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The Unsymmetric Tridiagonal Eigenvalue Problem

Abstract

The development of satisfactory methods for reducing an unsymmetric matrix to
tridiagonal form has been greatly hampered by the fact that there is not an accepted
good algorithm for exploiting this form. Nevertheless, recently, promising elimination
techniques for achieving a stable reduction to this form have been developed. But the
standard QR algorithm destroys it immediately. Our work aims to fill this gap in the
armoury of software tools for the matrix eigenvalue problem and so encourage the
refinement of methods to reduce a matrix to tridiagonal form.

The progressive quotient difference algorithm with shifts (qds) was presented by
Rutishauser as early as 1954. It is equivalent to the shifted LR algorithm written in a
special notation for tridiagonals. The much more recent differential qds (dqds) is a sophis-
ticated variant of qds. The first contribution of this thesis is a new algorithm, 3dqds, that
consists of three dqds steps performed implicitly and such that real arithmetic is maintained
in the presence of complex eigenvalues. One advantage of our algorithm over the Hessenberg
QR algorithm is that it preserves the tridiagonal form and thus reduces both storage and
time. We present some accuracy results comparing a MATLAB implementation of 3dqds
with the function eig of that software. These preliminary results suggest the robustness of
3dqds algorithm.

In contrast to the symmetric case, unsymmetric matrices can have a mixture of
eigenvalues, some robust in the face of perturbations while others extremely sensitive. We
present several condition numbers, some new, that take advantage of tridiagonal form.
Ideally an algorithm should report these numbers along with each computed eigenvalue.

On the theoretical side, we present a rigorous proof of a surprising result. It is well known
that the greater the ratio of adjacent eigenvalues, the faster LR converges. Nevertheless, in
exact arithmetic, LR still converges even when all the eigenvalues are equal and the Jordan

form is one big block.






Calculo de Valores Proprios de Matrizes Tridiagonais

Nao Simétricas

Resumo

O desenvolvimento de métodos satisfatérios para reduzir uma matriz nao simétrica a forma
tridiagonal tem sido fortemente travado pelo facto de que nao existe um bom algoritmo
aceite para explorar esta forma. Contudo, recentemente, promissoras técnicas de elimi-
nagao para realizar esta reducao de maneira estavel foram desenvolvidas. Mas o algoritmo
QR standard destréi a forma tridiagonal imediatamente. O nosso trabalho pretende col-
matar esta lacuna no conjunto das ferramentas computacionais para o problema de calculo
de valores préprios e assim encorajar o aperfeicoamento de métodos para reducao de uma
matriz a forma tridiagonal.

O algoritmo qds (progressive quotient difference with shifts) foi introduzido por
Rutishauser e remonta a 1954. E equivalente a versao shifted do algoritmo LR escrita
numa notacao especial para matrizes tridiagonais. O muito mais recente algoritmo dqds
(differential qds) é uma versao sofisticada do qds. Uma contribui¢ao desta tese é um novo
algoritmo, 3dqds, que consiste em trés passos do dqds realizados implicitamente e tal que
a aritmética real é mantida na presenga de valores préprios complexos. Uma vantagem do
nosso algoritmo em relagao ao Hessenberg QR é que preserva a forma tridiagonal e assim
reduz a necessidade de espaco em memoria e o tempo de execugdo. Apresentamos alguns
resultados numéricos comparando uma implementacao do 3dqds em MATLAB com a funcgao
eig daquele software. Estes resultados preliminares sugerem a robustez do algoritmo 3dqds.

Em contraste com o caso simétrico, matrizes nao simétricas podem ter um misto de
valores proprios, alguns resistentes em face de perturbagoes enquanto outros extremamente
sensiveis. Apresentamos varios numeros de condicdo, alguns novos, que tiram partido da
forma tridiagonal. Idealmente, um algoritmo deve fazer acompanhar com estes nimeros

cada valor proéprio calculado.
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Do ponto de vista tedrico, apresentamos também uma demonstragao rigorosa de um
resultado surpreendente. E bem conhecido que quanto maior for a razdo entre valores
préprios adjacentes, mais rapidamente o algoritmo LR converge. No entanto, em aritmética
exacta, o algoritmo LR também converge mesmo quando todos os valores préprios sao iguais

e a forma de Jordan é um tnico bloco.
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Introduction

A great deal of effort in science and engineering goes into eigenvalue computations. The
symmetric case is well studied and there are good methods available. The unsymmetric
case is intrinsically harder. The MATLAB ! system [33] lets the user compute eigenvalues
with one line of code, but this system, although wonderful for developing new numerical
methods is too inefficient for day to day work in design and manufacturing. In addition, it
cannot deal with the really large matrices, with order greater than 10000, that occur more
and more often in applications.

So, we begin with the assumption that good algorithms are needed for real unsymmetric
square matrices. Such algorithms have to be iterative in nature. When all eigenvalues are
wanted then the preferred methods employ a sequence of similarity transformations which
preserve the eigenvalues and gradually change the matrix to upper triangular form.

The reader might object at this point and say that the obvious strategy is to find
the characteristic polynomial in a finite number of steps and then find the zeros of the
polynomial. This approach died in the 1950’s when it was appreciated that the coefficients
of the characteristic polynomial are a too compact representation of the matrix eigenvalues;
the eigenvalues are extremely sensitive to any uncertainty in the coefficients.

The next most compact pratical representation of a matrix is a tridiagonal form (all
entries (7,j) are zero unless |i — j| < 1). All matrices can be reduced to such a form in a
finite number of steps but the reduction is much easier in the symmetric case than in the

unsymmetric one.

'MATLAB, shortcut for “Matrix Laboratory”, is a commercial program sold by The Mathworks, Inc.



Now any iterative method will be much more efficient if the matrix is tridiagonal and if
this form is preserved at each step. For example, MATLAB does not preserve this form and
that is the reason why it is not suitable for large matrices.

Now comes the question: is the tridiagonal form, in the unsymmetric case, also too
sensitive, just as the companion matrix that gives the characteristic polynomial? If it is too
sensitive, then, in general, there are two avenues of escape. Either we can try to determine
classes of tridiagonals that do determine their eigenvalues to adequate accuracy or we can
accept that the Hessenberg form is as far as we should go in reducing a full matrix to a
more compact form.

No one really knows the answer to this question. Some work has been done in defining
suitable measures of sensitivity, