n,

that is,

P =




1 1 . . . 1

p1(λ1) p1(λ2) . . . p1(λn)
...

...
...

pn−1(λ1) pn−1(λ2) . . . pn−1(λn)




. (4.11)

P and P T are called polynomial Vandermond matrices. The standard Vandermond matrix

V is defined by

V = VΛ =
[
λj−1

i

]n

i,j=1
,

that is,

V =




1 λ1 λ2
1 . . . λn−1

1

1 λ2 λ2
2 . . . λn−1

2

...
...

...

1 λn λ2
n . . . λn−1

n




. (4.12)
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The valuable property of V is that

det(V ) =
∏

i>j

(λi − λj) (4.13)

where the product extends over all pairs (i, j) with n ≥ i > j ≥ 1; n(n − 1)/2 terms in all.

When the λi are distinct then V is strongly regular because each leading principal

submatrix of V is also a Vandermond built from a subset of the eigenvalues.

Lemma 4.2.1 If all the eigenvalues λi, i = 1, . . . , n, are distinct then V is strongly regular.

Moreover ΠV is strongly regular for any permutation matrix Π because no particular

ordering of the eigenvalues was specified in the definition.

Lemma 4.2.2 det(P ) = det
(
V T

)
= det(V ).

Proof. P may be reduced to V T by elementary row operations that leave the determinant

unchanged. For example, if p1(τ) = τ − k then add k times row 1 to row 2 of P and the

second row becomes
[
λ1 . . . λn

]
= eT

2 V T . And so on. ¤

With the aid of P =
[
p(λ1) p(λ2) · · · p(λn)

]
we can find simple forms for the

column and row eigenvectors of C.

We will denote

Db := diag(1, b1, b1b2, b1b2b3, . . . , b1b2 · · · bn−1),

Dc := diag(1, c1, c1c2, c1c2c3, . . . , c1c2 · · · cn−1).

Lemma 4.2.3 With the notation given above

C
(
D−1

c P
)

=
(
D−1

c P
)
Λ,

(
P T D−1

b

)
C = Λ

(
P T D−1

b

)
.

Proof. The result is a reformulation of the celebrated three term recurrence (3TR) associ-

ated with C:

pj+1(τ) = (τ − aj+1)pj(τ) − bjcjpj−1(τ), j = 1, 2, . . . , n − 1 (4.14)

p1(τ) = (τ − a1) = (τ − a1)p0(τ), since p0(τ) = 1.
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If we define p−1(τ) = 0 then we may use the 3TR for j = 0.

Rewrite the 3TR in the form

bjcjpj−1(τ) + (aj+1 − τ)pj(τ) + pj+1(τ) = 0, j = 0, . . . , n − 1.

The key step is to divide through by c1 · · · cj (6= 0) and rearrange coefficients,

bj
pj−1(τ)

c0c1 · · · cj−1
+ (aj+1 − τ)

pj(τ)

c0c1 · · · cj
+ cj+1

pj+1(τ)

c1 · · · cj+1
= 0, j = 0, 1, . . . , n − 1,

where b0 = 0, bn = cn = 1 and c0 = 1. This set of equations may be written as

(C − τI)D−1
c p(τ) = −en

pn(τ)

c1 · · · cn−1cn
.

Thus, since for each τ = λk we have

pn(λk) = 0,

it follows that

(C − λkI)D−1
c p(λk) = −en

pn(λk)

c1 · · · cn−1cn
= 0 , k = 1, . . . , n. (4.15)

Thus, in matrix terms,

CD−1
c P = D−1

c PΛ.

Note that CT = DcD
−1
b CD−1

c Db and then

CT D−1
b P = DcD

−1
b

(
CD−1

c P
)

= DcD
−1
b

(
D−1

c PΛ
)

= D−1
b PΛ. ¤

These row and column eigenvectors are not scaled properly to be inverses of each other.

Since the row eigenvectors for λj annihilates all the column eigenvectors for different eigen-

values we may define a special diagonal matrix ∆ = ∆C by

(
P T D−1

b

) (
D−1

c P
)

= ∆ := diag(δ1, . . . , δn),

δj = p(λj)
T (DbDc)

−1
p(λj) 6= 0.
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Note that, if δj = 0 then the row eigenvector for λj annihilates all the column eigenvectors

and would be 0T which contradicts the definition of an eigenvector.

The matrix ∆−1 may be attached to either D−1
c P or D−1

b P or shared between them. In

general, ∆ will be indefinite. We will have

(
P T D−1

b

) (
D−1

c P∆−1
)

=
(
D−1

c P∆−1
) (

P T D−1
b

)
= I

and
(
∆−1P T D−1

b

) (
D−1

c P
)

=
(
D−1

c P
) (

∆−1P T D−1
b

)
= I.

Theorem 4.2.1 The spectral decomposition of C with simple eigenvalues may be written

C =
(
D−1

c P
)
Λ

(
∆−1P T D−1

b

)
=

(
D−1

c P∆−1
)
Λ

(
P T D−1

b

)
.

Theorem 4.2.2 When C has simple eigenvalues then both column and row eigenvector

matrices D−1
c P∆−1 and P T D−1

b , respectively, are strongly regular.

The proof needs only the following easy results.

Lemma 4.2.4 For any invertible diagonal matrices D′ and D′′, M is strongly regular if,

and only if, D′MD′′ is strongly regular.

Proof. Let (D′MD′′)j be the jth leading principal submatrix of D′MD′′. We have

det
(
(D′MD′′)j

)
= det(D′

j) det(Mj) det(D′′
j ) 6= 0, j = 1, . . . , n,

since all the determinants are nonzero. ¤

Lemma 4.2.5 When all the eigenvalues λi, i = 1, . . . , n, are distinct, both P and P T are

strongly regular.

Proof. Use lemmas 4.2.1 and 4.2.2 ¤

Next we consider the opposite extreme, a maximal Jordan block of C.
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4.2.2 The one-point spectrum

Suppose now that C’s spectrum consists of a single nonzero point λ and such that its Jordan

form is

J = λI + N

where N is the nilpotent matrix

N =




0 1

0 1

. . .
. . .

0 1

0




.

From the previous section we know that the relation (4.15) is verified only for λ,

(C − λI)D−1
c p(λ) = 0.

So, the only column eigenvector of C is D−1
c p(λ) and its single row eigenvector is p(λ)T D−1

b .

The most elegant way to find eigenvectors of higher grade is to differentiate the 3TR as

many times as is necessary. Thus, from (4.14),

p′j+1(τ) = (τ − aj+1)p
′
j(τ) + pj(τ) − bjcjp

′
j−1(τ), j = 1, 2, . . . , n − 1

and rearranging the terms we have

bjcjp
′
j−1(τ) + (aj+1 − τ)p′j(τ) + p′j+1(τ) = pj(τ). (4.16)

Then, dividing by c1 · · · cj ,

bj

p′j−1(τ)

c0c1 · · · cj−1
+ (aj+1 − τ)

p′j(τ)

c0c1 · · · cj
+ cj+1

p′j+1(τ)

c1 · · · cj+1
=

pj(τ)

c0c1 · · · cj
, j = 0, 1, . . . , n − 1,

where we define p′−1(τ) = 0, bn = cn = 1 and c0 = 1. In matrix terms

(C − τI)D−1
c p′(τ) = D−1

c

(
p(τ) − enp′n(τ)

)
.
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Hence, when τ = λ,

(C − λI)D−1
c p′(λ) = D−1

c p(λ), since p′n(λ) = 0,

and

(C − λI)2D−1
c p′(λ) = (C − λI)D−1

c p(λ) = 0,

since pn(λ) = (τ − λ)n and λ is a multiple zero of pn.

To obtain the next vector differentiate (4.16) again,

bjcjp
′′
j−1(τ) + (aj+1 − τ)p′′j (τ) + 1.p′′j+1(τ) = 2p′j(τ).

In order to keep the superdiagonal entries in the Jordan form at the value 1 we divide

through by 2 to obtain

(C − τI)
1

2
D−1

c p′′(τ) = D−1
c

(
p′(τ) − en

1

2
p′′n(τ)

)
.

Putting τ = λ and since p′′(λ) = 0,

(C − λI)
1

2
D−1

c p′′(λ) = D−1
c p′(λ),

and

(C − λI)3
1

2
D−1

c p′′(λ) = (C − λI)2D−1
c p′(λ) = 0.

It may be verified that the appropriate definition of P in the confluent case is the unit lower

triangular matrix

Pλ = P =
[
p(λ) p′(λ) 1

2!p
′′(λ) . . . 1

(n−1)!p
(n−1)(λ)

]

and so

(C − λI)D−1
c P = D−1

c PN. (4.17)

The next lemma summarizes this result.

Lemma 4.2.6 If C has one-point spectrum λ and Dc and P are as defined above, then

C
(
D−1

c P
)

=
(
D−1

c P
)
(N + λI) =

(
D−1

c P
)
J.
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So, the matrix of generalized right eigenvectors of C is D−1
c P . To find the row eigenvectors

for C we first use

CT = DcD
−1
b CD−1

c Db

to find, analogously to (4.17),

(
CT − λI

)
D−1

b P = D−1
b PN.

Now, transposing this equation we get

P T D−1
b C =

(
λI + NT

)
P T D−1

b = I�(λI + N) I�P T D−1
b , (4.18)

where

I� =




1

1

p

p

p

1

1




is the reversal or anti-diagonal matrix (all entries (i, j) are zero except when

i + j = n + 1). We used the fact that I� I� = I and NT = I�N I�. Thus, pre-multiplying

(4.18) by I�, we find that

(
I�P T D−1

b

)
C = (λI + N)

(
I�P T D−1

b

)
.

So, I�P T D−1
b is the matrix of generalized row eigenvectors of C.

Summarizing,

Lemma 4.2.7 If C has one-point spectrum λ and Db and P are as defined above, then

(
I�P T D−1

b

)
C = J

(
I�P T D−1

b

)
.
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Recall that D−1
c P is lower triangular and P T D−1

b is upper triangular. Nevertheless, it

is not true that the product
(
I�P T D−1

b

) (
D−1

c P
)

is diagonal, as was the case for simple

eigenvalues. The reason is subtle: for a Jordan block, the eigenvectors of grade higher than

1 are not uniquely defined. The phrase “the Jordan basis” that can be found in some text

books is incorrect; it is not unique.

Consider the equation above in (4.17),

CD−1
c P = D−1

c P (λI + N).

Post-multiply by any invertible matrix ϕ(N), ϕ a polynomial, that comutes with λI + N

to find that

CD−1
c Pϕ(N) = D−1

c P (λI + N)ϕ(N) = D−1
c Pϕ(N)(λI + N).

Thus D−1
c P is only unique up to post-multiplication by any invertible polynomial ϕ(N).

And there is no loss in normalizing ϕ to satisfy ϕ(O) = I.

Chosen
(
I�P T D−1

b

) (
D−1

c P
)

= ϕ(N),

we have proved

Theorem 4.2.3 If C has one-point spectrum λ and P , Db, Dc are as defined above then

C = D−1
c Pϕ(N)−1(λI + N) I�P T D−1

b ,

for some polynomial ϕ with ϕ(O) = I.

The example that follows exhibits this feature.

Before, recall that a square matrix A is Toeplitz when the entries of A are constant

down the diagonals parallel to the main diagonal and is Hankel when the entries of A are

constant along the diagonals perpendicular to the main diagonal.
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Z. S. Liu [31] devised an algorithm to obtain one-point spectrum unreduced tridiagonal

matrices of arbitrary dimension n × n. These matrices, that we will call Liu’s matrices,

have only one eigenvalue, zero with algebraic multiplicity n and geometric multiplicity 1.

The Jordan form consists of one big Jordan block. We will represent Liu’s matrices as

Liun = tridiag(1n, αn, γn)

where 1n always stands for a vector of 1’s of length n − 1. For n = 6 we have

α6 =
[
0 0 −1 1 0 0

]
and γ6 =

[
−1 1 −1 1 −1

]
.

Example 4.2.1

Consider the transpose of Liu6 matrix

C =




0 1

−1 0 1

1 −1 1

−1 1 1

1 0 1

−1 0




.

We have

p0(τ) = 1,

p1(τ) = τ,

p2(τ) = τ2 + 1,

p3(λ) = (τ + 1)p2(τ) − p1(τ) = τ3 + τ2 + 1,

p4(τ) = (τ − 1)p3(τ) + p2(τ) = τ4 + τ,

p5(τ) = τp4(τ) − p3(τ) = τ5 − τ3 − 1,

p6(τ) = τp5(τ) + p4(τ) = τ6.
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Then

P =




1 0 0 0 0 0

0 1 0 0 0 0

1 0 1 0 0 0

1 0 1 1 0 0

0 1 0 0 1 0

−1 0 0 −1 0 1




, Db = diag(1,−1,−1, 1, 1,−1), Dc = I.

Now, we have

P T D−1
b P =




0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 1 0 −1




= I�U−1,

defining U .

Thus,

U =
(
I�P T D−1

b P
)−1

=




1 0 0 1 0 −1

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




−1

=




1 0 0 −1 0 1

0 1 0 0 −1 0

0 0 1 0 0 −1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




,

that is, U = I − N3 + N5 is a polynomial in N and thus commutes with λI + N which is

also a polynomial in N .

Thus I�P T D−1
b P = U−1 = I + N3 − N5 = ϕ(N) is unit upper triangular and Toeplitz.

So,

C = PU (0I + N) I�P T D−1
b , I =

(
I�P T D−1

b

)
(PU).
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Note that PU is in LU form and P T D−1
b is upper triangular. It will be shown that C + σI,

σ 6= 0, can admit the basic LR algorithm with no breakdowns and will converge to

U(σI + N)U−1 = σI + N. ⋄

4.2.3 The general case

In general, unreduced C will have some simple eigenvalues and some multiple ones. The

unreduced property implies that C is nonderogatory, meaning that there is only one Jordan

block, and thus one eigenvector, for each eigenvalue.

It follows directly from the previous sections that the matrix P has a column p for each

simple eigenvalue λ and a block of columns
[
p(λ) p′(λ) 1

2!p
′′(λ) . . . 1

m!p
(m)(λ)

]
if λ

has multiplicity m + 1. The only constraint on ordering of columns is that each block must

be treated as a whole.

As shown in the section on one-point spectrum matrices, the order of the row eigenvec-

tors must be reversed within each block.

We state without proof.

Theorem 4.2.4 Let J be the (upper) Jordan form of unreduced matrix C. Then the spectral

decomposition may be written

C = D−1
c PUJWP T D−1

b

where U is a unit upper triangular matrix that commutes with J and W is a symmetric

permutation matrix that is a direct sum of reversal matrices I� conforming to the block

structure of J . W also commutes with J . P , and therefore P T , are strongly regular.

4.3 Convergence of basic LR algorithm on an unreduced

tridiagonal

We will show that the assumptions required by Wilkinson in the general case to ensure the

convergence of LR algorithm are no longer needed on an unreduced tridiagonal matrix.
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First we recall the essencial facts from the beginning of this chapter. Set C1 = C and

for k = 1, 2, . . . define

Ck = LkRk, Lk being unit lower triangular

Ck+1 = RkLk.

The LU factorization of Ck is

LkUk = Ck

with Lk = L1L2 . . .Lk and Uk = RkRi−1 . . . R1. And then

Ck+1 = Lk
−1CLk.

The L factor of a matrix M will be denoted by L(M), provided that M is strongly

regular. In this new notation we will write

Ck+1 = L(Ck)−1CL(Ck). (4.19)

4.3.1 Eigenvalues of distinct absolute value

The result in this section is not entirely new but helps to understand the new case.

Let C be a nonsingular unreduced tridiagonal matrix. Without loss of generality, we

may write

C = XΛX−1

Λ = diag(λ1, λ2, . . . , λn), |λi| > |λi+1|, for all i.

With the notation of previous section,

X = D−1
c P∆−1, X−1 = P T D−1

b

where P = PΛ is the polynomial Vandermond matrix given in (4.11). Since P is strongly

regular (and also X and X−1 by theorem 4.2.2) we may write

P = LDU,
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where L is unit lower triangular, D is diagonal and U is unit upper triangular. Then we

can manipulate Ck into LU form as follows

Ck = XΛkX−1

= D−1
c P∆−1ΛkP T D−1

b

= D−1
c LDU∆−1ΛkUT DLT D−1

b

= D−1
c LDU∆−1(ΛkUT Λ−k)ΛkDLT D−1

b

= (D−1
c LDc)(D

−1
c DU∆−1)(I + Ek)(Λ

kDLT D−1
b )

= (D−1
c LDc)(I + Fk)(D

−1
c DU∆−1)(ΛkDLT D−1

b ) (4.20)

where

Fk =
(
D−1

c DU∆−1
)
Ek

(
D−1

c DU∆−1
)−1

.

Notice that

X =
(
D−1

c LDc

) (
D−1

c DU∆−1
)

=: LXUX (4.21)

Y = UT
(
DLT D−1

b

)
=: LY UY

are the LU factorizations of X and Y , respectively.

Also, we had written

ΛkUT Λ−k = I + Ek.

So, Ek is strictly lower triangular and, if we let U = (uij) and Ek =
(
e
(k)
ij

)
, we have

e
(k)
ij =





uji

(
λi

λj

)k
, i > j

0, i ≤ j
. (4.22)

Thus the (j + m, j) entry of Ek is uj,j+m

(
λj+m

λj

)k
and tends to zero as k tends to infinity,

since |λj+m| < |λj |. Hence

‖Fk‖ ≤ cond
(
D−1

c DU∆−1
)
‖Ek‖ → 0 as k → ∞.



103

It seems likely that I + Fk is strongly regular for all k but it certainly holds for large

enough k, say

I + Fk = LkUk with Lk, Uk → I as k → ∞.

Thus, for large enough k, from (4.20),

Ck =
(
D−1

c LDc

)
(LkUk)

(
D−1

c DU∆−1
) (

ΛkDLT D−1
b

)
,

and then

L(Ck) = D−1
c LDcLk

since Uk

(
D−1

c DU∆−1
) (

ΛkDLT D−1
b

)
is upper triangular. Thus

L(Ck) → D−1
c LDc = LX as k → ∞.

Finally, from (4.19),

Ck+1 = L(Ck)−1CL(Ck),

and thus

Ck+1 →
(
D−1

c LDc

)−1
XΛX−1

(
D−1

c LDc

)

= L−1
X LXUXΛU−1

X L−1
X LX

= UXΛU−1
X as k → ∞,

showing that Ck+1 converges to an upper triangular matrix with diagonal elements equal

to λ1, . . . , λn.

Recalling that the tridiagonal form is preserved by the LR algorithm, we have proved

Theorem 4.3.1 Let C be a nonsingular unreduced tridiagonal matrix with distinct eigen-

values λi, i = 1, . . . , n. Given the notation above,

limCk = C∞

exists and is upper bidiagonal with the ith diagonal entry of C∞ equal to λi.

We should note that we are assuming that Ck permits triangular decomposition at all

stages of the LR algorithm.
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4.3.2 One-point spectrum

Recall that the Vandermond matrix P for this case is unit lower triangular,

P =
[
p(λ) p′(λ) 1

2!p
′′(λ) . . . 1

(n−1)!p
(n−1)(λ)

]
.

From theorem 4.2.3,

C = X(λI + N)X−1 (4.23)

with

X = D−1
c Pϕ(N)−1 and X−1 = I�P T D−1

b .

Then

Ck = D−1
c Pϕ(N)−1(λI + N)k I�P T D−1

b .

Note that P T is unit upper triangular. Next we invoke the following lemma.

Lemma 4.3.1 For all k ≥ n, (λI + N)k I� for λ 6= 0 is strongly regular and thus admits

triangular factorization, say

(λI + N)k I� = LkUk = LkDkL
T
k ,

and, as k → ∞, Lk = I + Ek, Ek → O. The rate of convergence is low, O(1/k).

The proof of this lemma will be given later.

Now, we can factor Ck, k ≥ n:

Ck = D−1
c PDcD

−1
c ϕ(N)−1(I + Ek)UkP

T D−1
b

= D−1
c PDc(I + Fk)D

−1
c ϕ(N)−1UkP

T D−1
b

with

Fk = (ϕ(N)Dc)
−1 Ek (ϕ(N)Dc) → O as k → ∞,

since

‖Fk‖ ≤ cond (ϕ(N)Dc) ‖Ek‖ → 0 as k → ∞.
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Thus,

L(Ck) = D−1
c PDcL(I + Fk) → D−1

c PDc as k → ∞,

since D−1
c ϕ(N)−1UkP

T D−1
b is upper triangular (ϕ(N)−1 is upper triangular and Toeplitz).

Finally, notice that the LU factorization of X is

X =
(
D−1

c PDc

) (
D−1

c ϕ(N)−1
)

:= LXUX

and then

Ck+1 = L(Ck)−1CL(Ck)

= L(Ck)−1X(λI + N)X−1L(Ck) (by 4.23)

→
(
D−1

c PDc

)−1
X(λI + N)X−1

(
D−1

c PDc

)

= L−1
X LXUX(λI + N)U−1

X L−1
X LX

= UX(λI + N)U−1
X

= D−1
c ϕ(N)−1(λI + N)ϕ(N)Dc

= D−1
c (λI + N)Dc,

since ϕ(N) commutes with (λI +N). Notice that D−1
c (λI +N)Dc is upper bidiagonal with

diagonal entries equal to λ.

We have just proved

Theorem 4.3.2 Let C be a nonsingular unreduced tridiagonal matrix that permits trian-

gular factorization and has a one-point spectrum λ. Given the notation above, the basic

LR algorithm applied to C produces a sequence of matrices Ck that converges (in exact

arithmetic) to

D−1
c (λI + N)Dc

with Dc defined above lemma 4.2.3 (page 91).
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Proof of lemma 4.3.1:

The proof rests on the form of powers of Jordan blocks. These are Toeplitz matrices

and involve binomial coefficients. We have (see [29, p.138])

(λI + N)k =
k∑

i=0

(
k

i

)
λk−iN i.

If J is n × n then all terms N i = O for i ≥ n. Then, for k ≥ n,

(λI + N)k =
n−1∑

i=0

(
k

i

)
λk−iN i.

So (λI + N)k I� is the Hankel matrix




(
k

n−1

)
λk−(n−1)

(
k

n−2

)
λk−(n−2)

(
k

n−3

)
λk−(n−3) . . .

(
k
2

)
λk−2 kλk−1 λk

(
k

n−2

)
λk−(n−2)

(
k

n−3

)
λk−(n−3) . . .

(
k
2

)
λk−2 kλk−1 λk 0

(
k

n−3

)
λk−(n−3) . . .

(
k
2

)
λk−2 kλk−1 λk 0 0

. . . . . . . . . . . . . . . . . . . . .
(
k
2

)
λk−2 kλk−1 λk 0 0 . . . 0

kλk−1 λk 0 0 . . . 0 0

λk 0 0 . . . 0 0 0




.

As long as λ 6= 0, it can be factored out of all the powers and is just a scalar converging

either to 0 or to ∞ attached to Uk but it does not alter Lk (if A = LU then αA = L(αU)).

Thus, let ∆λ be the matrix defined as

∆λ := diag(1, λ, λ2, . . . , λn−1)

and factor out λk−n+1 to get

(λI + N)k I� = λk−n+1∆λH̃k∆λ
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where

H̃k :=




(
k

n−1

) (
k

n−2

) (
k

n−3

)
. . .

(
k
2

)
k 1

(
k

n−2

) (
k

n−3

)
. . .

(
k
2

)
k 1 0

(
k

n−3

)
. . .

(
k
2

)
k 1 0 0

. . . . . . . . . . . . . . . . . . . . .
(
k
2

)
k 1 0 0 . . . 0

k 1 0 0 . . . 0 0

1 0 0 . . . 0 0 0




.

So, factoring out λk−n+1 and with a diagonal scaling we are free of the powers of λ and will

concentrate on H̃k.

For i + j ≤ n + 1, as a function of k, the (i, j) entry of H̃k is a polynomial of degree

n + 1 − i − j. Since H̃k is strongly regular (which will be proved below), it has an LU

factorization. If we say H̃k = L̃kŨk, it may be verified that

L̃k =




1

O
(

1
k

)
1

O
(

1
k2

)
O

(
1
k

)
1

. . . . . . . . . . . .

O
(

1
kn−3

)
. . . O

(
1
k2

)
O

(
1
k

)
1

O
(

1
kn−2

)
O

(
1

kn−3

)
. . . O

(
1
k2

)
O

(
1
k

)
1

O
(

1
kn−1

)
O

(
1

kn−2

)
O

(
1

kn−3

)
. . . O

(
1
k2

)
O

(
1
k

)
1




.

So, for p ≥ 1, the (j + p, j) entry of L̃k is O
(
( 1

k )p
)

and thus

L̃k → I + Ek, Ek → O as k → ∞. (4.24)

But the convergence is very slow, governed by the terms of O
(

1
k

)
.

Since H̃k is symmetric we can write LkUk = LkDkL
T
k . The diagonal matrix Dk is

also a function of k but it does not converge to a finite matrix. Nevertheless, for each k,
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(λI + N)k I� has an LU factorization. We have

(λI + N)k I� = λk−n+1∆λH̃k∆λ

= λk−n+1∆λL̃kŨk∆λ

= ∆λL̃k∆
−1
λ λk−n+1∆λŨk∆λ

= LkUk

with Lk ≡ ∆λL̃k∆
−1
λ and Uk ≡ λk−n+1∆λŨk∆λ. Since (4.24) occur we will also have

Lk → I + Gk, Gk → O as k → ∞,

with Gk = ∆λEk∆
−1
λ . ¤

In what follows we will prove that the matrix H̃k is strongly regular.

Lemma 4.3.2 H̃k is strongly regular.

Proof: As noticed before, as a function of k, the (i, j) entry of H̃k, i + j ≤ n + 1, is a

polynomial of degree n + 1 − (i + j). It is given by

(
k

n + 1 − i − j

)
=

k(k − 1) · · ·
(
k − (n − i − j)

)

(n + 1 − i − j)!

=
(k)n+1−i−j

(n + 1 − i − j)!

where (k)m+1 is the Pochammer symbol defined as

(k)0 := 1, (k)m+1 := k(k − 1) · · · (k − m), m ∈ N0.

So, in each entry (i, j), i + j ≤ n + 1, the dominant term is

kn+1−i−j

(n + 1 − i − j)!
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and thus H̃k = Ĥk plus lower order terms with

Ĥk :=




kn−1

(n−1)!
kn−2

(n−2)!
kn−3

(n−3)! . . . k2

2! k 1

kn−2

(n−2)!
kn−3

(n−3)! . . . k2

2! k 1 0

kn−3

(n−3)! . . . k2

2! k 1 0 0

. . . . . . . . . . . . . . . . . . . . .

k2

2! k 1 0 0 . . . 0

k 1 0 0 . . . 0 0

1 0 0 . . . 0 0 0




.

In order to eliminate k from Ĥk we define

∆k := diag(1, k, k2, . . . , kn−1)

and we have

I�∆k I� = diag(kn−1, . . . , k2, k, 1).

Now it can be verified that

Ĥk = ∆−1
k F (n−1)

n I�∆k I�

with F
(n−1)
n given by

F (n−1)
n =




1
(n−1)!

1
(n−2)!

1
(n−3)! . . . 1

2! 1 1

1
(n−2)!

1
(n−3)! . . . 1

2! 1 1 0

1
(n−3)! . . . 1

2! 1 1 0 0

. . . . . . . . . . . . . . . . . . . . .

1
2! 1 1 0 0 . . . 0

1 1 0 0 . . . 0 0

1 0 0 . . . 0 0 0




.

To prove that H̃k is completely regular it suffices to prove that F
(n−1)
n has this property

(see lemma 4.2.4, page 93). First observe that F
(n−1)
n is nonsingular since

det
(
F

(n−1)
n

)
= (−1)n−1. Now we still have to show that all the lth leading principal
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minors of F
(n−1)
n are nonzero, l = 1, . . . , n − 1. This follows immediately from the next

lemma. ¤

Recall that the factorial of a positive integer is defined as

m! = m(m − 1)(m − 2) · · · 2.1, m ∈ N

By convention 0! = 1. We will say that for a negative integer m, m! = 0. Also we define

the double factorial symbol (!!) as follows

m!! = m(m − 1)!(m − 2)! · · · 2!1!, m ∈ N

0!! = 1.

This definition is not universal.

Define the j × j Hankel matrix

F
(n−1)
j :=




1
(n−1)!

1
(n−2)!

1
(n−3)! . . . 1

(n−j)!

1
(n−2)!

1
(n−3)! . . . . . . 1

(n−j−1)!

1
(n−3)! . . . . . . . . . 1

(n−j−2)!

. . . . . . . . . . . . . . .

1
(n−j)!

1
(n−j−1)!

1
(n−j−2)! . . . 1

(n−2j+1)!




.

The following lemma gives us a useful result to calculate the determinant of F
(n−1)
j . It

seems likely that this result may be already known but we couldn’t find it in a search of

the literature.

Lemma 4.3.3 Let j < n. Then

det
(
F

(n−1)
j

)
= (−1)j(j−1)/2 (j − 1)!!(n − j − 1)!!

(n − 1)!!
.
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Proof. There are two cases to consider: first, j ≤ n+1
2 and, second, n > j > n+1

2 .

Case 1: j ≤ n+1
2

Factor out 1
(n−l)! from column l, l = 1, 2, . . . , j, to obtain the new integer matrix

F̃
(n−1)
j :=




1 1 . . . 1

n − 1 n − 2 . . . n − j

(n − 1)(n − 2) (n − 2)(n − 3) . . . (n − j)(n − j − 1)
...

...
...

...

(n − 1) · · · (n − j + 1) (n − 2) · · · (n − j) . . . (n − j) · · · (n − 2j + 2)




with

det
(
F

(n−1)
j

)
=

1

(n − 1)!

1

(n − 2)!
· · · 1

(n − j)!
det

(
F̃

(n−1)
j

)
.

By subtracting suitable multiples of higher rows from lower rows we are left with the

transpose of the standard Vandermond Matrix (see (4.12), page 90)

V{n−1,n−2,...,n−j} =: Vj .

In fact, if we use the Pochammer symbol defined above, it is clear that F̃
(n−1)
j is a polynomial

Vandermond matrix,

F̃
(n−1)
j =




1 1 . . . 1

(n − 1)1 (n − 2)1 . . . (n − j)1

(n − 1)2 (n − 2)2 . . . (n − j)2
...

...
...

...

(n − 1)j−1 (n − 2)j−1 . . . (n − j)j−1




, (4.25)

and the determinant of any polynomial Vandermond matrix is just the determinant of the

standard Vandermond matrix (see lemma 4.2.2, page 91).

To be more precise, if we denote the kth row of F̃
(n−1)
j by Rowl, l = 1, . . . , j, the row

operations we have to perform are

Rowk ← Rowk +(k − 2)Rowk−1 +(k − 3)(n − 1)Rowk−2 + . . . + 1.(n − 1)k−3 Row2,
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for k = n, n − 1, . . . , 3 (note that we start from the bottom). We will end with the leading

(monic) terms




1 1 . . . 1

n − 1 n − 2 . . . n − j

(n − 1)2 (n − 2)2 . . . (n − j)2

...
...

...
...

(n − 1)j−1 (n − 2)j−1 . . . (n − j)j−1




. (4.26)

Hence,

det
(
F

(n−1)
j

)
=

1

(n − 1)!

1

(n − 2)!
· · · 1

(n − j)!
det(Vj).

But, from (4.13), page 91, we know that

det(Vj) =
∏

j≥k>i≥1

(
(n − k) − (n − i)

)

=
∏

j≥k>i≥1

(i − k)

= (−1)j(j−1)/2
∏

j≥k>i≥1

(k − i)

= (−1)j(j−1)/2(j − 1)!(j − 2)! · · · 2!1!.

Notice that j(j − 1)/2 is the number of terms in the product
∏

j≥k>i≥1(i − k).

Finally, we can write

det
(
F

(n−1)
j

)
= (−1)j(j−1)/2 (j − 1)!

(n − 1)!

(j − 2)!

(n − 2)!
· · · 0!

(n − j)!

= (−1)j(j−1)/2 (j − 1)!!(n − j − 1)!!

(n − 1)!!
, n ≥ 2j − 1. (4.27)

We have established the result for n ≥ 2j − 1, that is, for j ≤ n + 1

2
.
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Case 2: Now consider the case n > j >
n + 1

2
. In this case we will have

F
(n−1)
j =




1
(n−1)!

1
(n−2)!

1
(n−3)! . . . . . . . . . . . . . . . . . . 1

(n−j)!

1
(n−2)!

1
(n−3)! . . . . . . . . . . . . . . . . . . . . . 1

(n−j−1)!

1
(n−3)! . . . . . . . . . . . . . . . . . . . . . . . . 1

(n−j−2)!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . 1 1

. . . . . . . . . . . . . . . . . . . . . 1 1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . 1 1 0 . . . 0

1
(n−j)!

1
(n−j−1)!

1
(n−j−2)! . . . 1 1 0 . . . 0 0




.

Again, if we factor out 1
(n−l)! for column l, l = 1, 2, . . . , j, we are left with the polynomial

Vandermond matrix with the Pochammer symbol as in (4.25). Its just the case that some

values of the Pochammer symbol are equal to zero. So, some zeros appear in the lower right

corner of F̃
(n−1)
j but it is still valid that

det
(
F̃

(n−1)
j

)
= det(Vj)

and, then, formula (4.27) also applies to the case n > j >
n + 1

2
.

Observe that from the symmetry of the formula (4.27) it follows, up to the sign,

det
(
F

(n−1)
j

)
= det

(
F

(n−1)
n−j

)
. ¤





Chapter 5

Triple dqds algorithm

In this chapter we describe the derivation of a first version of the triple dqds - an algorithm

that performs implicitly three steps of simple dqds keeping real arithmetic in the

presence of complex shifts. A preliminary version was developed by Z. Wu [64]. We start by

describing the connection to the implicit double shifted LR algorithm and then go into the

details of a practical implementation. The relation between dqds and the Gram-Schmidt

orthogonalization process can be used to establish new results about triple dqds. We defer

this study to the next chapter. For a discussion of the relation of LR to dqds see Fernando

and Parlett [16].

5.1 Triple dqds algorithm

The essential point of triple dqds algorithm is the conversion of the implicit double shifted

LR algorithm (see page 65) into a dqds format. There are two main reasons to pursue this

goal - first, there is both theoretical and practical evidence that the eigenvalues are usually

better defined by the entries of L and U rather than by the entries of the product J = LU ,

and, second, dqds produces with no cost the quantities di, i = 1, 2, . . . , n, (see page 75) that

may be used in a more efficient shift strategy than the one used by the LR algorithm.
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Let L1 and U1 be real and have the form presented in section 3.5.1 (page 72),

L1 =




1

l1 1

l2 1

. . .
. . .

ln−2 1

ln−1 1




, U1 =




u1 1

u2 1

u3 1

. . .
. . .

un−1 1

un




.

Consider that we apply three dqds steps to L1 and R1. The results of shifting by σ1, σ2

and σ3 in succession are

U1L1 − σ1I =L2U2 (5.1)

U2L2 − σ2I =L3U3 (5.2)

U3L3 − σ3I =L4U4 (5.3)

The following lemma relates L4 and U4 to L1 and U1.

Lemma 5.1.1 Consider that matrices L4 and U4 result from the application of three dqds

steps with successive shifts σ1, σ2 and σ3. Then

L4U4 = L−1U1L1L − (σ1 + σ2 + σ3)I

where L = L2L3.

Proof. We have

L4U4 =U3L3 − σ3I

=L−1
3 (L3U3)L3 − σ3I

=L−1
3 (U2L2 − σ2I)L3 − σ3I (5.4)

=L−1
3

(
L−1

2 (U1L1 − σ1I)L2 − σ2

)
L3 − σ3I (5.5)

=(L2L3)
−1U1L1(L2L3) − (σ1 + σ2 + σ3)I

=L−1U1L1L − (σ1 + σ2 + σ3)I,

where L ≡ L2L3. ¤
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Observe that

L−1U1L1L − (σ1 + σ2 + σ3)I = L−1
(
U1L1 − (σ1 + σ2 + σ3)I

)
L

to realize that lemma 5.1.1 just says that matrices L4U4 and U1L1 − (σ1 + σ2 + σ3)I are

similar.

Now consider the matrix U ≡ U3U2. Next lemma tells us about the LU decomposition

LU .

Lemma 5.1.2 Let L = L2L3 and U = U3U2. Then

LU = (U1L1)
2 − (2σ1 + σ2)U1L1 + (σ1σ2 + σ2

1)I

Proof. We have

LU =(L2L3)(U3U2)

=L2(L3U3)U2

=L2(U2L2 − σ2I)U2

=(L2U2)
2 − σ2L2U2

=(U1L1 − σ1I)2 − σ2(U1L1 − σ1I)

=(U1L1)
2 − (2σ1 + σ2)U1L1 + (σ1σ2 + σ2

1)I. ¤

Next we will show how to do a triple shift in order to keep real arithmetic in the presence

of complex eigenvalues. That is, we will see how to combine three consecutive dqds iterations

with complex shifts σ1, σ2 and σ3 such that the resulting matrices L4 and U4 after this triple

shift will be again real.

Matrices L = L2L3 and U = U3U2 will have real entries if we choose

σ2 = −2(ℑσ1)i,

where ℑσ1 denotes the imaginary part of σ1 and i is the imaginary unit. This is the only

nontrivial complex solution to 



2σ1 + σ2 ∈ R

σ1σ2 + σ2
1 ∈ R

.
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It is easy to verify that this choice for σ2 is such that

2σ1 + σ2 = 2(ℜσ1) and σ1σ2 + σ2
1 = |σ1|2,

where ℜσ1 denotes the real part of σ1. Thus, according to lemma 5.1.2 above,

LU = (U1L1)
2 − 2(ℜσ1)U1L1 + |σ1|2I,

which is the same matrix that appears in the double shifted LR algorithm if we consider

A1 ≡ U1L1 (see lemma 3.4.1, page 66).

By lemma 5.1.1, the accumulated shift is then

σ1 + σ2 + σ3 = σ1 + σ3

and if we choose

σ3 = a + (ℑσ1)i, a ∈ R,

the arithmetic will be retained real.

Finally, notice that the choice

σ3 = −σ1

ensures that the transformation from L1 and U1 to L4 and U4 is a restoring shift transfor-

mation since σ1 + σ2 + σ3 = 0.

What we have just showed is summarized in the following lemma.

Lemma 5.1.3 Performing three steps of dqds algorithm with successive shifts σ1 ∈ C,

σ2 = −2(ℑσ1)i and σ3 = σ1 retains real arithmetic and the shifts are restored. We will

have

LU = (U1L1)
2 − 2(ℜσ1)U1L1 + |σ1|2I

L4U4 = L−1U1L1L

where L = L2L3 and U = U3U2.
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Now the three dqds steps (5.1), (5.2) and (5.3) become

U1L1 − σ1I =L2U2 (5.6)

U2L2 −
(
− 2(ℑσ1)iI

)
=L3U3 (5.7)

U3L3 − (−σ1I) =L4U4 (5.8)

and can be rewritten in a more revealing way:

U1L1 − σ1I =L2U2

(U2L2 + σ1I) − σ1I =L3U3

(U3L3 + σ1I) − 0I =L4U4.

Notice that if we only applied the two dqds steps (5.6) and (5.7), the transformation

from L1 and U1 to L3 and U3 would not be a restoring shift transformation, L3 and U3

would be complex as well as the accumulated shift σ1 + σ2 = σ1 + (−2(ℑσ1)i) = σ1. The

third step (5.8) is therefore needed to come back to real factors L4 and U4, restoring the

shift and getting L4U4 similar to U1L1.

Another way of analyzing the need of a triple shift is as follows. If we consider only the

two steps (5.6) and (5.7) we will have

L3U3 = L−1
2 (U1L1)L2 − σ1I

U3L3 = L−1
3 L−1

2 (U1L1)L2L3 − σ1I = L−1(U1L1)L − σ1I

LU = (U1L1)
2 − 2(ℜσ1)U1L1 + |σ1|2I,

where L = L2L3 and U = U3U2. Thus L1, U1, L and U are real and we can write

L−1(U1L1)L = U3L3 + σ1I,

which means that U3L3 + σ1 is also real. So, we must have to do the third step (5.8) to get

the factors L4 and U4 of the LU factorization

U3L3 + σ1 = L4U4.
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The goal now will be to avoid complex factors L2, U2, L3 and U3 and go straight from L1

and U1 to L4 and U4, performing the three steps implicitly - implicit triple dqds algorithm.

5.2 Connection to the implicit double shifted LR algorithm

This section aims to relate the double shifted LR algorithm to the triple shift dqds algorithm

and use the implicit version of the first to derive the implicit version of the second.

If we performed the products UiLi, i = 1, 2, 3, and added back the shifts σ = σ1 and

σ = σ1, the three dqds steps (5.6), (5.7) and (5.8) would correspond to a basic iteration

(zero shift) followed by a double shifted iteration (shifts σ and σ) of the LR algorithm with

an extra LU factorization in the end. In more detail,

LR algorithm dqds





J1 = L1U1

J2 = U1L1





J2 − σI = L2U2

J3 = U2L2 + σI

U1L1 − σI = L2U2





J3 − σI = L3U3

J4 = U3L3 + σI

(U2L2 + σI) − σI = L3U3





J4 = L4U4

. . .

(U3L3 + σI) − 0I = L4U4

Figure 5.1 below also exhibits this relation - LR algorithm goes with matrices Ji and

triple dqds goes with the factors Li and Ui - and shows clearly the need of three dqds steps

in order to go from real L1 and U1 to real L4 and U4.
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J1
- J2

- J3
- J4

LR(0) LR(σ) LR(σ̄)
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L1, U1
- L2, U2

- L3, U3
- L4, U4

dqds(σ) dqds(σ − σ) dqds(−σ)

σ −σ σ −σ

Figure 5.1: Double shift LR and three steps of dqds

Recall from lemma 3.4.1 (page 65) that after a double shifted LR iteration applied to

J2 with shifts σ and σ we will have

LU = J2
2 − 2(ℜσ)J2 + |σ|2I ≡ M

and

J4 = L
−1J2L

where L = L2L3 is unit lower triangular and U = U3U2 is upper triangular. This is exactly

what lemma 5.1.3 tells for the triple dqds algorithm but focusing on the factors of the LU

decompositions J2 = U1L1 and J4 = L4U4,

LU = (U1L1)
2 − 2(ℜσ)U1L1 + |σ|2I

L4U4 = L−1U1L1U

with L = L and U = U.

To obtain matrix J4, the implicit double shifted LR algorithm uses the technique of

bulge chasing described in section 3.4.1 (page 68) going directly from tridiagonal matrix

J2 to J4. This is justified by the implicit L theorem that says that matrix L is uniquely

determined by its first column which we can compute because it is proportional to the first

column of M .

Using the same notation of example 3.4.1, L will be given as a product of elementary or
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Gauss matrices Li, i = 1, . . . , n − 1,

L = L1L2 · · ·Ln−1,

where Li = I+l
′
ie

T
i with l

′
i =

[
0 . . . 0 ∗ ∗ 0 . . . 0

]T
(the non-zero elements ∗ appear

in entries i + 1 and i + 2) and J4 will be the result of successive similarity transformations

given by Li,

J4 = L
−1
n−1 · · ·L−1

1 J2L1 · · ·Ln−1

= (L1 · · ·Ln−1)
−1J2L1 · · ·Ln−1.

So, L1 is computed and the first similarity transformation L
−1
1 J2L1 spoils the tridiagonal

form of J2. Then the bulge is pushed down and to the right to restore the tridiagonal form

using the transformations given by Li, i = 2, . . . , n − 1. In the end we have J4.

Analogously, to obtain L4 and U4, the implicit triple dqds algorithm will construct L as

a product of elementary matrices Li, i = 1, . . . , n − 1, obtained through a similar process

of bulge chasing, such that the factors L4 and U4 will result from

L4U4 =
(
L−1

n−1 . . .L−1
2 L−1

1 U1

)
(L1L1L2 . . .Ln−1) .

But things will be done in such a way that the products U1L1 and L4U4 are not computed

explicitly. We will get L4 and U4 from L1 and U1 without computing any products of the

form LU or UL explicitly.

We can now ask: “Do we have Li = Li, i = 1, . . . , n−1?” Implicit L theorem guarantees

that L = L, because the first column of both matrices is the same and there is no more

choice. And the expression for the product (see section 2.1, page 25)

L1L2 · · ·Ln−1 = L = L = L1L2 . . .Ln−1

ensures that

Li = Li, i = 1, . . . , n − 1.
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In summary, starting with the factors L1 and U1 and the shift σ, if we

• normalize 1st column of (U1L1)
2 − 2(ℜσ1)U1L1 + |σ1|2I (equal to first column of L)

and compute L1

• spoil the bidiagonal form with L−1
1 U1︸ ︷︷ ︸L1L1︸ ︷︷ ︸ and

• apply bulge chasing to get L′ and U ′

L′U ′ = L−1
n−1 . . .L−1

2 L−1
1 U1︸ ︷︷ ︸

L1L1L2 . . .Ln−1︸ ︷︷ ︸,

we will obtain implicitly the same result of performing the three dqds steps (5.6), (5.7) and

(5.8), that is, we will get L′ = L4 and U ′ = U4.

We could have started thinking only in performing the two dqds steps (5.6) and (5.7),

that is a double dqds algorithm. If we decided to use bulge chasing, we would’t get L3 and

U3 but L4 and U4, ending up realizing that we were effectively performing a triple dqds

iteration.

5.3 Derivation of triple dqds

The role of the implicit triple dqds algorithm will be to construct matrices Li, i = 1, . . . , n,

and the unique matrix X such that

L4 =L−1
n L−1

n−1 . . .L−1
2 L−1

1 U1X
−1

U4 =XL1L1L2 . . .Ln−1Ln

(we will have Ln = I). Matrix X will be best written as

X = XnX2 · · ·X1

and each Xi, i = 1, . . . , n, will be the product of two matrices

Xi ≡ YiZi.
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Conceptually, for each step of the implicit triple dqds algorithm we will start with

F := U1 and G := L1 and, at each minor step i, i = 1, . . . , n, matrices Zi, Li and Yi are

chosen to chase the bulges. After n minor steps, F will be transformed into L4 and G into

U4. So, we will be transforming an upper bidiagonal U1 into a lower bidiagonal L4 and a

lower bidiagonal L1 into an upper bidiagonal U4. Details will be given in the next section.

Consider matrices L1 and U1 as follows

L1 =




1

l1 1

l2 1

. . .
. . .

ln−2 1

ln−1 1




and U1 =




u1 1

u2 1

u3 1

. . .
. . .

un−1 1

un




. (5.9)

The product U1L1 is

U1L1 =




u1 + l1 1

u2l1 u2 + l2 1

u3l2 u3 + l3 1

. . .
. . .

. . .

un−1ln−2 un−1 + ln−1 1

unln−1 un




and the first column of (U1L1)
2 − 2(ℜσ)U1L1 + |σ|2I is




(u1 + l1)
2 + u2l1 − 2(ℜσ)(u1 + l1) + |σ|2

u2l1(u1 + l1 + u2 + l2 − 2(ℜσ))

u2l1u3l2

0
...

0




. (5.10)
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We will start by presenting a 6× 6 example to illustrate the general pattern of matrices

Zi, Li and Yi. If we work through the example in detail, we will understand the algorithm.

Example 5.3.1

For a 6 × 6 example consider

L1 =




1

l1 1

l2 1

l3 1

l4 1

l5 1




and U1 =




u1 1

u2 1

u3 1

u4 1

u5 1

u6




.

We seek

L4 :=




1

l̂1 1

l̂2 1

l̂3 1

l̂4 1

l̂5 1




and U4 :=




û1 1

û2 1

û3 1

û4 1

û5 1

û6




.

Initially, we define

F := U1 and G := L1

and

F (1) := F and G(1) := G.

Step 1

1.a) Define Z−1
1 and obtain

FZ−1
1︸ ︷︷ ︸ Z1G︸︷︷︸ = U1Z

−1
1︸ ︷︷ ︸Z1L1︸ ︷︷ ︸ .



126

Matrix Z−1
1 is chosen to zero out entry (1, 2) of F and put 1 into (1, 1) entry.

Observe that


u1 1

0 u2


 =


1 0

0 u2





u1 1

0 1


 .

Then we have

Z−1
1 =




1
u1

− 1
u1

0 1

1

1

1

1




and Z1 =




u1 1

0 1

1

1

1

1




.

Thus

FZ−1
1 =




1 0

u2 1

u3 1

u4 1

u5 1

u6




and Z1G =




l1 + u1 1

l1 1

l2 1

l3 1

l4 1

l5 1




.

Observe that entries (1, 1) of F and (1, 2) of G became 1.

Let

F ←− FZ−1
1 and G ←− Z1G.

1.b) Define elementary matrix L1 to get

L−1
1 F︸ ︷︷ ︸GL1︸︷︷︸ = L−1

1 U1Z
−1
1︸ ︷︷ ︸ Z1L1L1︸ ︷︷ ︸ .

Let l1 =
[
1 ∗ ∗ 0 0 0

]T
be the first column of L1, obtained by normalizing

(5.10) for n = 6. We will have L1 = I + l
′
1e

T
1 , where l

′
1 =

[
0 ∗ ∗ 0 0 0

]T
,

and L−1
1 = I − l

′
1e

T
1 . Thus,
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L−1
1 F =




1 0

∗ u2 1

+ u3 1

u4 1

u5 1

u6




and GL1 =




û1 1

+ 1

+ l2 1

+ l3 1

l4 1

l5 1




.

Let

F ←− L−1
1 F and G ←− GL1.

Note that the preliminary transform Z1 ensured that, at this point, column 2 of

F is unchanged. The first row of F and first row of G are in final form, but first

column of F and first column of G have bulges that are indicated by plus signs.

Next, the 3 × 1 bulge in G will be chased.

1.c) Define elementary matrix Y1 to obtain

FY −1
1︸ ︷︷ ︸ Y1G︸︷︷︸ = L−1

1 U1Z
−1
1 Y −1

1︸ ︷︷ ︸ Y1Z1L1L1︸ ︷︷ ︸ .

Matrix Y1 affects only rows 2, 3 and 4 of Y1G, zeroing out entries (2, 1), (3, 1) and

(4, 1) of G. So, Y −1
1 = I + y′

1e
T
1 with y′

1 =
[
0 ∗ ∗ ∗ 0 0

]T
, Y1 = I − y′

1e
T
1

and

FY −1
1 =




1 0

l̂1 u2 1

+ u3 1

+ u4 1

u5 1

u6




and Y1G =




û1 1

∗
+ 1

+ l3 1

l4 1

l5 1




.
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Let

F ←− FY −1
1 and G ←− Y1G

and define

F (2) := F = L−1
1 U1Z

−1
1 Y −1

1

G(2) := G = Y1Z1L1L1.

This completes the first step. The first column of G is in final form but the first

column of F is not yet in final form - there exists a 2 × 1 bulge.

The pattern shown above is carried down the matrix by later transformations Zi,

Li and Yi, i = 2, . . . , 6, forcing the bulges down by one row and one column at

each step. This way in the end F will be transformed into the lower bidiagonal

matrix L4 and G into the upper bidiagonal matrix U4.

Step 2

2.a) Define Z−1
2 and get

FZ−1
2︸ ︷︷ ︸ Z2G︸︷︷︸ = F (2)Z−1

2︸ ︷︷ ︸Z2G
(2)

︸ ︷︷ ︸ .

Matrix Z−1
2 will zero out entry (2, 3) of F and place 1 into entry (2, 2). Matrix

Z2 will turn entry (2, 3) of G into 1. We have

Z−1
2 =




1

1
u2

− 1
u2

0 1

1

1

1




, Z2 =




1

u2 1

0 1

1

1

1



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and

FZ−1
2 =




1

l̂1 1 0

+ u3 1

+ u4 1

u5 1

u6




, Z2G =




û1 1

∗ 1

+ 1

+ l3 1

l4 1

l5 1




.

Let

F ←− FZ−1
2 and G ←− Z2G.

2.b) Define elementary matrix L2 to obtain

L−1
2 F︸ ︷︷ ︸ GL2︸︷︷︸ = L−1

2 F (2)Z−1
2︸ ︷︷ ︸ Z2G

(2)L2︸ ︷︷ ︸ .

Matrix L2 will affect only rows 3 and 4 of L−1
2 F , zeroing out entries (3, 1)

and (4, 1) of F . So, L2 = I + l
′
2e

T
2 , where l

′
2 =

[
0 0 ∗ ∗ 0 0

]T
, and

L−1
2 = I − l

′
2e

T
2 . Thus,

L−1
2 F =




1

l̂1 1 0

∗ u3 1

+ u4 1

u5 1

u6




and GL2 =




û1 1

û2 1

+ 1

+ l3 1

+ l4 1

l5 1




.

Let

F ←− L−1
2 F and G ←− GL2.

Bulge 2 × 1 in F was chased and second row of F and second row of G are now

in final form.
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2.c) Define matrix Y2 to get

FY −1
2︸ ︷︷ ︸ Y2G︸︷︷︸ = L−1

2 F (2)Z−1
2 Y −1

2︸ ︷︷ ︸ Y2Z2G
(2)L2︸ ︷︷ ︸ .

Matrix Y2 affects only rows 3, 4 and 5 of Y2G, zeroing out entries (3, 2), (4, 2) and

(5, 2) of G. So, Y −1
2 = I + y′

2e
T
2 with y′

2 =
[
0 0 ∗ ∗ ∗ 0

]T
, Y2 = I − y′

2e
T
2

and

FY −1
2 =




1

l̂1 1 0

l̂2 u3 1

+ u4 1

+ u5 1

u6




and Y2G =




û1 1

û2 1

∗
+ 1

+ l4 1

l5 1




.

Let

F ←− FY −1
2 and G ←− Y2G

and define

F (3) := F = L−1
2 F (2)Z−1

2 Y −1
2

G(3) := G = Y2Z2G
(2)L2.

The second step is complete. The second column of G is in final form but the

second column of F is not yet in final form.
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Step 3

3.a) Define Z−1
3 and get

FZ−1
3︸ ︷︷ ︸Z3G︸︷︷︸ = F (3)Z−1

3︸ ︷︷ ︸ Z3G
(3)

︸ ︷︷ ︸ .

Matrix Z−1
3 will zero out entry (3, 4) of F and place 1 into entry (3, 3). Z3 will

turn into 1 entry (3, 4) of G. We have

Z−1
3 =




1

1

1
u3

− 1
u3

0 1

1

1




, Z3 =




1

1

u3 1

0 1

1

1




and

FZ−1
3 =




1

l̂1 1

l̂2 1 0

+ u4 1

+ u5 1

u6




, Z3G =




û1 1

û2 1

∗ 1

+ 1

+ l4 1

l5 1




.

Let

F ←− FZ−1
3 and G ←− Z3G.

3.b) Define elementary matrix L3 to obtain

L−1
3 F︸ ︷︷ ︸ GL3︸︷︷︸ = L−1

3 F (3)Z−1
3︸ ︷︷ ︸ Z3G

(3)L3︸ ︷︷ ︸ .

Matrix L3 will affect only rows 4 and 5 of L−1
3 F , zeroing out entries (4, 2)

and (5, 2) of F . So, L3 = I + l
′
3e

T
3 , where l

′
3 =

[
0 0 0 ∗ ∗ 0

]T
, and

L−1
3 = I − l

′
3e

T
3 . Thus,



132

L−1
3 F =




1

l̂1 1

l̂2 1 0

∗ u4 1

+ u5 1

u6




and GL3 =




û1 1

û2 1

û3 1

+ 1

+ l4 1

+ l5 1




.

Let

F ←− L−1
3 F and G ←− GL3.

Third row of F and third row of G are in final form.

3.c) Define elementary matrix Y3 to produce

FY −1
3︸ ︷︷ ︸ Y3G︸︷︷︸ = L−1

3 F (3)Z−1
3 Y −1

3︸ ︷︷ ︸ Y3Z3G
(3)L3︸ ︷︷ ︸ .

Matrix Y3 affects only rows 4, 5 and 6 of Y3G, zeroing out entries (4, 3), (5, 3) and

(6, 3) of G. So, Y −1
3 = I + y′

3e
T
3 with y′

3 =
[
0 0 0 ∗ ∗ ∗

]T
, Y3 = I − y′

3e
T
3

and

FY −1
3 =




1

l̂1 1

l̂2 1 0

l̂3 u4 1

+ u5 1

+ u6




and Y3G =




û1 1

û2 1

û3 1

∗
+ 1

+ l5 1




.

Let

F ←− FY −1
3 and G ←− Y3G
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and define

F (4) := F = L−1
3 F (3)Z−1

3 Y −1
3

G(4) := G = Y3Z3G
(3)L3.

The third step is complete. The third column of G is in final form but the third

column of F is not yet in final form.

Step 4

4.a) Define Z−1
4 and get

FZ−1
4︸ ︷︷ ︸Z4G︸︷︷︸ = F (4)Z−1

4︸ ︷︷ ︸ Z4G
(4)

︸ ︷︷ ︸ .

Matrix Z−1
4 will zero out entry (4, 5) of F and place 1 into entry (4, 4). Z4 will

turn into 1 entry (4, 5) of G. We have

Z−1
4 =




1

1

1

1
u4

− 1
u4

0 1

1




, Z4 =




1

1

1

u4 1

0 1

1




and

FZ−1
4 =




1

l̂1 1

l̂2 1

l̂3 1 0

+ u5 1

+ u6




, Z4G =




û1 1

û2 1

û3 1

∗ 1

+ 1

+ l5 1




.

Let

F ←− FZ−1
4 and G ←− Z4G.
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4.b) Apply elementary matrices L4 and L−1
4 ,

L−1
4 F︸ ︷︷ ︸GL4︸︷︷︸ = L−1

4 F (4)Z−1
4︸ ︷︷ ︸Z4G

(4)L4︸ ︷︷ ︸ .

Matrix L4 will affect only rows 5 and 6 of L−1
4 F , zeroing out entries (5, 3)

and (6, 3) of F . So, L4 = I + l
′
4e

T
4 , where l

′
4 =

[
0 0 0 0 ∗ ∗

]T
, and

L−1
4 = I − l

′
4e

T
4 . Thus,

L−1
4 F =




1

l̂1 1

l̂2 1

l̂3 1 0

∗ u5 1

+ u6




and GL4 =




û1 1

û2 1

û3 1

û4 1

+ 1

+ l5 1




.

Let

F ←− L−1
4 F and G ←− GL4.

Fourth row of F and fourth row of G are in final form.

4.c) Apply Y4 and Y −1
4 ,

FY −1
4︸ ︷︷ ︸ Y4G︸︷︷︸ = L−1

4 F (4)Z−1
4 Y −1

4︸ ︷︷ ︸ Y4Z4G
(4)L4︸ ︷︷ ︸ .

Matrix Y4 affects only rows 5 and 6 of Y4G, zeroing out entries (5, 4) and (6, 4)

of G. So, Y −1
4 = I + y′

4e
T
4 with y′

4 =
[
0 0 0 0 ∗ ∗

]T
, Y4 = I − y′

4e
T
4 and
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FY −1
4 =




1

l̂1 1

l̂2 1

l̂3 1 0

l̂4 u5 1

+ u6




and Y4G =




û1 1

û2 1

û3 1

û4 1

∗
+ 1




.

Let

F ←− FY −1
4 and G ←− Y4G

and define

F (5) := F = L−1
4 F (4)Z−1

4 Y −1
4

G(5) := G = Y4Z4G
(4)L4.

The fourth step is complete.

Step 5

5.a) Define Z−1
5 and get

FZ−1
5︸ ︷︷ ︸Z5G︸︷︷︸ = F (5)Z−1

5︸ ︷︷ ︸ Z5G
(5)

︸ ︷︷ ︸ .

Matrix Z−1
5 will zero out entry (5, 6) of F and place 1 into entry (5, 5). Z5 will

turn into 1 entry (5, 6) of G. We have

Z−1
5 =




1

1

1

1

1
u5

− 1
u5

0 1




, Z5 =




1

1

1

1

u5 1

0 1



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and

FZ−1
5 =




1

l̂1 1

l̂2 1

l̂3 1

l̂4 1 0

+ u6




, Z5G =




û1 1

û2 1

û3 1

û4 1

∗ 1

+ 1




.

Let

F ←− FZ−1
5 and G ←− Z5G.

5.b) Apply matrices L5 and L−1
5 to obtain

L−1
5 F︸ ︷︷ ︸GL5︸︷︷︸ = L−1

5 F (5)Z−1
5︸ ︷︷ ︸Z5G

(5)L5︸ ︷︷ ︸ .

Matrix L5 will affect only rows 6 of L−1
5 F , zeroing out entries (6, 4) of F . So,

L5 = I + l
′
5e

T
5 , where l

′
5 =

[
0 0 0 0 0 ∗

]T
, and L−1

5 = I − l
′
5e

T
5 . Thus,

L−1
5 F =




1

l̂1 1

l̂2 1

l̂3 1

l̂4 1 0

∗ u6




and GL5 =




û1 1

û2 1

û3 1

û4 1

û5 1

+ 1




.

Let

F ←− L−1
5 F and G ←− GL5.

Fifth row of F and fifth row of G are in final form.
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5.c) Apply matrices Y5 and Y −1
5 to obtain

FY −1
5︸ ︷︷ ︸Y5G︸︷︷︸ = L−1

5 F (5)Z−1
5 Y −1

5︸ ︷︷ ︸Y5Z5G
(5)L5︸ ︷︷ ︸ .

Matrix Y5 affects only rows 6 of Y5G, zeroing out entries (6, 5) of G. So,

Y −1
5 = I + y′

5e
T
5 with y′

5 =
[
0 0 0 0 0 ∗

]T
, Y5 = I − y′

5e
T
5 and

FY −1
5 =




1

l̂1 1

l̂2 1

l̂3 1

l̂4 1 0

l̂5 u6




and Y5G =




û1 1

û2 1

û3 1

û4 1

û5 1

∗




.

Let

F ←− FY −1
5 and G ←− Y5G

and define

F (6) := F = L−1
5 F (5)Z−1

5 Y −1
5

G(6) := G = Y5Z5G
(5)L5.

The fifth step is complete and the two bidiagonals are found. There is only need

to place 1 in entry (6, 6) of F .

Step 6

6.a) Apply Z6 and Z−1
6 ,

FZ−1
6︸ ︷︷ ︸Z6G︸︷︷︸ = F (6)Z−1

6︸ ︷︷ ︸ Z6G
(6)

︸ ︷︷ ︸ .
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Matrix Z−1
6 place 1 in entry (6, 6) of F . We have

Z−1
6 =




1

1

1

1

1

1
u6




, Z6 =




1

1

1

1

1

u6




and

FZ−1
6 =




1

l̂1 1

l̂2 1

l̂3 1

l̂4 1

l̂5 1




, Z6G =




û1 1

û2 1

û3 1

û4 1

û5 1

∗




.

Let

F ←− FZ−1
6 and G ←− Z6G.

Matrices F and G are already in final form.

6.b) Let L6 = I and

L−1
6 F︸ ︷︷ ︸GL6︸︷︷︸ = L−1

6 F (6)Z−1
6︸ ︷︷ ︸Z6G

(6)L6︸ ︷︷ ︸ .

Thus,

L−1
6 F =




1

l̂1 1

l̂2 1

l̂3 1

l̂4 1

l̂5 1




and GL6 =




û1 1

û2 1

û3 1

û4 1

û5 1

û6




.
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Let

F ←− L−1
6 F and G ←− GL6.

6.c) Let Y6 = I and finally

FY −1
6︸ ︷︷ ︸ Y6G︸︷︷︸ = L−1

6 F (6)Z−1
6 Y −1

6︸ ︷︷ ︸ Y6Z6G
(6)L6︸ ︷︷ ︸

and

F ←− FY −1
6 and G ←− Y6G.

In the end we have

L4 = F and U4 = G. ⋄

For general matrices L1 and U1 as in (5.9), we will have

L4U4 =L−1
n · · · L−1

1 U1Z
−1
1 Y −1

1 · · ·Z−1
n Y −1

n︸ ︷︷ ︸ YnZn · · ·Y1Z1L1L1 · · · Ln︸ ︷︷ ︸

=L−1
n · · · L−1

1 U1X
−1
1 · · ·X−1

n︸ ︷︷ ︸ Xn · · ·X1L1L1 · · · Ln︸ ︷︷ ︸

=L−1U1X
−1

︸ ︷︷ ︸ XL1L︸ ︷︷ ︸

where

L ≡ L1 · · · Ln and X ≡ Xn · · ·X1

with Xi = YiZi, i = 1, . . . , n.
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And for a complex shift σ, the triple dqds algorithm will be called tridqds and is given

by:

tridqds(σ) :

F = U1; G = L1

F = FZ−1
1 ; G = Z1G

F = L−1
1 F ; G = GL1 [form L1 using (5.10)]

F = FY −1
1 ; G = Y1G

for i = 2, . . . , n − 3

F = FZ−1
i ; G = ZiG

F = L−1
i F ; G = GLi

F = FY −1
i ; G = YiG [Zi with one, Li with two and Yi with three

end for off-diagonal entries]

% step n-2

F = FZ−1
n−2; G = Zn−2G

F = L−1
n−2F ; G = GLn−2

F = FY −1
n−2; G = Yn−2G [Yn−2 with two off-diagonal entries]

% step n-1

F = FZ−1
n−1; G = Zn−1G

F = L−1
n−1F ; G = GLn−1

F = FY −1
n−1; G = Yn−1G [Yn−1 and Ln−1 with one off-diagonal entry]

% step n

Ln = I; Yn = I

F = FZ−1
n ; G = ZnG [Zn diagonal]

L4 = F ; F4 = G
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5.3.1 Details of tridqds

In this section we will go into the details of the tridqds algorithm described in the previous

section. Consider matrices L1 and U1 as defined in (5.9) and let us say that matrices L4 and

U4 have the same shape with subdiagonal entries l̂1, . . . , l̂n−1 and diagonal entries û1, . . . , ûn,

respectively.

For each iteration of tridqds, in the beginning of a minor step i, i = 2, . . . , n − 2, the

active parts of F and G are

F =




. . .

. . . 1

l̂i−1 ui 1

+ ui+1 1

+ ui+2
. . .

. . .




and G =




. . .
. . .

ûi−1 1

∗
+ 1

+ li+1 1

. . .
. . .




. (5.11)

So, F starts to be U1 and is transformed into L4 and G is given initially as L1 and is

transformed into U4.

For i = 2, . . . , n − 3, a general minor step i consists in what follows.

Typical minor step i

i.a) Define Zi and let

F ←− FZ−1
i and G ←− ZiG.

Matrix Z−1
i will zero out entry (i, i + 1) of F and place 1 into entry (i, i). Zi turns

into 1 entry (i, i + 1) of G.

Z−1
i =




. . .

1

1
ui

− 1
ui

0 1

1

. . .




, Zi =




. . .

1

ui 1

0 1

1

. . .



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and

FZ−1
i =




. . .

. . . 1

l̂i−1 1 0

+ ui+1 1

+ ui+2
. . .

. . .




, ZiG =




. . .
. . .

ûi−1 1

∗ 1

+ 1

+ li+1 1

. . .
. . .




.

i.b) Define elementary matrix Li and let

F ←− L−1
i F and G ←− GLi.

Li will affect only rows i + 1 and i + 2 of L−1
i F , zeroing out entries

(i + 1, i − 1) and (i + 2, i − 1) of F ;

Li = I + l
′
ie

T
i , where l

′
i =

[
0 . . . 0 ∗ ∗ 0 . . . 0

]T
, L−1

i = I − l
′
ie

T
i and

L−1
i F =




. . .

. . . 1

l̂i−1 1

∗ ui+1 1

+ ui+2 1

. . .




, GLi =




. . .
. . .

ûi 1

+ 1

+ li+1 1

+ li+2 1

. . .
. . .




.

i.c) Define elementary matrix Yi and let

F ←− FY −1
i and G ←− YiG.

Yi affects only rows i + 1, i + 2 and i + 3 of YiG, zeroing out entries (i + 1, i), (i + 2, i)

and (i + 3, i) of G;

Y −1
i = I + y′

ie
T
i with y′

i =
[
0 . . . 0 ∗ ∗ ∗ 0 . . . 0

]T
, Yi = I − y′

ie
T
i and
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FY −1
i =




. . .

. . . 1

l̂i ui+1 1

+ ui+2 1

+ ui+3
. . .

. . .




, YiG =




. . .
. . .

ûi 1

∗
+ 1

+ li+2 1

. . .
. . .




.

Compare with (5.11) to see that we are back to the same pattern from which we began: the

bulges have been chased one column to the right and one row to the bottom. Turning to

a practical implementation, next we will see how the calculations involved in this process

can be organized.

For each minor step i, i = 2, . . . , n− 3, consider F and G as in (5.11). Denote the 2× 1

bulge in F , indicated with plus signs, by
[
xl yl

]T
. And denote the entries (i, i), (i + 1, i)

and (i+2, i) in G, indicated with ∗, +, +, by
[
xr yr zr

]T
. Subscripts l and r derive from

“left” and “right”, respectively. This way we have

F =




. . .

. . . 1

l̂i−1 ui 1

xl ui+1 1

yl ui+2
. . .

. . .




and G =




. . .
. . .

ûi−1 1

xr

yr 1

zr li+1 1

. . .
. . .




(5.12)

and the typical minor step i can be accomplished using only these auxiliary variables. The

details will be shown in the following pages.
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Typical minor step i

i.a) • The inverse Z−1
i and Zi

Z−1
i =




. . .

1

1
ui

− 1
ui

0 1

1

. . .




, Z−1
i =




. . .

1

ui 1

0 1

1

. . .




• The effect of Z−1
i

FZ−1
i =




. . .

. . . 1

l̂i−1 1 0

xl ui+1 1

yl ui+2
. . .

. . .




• The effect of Zi

ZiG =




. . .
. . .

ûi−1 1

xr 1

yr 1

zr li+1 1

. . .
. . .




where

xr ←− xr ∗ ui + yr
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i.b) • The inverse L−1
i

L−1
i =




. . .

. . .

1

xl 1

yl 1

. . .




where

xl ←− −xl/l̂i−1

yl ←− −yl/l̂i−1

• The effect of L−1
i

L−1
i F =




. . .

. . . 1

l̂i−1 1

xl ui+1 1

yl ui+2
. . .

. . .




• The effect of Li

GLi =




. . .
. . .

ûi 1

xr 1

yr li+1 1

zr li+2 1

. . .
. . .



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where

ûi ←− xr − xl

xr ←− yr − xl

yr ←− zr − yl − xl ∗ li+1

zr ←− −yl ∗ li+2

i.c) • The inverse Y −1
i

Y −1
i =




. . .

1

xr 1

yr 1

zr 1

. . .




where

xr ←− xr/ûi

yr ←− yr/ûi

zr ←− zr/ûi

• The effect of Y −1
i

FY −1
i =




. . .

. . . 1

l̂i ui+1 1

xl ui+2 1

yl ui+3
. . .

. . .




where

l̂i ←− xl + yr + xr ∗ ui+1

xl ←− yl + zr + yr ∗ ui+2

yl ←− zr ∗ ui+3
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• The effect of Yi

YiG =




. . .
. . .

ûi 1

xr

yr 1

zr li+2 1

. . .
. . .




where

xr ←− 1 − xr

yr ←− li+1 − yr

zr ←− −zr

Now the details of the last three minor steps.

Minor step n-2

[n-2].a) • The inverse Z−1
n−2 and Zn−2

Z−1
n−2 =




. . .

1

1
un−2

− 1
un−2

0 1

1




, Zn−2 =




. . .

1

un−2 1

0 1

1




• The effect of Z−1
n−2

FZ−1
n−2 =




. . .

. . . 1

l̂n−3 1 0

xl un−1 1

yl un



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• The effect of Zn−2

Zn−2G =




. . .
. . .

ûn−3 1

xr 1

yr 1

zr ln−1 1




where

xr ←− xr ∗ un−2 + yr

[n-2].b) • The inverse L−1
n−2

L−1
n−2 =




. . .

1

1

xl 1

yl 1




where

xl ←− −xl/l̂n−3

yl ←− −yl/l̂n−3

• The effect of L−1
n−2

L−1
n−2F =




. . .

. . . 1

l̂n−3 1

xl un−1 1

yl un



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• The effect of Ln−2

GLn−2 =




. . .
. . .

ûn−3 1

ûn−2 1

xr 1

yr ln−1 1




where

ûn−2 ←− xr − xl

xr ←− yr − xl

yr ←− zr − yl − xl ∗ ln−1

[n-2].c) • The inverse Y −1
n−2

Y −1
n−2 =




. . .

1

1

xr 1

yr 1




where

xr ←− xr/ûn−2

yr ←− yr/ûn−2

• The effect of Y −1
n−2

FY −1
n−2 =




. . .
. . .

l̂n−3 1

l̂n−2 un−1 1

xl un



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where

l̂n−2 ←− xl + yr + xr ∗ un−1

xl ←− yl + yr ∗ un

• The effect of Yn−2

Yn−2G =




. . .
. . .

ûn−3 1

ûn−2 1

xr

yr 1




where

xr ←− 1 − xr

yr ←− ln−1 − yr

Minor step n-1

[n-1].a) • The inverse Z−1
n−1 and Zn−1

Z−1
n−1 =




. . .

1

1
un−1

− 1
un−1

0 1




, Zn−1 =




. . .

1

un−1 1

0 1




• The effect of Z−1
n−1

FZ−1
n−1 =




. . .

. . . 1

l̂n−2 1 0

xl un



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• The effect of Zn−1

Zn−1G =




. . .
. . .

ûn−2 1

xr 1

yr 1




where

xr ←− xr ∗ un−1 + yr

[n-1].b) • The inverse L−1
n−1

L−1
n−1 =




. . .

1

1

xl 1




where

xl ←− −xl/l̂n−2

• The effect of L−1
n−1

L−1
n−1F =




. . .

. . . 1

l̂n−2 1

xl un




• The effect of Ln−1

GLn−1 =




. . .
. . .

ûn−2 1

ûn−1 1

xr 1



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where

ûn−1 ←− xr − xl

xr ←− yr − xl

[n-1].c) • The inverse Y −1
n−1

Y −1
n−1 =




. . .

1

1

xr 1




where

xr ←− xr/ûn−1

• The effect of Y −1
n−1

FY −1
n−1 =




. . .

. . . 1

l̂n−2 1

l̂n−1 un




where

l̂n−1 ←− xl + xr ∗ un

• The effect of Yn−1

Yn−1G =




. . .
. . .

ûn−2 1

ûn−1 1

xr




where

xr ←− 1 − xr
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Minor step n

n.a) • The inverse Z−1
n and Zn

Z−1
n =




. . .

. . .

1

1
un




, Zn =




. . .

. . .

1

un




• The effect of Z−1
n

FZ−1
n =




. . .

. . . 1

l̂n−2 1

l̂n−1 1




• The effect of Zn

ZnG =




. . .
. . .

ûn−2 1

ûn−1 1

xr




where

xr ←− xr ∗ un

n.b) • The inverse L−1
n = I

• The effect of Ln

GLn =




. . .
. . .

ûn−2 1

ûn−1 1

ûn



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where

ûn ←− xr

n.c) • The inverse Y −1
n = I

Now the last detail that is missing is how to initialize auxiliary variables xl, yl and xr,

yr and zr, that is, how to organize the first step of the tridqds algorithm.

Minor step 1

Initially we let

F =




u1 1

u2 1

u3
. . .

. . . 1

un




, G =




xr

yr 1

zr l2 1

. . .
. . .

ln−1 1




where

xr ←− 1

yr ←− l1

zr ←− 0

1.a) • The inverse Z−1
1 and Z1

Z−1
1 =




1
u1

− 1
u1

0 1

1

. . .

1




, Z1 =




u1 1

0 1

1

. . .

1



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• The effect of Z−1
1

FZ−1
1 =




1 0

u2 1

u3
. . .

. . . 1

un




• The effect of Z1

Z1G =




xr 1

yr 1

zr l2 1

. . .
. . .

ln−1 1




where

xr ←− xr ∗ u1 + yr

1.b) • The inverse L−1
1

L−1
1 =




1

xl 1

yl 1

. . .

1




where

xl ←− (u1 + l1)
2 + u2l1 − 2(ℜσ)(u1 + l1) + |σ|2

yl ←− −u2l1u3l2/xl

xl ←− −u2l1
(
u1 + l1 + u2 + l2 − 2(ℜσ)

)
/xl
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• The effect of L−1
1

L−1
1 F =




1 0

xl u2 1

yl u3
. . .

. . . 1

un




• The effect of L1

GL1 =




û1 1

xr 1

yr l2 1

zr
. . .

. . .

ln−1 1




where

û1 ←− xr − xl

xr ←− yr − xl

yr ←− zr − yl − xl ∗ l2

zr ←− −yl ∗ l3

1.c) • The inverse Y −1
1

Y −1
1 =




1

xr 1

yr 1

zr
. . .

1



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where

xr ←− xr/û1

yr ←− yr/û1

zr ←− zr/û1

• The effect of Y −1
1

FY −1
1 =




1 0

l̂1 u2 1

xl u3
. . .

yl
. . . 1

un




where

l̂1 ←− xl + yr + xr ∗ u2

xl ←− yl + zr + yr ∗ u3

yl ←− zr ∗ u4

• The effect of Y1

Y1G =




û1 1

xr

yr 1

zr l3 1

. . .
. . .

ln−1 1




where

xr ←− 1 − xr

yr ←− l2 − yr

zr ←− −zr
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It can be verified that minor step 1 could be incorporated in the inner loop,

i = 2, . . . , n − 3, but that would demand an extra auxiliary variable and it is not worth-

while. The final version of tridqds algorithm is presented in the following pages (comments

are included to make it easier to relate to the matrix formulation in page 140).

tridqds(σ) :

xr = 1; yr = l1; zr = 0

% the effect of Z1

xr = xr ∗ u1 + yr

% the inverse L−1
1

xl = (u1 + l1)
2 + u2l1 − 2(ℜσ)(u1 + l1) + |σ|2

yl = −u2l1u3l2/xl

xl = −u2l1(u1 + l1 + u2 + l2 − 2(ℜσ))/xl

% the effect of L1

û1 = xr − xl;

xr = yr − xl; yr = zr − yl − xl ∗ l2; zr = −yl ∗ l3

% the inverse Y −1
1

xr = xr/û1; yr = yr/û1; zr = zr/û1

% the effect of Y −1
1

l̂1 = xl + yr + xr ∗ u2

xl = yl + zr + yr ∗ u3; yl = zr ∗ u4

% the effect of Y1

xr = 1 − xr; yr = l2 − yr; zr = −zr

for i = 2, . . . , n − 3

% the effect of Zi

xr = xr ∗ ui + yr

% the inverse L−1
i

xl = −xl/l̂i−1; yl = −yl/l̂i−1;
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% the effect of Li

ûi = xr − xl;

xr = yr − xl; yr = zr − yl − xl ∗ li+1; zr = −yl ∗ li+2

% the inverse Y −1
i

xr = xr/ûi; yr = yr/ûi; zr = zr/ûi

% the effect of Y −1
i

l̂i = xl + yr + xr ∗ ui+1

xl = yl + zr + yr ∗ ui+2; yl = zr ∗ ui+3

% the effect of Yi

xr = 1 − xr; yr = li+1 − yr; zr = −zr

end for

% step n-2

% the effect of Zn−2

xr = xr ∗ un−2 + yr

% the inverse L−1
n−2

xl = −xl/l̂n−3; yl = −yl/l̂n−3;

% the effect of Ln−2

ûn−2 = xr − xl;

xr = yr − xl; yr = zr − yl − xl ∗ ln−1

% the inverse Y −1
n−2

xr = xr/ûn−2; yr = yr/ûn−2

% the effect of Y −1
n−2

l̂n−2 = xl + yr + xr ∗ un−1

xl = yl + yr ∗ un

% the effect of Yn−2

xr = 1 − xr; yr = ln−1 − yr
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% step n-1

% the effect of Zn−1

xr = xr ∗ un−1 + yr

% the inverse L−1
n−1

xl = −xl/l̂n−2

% the effect of Ln−1

ûn−1 = xr − xl;

xr = yr − xl

% the inverse Y −1
n−1

xr = xr/ûn−1

% the effect of Y −1
n−1

l̂n−1 = xl + xr ∗ un

% the effect of Yn−1

xr = 1 − xr

% step n

% the effect of Zn

xr = xr ∗ un

% the inverse L−1
n = I

% the effect of Ln

ûn = xr;

% the inverse Y −1
n = I

5.3.2 Operation count for tridqds

In this section we will see how three steps of simple dqds algorithm compares with one step

of tridqds in what respects to the number of floating point operations required. In order to

make easier this comparison we first remember dqds algorithm from section 3.5.2 (page 75).
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dqds(σ) : d1 = u1 − σ

for i = 1, . . . , n − 1

ûi = di + li

l̂i = li(ui+1/ûi)

di+1 = di(ui+1/ûi) − σ

end for

ûn = dn.

(5.13)

In practice, each di+1 may be written over its predecessor in a single variable d and, if the

common subexpression ui+1/ûi is recognized, then only one division is needed if we use an

auxiliary variable.

Table 5.1 below shows that the operation count of one step of tridqds is comparable

to three steps of dqds (table expresses only the number of floating point operations in the

inner loops).

tridqds 3 dqds steps

Divisions 5 3

Multiplications 6 6

Additions 5 3

Subtractions 6 3

Assignments 16 12

Auxiliary variables 5 2

Table 5.1: Operation count of tridqds and 3 dqds steps

But to make three steps of dqds equivalent to tridqds we have to consider dqds in complex

arithmetic and the total cost is raised by a factor of about 4. Thus, in complex arithmetic,

three steps of dqds are much more expensive than one step of tridqds.





Chapter 6

New version of triple dqds

In this chapter we will first describe the connection of a generalized Gram-Schmidt process

with the LU factorization and explain how dqds may be derived from this relation indepen-

dently of qd. Then, we show that quantities di in dqds provide useful information about

the diagonal of (UL)−1 and can be incorporated in a shift strategy. For the case of complex

eigenvalues we try to generalize these results and exhibit similar ones for tridqds.

A new version of the triple dqds algorithm follows from several results that we establish

for the quantities involved in tridqds. This version will be called 3dqds and is more elegant

and more efficient than tridqds. Numerical results of an implementation of 3dqds will be

shown in the next chapter.

6.1 Gram-Schmidt factors

Finding the LDU factorization of any product BC is equivalent to applying a generalized

Gram-Schmidt process to the rows of B and to the columns of C so that B = LP ∗, C = QU ,

and P ∗Q is diagonal. See Parlett [40]. When this Gram-Schmidt process is applied to DUL

in an efficient manner one obtains the variant dqd of qd algorithm that, as we have discussed

earlier, requires a little more arithmetic effort than qd itself. So, in this section we show

that dqd could have been discovered independently of qd.

163
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The Gram-Schmidt process is the standard way of producing an orthonormal set of

vectors
{

q1, q2, . . . , qk

}
from a linearly independent set

{
f1, f2, . . . ,fk

}
. The defining

property is that span(q1, q2, . . . , qj) = span(f1, f2, . . . ,f j), for each j = 1, . . . , k. The

matrix formulation of this process is the QR factorization

F = QR

where F =
[
f1 f2 . . . fk

]
, Q =

[
q1 q2 . . . qk

]
and R is a k × k upper triangular

matrix.

The generalization of this process to a pair of vector sets
{

f1, f2, . . . ,fk

}
and

{
g1, g2, . . . , gk

}
is so natural that there can be little objection to keeping the name

Gram-Schmidt. The context determines immediately whether one or two sets of vectors

are involved. Recall that F ∗ denotes the conjugate transpose of F .

Theorem 6.1.1 Let F and G be complex n × k matrices, n ≥ k, such that G∗F permits

triangular factorization

G∗F = L̃D̃R̃,

where L̃ and R̃ are unit triangular, lower and upper, respectively, and D̃ is diagonal. Then

there exist unique n × k matrices Q̃ and P̃ such that

F = Q̃R̃, G = P̃ L̃∗, P̃ ∗Q̃ = D̃.

This result can be proved by construction.

We will use Xij to denote the (i, j) element of matrix X.

Note 6.1.1 When G and F are real and G = F , the traditional QR factorization is

recovered with an unconventional normalization. Suppose that F T F permits an

LU factorization. We must have

F T F = L̃D̃L̃T

and then, from

F = Q̃L̃T = P̃ L̃T ,
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we get Q̃ = P̃ , since L̃T is invertible. Thus

P̃ T Q̃ = Q̃T Q̃ = D̃.

Now,

Q̃T Q̃ = D̃ ⇔
(
D̃− 1

2

)T
Q̃T Q̃D̃− 1

2 =
(
D̃− 1

2

)T
D̃D̃− 1

2

⇔
[
Q̃D̃− 1

2

]T
Q̃D̃− 1

2 =
(
D̃− 1

2

)T
D̃

1

2

⇔ QT Q = I

where Q ≡ Q̃D̃− 1

2 . We have

F = Q̃R̃ = Q̃D̃− 1

2 D̃
1

2 R̃ = QR

R ≡ D̃
1

2 R̃ = D̃
1

2 L̃T .

Observe that we have assumed that D̃ is invertible.

Note 6.1.2 In practice, when n = k and D̃ is invertible one can omit Q̃ and write

F = (P̃ ∗)−1(D̃R̃), G = P̃ L̃∗

and still call it the Gram-Schmidt factorization. The important feature is the uniqueness of

Q̃ and P̃ .

The Gram-Schmidt factorization leads directly to the differential qd algorithms. Let us

show how.
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6.2 Derivation of dqds from Gram-Schmidt

Consider

L =




1

l1 1

l2 1

. . .
. . .

ln−2 1

ln−1 1




, U =




u1 1

u2 1

u3 1

. . .
. . .

un−1 1

un




, (6.1)

L̂ =




1

l̂1 1

l̂2 1

. . .
. . .

l̂n−2 1

l̂n−1 1




, Û =




û1 1

û2 1

û3 1

. . .
. . .

ûn−1 1

ûn




(6.2)

and dqds algorithm shown in (5.13), page 161, with σ = 0, that is, dqd algorithm.

Corollary 6.2.1 Let L and U be n × n bidiagonal matrices as given above. Suppose UL

permits factorization

UL = L̂D̂R̂ = L̂Û , (6.3)

where L̂ and R̂ are unit bidiagonal, lower and upper, respectively, and D̂ is diagonal. Then

there exist unique matrices P̃ and Q̃ such that

U = L̂P̃ T , L = Q̃R̂, P̃ T Q̃ = D̂.

Proof. In previous theorem just take F = L and G∗ = U and use the fact that U and L

are real. ¤
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In words, apply Gram-Schmidt to the columns of L and to the rows of U (or columns

of UT ), in natural order, to obtain L̂ and R̂. Then note that Û = D̂R̂. In fact, after

Gram-Schmidt, we have

UL = L̂P̃ T Q̃R̂ = L̂D̂R̂ = L̂Û .

We certainly have P̃ T Q̃ = D̂ because L and U are invertible and the two QR factorizations

are unique.

Also notice that if Ûii = 0, i < n, then UL does not permit triangular

factorization. However, the theorem allows Ûnn = 0. When Ûnn 6= 0 then Û is invertible

and so is D̂. In this case matrices Q̃ and P̃ are also invertible and, since Q̃ = P̃−T D̂ and

Q̃−1L = D̂−1P̃ T L = R̂, we can rewrite the factorization as

UL = UP̃−T P̃ T L =
(
UP̃−T

) [
D̂

(
D̂−1P̃ T L

)]
= L̂D̂R̂ = L̂Û .

If we define K := P̃ T we can write

UK−1
︸ ︷︷ ︸ KL︸︷︷︸ = L̂Û . (6.4)

The matrix K is hidden when we just write UL = L̂Û . However the identification of K

with the Gram-Schmidt process goes only half way in the derivation of the dqd algorithm.

The nature of Gram-Schmidt process shows that P̃ and Q̃ are upper Hessenberg matrices.

We are going to show that they may be written as the product of n simple matrices that are

non-orthogonal analogues of plane rotations. That means that L may be changed into Û

and U into L̂ by a sequence of simple transformations and neither K, Q̃ nor P̃ need appear

explicitly.

A plane transformer in plane (i, j), i 6= j, is an identity matrix except for the entries

(i, i), (i, j), (j, i) and (j, j). The 2 × 2 submatrix they define must be invertible.
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Let us describe the first minor step in mapping U −→ L̂, L −→ Û . We seek an invertible

matrix

X =




x z

−y w

1

1

. . .

1




such that

UX−1 =




1 0

l̂1 ∗ 1

u3 1

. . .
. . .

un−1 1

un




and XL =




û1 1

0 1

l2 1

. . .
. . .

ln−2 1

ln−1 1




where * may be anything. Note that

X−1 =




w
det − z

det

y
det

x
det

1

. . .

1




where det = xw + yz. Thus, we are left with the following two equations


 x z

−y w





1 0

l1 1


 =


û1 1

0 1





u1 1

0 u2





w −z

y x


 =


1 0

l̂1 ∗


 .det
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We must have

x + zl1 = û1 (6.5)

z = 1 (6.6)

−y + wl1 = 0 (6.7)

w = 1 (6.8)

u1w + y = det (6.9)

−u1z + x = 0 (6.10)

u2y = l̂1.det (6.11)

u2x = ∗.det. (6.12)

So, z = w = 1, equation (6.7) shows that y = l1 and equation (6.10) gives x = u1. Thus

det = u1 + l1 which verifies (6.9). From (6.5),

û1 = u1 + l1

and from (6.11) we learn that

u2y = u2l1 = l̂1det = l̂1û1.

Finally, and of most interest, from (6.12),

∗ = u2x/det = u2u1/det = u2u1/û1.

This gives the intermediate quantity u2 in dqd and we see it here as something that gets

carried to the next minor step.

If we write d1 = u1 we obtain the start of the inner loop of dqd:

û1 = d1 + l1

l̂1 = l1(u2/û1)

d2 = d1(u2/û1).
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The typical minor step is similar. Below we show matrices part way through the transfor-

mation U → L̂, L → Û . At minor step i, i = 1, . . . , n − 1, we have

Xi =




. . .

1

di 1

−li 1

1

. . .




, X−1
i =




. . .

1

1/ûi −1/ûi

li/ûi di/ûi

1

. . .




. (6.13)

Consider that after completion of step i we let

U ←− UX−1
i and L ←− XiL.

So, at the end of minor step i we have

UX−1
i =




. . .

. . . 1 0

l̂i di+1 1

ui+2 1

ui+3
. . .

. . .




, XiL =




. . .
. . .

ûi 1

0 1

li+1 1

li+2 1

. . .
. . .




.

At the end of minor step n − 1,

UX−1
n−1 =




. . .

. . . 1

l̂n−2 1 0

l̂n−1 dn




and Xn−1L =




. . .
. . .

ûn−2 1

ûn−1 1

0 1




.
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If dn 6= 0 we simply multiply row n on the right by dn, letting ûn = dn, and divide

column n on the left by dn leaving 1 in its place. This is achieved by defining

Xn =




. . .

. . .

1

dn




and finally

L̂ :=
(
U ←− UX−1

n

)
and Û := (L ←− XnL).

That is,

L̂ = UX−1
1 . . . X−1

n

Û = Xn . . . X1L

So, recalling matrix K in (6.4) we can write

UK−1
︸ ︷︷ ︸ KL︸︷︷︸ = L̂Û

where K ≡ Xn . . . X1.

If dn = 0 we can not define Xn. Observe that




. . .

. . . 1

l̂n−2 1

l̂n−1 dn







. . .
. . .

ûn−2 1

ûn−1 1

1




=

=




. . .

. . . 1

l̂n−2 1

l̂n−1 1







. . .

1

1 0

dn







. . .
. . .

ûn−2 1

ûn−1 1

1




.
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So, L̂ does not change and we let ûn = 1 and dn = 0. Û is not invertible but the

factorization L̂D̂R̂ in (6.3) with Û = D̂R̂ exists.

We have derived the dqd algorithm without reference to qd. Of more significance is the

fact that the quantities di, i = 1, . . . , n, provide useful information about UL, that qd does

not reveal, and so dqd facilitates the choice of a shift.

6.2.1 The meaning of di

The meaning of di is revealed by the next theorem.

Theorem 6.2.2 Consider L and U as described in (6.1). If U is invertible and UL permits

triangular factorization then the quantities di, i = 1, . . . , n, generated by the dqd algorithm

applied to L and U satisfy

d−1
i =

[
(UL)−1

]
ii

, i = 1, . . . , n.

Note that if U is invertible and UL = L̂Û then Û must also be invertible. This means

that ui and ûi are all non-zero.

Proof. The algorithm may be considered as transforming L to Û by premultiplications and

U to L̂ by inverse multiplications on the right, as described in the previous section. At the

end of the (i−1)th plane transformer Xi−1, i = 2, . . . , n, the situation is as indicated below:

UK−1
i−1 =




. . .

. . . 1 0

l̂i−1 di 1

ui+1 1

ui+2
. . .

. . .




, Ki−1L =




. . .
. . .

ûi−1 1

0 1

li 1

li+1 1

. . .
. . .




.

where

Ki−1 ≡ Xi−1Xi−2 . . . X1
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and Xi is the plane transform given in (6.13).

The striking fact is that row i of Ki−1L and column i of UK−1
i−1 are singletons. That is

eT
i Ki−1L = eT

i and UK−1
i−1ei = eidi, i = 2, . . . , n.

Rearranging these equations yields, for i = 2, . . . , n,

eT
i Ki−1 = eT

i L−1, K−1
i−1ei = U−1eidi

and

[
(UL)−1

]
ii

=
(
eT

i L−1
) (

U−1ei

)

=
(
eT

i Ki−1

) (
K−1

i−1eid
−1
i

)

= d−1
i .

Now for case i = 1. We also have

eT
1 L = eT

1 and Ue1 = e1u1,

and, analogously,

[
(UL)−1

]
11

=
(
eT

1 L−1
) (

U−1e1

)
= eT

1 u−1
1 e1 = d−1

1 . ¤

In the positive case (li > 0, ui > 0), UL is diagonally similar to a symmetric positive

definite matrix (see lemma 2.2.3) and the quantity min |dj | gives useful information on the

eigenvalue nearest 0.

Corollary 6.2.3 In the positive case

mini di

n
< λmin (UL) ≤ min

i
di.

Before writing the proof of this corollary we need to remember that if A is a symmetric

positive definite matrix then

trace(A) > λmax(A) and λmax(A) ≥ Aii.
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This is simple to prove: eigenvalues λ1, . . . , λn of A are all positive and the first inequality is

immediate. Also, A is orthogonally similar to D = diag(λ1, . . . , λn). We have A = QT DQ,

for an orthogonal matrix Q and then

Aii =
[
QT DQ

]
ii

= eT
i QT DQei

= qT
i Dqi

= λ1q
2
1i + . . . + λnq2

ni

≤ λmax(A) ‖qi‖2
2 = λmax(A),

where we let qi :=
[
q1i, . . . , qni

]T
.

Also recall that for a matrix M diagonally similar to A we have

Mii = Aii

because a diagonal similarity does not affect the diagonal entries of A.

Now we write the proof of corollary 6.2.3.

Proof. For any matrix M = (mij)1≤i,j≤n that is diagonally similar to a positive definite

symmetric matrix we have

max
i

mii ≤ λmax(M) < trace(M).

If we let M = (UL)−1 we have
[
(UL)−1

]
ii

= d−1
i and then

(
min

i
di

)−1

= max
i

d−1
i ≤ λmax

(
(UL)−1

)
<

n∑

i=1

d−1
i < n

(
min

i
di

)−1

.

Since
(
λmax(UL)−1

)
= (λmin(UL))−1 we can write

(
min

i
di

)−1

≤ (λmin(UL))−1 < n

(
min

i
di

)−1

or, equivalently,
mini di

n
< λmin (UL) ≤ min

i
di. ¤
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Even in the general case, as un → 0, mini |di| becomes an increasingly accurate

approximation to |λmin|.

LR, QR and qd algorithms are only as good as their shift strategies. In practice, one

uses qds and dqds, the shifted versions of qd and dqd.

The derivation of dqds(σ) in terms of Gram-Schmidt process is not obvious. Formally

if
(
U − σL−1

)
L admits triangular factorization we write

UL − σI =
(
U − σL−1

)
L = L̂D̂R̂ = L̂Û

and apply Gram-Schmidt to the columns of L and to the rows of U − σL−1 to obtain

U − σL−1 = L̂P̃ T , L = Q̃R̂, P̃ T Q̃ = D̂.

If D̂ is invertible, we can eliminate Q̃:

L =
(
Q̃D̂−1

)(
D̂R̂

)
= P̃−T Û , U − σL−1 = L̂P̃ T ,

that is

KL = Û ,
(
U − σL−1

)
K−1 = L̂,

with K := P̃ T . At first glance the new term −σL−1 appears to spoil the derivation of K

as a product of plane rotations. However, it is not necessary to know all the terms of L−1

but only the (i + 1, i) entries immediately below the main diagonal. The change for the

unshifted case is small.

If one looks at the two matrices part way through the transformations L −→ Û ,

U − σL−1 −→ L̂, the singleton column in the second matrix (from theorem 6.2.2) has

disappeared and the relation of di to (UL)−1 will be more complicated.

6.2.2 Complex eigenvalues and dqd

Theorem 6.2.2 gives information about the diagonal entries of (UL)−1 that can be used in a

choice of a shift strategy. In the presence of a pair of complex conjugate eigenvalues it will
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be useful to know not just the diagonal entries but also the entries (i + 1, i) and (i, i + 1),

that is, the diagonal 2 × 2 blocks of (UL)−1.

We will use the notation Ai:j,k:l to represent the submatrix of A lying in rows i through

j and columns k through l.

Next result gives the entries of the 2 × 2 submatrix

[
(UL)−1

]
i:i+1,i:i+1

(6.14)

and then we will analyze when we may have complex eigenvalues.

Theorem 6.2.4 Consider L and U as described in (6.1). If U is invertible and di,

i = 1, . . . , n, are the intermediate quantities generated by the dqd algorithm applied to L

and U , then

[
(UL)−1

]
i:i+1,i:i+1

=




1
di

− 1
diui+1

− li
di

1
di+1


 , i = 1, . . . , n − 1.

Proof. From theorem 6.2.2

1

di
=

[
(UL)−1

]
ii

, i = 1, . . . , n.

Also from the proof of theorem 6.2.2, we have

eT
i Ki−1 = eT

i L−1 and d−1
i K−1

i−1ei = U−1ei, i = 2, . . . , n,

where

Ki−1 = Xi−1Xi−2 . . . X1, i = 2, . . . , n − 1

and Xi is given by (6.13).

Thus,

[
(UL)−1

]
i,i+1

=
(
eT

i L−1
) (

U−1ei+1

)

=
(
eT

i Ki−1

) (
d−1

i+1K
−1
i ei+1

)

= d−1
i+1e

T
i

(
Ki−1K

−1
i

)
ei+1

= d−1
i+1

(
eT

i X−1
i ei+1

)

= − 1

di+1

1

ûi
.
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In dqd algorithm we have

di+1 = di(ui+1/ûi)

and then

[
(UL)−1

]
i,i+1

= − 1

diui+1
.

Analogously,

[
(UL)−1

]
i+1,i

=
(
eT

i+1L
−1

) (
U−1ei

)

=
(
eT

i+1Ki

) (
d−1

i K−1
i−1ei

)

= d−1
i eT

i+1

(
KiK

−1
i−1

)
ei

= d−1
i

(
eT

i+1Xiei

)

= − li
di

.

For i = 1, notice that d1 = u1 and we have

eT
1 = L−1eT

1 and u−1
1 e1 = U−1e1.

So,

[
(UL)−1

]
1,2

=
(
eT

1 L−1
) (

U−1e2

)

= eT
1

(
d−1

2 K−1
1 e2

)

= d−1
2

(
eT

1 K−1
1 e2

)

= d−1
2

(
eT

2 X−1
1 e2

)

= − 1

d2

1

û1
= − 1

d1u2
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and, finally,

[
(UL)−1

]
2,1

=
(
eT

2 L−1
) (

U−1e1

)

=
(
eT

2 K1

) (
d−1

1 e1

)

= d−1
1

(
eT

2 K1e1

)

= d−1
1

(
eT

2 X1e1

)

= − l1
d1

. ¤

Now we are interested in finding the eigenvalues of the 2×2 submatrix of theorem 6.2.4.

It can be verified that the discriminant of the characteristic polynomial is

∆i ≡
(

di+1 − di

didi+1

)2

+
4li

d2
i ui+1

. (6.15)

Lemma 6.2.1 If liui+1 > 0 then the 2 × 2 matrix in (6.14) has real eigenvalues.

Proof. According to (6.15), if liui+1 ≥ 0 then ∆i ≥ 0. ¤

If liui+1 < 0 we must evaluate ∆i to know if we are in the presence of complex eigen-

values.

6.3 New version of triple dqds

Consider matrices L and U as given in (6.1) and the application of tridqds algorithm.

Initially, we define

F := U and G := L

and

F (1) := F and G(1) := G.
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At the beginning of each minor step i, i = 2, . . . , n, we have

F (i) := L−1
i−1F

(i−1)Z−1
i−1Y

−1
i−1

G(i) := Yi−1Zi−1G
(i−1)Li−1.

Therefore

F (i) :=
(
L−1

i−1 . . .L−1
2 L−1

1

)
U

(
Z−1

1 Y −1
1 Z−1

2 Y −1
2 . . . Z−1

i−1Y
−1
i−1

)

G(i) := (Yi−1Zi−1 . . . Y2Z2Y1Z1)L(L1L2 . . .Li−1)

and

F (i)G(i) = (L−1
i−1 . . .L−1

2 L−1
1 )(UL)(L1L2 . . .Li−1). (6.16)

As established in (5.12), page 143, at the beginning of minor step i = 2, . . . , n − 2, of

tridqds algorithm we have

F (i) =




. . .

. . . 1

l̂i−1 ui 1

f i−1
1 ui+1 1

f i−1
2 ui+2

. . .

. . .




, G(i) =




. . .
. . .

ûi−1 1

di

gi
1 1

gi
2 li+1 1

. . .
. . .




,

(6.17)

where we defined

f i−1
1 := xl and di := xr

f i−1
2 := yl gi

1 := yr

gi
2 := zr.

The superscript refers to the column at which the element is positioned.
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At the beginning of minor step n − 1,

Fn−1 =




. . .
. . .

l̂n−3 1

l̂n−2 un−1 1

fn−2
1 un




, Gn−1 =




. . .
. . .

ûn−3 1

ûn−2 1

dn−1

gn−1
1 1




and for minor step n

Fn =




. . .

. . . 1

l̂n−2 1

l̂n−1 un




, Gn =




. . .
. . .

ûn−2 1

ûn−1 1

dn




.

Since initially we let

F (1) = U and G(1) = L,

then

d1 = 1, g1
1 = l1 and g1

2 = 0.

6.3.1 New notation for tridqds

Next we will rewrite tridqds algorithm with the notation introduced in (6.17). First column

of F (1) is u1e1 and quantities f0
1 and f0

2 presented at minor step 1 are just auxiliary variables

used for clarity and do not belong to F (1).
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The first minor step of tridqds.

Minor step 1 :

d1 = 1; g1
1 = l1; g1

2 = 0

d2 = d1 ∗ u1 + g1
1

f0
1 = (u1 + l1)

2 + u2l1 − 2(ℜσ)(u1 + l1) + |σ|2

f0
2 = u2l1u3l2/f0

1

f0
1 = u2l1

(
u1 + l1 + u2 + l2 − 2(ℜσ)

)
/f0

1

f1
1 = −f0

1 ; f1
2 = −f0

2

û1 = d2 − f1
1 ;

d2 = g1
1 − f1

1 ; g2
1 = g1

2 − f1
2 − f1

1 ∗ l2; g2
2 = −f1

2 ∗ l3

d2 = d2/û1; g2
1 = g2

1/û1; g2
2 = g2

2/û1

l̂1 = f1
1 + g2

1 + d2 ∗ u2

f1
1 = f1

2 + g2
2 + g2

1 ∗ u3; f1
2 = g2

2 ∗ u4

d2 = 1 − d2; g2
1 = l2 − g2

1; g2
2 = −g2

2
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The inner loop is changed to:

for i = 2, . . . , n − 3

di+1 = di ∗ ui + gi
1

f i
1 = −f i−1

1 /l̂i−1; f i
2 = −f i−1

2 /l̂i−1;

ûi = di+1 − f i
1;

di+1 = gi
1 − f i

1; gi+1
1 = gi

2 − f i
2 − f i

1 ∗ li+1; gi+1
2 = −f i

2 ∗ li+2

di+1 = di+1/ûi; gi+1
1 = gi+1

1 /ûi; gi+1
2 = gi+1

2 /ûi

l̂i = f i
1 + gi+1

1 + di+1 ∗ ui+1

f i
1 = f i

2 + gi+1
2 + gi+1

1 ∗ ui+2; f i
2 = gi+1

2 ∗ ui+3

di+1 = 1 − di+1; gi+1
1 = li+1 − gi+1

1 ; gi+1
2 = −gi+1

2

end for

We begin the loop with quantities f i−1
1 , f i−1

2 , di, gi
1 and gi

2 and end with quantities f i
1,

f i
2, di+1, gi+1

1 and gi+1
2 , and all values are preserved. For completeness we will also write

down the minor steps n − 2, n − 1 and n with this new notation.
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Minor step n-2 :

dn−1 = dn−2 ∗ un−2 + gn−2
1

fn−2
1 = −fn−3

1 /l̂n−3; fn−2
2 = −fn−3

2 /l̂n−3;

ûn−2 = dn−1 − fn−2
1 ;

dn−1 = gn−2
1 − fn−2

1 ; gn−1
1 = gn−2

2 − fn−2
2 − fn−2

1 ∗ ln−1

dn−1 = dn−1/ûn−2; gn−1
1 = gn−1

1 /ûn−2

l̂n−2 = fn−2
1 + gn−1

1 + dn−1 ∗ un−1

fn−2
1 = fn−2

2 + gn−1
1 ∗ un

dn−1 = 1 − dn−1; gn−1
1 = ln−1 − gn−1

1

Minor step n-1 :

dn = dn−1 ∗ un−1 + gn−1
1

fn−1
1 = −fn−2

1 /l̂n−2

ûn−1 = dn − fn−1
1

dn = gn−1
1 − fn−1

1

dn = dn/ûn−1

l̂n−1 = fn−1
1 + dn ∗ un

dn = 1 − dn

Minor step n :

ûn = dn ∗ un

ûn = ûn;
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To represent elementary matrix Li at minor step i, i = 1, . . . , n − 2, we will use the

notation

Li =




1

. . .

1

hi
1 1

hi
2 1

. . .

1




. (6.18)

Elements hi
1 and hi

2 are at positions (i + 1, i) and (i + 2, i), respectively. For i = n − 1 and

i = n,

Ln−1 =




1

. . .

1

. . .

1

hn−1
1 1




and Ln = I.

We will write

Li = I + hie
T
i , i = 1, . . . , n − 1,

where

hi =





[
0 . . . 0 0 hi

1 hi
2 0 . . . 0

]T
, i = 1, . . . , n − 2

[
0 . . . 0 0 hn−1

1

]T
, i = n − 1.

It is well known that

L−1
i = I − hie

T
i
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and

L1L2 . . .Li =




1

h1
1 1

h1
2 h2

1
. . .

h2
2

. . . 1

. . . hi
1 1

hi
2 1

. . .

1




.

In what follows we will need to refer to the columns and to the rows of L1L2 . . .Li. For

i = 1, . . . , n, the columns are

(L1L2 . . .Li)ek =





kth

︷︸︸︷
[
0 . . . 0 1 hk

1 hk
2 0 . . . 0

]T
, k ≤ i

ek, k > i

. (6.19)

Note that (L1L2 . . .Ln−1)en−1 =
[
0 . . . 0 1 hn−1

1

]T
and (L1L2 . . .Ln)en = en. And

for i = 1, . . . , n, the rows are given by

eT
k (L1L2 . . .Li) =





kth

︷︸︸︷
[
0 . . . 0 hk−2

2 hk−1
1 1 0 . . . 0

]
, k ≤ i + 1

[
0 . . . 0 hk−2

2 0 1 0 . . . 0
]
, k = i + 2

eT
k , k > i + 2

(6.20)

Note that eT
1 (L1L2 . . .Li) = eT

1 and eT
2 (L1L2 . . .Li) =

[
h1

1 1 0 . . . 0
]
.
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6.3.2 From tridqds to 3dqds

The next sequence of lemmas will permit us to change the tridqds algorithm into an equiv-

alent but more efficient format. This is a central contribution of the thesis and lead us to

the new version, 3dqds, that will be presented in page 201.

Lemma 6.3.1 Consider tridqds algorithm applied to matrices L and U as given in (6.1).

For L1 we have

h1
1 = f0

1 and h1
2 = f0

2 .

For Li at minor step i, i = 2, . . . , n − 2, we have

hi
1 = f i−1

1 /l̂i−1 and hi
2 = f i−1

2 /l̂i−1.

Finally, for Ln−1

hn−1
1 = fn−2

1 /l̂n−2.

Proof. In tridqds algorithm the inverse L−1
i , i = 2, . . . , n − 2, is chosen to zero out entries

(i + 1, i − 1) and (i + 2, i − 1) of F (i) using entry (i, i − 1) as the pivot. Thus

L−1
i =




. . .

. . .

1

−f i−1
1 /l̂i−1 1

−f i−1
2 /l̂i−1 1

. . .




. (6.21)

So, entries hi
1 and hi

2 in Li are the symmetric of the corresponding entries in L−1
i . Ln−1 is

chosen to zero out entry (n, n − 2) of Fn−1. The case i = 1 is immediate (see minor step 1

to observe the initialization of f0
1 and f0

2 ). ¤

In all the results that follow we will consider n ≥ 4.
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Lemma 6.3.2 Consider tridqds algorithm and matrix F (i) at the beginning of minor step i,

i = 2, . . . , n − 1. Then, for i = 2,

f1
1 =

u3l2
û1

f0
1 +

l3 + u3 − û1

û1
f0
2 +

u3

û1
g1
2 and f1

2 =
u4l3
û1

f0
2 .

For i = 3, . . . , n − 2,

f i−1
1 =

ui+1li

l̂i−2ûi−1

f i−2
1 +

li+1 + ui+1 − ûi−1

l̂i−2ûi−1

f i−2
2 +

ui+1

ûi−1
gi−1
2

and

f i−1
2 =

ui+2li+1

l̂i−2ûi−1

f i−2
2 .

At the beginning of minor step n − 1,

fn−2
1 =

unln−1

l̂n−3ûn−2

fn−3
1 +

un − ûn−2

l̂n−3ûn−2

fn−3
2 +

un

ûn−2
gn−2
2 .

Proof. At the end of minor step 1 we obtain

f1
1 = −f0

2 +
[(

f0
2 ∗ l3

)
/û1

]
+

[(
g1
2 + f0

2 + f0
1 ∗ l2

)
/û1

]
∗ u3

=
u3l2
û1

f0
1 +

l3 + u3 − û1

û1
f0
2 +

u3

û1
g1
2

and

f1
2 =

[(
f0
2 ∗ l3

)
/û1

]
∗ u4 =

u4l3
û1

f0
2 .

The sequence of assignments to compute f i
2, i = 2, . . . , n − 3, is

f i
2 ←− −f i−1

2 /l̂i−1

gi+1
2 ←− −f i

2 ∗ li+2

gi+1
2 ←− gi+1

2 /ûi

f i
2 ←− gi+1

2 ∗ ui+3.

Doing forward substitution we get

f i
2 =

{[
−

(
−f i−1

2 /l̂i−1

)
∗ li+2

]
/ûi

}
∗ ui+3

=
f i−1
2 li+2

l̂i−1ûi

∗ ui+3

=
ui+3li+2

l̂i−1ûi

f i−1
2 .
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So, in the beginning of minor step i, i = 3, . . . , n − 2, we have

f i−1
2 =

ui+2li+1

l̂i−2ûi−1

f i−2
2 .

Analogously, to obtain f i
1, i = 2, . . . , n − 3, the sequence is

f i
1 ←− −f i−1

1 /l̂i−1

f i
2 ←− −f i−1

2 /l̂i−1

gi+1
1 ←− gi

2 − f i
2 − f i

1 ∗ li+1;

gi+1
2 ←− −f i

2 ∗ li+2

gi+1
1 ←− gi+1

1 /ûi;

gi+1
2 ←− gi+1

2 /ûi

f i
1 ←− f i

2 + gi+1
2 + gi+1

1 ∗ ui+2.

Thus, after minor step i,

f i
1 =

(
−f i−1

2 /l̂i−1

)
+

{[
−

(
−f i−1

2 /l̂i−1

)
∗ li+2

]
/ûi

}
+

+
{[

gi
2 −

(
−f i−1

2 /l̂i−1

)
−

(
−f i−1

1 /l̂i−1

)
∗ li+1

]
/ûi

}
∗ ui+2

= −f i−1
2

l̂i−1

+
f i−1
2 li+2

l̂i−1ûi

+

(
gi
2

ûi
+

f i−1
2

l̂i−1ûi

+
f i−1
1 li+1

l̂i−1ûi

)
ui+2

= − 1

l̂i−1

f i−1
2 +

li+2

l̂i−1ûi

f i−1
2 +

ui+2

ûi
gi
2 +

ui+2

l̂i−1ûi

f i−1
2 +

ui+2li+1

l̂i−1ûi

f i−1
1

=
ui+2li+1

l̂i−1ûi

f i−1
1 +

li+2 + ui+2 − ûi

l̂i−1ûi

f i−1
2 +

ui+2

ûi
gi
2.

In the beginning of minor step i, i = 3, . . . , n − 2, we have

f i−1
1 =

ui+1li

l̂i−2ûi−1

f i−2
1 +

li+1 + ui+1 − ûi−1

l̂i−2ûi−1

f i−2
2 +

ui+1

ûi−1
gi−1
2 .

At the end of minor step i = n − 2, or at the beginning of minor step n − 1,

fn−2
1 =

(
−fn−3

2 /l̂n−3

)
+

{[
gn−2
2 −

(
−fn−3

2 /l̂n−3

)
−

(
−fn−3

1 /l̂n−3

)
∗ ln−1

]
/ûn−2

}
∗ un

=
unln−1

l̂n−3ûn−2

fn−3
1 +

un − ûn−2

l̂n−3ûn−2

fn−3
2 +

un

ûn−2
gn−2
2 . ¤
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Lemma 6.3.3 Consider matrix G(i) at the beginning of minor step i, i = 2, . . . , n − 1, of

tridqds algorithm. Then, for i = 2,

g2
1 = l2 −

(
l2f

0
1

û1
+

f0
2

û1
+

g1
2

û1

)
and g2

2 = − l3
û1

f0
2 .

For i = 3, . . . , n − 1,

gi
1 = li −

(
li

l̂i−2ûi−1

f i−2
1 +

f i−2
2

l̂i−2ûi−1

+
gi−1
2

ûi−1

)

and for i = 3, . . . , n − 2,

gi
2 = − li+1

l̂i−2ûi−1

f i−2
2 .

Proof. At the beginning of minor step i = 2, from minor step 1, we have

g2
2 = −

[(
f0
2 ∗ l3

)
/û1

]
= − l3

û1
f0
2

and

g2
1 = l2 −

[(
g1
2 + f0

2 + f0
1 ∗ l2

)
/û1

]
= l2 −

(
l2f

0
1

û1
+

f0
2

û1
+

g1
2

û1

)
.

The sequence of assignments to compute gi+1
2 , i = 2, . . . , n − 3, is

f i
2 ←− −f i−1

2 /l̂i−1

gi+1
2 ←− −f i

2 ∗ li+2

gi+1
2 ←− gi+1

2 /ûi

gi+1
2 ←− −gi+1

2 .

Again, substituting forwards, we get

gi+1
2 = −

{[
−

(
−f i−1

2 /l̂i−1

)
∗ li+2

]
/ûi

}
= − li+2

l̂i−1ûi

f i−1
2 .

Thus in the beginning of minor step i = 3, . . . , n − 2 we have

gi
2 = − li+1

l̂i−2ûi−1

f i−2
2 .
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Now the sequence of assignments to compute gi+1
1 , i = 2, . . . , n − 3, is

f i
1 ←− −f i−1

1 /l̂i−1

f i
2 ←− −f i−1

2 /l̂i−1

gi+1
1 ←− gi

2 − f i
2 − f i

1 ∗ li+1

gi+1
1 ←− gi+1

1 /ûi

gi+1
1 ←− li+1 − gi+1

1

and we obtain

gi+1
1 = li+1 −

{[
gi
2 −

(
−f i−1

2 /l̂i−1

)
−

(
−f i−1

1 /l̂i−1

)
∗ li+1

]
/ûi

}

= li+1 −
gi
2

ûi
− f i−1

2

l̂i−1ûi

− f i−1
1

l̂i−1ûi

li+1

= li+1 −
(

li+1

l̂i−1ûi

f i−1
1 +

f i−1
2

l̂i−1ûi

+
gi
2

ûi

)
.

Thus, in the beginning of minor step i, i = 3, . . . , n − 2, we have

gi
1 = li −

(
li

l̂i−2ûi−1

f i−2
1 +

f i−2
2

l̂i−2ûi−1

+
gi−1
2

ûi−1

)
.

Finally, at the beginning of minor step n − 1,

gn−1
1 = ln−1 −

{[
gn−2
2 −

(
−fn−3

2 /l̂n−3

)
−

(
−fn−3

1 /l̂n−3

)
∗ ln−1

]
/ûn−2

}

= ln−1 −
(

ln−1

l̂n−3ûn−2

fn−3
1 +

fn−3
2

l̂n−3ûn−2

+
gn−2
2

ûn−2

)
. ¤

Lemma 6.3.4 Let F (i) and G(i) be the matrices obtained at the beginning of minor step i,

i = 2, . . . , n − 1, when we apply tridqds algorithm to L and U . Then

f i−1
2 = −ui+2g

i
2,

for i = 2, . . . , n − 2, and

fn−2
2 = −fn−3

2 /l̂n−3.
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Proof. From lemmas 6.3.2 and 6.3.3 we know that, for i = 3, . . . , n − 2,

f i−1
2 =

ui+2li+1

l̂i−2ûi−1

f i−2
2 and gi

2 = − li+1

l̂i−2ûi−1

f i−2
2 .

The result follows immediately.

For i = 2, that is at the end of minor step 1, we have in sequence

f1
2 ←− g2

2 ∗ u4

g2
2 ←− −g2

2.

Thus,

g2
2 = −f1

2

u4
⇔ f1

2 = −u4g
2
2.

For i = n − 1, fn−2
2 = −fn−3

2 /l̂n−3 comes from the last assignment for fn−2
2 in step

n − 2. ¤

Lemma 6.3.5 Let F (i) and G(i) be the matrices obtained at the beginning of each minor

step i, i = 2, . . . , n, when we apply tridqds algorithm to L and U . Then

f1
1 = u3

(
l2 − g2

1

)
− g2

2 − f0
2 ,

for i = 2, . . . , n − 3,

f i
1 = ui+2(li+1 − gi+1

1 ) − gi+1
2 − f i−1

2

l̂i−1

and

fn−2
1 = un

(
ln−1 − gn−1

1

)
− fn−3

2

l̂n−3

, fn−1
1 = −fn−2

1

l̂n−2

.

Proof. From lemmas 6.3.2 and 6.3.3 we know that, for i = 2, . . . , n − 3,

f i
1 =

ui+2li+1

l̂i−1ûi

f i−1
1 +

li+2 + ui+2 − ûi

l̂i−1ûi

f i−1
2 +

ui+2

ûi
gi
2

and

gi+1
1 = li+1 −

(
li+1

l̂i−1ûi

f i−1
1 +

f i−1
2

l̂i−1ûi

+
gi
2

ûi

)
.
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Also for i = 3, . . . , n − 2, from lemma 6.3.4,

gi+1
2 = − li+2

l̂i−1ûi

f i−1
2 .

So,

f i
1 = ui+2

(
li+1

l̂i−1ûi

f i−1
1 +

f i−1
2

l̂i−1ûi

+
gi
2

ûi

)
+ (li+2 − ûi)

f i−1
2

l̂i−1ûi

= ui+2(li+1 − gi+1
1 ) + li+2

f i−1
2

l̂i−1ûi

− f i−1
2

l̂i−1

= ui+1(li − gi
1) − gi+1

2 − f i−1
2

l̂i−1

.

The cases i = 2 and i = n−2 also derive from lemmas 6.3.2 and 6.3.3. The case i = n−1

follows directly from step n − 1. ¤

Lemma 6.3.6 Consider G(i) at the beginning of minor step i, i = 1, . . . , n, of tridqds

algorithm. Then quantities di satisfy

d1 = 1, d2 = 1 −
(

g1
1

û1
+

f0
1

û1

)

and

di = 1 −
(

gi−1
1

ûi−1
+

f i−2
1

l̂i−2ûi−1

)
, i = 3, . . . , n.

Proof. From minor step 1 the result for d2 is straightforward,

d2 = 1 − [(g1
1 + f0

1 )/û1].

In minor step i, i = 2, . . . , n − 1, we obtain di+1 through the sequence

f i
1 ←− −f i−1

1 /l̂i−1

di+1 ←− gi
1 − f i

1

di+1 ←− di+1/ûi

di+1 ←− 1 − di+1.
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Then,

di+1 = 1 −
{[

gi
1 −

(
−f i−1

1 /l̂i−1

)]
/ûi

}
= 1 −

(
gi
1

ûi
+

f i−1
1

l̂i−1ûi

)
.

For i = 3, . . . , n we have

di = 1 −
(

gi−1
1

ûi−1
+

f i−2
1

l̂i−2ûi−1

)
. ¤

Lemma 6.3.7 Consider ûi, i = 1, . . . , n, obtained when tridqds algorithm is applied to L

and U . Then

û1 = d1u1 + g1
1 + f0

1 ,

ûi = diui + gi
1 +

f i−1
1

l̂i−1

, i = 2, . . . , n − 1,

ûn = dnun.

Proof. For i = 1 we have

û1 =
(
d1 ∗ u1 + g1

1

)
+ f0

1 = d1u1 + g1
1 + f0

1 .

To obtain ûi, i = 2, . . . , n − 1, we need to compute

di+1 ←− di ∗ ui + gi
1

f i
1 ←− −f i−1

1 /l̂i−1

ûi ←− di+1 − f i
1.

Thus,

ûi =
(
di ∗ ui + gi

1

)
−

(
−f i−1

1 /l̂i−1

)
= diui + gi

1 +
f i−1
1

l̂i−1

.

In the end

ûn = dn ∗ un. ¤
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The result of the next theorem is quite surprising. It gives for the quantities di generated

by the triple dqds a relation to the quantities ui and ûi similar to the one that exists in dqd.

Recall from (5.13), page 161, that in dqd algorithm we have

d1 = u1

di+1 = di

(
ui+1

ûi

)
, i = 1, . . . , n − 1,

and for tridqds

Theorem 6.3.1 For quantities di, i = 1, . . . , n, generated by tridqds algorithm applied to

L and U we have d1 = 1 and

di+1 = di

(
ui

ûi

)
, i = 1, . . . , n − 2

dn =
un

ûn
.

Proof. From lemma 6.3.6 and lemma 6.3.7, for i = 3, . . . , n − 1, we have

di = 1 − l̂i−2g
i−1
1 + f i−2

1

l̂i−2ûi−1

and ûi = diui +
l̂i−1g

i
1 + f i−1

1

l̂i−1

.

Thus

ûi = diui + ûi
l̂i−1g

i
1 + f i−1

1

l̂i−1ûi

= diui + ûi(1 − di+1), i = 2, . . . , n − 2.

Solving this equation yields

ûi = diui + ûi − ûidi+1 ⇔ di+1 = di

(
ui

ûi

)
.

For i = 1 this result also holds. Using the same lemmas, we have

d2 = 1 − l1 + f0
1

û1
and û1 = u1 + l1 + f0

1

since d1 = 1 and g1
1 = l1. Then

d2 =
û1 − (û1 − u1)

û1
=

u1

û1
= d1

(
u1

û1

)
.

For dn the result is immediate. ¤

Next lemma show us the expressions for l̂i, i = 1, . . . , n − 1.
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Lemma 6.3.8 Consider l̂i, i = 1, . . . , n − 1, obtained when tridqds algorithm is applied to

L and U . Then

l̂1 =
l2 + u2 − û1

û1
f0
1 +

u2

û1
g1
1 +

g1
2 + f0

2

û1
,

l̂i =
ui+1 + li+1 − ûi

l̂i−1ûi

f i−1
1 +

ui+1

ûi
gi
1 +

l̂i−1 − ui+2

l̂i−1ûi

gi
2, i = 2, . . . , n − 2,

l̂n−1 =
un − ûn−1

l̂n−2ûn−1

fn−2
1 +

un

ûn−1
gn−1
1 .

Proof. For l̂1 we have

l̂1 = −f0
1 +

[(
g1
2 + f0

2 + f0
1 ∗ l2

)
/û1

]
+

[(
g1
1 + f0

1

)
/û1

]
∗ u2

=
l2 + u2 − û1

û1
f0
1 +

u2

û1
g1
1 +

g1
2 + f0

2

û1
.

To calculate l̂i, i = 2, . . . , n − 2 we need to follow

f i
1 ←− −f i−1

1 /l̂i−1

f i
2 ←− −f i−1

2 /l̂i−1

di+1 ←− gi
1 − f i

1

gi+1
1 ←− gi

2 − f i
2 − f i

1 ∗ li+1

di+1 ←− di+1/ûi

gi+1
1 ←− gi+1

1 /ûi

l̂i ←− f i
1 + gi+1

1 + di+1 ∗ ui+1.

This way,

l̂i =
(
−f i−1

1 /l̂i−1

)
+

{[
gi
2 −

(
−f i−1

2 /l̂i−1

)
−

(
−f i−1

1 /l̂i−1

)
∗ li+1

]
/ûi

}
+

+
{[

gi
1 −

(
−f i−1

1 /l̂i−1

)]
/ûi

}
∗ ui+1

= − ûif
i−1
1

l̂i−1ûi

+
l̂i−1g

i
2 + f i−1

2 + li+1f
i−1
1

l̂i−1ûi

+
l̂i−1g

i
1 + f i−1

1

l̂i−1ûi

ui+1

=
ui+1 + li+1 − ûi

l̂i−1ûi

f i−1
1 +

ui+1

ûi
gi
1 +

f i−1
2 + l̂i−1g

i
2

l̂i−1ûi

.
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From lemma 6.3.4 we know that, for i = 2, . . . , n − 2,

f i−1
2 = −ui+2g

i
2.

So,

l̂i =
ui+1 + li+1 − ûi

l̂i−1ûi

f i−1
1 +

ui+1

ûi
gi
1 +

l̂i−1 − ui+2

l̂i−1ûi

gi
2.

To compute l̂n−1 we have

fn−1
1 ←− −fn−2

1 /l̂n−2

dn ←− gn−1
1 − fn−1

1

dn ←− dn/ûn−1

l̂n−1 ←− fn−1
1 + dn ∗ un.

Thus,

l̂n−1 =
(
−fn−2

1 /l̂n−2

)
+

{[
gn−1
1 −

(
−fn−2

1 /l̂n−2

)]
/ûn−1

}
∗ un

=
un − ûn−1

l̂n−2ûn−1

fn−2
1 +

un

ûn−1
gn−1
1 . ¤

But these expressions for l̂i, i = 1, . . . , n − 1, can still be simplified.

Lemma 6.3.9 Consider l̂i, i = 1, . . . , n − 1, obtained when tridqds algorithm is applied to

L and U . Then

l̂1 = u2(1 − d2) + (l2 − g2
1) − f0

1 ,

l̂i = ui+1(1 − di+1) +
(
li+1 − gi+1

1

)
− f i−1

1

l̂i−1

, i = 2, . . . , n − 2,

l̂n−1 = un(1 − dn) − fn−2
1

l̂n−2

.

Proof. By previous lemma, for i = 2, . . . , n − 2,

l̂i =
ui+1 + li+1 − ûi

l̂i−1ûi

f i−1
1 +

ui+1

ûi
gi
1 +

l̂i−1 − ui+2

l̂i−1ûi

gi
2

=
ui+1

ûi

(
f i−1
1

l̂i−1

+ gi
1

)
+

li+1 − ûi

l̂i−1ûi

f i−1
1 +

l̂i−1 − ui+2

l̂i−1ûi

gi
2. (6.22)
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From lemma 6.3.7 and theorem 6.3.1, we can write

ui+1

ûi
(ûi − diui) = ui+1

(
1 − di

ui

ûi

)
= ui+1(1 − di+1). (6.23)

Now the last term in (6.22). We have

l̂i−1 − ui+2

l̂i−1ûi

gi
2 =

gi
2

ûi
+

−ui+2g
i
2

l̂i−1ûi

=
gi
2

ûi
+

f i−1
2

l̂i−1ûi

,

since, from lemma 6.3.4, it holds

f i−1
2 = −ui+2g

i
2.

Then joining the last two terms in (6.22) gives

li+1 − ûi

l̂i−1ûi

f i−1
1 +

l̂i−1 − ui+2

l̂i−1ûi

gi
2 =

li+1

l̂i−1ûi

f i−1
1 − f i−1

1

l̂i−1

+
gi
2

ûi
+

f i−1
2

l̂i−1ûi

=

(
li+1

l̂i−1ûi

f i−1
1 +

f i−1
2

l̂i−1ûi

+
gi
2

ûi

)
− f i−1

1

l̂i−1

= (li+1 − gi+1
1 ) − f i−1

1

l̂i−1

, (6.24)

since, from lemma 6.3.3,

gi
1 = li −

(
li

l̂i−2ûi−1

f i−2
1 +

f i−2
2

l̂i−2ûi−1

+
gi−1
2

ûi−1

)
.

Finally, from (6.22), (6.23) and (6.24), we obtain

l̂i = ui+1(1 − di+1) +
(
li+1 − gi+1

1

)
− f i−1

1

l̂i−1

.

For i = n − 1,

l̂n−1 =
un − ûn−1

l̂n−2ûn−1

fn−2
1 +

un

ûn−1
gn−1
1

=
un

ûn−1

(
fn−2
1

l̂n−2

+ gn−1
1

)
− fn−2

1

l̂n−2

=
un

ûn−1
(ûn−1 − dn−1un−1) −

fn−2
1

l̂n−2

= un(1 − dn) − fn−2
1

l̂n−2

.
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The case i = 1:

l̂1 =
l2 + u2 − û1

û1
f0
1 +

u2

û1
g1
1 +

g1
2 + f0

2

û1

=
u2

û1

(
f0
1 + g1

1

)
+

l2 − û1

û1
f0
1 +

g1
2 + f0

2

û1

=
u2

û1
(û1 − d1u1) +

(
l2
û1

f0
1 +

g1
2

û1
+

f0
2

û1

)
− f0

1

= u2(1 − d2) +
(
l2 − g2

1

)
− f0

1 ,

using lemma 6.3.7, theorem 6.3.1 and lemma 6.3.3. ¤

Combining all these results we obtain the new version of tridqds algorithm that we will

call 3dqds. We introduce a new temporary variable aux.

The changes to the first minor step:

Minor step 1 :

d1 = 1; g1
1 = l1; g1

2 = 0

f0
1 = (u1 + l1)

2 + u2l1 − 2(ℜσ)(u1 + l1) + |σ|2

f0
2 = u2l1u3l2/f0

1

f0
1 = u2l1

(
u1 + l1 + u2 + l2 − 2(ℜσ)

)
/f0

1

û1 = d1u1 + g1
1 + f0

1

d2 = d1u1/û1

aux =
(
l2f

0
1 + f0

2 + g1
2

)
/û1

g2
1 = l2 − aux

l̂1 = u2(1 − d2) + aux − f0
1

g2
2 = −l3f

0
2 /û1

f1
1 = u3.aux − g2

2 − f0
2

f1
2 = −u4g

1
2
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The inner loop is changed to:

for i = 2, . . . , n − 3

ûi = diui + gi
1 + f i−1

1 /l̂i−1

di+1 = diui/ûi

aux = (li+1f
i−1
1 + f i−1

2 + l̂i−1g
i
2)/(l̂i−1ûi)

gi+1
1 = li+1 − aux

l̂i = ui+1(1 − di+1) + aux − f i−1
1 /l̂i−1

gi+1
2 = −li+2f

i−1
2 /(l̂i−1ûi)

f i
1 = ui+2.aux − gi+1

2 − f i−1
2 /l̂i−1

f i
2 = −ui+3g

i+1
2

end for

The last three steps become:

Minor step n-2 :

ûn−2 = dn−2un−2 + gn−2
1 + fn−3

1 /l̂n−3

dn−1 = dn−2un−2/ûn−2

aux = (ln−1f
n−3
1 + fn−3

2 + l̂n−3g
n−2
2 )/(l̂n−3ûn−2)

gn−1
1 = ln−1 − aux

l̂n−2 = un−1(1 − dn−1) + aux − fn−3
1 /l̂n−3

fn−2
1 = un.aux − fn−3

2 /l̂n−3

Minor step n-1 :

ûn−1 = dn−1un−1 + gn−1
1 + fn−2

1 /l̂n−2

dn = 1 − (gn−1
1 + fn−2

1 /l̂n−2)/ûn−1

l̂n−1 = un(1 − dn) − fn−2
1 /l̂n−2

Minor step n :

ûn = dn ∗ un
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Now, turning into a computacional implementation we will go back again to variables

xl and yl to play the role of f i
1 and f i

2, respectively, and to variables yr and zr to replace gi
1

and gi
2, respectively. Variable di will substitute xr. Recognizing common subexpressions,

we will introduce some changes with the goal of reducing the number of divisions needed.

If we let

l̄ =
1

l̂i−1

and ū =
1

ûi

and initially

xl = f i−1
1 yr = gi

1

yl = f i−1
2 zr = gi

2

then the inner loop will be

for i = 2, . . . , n − 3

xl = xl ∗ l̄

yl = yl ∗ l̄

ûi = di ∗ ui + yr + xl

ū = 1/ûi

di+1 = di ∗ ui ∗ ū

aux = (li+1 ∗ xl + yl + zr) ∗ ū

yr = li+1 − aux

l̂i = ui+1 − di+1 ∗ ui+1 + aux − xl

zr = −li+2 ∗ yl ∗ ū

xl = ui+2 ∗ aux − zr − yl

yl = −ui+3 ∗ zr

l̄ = 1/l̂i

end for

So, we incorporated two additional auxiliary variables but we reduced the number of

divisions to only 2.
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It is still possible to reduce the number or multiplications by noticing that the multipli-

cation di ∗ ui can be performed implicitly. If we define ti by

ti ≡ di ∗ ui

then

ti+1 = di+1 ∗ ui+1 = di ∗ ui ∗ ū ∗ ui+1 = ti ∗ ū ∗ ui+1.

Thus, ûi and l̂i will be given by

ûi = ti + yr + xl

ti+1 = ti ∗ ū ∗ ui+1

l̂i = ui+1 − ti+1 + aux − xl.

It can be verified that there is no need for both variables l̄ and ū. The variable aux1

will play the role of both. The final version of 3dqds algorithm is presented below.

3dqds(σ) :

t = 1; yr = l1; zr = 0;

xl = (u1 + l1)
2 + u2 ∗ l1 − 2(ℜσ) ∗ (u1 + l1) + |σ|2

yl = u2 ∗ l1 ∗ u3 ∗ l2/xl

xl = u2 ∗ l1 ∗
(
u1 + l1 + u2 + l2 − 2(ℜσ)

)
/xl

t = t ∗ u1

û1 = t + yr + xl

aux1 = 1/û1

aux = (l2 ∗ xl + yl + zr) ∗ aux1

yr = l2 − aux

t = t ∗ u2 ∗ aux1

l̂1 = u2 − t + aux − xl

zr = −l3 ∗ yl ∗ aux1

xl = u3 ∗ aux − zr − yl
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yl = −u4 ∗ zr

aux1 = 1/l̂1

for i = 2, . . . , n − 3

xl = xl ∗ aux1

yl = yl ∗ aux1

ûi = t + yr + xl

aux1 = 1/ûi

aux = (li+1 ∗ xl + yl + zr) ∗ aux1

yr = li+1 − aux

t = ui+1 ∗ t ∗ aux1

l̂i = ui+1 − t + aux − xl

zr = −li+2 ∗ yl ∗ aux1

xl = ui+2 ∗ aux − zr − yl

yl = −ui+3 ∗ zr

aux1 = 1/l̂i

end for

xl = xl ∗ aux1

yl = yl ∗ aux1

ûn−2 = t + yr + xl

aux1 = 1/ûn−2

aux = (ln−1 ∗ xl + yl + zr) ∗ aux1

yr = ln−1 − aux

t = un−1 ∗ t ∗ aux1

l̂n−2 = un−1 − t + aux − xl

xl = un ∗ aux − yl

aux1 = 1/l̂n−2
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xl = xl ∗ aux1

ûn−1 = t + yr + xl

aux1 = (yr + xl)/ûn−1

l̂n−1 = un ∗ aux1 − xl

ûn = (1 − aux1) ∗ un

6.3.3 Operation count for 3dqds

Table 6.1 below shows that the more elegant version 3dqds of triple dqds algorithm has the

advantage of performing less three divisions than the version tridqds. The price to pay for

this reduction on the number of divisions is worthwhile considering that in certain machines

the cost of a division is much more expensive than the cost of a multiplication.

tridqds 3dqds

Divisions 5 2

Multiplications 6 10

Additions 5 5

Subtractions 6 5

Assignments 16 12

Auxiliary variables 5 7

Figure 6.1: Operation Count of tridqds and 3dqds

The simplicity of 3dqds is very attractive and preliminary numerical tests reveal its

robustness.
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6.3.4 Entries of (UL)−1

In this section we will present results for the entries of (UL)−1 analogous to the results

shown for dqd in theorem 6.2.4 (page 176). So, the goal is to obtain expressions for

[
(UL)−1

]
i:i+1,i:i+1

=




[
(UL)−1

]
i,i

[
(UL)−1

]
i,i+1[

(UL)−1
]
i+1,i

[
(UL)−1

]
i+1,i+1


 , i = 1, . . . , n − 1,

when we apply triple dqds.

The first lemma gives the expression for entries (i−2, i), (i−1, i) and (i, i) of
(
F (i)G(i)

)−1

that will be used to obtain the diagonal of (UL)−1. See page 179 for recalling the properties

of the matrices F (i) and G(i).

Lemma 6.3.10 Consider F (i) and G(i) at the beginning of minor step i, i = 1, . . . , n, when

we apply tridqds algorithm to L and U . If U is invertible then

[(
F (i)G(i)

)−1
]

ii

=
1

diui
, i = 1, . . . , n (6.25)

[(
F (i)G(i)

)−1
]

i−1,i

= − 1

diuiûi−1
, i = 2, . . . , n (6.26)

[(
F (i)G(i)

)−1
]

i−2,i

=
1

diuiûi−1ûi−2
, i = 3, . . . , n (6.27)

Proof. We start by using the interesting fact that row i of G(i) and column i of F (i) are

singletons (see (6.17)). We have, for i = 1, . . . , n,

F (i)ei = uiei and eT
i G(i) = die

T
i

and, equivalently,

u−1
i ei =

(
F (i)

)−1
ei and d−1

i eT
i = eT

i

(
G(i)

)−1
.



205

Therefore,
[(

F (i)G(i)
)−1

]

ii

= eT
i

[(
F (i)G(i)

)−1
]

ei

=

[
eT

i

(
G(i)

)−1
] [(

F (i)
)−1

ei

]

= d−1
i eT

i u−1
i ei

=
1

diui
.

Analogously, for i = 2, . . . , n, we can write
[(

F (i)G(i)
)−1

]

i−1,i

= eT
i−1

[(
F (i)G(i)

)−1
]

ei

=

[
eT

i−1

(
G(i)

)−1
] [(

F (i)
)−1

ei

]

=

[
eT

i−1

(
G(i)

)−1
]

u−1
i ei. (6.28)

But now row (i − 1) of G(i) is not a singleton. We have

eT
i−1

(
G(i)

)
= ûi−1e

T
i−1 + eT

i .

Then

eT
i−1 = (ûi−1e

T
i−1 + eT

i )
(
G(i)

)−1

= ûi−1e
T
i−1

(
G(i)

)−1
+ eT

i

(
G(i)

)−1

= ûi−1e
T
i−1

(
G(i)

)−1
+ d−1

i eT
i .

And

eT
i−1

(
G(i)

)−1
=

(
eT

i−1 − d−1
i eT

i

)
û−1

i−1. (6.29)

Thus, from (6.28), we get
[(

F (i)G(i)
)−1

]

i−1,i

=
[(

eT
i−1 − d−1

i eT
i

)
û−1

i−1

]
u−1

i ei

= −d−1
i û−1

i−1u
−1
i

= − 1

diuiûi−1
,
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as we wanted to show.

Finally, for i = 3, . . . , n,

[(
F (i)G(i)

)−1
]

i−2,i

= eT
i−2

[(
F (i)G(i)

)−1
]

ei

=

[
eT

i−2

(
G(i)

)−1
] [(

F (i)
)−1

ei

]

=

[
eT

i−2

(
G(i)

)−1
]

u−1
i ei. (6.30)

We have

eT
i−2

(
G(i)

)
= ûi−2e

T
i−2 + eT

i−1 (6.31)

and then

eT
i−2

(
G(i)

)−1
=

(
eT

i−2 − eT
i−1

(
G(i)

)−1
)

û−1
i−2

=
[
eT

i−2 −
(
eT

i−1 − d−1
i eT

i

)
û−1

i−1

]
û−1

i−2. (6.32)

From (6.30) we get

[(
F (i)G(i)

)−1
]

i−2,i

=
[
eT

i−2 −
(
eT

i−1 − d−1
i eT

i

)
û−1

i−1

]
û−1

i−2u
−1
i ei

= d−1
i û−1

i−1û
−1
i−2u

−1
i

=
1

diuiûi−1ûi−2
. ¤

The next theorem gives the expression for the diagonal of (UL)−1.

In (6.16) we already saw that

F (i)G(i) =
(
L−1

i−1 . . .L−1
2 L−1

1

)
(UL) (L1L2 . . .Li−1)

=
(
L1L2 . . .Li−1)

−1(UL)(L1L2 . . .Li−1

)
.

Then

UL = (L1L2 . . .Li−1)F
(i)G(i)(L1L2 . . .Li−1)

−1.
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and

(UL)−1 = (L1L2 . . .Li−1)
(
F (i)G(i)

)−1
(L1L2 . . .Li−1)

−1. (6.33)

Theorem 6.3.2 Consider L and U as described in (6.1). If U is invertible and tridqds

algorithm applied to L and U is successful, then the quantities di, f i−1
1 and f i−1

2 generated

by the algorithm satisfy

[
(UL)−1

]
1,1

=
1

d1u1

[
(UL)−1

]
2,2

=
1

d2u2

(
1 − f0

1

û1

)

[
(UL)−1

]
3,3

=
1

d3u3

(
1 − f1

1

l̂1û2

+
f0
2

û2û1

)

[
(UL)−1

]
i,i

=
1

diui

(
1 − f i−2

1

l̂i−2ûi−1

+
f i−3
2

l̂i−3ûi−1ûi−2

)
, i = 4, . . . , n.

Proof. Using (6.19), (6.20) and (6.33), for i = 4, . . . , n,

[
(UL)−1

]
i,i

= eT
i

[
(UL)−1

]
ei

= eT
i (L1L2 . . .Li−1)

(
F (i)G(i)

)−1
(L1L2 . . .Li−1)

−1ei

=
[
eT

i (L1L2 . . .Li−1)
] [(

F (i)G(i)
)−1

ei

]

=
[
0 . . . 0 hi−2

2 hi−1
1 1 0 . . . 0

] [(
F (i)G(i)

)−1
ei

]

= (hi−2
2 eT

i−2 + hi−1
1 eT

i−1 + eT
i )

[(
F (i)G(i)

)−1
ei

]

= hi−2
2 eT

i−2

(
F (i)G(i)

)−1
ei + hi−1

1 eT
i−1

(
F (i)G(i)

)−1
ei + eT

i

(
F (i)G(i)

)−1
ei

= hi−2
2

[(
F (i)G(i)

)−1
]

i−2,i

+ hi−1
1

[(
F (i)G(i)

)−1
]

i−1,i

+

[(
F (i)G(i)

)−1
]

i,i

.

Using lemma 6.3.10 yields

[
(UL)−1

]
i,i

=
hi−2

2

diuiûi−1ûi−2
− hi−1

1

diuiûi−1
+

1

diui

=
1

diui

(
1 − hi−1

1

ûi−1
+

hi−2
2

ûi−1ûi−2

)
. (6.34)



208

Finally, by lemma 6.3.1, we have

hi−1
1 = f i−2

1 /l̂i−2 and hi−2
2 = f i−3

2 /l̂i−3,

and then
[
(UL)−1

]
i,i

=
1

diui

(
1 − f i−2

1

l̂i−2ûi−1

+
f i−3
2

l̂i−3ûi−1ûi−2

)
.

Now let us see the cases i = 1, 2, 3. By lemma 6.3.10, we have

[
(UL)−1

]
1,1

=

[(
F (1)G(1)

)−1
]

11

=
1

d1u1
.

For i = 2, using lemmas 6.3.10 and 6.3.1 again,

[
(UL)−1

]
2,2

= eT
2

[
(UL)−1

]
e2

= eT
2 L1

(
F (2)G(2)

)−1
L−1

1 e2

= eT
2 L1

[(
F (2)G(2)

)−1
e2

]

=
[
h1

1 1 0 . . . 0
] [(

F (2)G(2)
)−1

e2

]

=
(
h1

1e
T
1 + eT

2

) [(
F (2)G(2)

)−1
e2

]

= h1
1e

T
1

(
F (2)G(2)

)−1
e2 + eT

2

(
F (2)G(2)

)−1
e2

= h1
1

[(
F (2)G(2)

)−1
]

1,2

+

[(
F (2)G(2)

)−1
]

2,2

= − h1
1

d2u2û1
+

1

d2u2

=
1

d2u2

(
1 − f0

1

û1

)
.

Finally, for i = 3, (6.34) also yields,

[
(UL)−1

]
3,3

=
1

d3u3

(
1 − h2

1

û2
+

h1
2

û2û1

)
,

and by lemma 6.3.1 we have

h2
1 = f1

1 /l̂1 and h1
2 = f0

2 .
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So,

[
(UL)−1

]
3,3

=
1

d3u3

(
1 − f1

1

l̂1û2

+
f0
2

û2û1

)
. ¤

Next lemma will drive us to the off-diagonal elements of (UL)−1.

Lemma 6.3.11 Consider F (i) and G(i) at the beginning of minor step i, i = 1, . . . , n, when

we apply tridqds algorithm to L and U . If U is invertible then

[(
F (i)G(i)

)−1
]

i+1,i

= − gi
1

diui
, i = 1, . . . , n − 1

[(
F (i)G(i)

)−1
]

i,i+1

= − 1

diuiui+1
, i = 1, . . . , n − 1

[(
F (i)G(i)

)−1
]

i−1,i+1

=
1

diuiui+1ûi−1
, i = 2, . . . , n − 1

[(
F (i)G(i)

)−1
]

i−2,i+1

= − 1

diuiui+1ûi−1ûi−2
, i = 3, . . . , n − 1

Proof. For i = 1, . . . , n − 1, we can write

[(
F (i)G(i)

)−1
]

i+1,i

= eT
i+1

[(
F (i)G(i)

)−1
]

ei

=

[
eT

i+1

(
G(i)

)−1
] [(

F (i)
)−1

ei

]
(6.35)

We already know that

u−1
i ei =

(
F (i)

)−1
ei and d−1

i eT
i = eT

i

(
G(i)

)−1
,

and for row (i + 1) of G(i) we have

eT
i+1

(
G(i)

)
= gi

1e
T
i + eT

i+1.
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Then

eT
i+1 =

(
gi
1e

T
i + eT

i+1

) (
G(i)

)−1

= gi
1e

T
i

(
G(i)

)−1
+ eT

i+1

(
G(i)

)−1

= gi
1d

−1
i eT

i + eT
i+1

(
G(i)

)−1
.

And

eT
i+1

(
G(i)

)−1
= eT

i+1 − gi
1d

−1
i eT

i .

Thus, from (6.35) we get
[(

F (i)G(i)
)−1

]

i+1,i

=
(
eT

i+1 − gi
1d

−1
i eT

i

)
u−1

i ei

= − gi
1

diui
.

For i = 1, . . . , n − 1, we have
[(

F (i)G(i)
)−1

]

i,i+1

= eT
i

[(
F (i)G(i)

)−1
]

ei+1

=

[
eT

i

(
G(i)

)−1
] [(

F (i)
)−1

ei+1

]

= d−1
i eT

i

[(
F (i)

)−1
ei+1

]
. (6.36)

Column (i + 1) of F (i) is
(
F (i)

)
ei+1 = ei + ui+1ei+1.

Then

ei+1 =
(
F (i)

)−1
ei + ui+1

(
F (i)

)−1
ei+1 = u−1

i ei + ui+1

(
F (i)

)−1
ei+1,

which gives

(
F (i)

)−1
ei+1 = (ei+1 − u−1

i ei)u
−1
i+1. (6.37)

Thus, from (6.36), we get
[(

F (i)G(i)
)−1

]

i,i+1

= d−1
i eT

i (ei+1 − u−1
i ei)u

−1
i+1

= − 1

diuiui+1
.
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For i = 2, . . . , n − 1, using (6.29) and (6.37), we have

[(
F (i)G(i)

)−1
]

i−1,i+1

= eT
i−1

[(
F (i)G(i)

)−1
]

ei+1

=

[
eT

i−1

(
G(i)

)−1
] [(

F (i)
)−1

ei+1

]

=
(
eT

i−1 − d−1
i eT

i

)
û−1

i−1

(
ei+1 − u−1

i ei

)
u−1

i+1

=
1

diuiui+1ûi−1
.

Finally, for i = 3, . . . , n − 1, using (6.32) and (6.37) gives

[(
F (i)G(i)

)−1
]

i−2,i+1

= eT
i−2

[(
F (i)G(i)

)−1
]

ei+1

=

[
eT

i−2

(
G(i)

)−1
] [(

F (i)
)−1

ei+1

]

=
([

eT
i−2 −

(
eT

i−1 − d−1
i eT

i

)
û−1

i−1

]
û−1

i−2

)
(ei+1 − u−1

i ei)u
−1
i+1

= − 1

diuiui+1ûi−1ûi−2
. ¤

Next theorem give the entries (i, i + 1) of (UL)−1, i = 1, . . . , n − 1.

Theorem 6.3.3 Consider L and U as described in (6.1). If U is invertible and tridqds

algorithm applied to L and U is successful, then the quantities di, f i−1
1 and f i−1

2 generated

by the algorithm satisfy

[
(UL)−1

]
1,2

= − 1

d1u1u2
,

[
(UL)−1

]
2,3

= − 1

d2u2u3

(
1 − f0

1

û1

)
,

[
(UL)−1

]
3,4

= − 1

d3u3u4

(
1 − f1

1

l̂1û2

+
f0
2

û2û1

)
,

[
(UL)−1

]
i,i+1

= − 1

diuiui+1

(
1 − f i−2

1

l̂i−2ûi−1

+
f i−3
2

l̂i−3ûi−1ûi−2

)
, i = 4, . . . , n − 1.
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Proof. Using (6.19), (6.20) and (6.33), for i = 4, . . . , n,

[
(UL)−1

]
i,i+1

= eT
i

[
(UL)−1

]
ei+1

= eT
i (L1L2 . . .Li−1)

(
F (i)G(i)

)−1
(L1L2 . . .Li−1)

−1ei+1

=
[
eT

i (L1L2 . . .Li−1)
] [(

F (i)G(i)
)−1

ei+1

]

=
[
0 . . . 0 hi−2

2 hi−1
1 1 0 . . . 0

] [(
F (i)G(i)

)−1
ei+1

]

= (hi−2
2 eT

i−2 + hi−1
1 eT

i−1 + eT
i )

[(
F (i)G(i)

)−1
ei+1

]

= hi−2
2 eT

i−2

(
F (i)G(i)

)−1
ei+1 + hi−1

1 eT
i−1

(
F (i)G(i)

)−1
ei+1 + eT

i

(
F (i)G(i)

)−1
ei+1

= hi−2
2

[(
F (i)G(i)

)−1
]

i−2,i+1

+ hi−1
1

[(
F (i)G(i)

)−1
]

i−1,i+1

+

[(
F (i)G(i)

)−1
]

i,i+1

.

Using lemma 6.3.11 yields

[
(UL)−1

]
i,i+1

= − hi−2
2

diuiui+1ûi−1ûi−2
+

hi−1
1

diuiui+1ûi−1
− 1

diuiui+1

= − 1

diuiui+1

(
1 − hi−1

1

ûi−1
+

hi−2
2

ûi−1ûi−2

)
. (6.38)

Finally, by lemma 6.3.1, we have

hi−1
1 = f i−2

1 /l̂i−2 and hi−2
2 = f i−3

2 /l̂i−3,

and then

[
(UL)−1

]
i,i+1

= − 1

diuiui+1

(
1 − f i−2

1

l̂i−2ûi−1

+
f i−3
2

l̂i−3ûi−1ûi−2

)
.

Now let us see the cases i = 1, 2, 3. Using lemma 6.3.11, we have

[
(UL)−1

]
1,2

=

[(
F 1G(1)

)−1
]

1,2

= − 1

d1u1u2
.
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For i = 2, lemmas 6.3.11 and 6.3.1 give

[
(UL)−1

]
2,3

= eT
2

[
(UL)−1

]
e3

= eT
2 L1

(
F (2)G(2)

)−1
L−1

1 e3

= eT
2 L1

[(
F (2)G(2)

)−1
e3

]

=
[
h1

1 1 0 . . . 0
] [(

F (2)G(2)
)−1

e3

]

=
(
h1

1e
T
1 + eT

2

) [(
F (2)G(2)

)−1
e3

]

= h1
1e

T
1

(
F (2)G(2)

)−1
e3 + eT

2

(
F (2)G(2)

)−1
e3

= h1
1

[(
F (2)G(2)

)−1
]

1,3

+

[(
F (2)G(2)

)−1
]

2,3

=
h1

1

d2u2u3û1
− 1

d2u2u3

= − 1

d2u2u3

(
1 − f0

1

û1

)
.

Finally, for i = 3, (6.38) also yields,

[
(UL)−1

]
3,4

= − 1

d3u3u4

(
1 − h2

1

û2
+

h1
2

û2û1

)

= − 1

d3u3u4

(
1 − f1

1

l̂1û2

+
f0
2

û2û1

)
,

since by lemma 6.3.1 we have

h2
1 = f1

1 /l̂1 and h1
2 = f0

2 . ¤

Finally the entries (i + 1, i) of (UL)−1, i = 1, . . . , n − 1.

Theorem 6.3.4 Consider L and U as described in (6.1). If U is invertible and tridqds

algorithm applied to L and U is successful, then the quantities di, f i−1
1 , f i−1

2 and gi
1 generated
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by the algorithm satisfy

[
(UL)−1

]
2,1

= − 1

d1u1
g1
1,

[
(UL)−1

]
3,2

= − 1

d2u2

(
g2
1 +

f0
2

û1

)
,

[
(UL)−1

]
i+1,i

= − 1

diui

(
gi
1 +

f i−2
2

l̂i−2ûi−1

)
, i = 3, . . . , n − 1.

Proof. Using (6.19), (6.20) and (6.33), for i = 3, . . . , n,

[
(UL)−1

]
i+1,i

= eT
i+1

[
(UL)−1

]
ei

= eT
i+1(L1L2 . . .Li−1)

(
F (i)G(i)

)−1
(L1L2 . . .Li−1)

−1ei (6.39)

=
[
eT

i+1(L1L2 . . .Li−1)
] [(

F (i)G(i)
)−1

ei

]

=
[
0 . . . 0 0 hi−1

2 0 1 . . . 0
] [(

F (i)G(i)
)−1

ei

]

=
(
hi−1

2 eT
i−1 + eT

i+1

) [(
F (i)G(i)

)−1
ei

]

= hi−1
2 eT

i−1

(
F (i)G(i)

)−1
ei + eT

i+1

(
F (i)G(i)

)−1
ei

= hi−1
2

[(
F (i)G(i)

)−1
]

i−1,i

+

[(
F (i)G(i)

)−1
]

i+1,i

. (6.40)

Using lemmas 6.3.10, 6.3.11 and 6.3.1,

[
(UL)−1

]
i+1,i

= − hi−1
2

diuiûi−1
− gi

1

diui

= − 1

diui

(
gi
1 +

hi−1
2

ûi−1

)

= − 1

diui

(
gi
1 +

f i−2
2

l̂i−2ûi−1

)
.

For i = 2, (6.40) also holds,

[
(UL)−1

]
3,2

= h1
2

[(
F (i)G(i)

)−1
]

1,2

+

[(
F (i)G(i)

)−1
]

3,2

.
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Again, using lemmas 6.3.10, 6.3.11 and 6.3.1,

[
(UL)−1

]
3,2

= − h1
2

d2u2û1
− g2

1

d2u2

= − 1

d2u2

(
g2
1 +

h1
2

û1

)

= − 1

d2u2

(
g2
1 +

f0
2

û1

)
.

Finally, for i = 1, by lemma 6.3.11,

[
(UL)−1

]
2,1

=

[(
F 1G(1)

)−1
]

2,1

= − g1
1

d1u1
. ¤

Finally, theorems 6.3.2, 6.3.3 and 6.3.4 together give the entries for the matrix

[
(UL)−1

]
i:i+1,i:i+1

=




αi γi

βi αi+1


 , i = 1, . . . , n − 1,

where

αi :=
[
(UL)−1

]
i,i

, γi :=
[
(UL)−1

]
i,i+1

βi :=
[
(UL)−1

]
i+1,i

, αi+1 :=
[
(UL)−1

]
i+1,i+1

.

Theorem 6.3.5 Given the notation above, for i = 4, . . . , n − 1, we have

αi =
1 − ai

diui
, γi = − 1 − ai

diuiui+1

βi = − 1

diui

(
gi
1 +

f i−2
2

l̂i−2ûi−1

)
, αi+1 =

1 − ai+1

di+1ui+1
,

where ai =
f i−2
1

l̂i−2ûi−1

+
f i−3
2

l̂i−3ûi−1ûi−2

.

Proof. Use theorems 6.3.4, 6.3.3 and 6.3.2. ¤





Chapter 7

Implementation details and

numerical examples

The implementation of 3dqds and all our numerical experiments were carried out in

Matlab 7.2.0.232 (R2006a) on a Pentium M 1.6GHz machine under Windows XP. All

our computations were done in IEEE standard floating point arithmetic using double

precision arithmetic with unit roundoff ε = 2−53 ≈ 1.1× 10−16. We used the advantages of

the exception handling feature incorporated in this arithmetic.

In what follows eigval refers to our function to obtain the eigenvalues of an unreduced

real tridiagonal matrix using 3dqds and eig to MATLAB’s function which uses Lapack [2]

routines that implement the QR algorithm on Hessenberg matrices. We report comparative

results on carefully chosen tridiagonal matrices for test purposes: Bessel, Toeplitz, Clement,

Liu’s and symmetric matrices. We also present the first numerical results for a comparative

study of some of the condition numbers presented in Chapter 2.
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7.1 Implementation details

Next sections describe some of the details we had to consider in our implementation of eigval

function. They are concerned with the shift strategy, the stopping criterion for deflation,

the tolerance for element growth in 3dqds code, the need to choose a different shift after a

failure and the possibility that the initial LU factorization of the J form of the input matrix

C does not exist.

7.1.1 Choosing a shift for 3dqds

Consider matrices L and U as described in (6.1), page 166, and remember that the shift

information for 3dqds is coded in the first column of (UL)2 − 2(ℜσ)UL + |σ|2I that, for a

shift σ, is given by 


(u1 + l1)
2 + u2l1 − 2(ℜσ)(u1 + l1) + |σ|2

u2l1(u1 + l1 + u2 + l2 − 2(ℜσ))

u2l1u3l2

0
...

0




.

So, to completely specify one iteration of 3dqds we need

2(ℜσ) = σ + σ and |σ|2 = σσ.

Since 3dqds is a restoring shift transformation, in the case of a real eigenvalue, a reasonable

choice of a single shift is the (n, n) element of UkLk, where Lk and Uk are the factors

obtained after the kth iteration. The generalization for double shifting is to use the Francis

shift, which means that σ and σ̄ are the eigenvalues of the bottom 2 × 2 corner of UkLk,

ln−1 + un−1 1

unln−1 un


 . (7.1)

This will let us converge to either two real eigenvalues in the bottom 2× 2 or a single 2× 2

block with complex conjugate eigenvalues. When we are close to convergence, we expect
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the (n− 1, n− 2) entry, and possibly the (n, n− 1) entry, to be tiny so that the eigenvalues

of this 2 × 2 submatrix are good approximations to eigenvalues of J .

If σ and σ̄ are the eigenvalues of (7.1) then

σ + σ̄ = ln−1 + un−1 + un =: Sum

σσ̄ = unun−1 =: Prod

and Sum and Prod will be the shift information given to 3dqds. When the (n, n − 1) entry

is negligible, then un will be an approximation for a real eigenvalue of J . If not, and if the

(n − 1, n − 2) entry is negligible then

σ1 =
1

2

(
Sum +

√
Sum2 −4 Prod

)

σ2 = Prod /σ1

will be the approximations to the eigenvalues of the 2× 2 corner block which may be both

real or complex conjugate. Then deflation takes place and the algorithm proceeds with the

remaining submatrix until approximations to all eigenvalues are found.

In our present shift strategy, each time deflation occurs, we may choose to use first zero

shifts (Sum = 0 and Prod = 0) until ln−1 or ln−2 is small, and only then switch to the

Francis shift. In general, this procedure improves convergence.

7.1.2 Criterion for deflation

Since we expect UkLk to converge to a quasi-bidiagonal form, we use only tests to decide

when ln−1 or ln−2 is negligible. These tests are performed before a 3dqds transformation

takes place (not after) and consist in verifying if

|ln−1| < TolDef or |ln−2| < TolDef

for a given tolerance TolDef . If we choose TolDef = ε, it may be too severe and it will

take more time to converge; if we relax too much, we will converge faster but we may loose

accuracy seriously. So, we must find a compromise between the speed of convergence and
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the accuracy we want to attain. By default, in our experiments we used TolDef = ε since

we were mainly concerned with accuracy. This is the most crucial parameter and needs

more study.

7.1.3 Tolerance for element growth

The LU transformation fails when zero pivots do occur. Furthermore, for reasons of

numerical stability, we do not accept the result of a particular transformation if, in conse-

quence of the occurrence of pivots of very small size, elements of excessive size do appear in

L or U factors. For this reason, we monitor the element growth and reject L and U when

max
i

|li| > TolGrowth ‖J‖ or max
i

|ui| > TolGrowth ‖J‖

for a given tolerance TolGrowth. When this happens, we signal a breakdown but it must be

emphasized that is not a dramatic situation since we may recover. It is just a transformation

whose result is neglected.

If we allow less element growth, we will have more breakdowns and it will take more

time to converge. Allowing huge element growth will imply less accuracy. Again, there must

be a trade-off between element growth and accuracy. Usually we let TolGrowth = 1/
√

ε.

The possibility of dealing with divisions by zero in IEEE arithmetic allows 3dqds trans-

formation to be carried out till the very end, even when a pivot is zero or too small.

Comparison of the size of the new values of li and ui with TolGrowth ‖J‖ is only performed

at the end of a transformation.

7.1.4 The shift after a failure

After a failure, there is the question of what shift to use next. We don’t want to move away

from the previous shift too much, just the necessary amount so that the 3dqds transforma-

tion does not breakdown. We also have to admit the possibility of a succession of failures.
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So, while we do not have a successful transformation we will repeat the following

if Prod 6= 0

Sum = (1 + δ) ∗ Sum

Prod = (1 + δ)2 ∗ Prod

δ = 2 ∗ δ

else

small =
√

ε ∗ local

Sum = 2 ∗ small

Prod = small2

end if

where “local” is a local norm and, initially, we let δ =
√

ε. This procedure forces to define

a limited number of failures allowed.

7.1.5 Initial LU factorization

The J form of C may not have an LU factorization. In this case we must choose an initial

shift τ so that the factorization

J − τI = LU

is possible and the 3dqds transform may start. Initially, we let τ = θ, for a small θ, and

then, if we are still not successful, we increase τ by θ until we have success. In the end τ

must be added to the approximations given by eigval. But this choice needs more thought

because it seems to affect the accuracy more than we expected.

7.2 Numerical examples

In the figures containing the plots of the computed eigenvalues that are presented in this

section, the results obtained with eig are represented by a plus sign and the ones provided

by eigval are represented with a big dot.
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7.2.1 Bessel matrices

Bessel matrices, associated with generalized Bessel polynomials (see section 1.3.2, page 22),

are nonsymmetric tridiagonals matrices defined by B
(a,b)
n = tridiag(β(a,b), α(a,b), γ(a,b)) with

α
(a,b)
1 = −a

b
, γ

(a,b)
1 = −α

(a,b)
1 , β

(a,b)
1 =

α
(a,b)
1

a + 1
,

and

α
(a,b)
j := −b

a − 2

(2j + a − 2)(2j + a − 4)
, j = 2, . . . , n,

γ
(a,b)
j := b

j + a − 2

(2j + a − 2)(2j + a − 3)
,

β
(a,b)
j := −b

j

(2j + a − 1)(2j + a − 2)
, j = 2, . . . , n − 1.

All the eigenvalues are simple and below we report three theorems from [44] that contain

information about the localization of these eigenvalues. These theorems apply to the cases

a ∈ R, n > 1 − a, b = 2. (7.2)

Theorem 7.2.1 Let the condition (7.2) be satisfied. Also let n ≥ 1. Then all the eigen-

values of B
(a,b)
n lie in the cardioil region

C(n, a) :=

{
z = ρ eiθ ∈ C : 0 < ρ <

1 − cos θ

n + a − 1

}
∪

{ −2

n + a − 1

}
.

Theorem 7.2.2 Let the condition (7.2) be satisfied. Also let n ≥ 2. Then all the eigen-

values of B
(a,b)
n belong to the sector

S(n, a) :=

{
z = ρ eiθ ∈ C : |θ| > cos−1

( −a

2n + a − 2

)
, −π < θ ≤ π

}
.

Theorem 7.2.3 Let the condition (7.2) be satisfied. Also let n ≥ 1. Then all the eigen-

values of B
(a,b)
n belong to the infinite region

I(n, a) :=

{
z ∈ C : |z| >

2

2n + a − 2
3

}
.
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Thus, the eigenvalues of the matrix B
(a,b)
n lie in the intersection of the inclusion

regions defined by the sets C(n, a), S(n, a) and I(n, a). But these eigenvalues suffer from

ill-conditioning that increases with n. Matrices B
(a,b)
n are close to defective matrices.

Figure 7.1 shows, along with the inclusion regions defined above, the results obtained

with Matlab function eig (plus sign) and with eigval (big dot) for the classical case

a = b = 2, for n = 30 and n = 40. As n increases, computed eigenvalues even fail to

belong to the inclusion regions. But the answers of eigval are usually better.

−0.06 −0.04 −0.02 0 0.02 0.04

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03
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Bessel matrix

(a) n = 30

−0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Bessel matrix

(b) n = 40

Figure 7.1: Bessel matrix with a = 2 and b = 2

In [44] it is mentioned that the ill-conditining seems to reach its maximum when a ranges

from −8.5 to −4.5. We also report the cases a = −8.5, b = 2 (for n = 18 and n = 25),

a = −4.5, b = 2 (for n = 20 and n = 25) and a = 12, b = 2 (for n = 40 and n = 50). See

Figure 7.2. The number of iterations needed for eigval to converge is approximately equal

to 2n.

Bessel matrices are notoriously difficult. There is an interesting phenomenon of bifur-

cation in the eigenvalues computed by both algorithms and the regularity, in spite of the

presence of ill-conditioning, is quite interesting. The approximations given by eigval follow

the same pattern as the ones given by Matlab but seem to be better. As n increases the

huge deviation from the expected curve is not due to element growth - it rarely occurred.
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Figure 7.2: Bessel matrices with a = −8.5, b = 2; a = −4.5, b = 2 and a = 12, b = 2
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Condition numbers

For a simple eigenvalue λ 6= 0 of a given matrix A, redefine now κλ as the Wilkinson’s

relative condition number for λ (see section 1.2.3, page 14), that is,

κλ(A) ≡ ‖y∗‖ ‖x‖
|λ||y∗x|

For J = LU the relative condition numbers (see section 2.4.2, page 44)

relcond1(λ;LU) =
|y|T M1|x|
|y∗x||λ|

and

relcond2(λ; LU) =
|y|T (v + w)

|y∗x|
give the sensitivity of eigenvalues to perturbations in the entries of the factors L and U .

In Table 7.1 we display the condition number κλ for B
(a,b)
n with a = −4.5, b = 2 and

n = 20, and for the corresponding J form. We also display the condition numbers relcond1

and relcond2 for the LU representation of J . It may be seen that, although the eigenvalues

are much more sensitive to perturbations in J than to perturbations in B
(a,b)
n , the situation

improves significantly in the L,U representation, that is, these factors define the eigenvalues

not only much better than J does but, also, they define better the eigenvalues than B
(a,b)
n

itself.

The eigenvectors we used to produce these numbers were the eigenvectors delivered by

eig function of Matlab.

7.2.2 Clement matrices

The so-called Clement matrix (see [4])

Cn = tridiag(β,0, γ)

with γ = (γj), γj = j and β = (βj), βj = γn−j , j = 1, . . . , n − 1, has exact eigenvalues

± n − 1, n − 3, . . . , 1, for n even,

± n − 1, n − 3, . . . , 0, for n odd.
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λ κλ(B) κλ(J) relcond1(λ;LU) relcond2(λ;LU)

−3.8 10−3 −6.7 10−2i 6 108 3 1022 3 105 6 105

−3.8 10−3 +6.7 10−2i 6 108 4 1022 5 105 9 105

−7.1 10−2 −1.6 10−2i 5 1010 4 1025 5 105 10 105

−7.1 10−2 +1.6 10−2i 5 1010 4 1025 3 106 10 106

−1.9 10−2 −7.2 10−2i 1 1014 3 1023 3 106 2 106

−1.9 10−2 +7.2 10−2i 1 1014 3 1023 9 108 1 108

−3.4 10−2 −7.2 10−2i 1 1014 2 1024 8 108 1 108

−3.4 10−2 +7.2 10−2i 1 1012 2 1024 3 1010 3 109

−6.5 10−2 −4.6 10−2i 1 1012 3 1025 3 1010 2 109

−6.5 10−2 +4.6 10−2i 1 1014 3 1025 10 1010 6 109

−4.7 10−2 −6.9 10−2i 1 1014 6 1024 10 1010 7 109

−4.7 10−2 +6.9 10−2i 1 1013 6 1024 5 1011 3 1010

−6.0 10−2 −6.6 10−2i 1 1013 9 1024 4 1011 3 1010

−6.0 10−2 +6.6 10−2i 1 1014 9 1024 1 1012 9 1010

−8.0 10−2 −5.9 10−2i 1 1014 4 1024 1 1012 8 1010

−8.0 10−2 +5.9 10−2i 1 1014 4 1024 3 1012 2 1011

−1.0 10−1 −4.3 10−2i 1 1014 1 1024 2 1012 1 1011

−1.0 10−1 +4.3 10−2i 2 1014 1 1024 3 1012 2 1011

−1.2 10−1 −1.6 10−2i 2 1014 5 1023 2 1012 2 1011

−1.2 10−1 +1.6 10−2i 2 1014 5 1023 2 1012 1 1011

Table 7.1: Relative condition numbers for the eigenvalues of B
(−4.5,2)
20
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Figure 7.3 illustrates the results of both algorithms for the Clement matrices with

n = 150 and n = 200. All the approximations given by eigval are real while the ap-

proximations obtained with Matlab have large imaginary parts.
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(b) n = 200

Figure 7.3: Clement matrix

Table 7.2 shows the largest and the smallest Wilkinson’s relative condition number,

κmax ≡ maxλ κλ(Cn) and κmin ≡ minλ κλ(Cn), and also the largest and smallest of the

relative condition number relcond1(λ;LU), maxrelcond1
and minrelcond1

, respectively.

n κmax κmin maxrelcond1
minrelcond1

150 3.5 1020 1.0 104 6.4 104 2.8 101

200 1.2 1028 2.3 1011 2.3 104 2.3 101

Table 7.2: Relative condition numbers for the Clement matrix

The minimum and maximum relative errors, relmin and relmax, respectively, for n = 150

and n = 200, as well as for n = 300 and n = 450, are presented in Table 7.3. When n

increases almost all the approximations given by Matlab exhibit significantly high relative

errors, while with eigval we can consider that all the approximations produced have satis-

factory relative accuracy.
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eigval eig

n relmin relmax relmin relmax

150 7.8 10−12 8.1 10−9 3.2 10−15 7.8 101

200 1.2 10−11 6.4 10−9 2.9 10−16 1.1 102

300 3.6 10−11 1.1 10−8 6.6 10−3 1.7 102

450 4.5 10−12 1.8 10−8 4.5 10−3 2.6 102

Table 7.3: Relative errors for the Clement matrix

Matlab function eig does not detect that Clement matrices are symmetrizable matri-

ces. Our function eigval gives much better results than eig, almost as good as the ones

Matlab delivers if we give as input a symmetric matrix similar to Cn.

7.2.3 Liu’s matrices

Z. S. Liu [31] devised an algorithm to obtain one-point spectrum unreduced tridiagonal

matrices of arbitrary dimension n × n. These matrices, that we already introduced in

Chapter 4 and called Liu’s matrices, have only one eigenvalue, zero with multiplicity n, and

the Jordan form consists of one Jordan block. We represent Liu’s matrices as

Liun = tridiag(1n, αn, γn)

where 1n always stands for a vector of 1’s of length n − 1. Notice that the transpose of

Liun is already in J form.

We considered Liun for n = 6,

Liu6 =




0 −1

1 0 1

1 −1 −1

1 1 1

1 0 −1

1 0




,
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for n = 14,

α14 = [0 0 0 0 0 0 − 1 1 0 0 0 0 0 0]T

γ14 = [−1 1 1 − 1 1 − 1 − 1 − 1 1 − 1 1 1 − 1]T ,

and for n = 28,

α28 = [0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0, 0]T

γ28 = [−1, 1, 1,−1, 1,−1,−1,−1, 1,−1, 1, 1,−1,−1,−1, 1, 1,−1, 1,−1,−1,−1, 1,−1, 1, 1,−1]T .

Now a note on perturbation theory for multiple eigenvalues. Consider the example of

perturbing by ǫ the (n, 1) entry of an n × n Jordan block. Let

C̃ =




0 1

. . .
. . .

. . . 1

ǫ 0




.

Then the characteristic equation changes from λn = 0 to λn−ǫ = 0. So the eigenvalues of the

perturbed matrix C̃ are the n possible complex roots of ǫ, λk = n
√

ǫ ei
2kπ
n , k = 0, . . . , n− 1.

The nth root of ǫ grows much faster than any multiple of ǫ for small ǫ. More formally, the

condition number of a multiple eigenvalue is infinite because at ǫ = 0, for n ≥ 2,

dλ

dǫ
=

1

nǫ1−
1

n

= ∞.

For example, if we take n = 16 and ǫ = 10−16, then for each eigenvalue λk, we have

|λk| = 0.1, a change 1015 times greater than ǫ. However, having an infinite condition

number does not mean that the eigenvalues cannot be computed with any correct digits.

The more apart from the diagonal entries the perturbations occur, the worse the effect

on the eigenvalues seems to be. So, we decided to show our numerical results together with

the circles |z| = n
√

ε where ε is the unit roundoff. If the approximations are inside this circle

we may consider the results good enough, since they are not worse than the ones that we

would get in exact arithmetic for the Jordan block similar to Liu’s matrix perturbing by ε

the (1, n) entry .
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The results we obtained with eigval and eig for n = 6, n = 14 and n = 28 are shown in

the following figures.
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Figure 7.4: Liu’s matrices

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

y

Liu’s matrix

Figure 7.5: Liu’s matrix for n = 28

The accuracy of our approximations is slightly better than the accuracy of those provided

by Matlab and the convergence is surprisingly quick. The number of iterations needed for

eigval to converge is less than 2n.
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7.2.4 Toeplitz matrices

A tridiagonal Toeplitz matrix has the form

Tn =




a c

b a c

. . .
. . .

. . .

b a c

b a




.

Such matrices arise, for example, when discretizing partial differential equations or boundary

value problems for ordinary differential equations [Higham, p.522] . The eigenvalues are

known explicitly:

a + 2(bc)1/2 cos

(
kπ

n + 1

)
, k = 1, . . . , n.

If bc < 0 then the exact eigenvalues are complex with real part equal to a.

We first show the results for T50 and T80 with a = 1, b = 2 and c = −1. In Figure 7.6

we also represent the exact solutions with a times sign (×). For an exact eigenvalue λ and

an approximation λ̂ we do not represent λ or λ̂ but λ − a and λ̂ − a.
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Figure 7.6: Toeplitz matrix with a = 1, b = 2 and c = −1
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We also show the results for n = 150 and n = 200.
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Figure 7.7: Toeplitz matrix with a = 1, b = 2 and c = −1

The accuracy of the approximations given by eigval is better than the accuracy of the

approximations delivered by Matlab. See Table 7.4 for a report on the relative errors for

the different values of n.

eigval eig

n relmin relmax relmin relmax

50 3.8 10−14 2.6 10−11 3.8 10−12 3.6 10−10

80 5.4 10−14 3.5 10−10 5.0 10−9 1.2 10−6

150 1.2 10−13 4.3 10−5 3.2 10−3 1.8 10−1

200 2.7 10−13 2.1 10−1 2.1 10−3 2.3 10−1

Table 7.4: Relative errors for the Toeplitz matrix with a = 1, b = 2 and c = −1
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7.2.5 Symmetric matrices

Finally, as an example of a symmetric matrix we will just consider the tridiagonal Toeplitz Tn

as described in the previous section with b = c. For this case the exact eigenvalues are

a + 2b cos

(
kπ

n + 1

)
, k = 1, . . . , n.

The behavior of eig function of Matlab is better than eigval. In table 7.5 we show the

bounds for the relative errors of the approximations obtained with eigval for the case of

a = 5, b = 1 and c = 1. The approximations provided by Matlab have full accuracy.

eigval

n relmin relmax

50 4.8 10−15 5.4 10−12

100 1.8 10−15 1.4 10−11

200 3.0 10−14 2.1 10−8

Table 7.5: Relative errors for the Toeplitz matrix with a = 5 and b = c = 1





Chapter 8

Summary

The unsymmetric eigenvalue problem is, in general, much harder than the real symmetric

eigenvalue problem for the basic reason that it is not always well posed. More precisely, the

derivative of an eigenvalue with respect to certain matrix entries may be infinite. When

executed in computer arithmetic any method finds itself aiming at a target (an eigenvalue)

that may change at every step in the process. In contrast the derivatives in the symmetric

case are all bounded by 1.

The ideal algorithm should compute each eigenvalue to nearly the accuracy to which it

is determined by the data (matrix entries). Ideally the algorithm should report what that

attainable accuracy is. The traditional way to do this is to deliver well chosen condition

numbers along with the computed eigenvalues. It turns out that computing the condition

numbers is just as difficult as computing the eigenvalues themselves.

We focus on the tridiagonal eigenproblem which occurs in its own right (for instance

with Bessel polynomials) and also as a condensed form of a real square matrix. The first

contribution of this thesis is to consider the sensitivity of the eigenvalues to different repre-

sentations of an unreduced tridiagonal matrix C:
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a) the non-trivial entries of L and D where T∆ = D−1
1 CD1 = LDU = LDLT ∆ with ∆

a signature matrix and T symmetric;

b) the non-trivial entries of L and U where J = D−1
2 CD2 = LU , and the (i, i+1) entries

of J are all 1.

These new measures are, in general, smaller than Wilkinson’s condition number and are

sometimes quite realistic despite being upper bounds. Our measures take advantage of the

tridiagonal form and play a fundamental role in assessing attainable accuracy. See Chapter 7

for examples.

A second contribution is purely mathematical. We follow a hint given in Wilkinson’s

monumental book “The Algebraic Eigenvalue Problem” and produce a rigorous proof that

the LR algorithm, and our dqd algorithm, converge without breakdown to the nonzero

eigenvalue of an unreduced tridiagonal matrix with a one-point spectrum. The context

is exact arithmetic and the rate of convergence is very slow (O(1/k) as k → ∞) but the

surprise is that the algorithm actually does converge in the presence of a (large) Jordan

block.

The main contribution of this thesis is practical: the presentation of a robust and efficient

algorithm 3dqds that computes both real and complex eigenvalues of a real tridiagonal

matrix while employing real arithmetic throughout the computation. In general, in our

numerical tests, the output is more accurate than Matlab’s procedure eig and requires

O(n2) arithmetic effort instead of Matlab’s O(n3).

To the best of our knowledge this is the first robust algorithm that takes advantage of

tridiagonal form. However more work needs to be done in tuning some of the parameters.

Deep study of a variety of cases is needed. The basic difficulty is easy to state: demand

too much accuracy and any procedure will fail (never converge), demand too little accuracy

and the unnecessary errors in accepting one eigenvalue can spoil the accuracy in another

one.
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8.1 Future work

Our test bed is far too small to draw conclusions. We are not yet in a position to claim

that eigval function (that uses 3dqds code) always delivers more accurate approximations

than eig function of Matlab. The first results we obtained are very good results but we

need a a more comprehensive study of test matrices with a variety of distributions.

Finding a general shift strategy that is efficient over a wide range of matrices is very

difficult. It is a research topic in itself. In future work we plan to dedicate effort in trying

to improve the shift strategy implemented in the present version of our code.

We also plan to develop a more sophisticated deflation strategy that monitors conver-

gence to each eigenvalue (or conjugate pair) to detect when the process has stagnated, i.e.,

when further steps will not reduce the corresponding off-diagonal entry.

A different aspect of 3dqds is that it converts the given tridiagonal matrix to LU form via

the factorization J − σI = LU . This initial shift affects the attainable accuracy and needs

more study. In this context, the issues of a numerical error analysis need to be considered.

We have now a tool to tackle the tridiagonal eigenvalue problem. It will be of in-

terest to compare the performance of eigval with the possible rival algorithms: Françoise

Tisseur’s Ehrlich-Aberth method [3], the Extended HR algorithm of A. Liu [31] (unpublished

finite precision implementation) and David Day’s complex dqds algorithm [7] (unpublished

preliminary version).

The computation of row and column eigenvectors is beyond the scope of this thesis

but it is a necessary component to assess the attainable accuracy and to refine initial

approximations. Our ultimate goal is to produce a software package that is both more

efficient, more accurate and more informative than Matlab’s eig procedure.
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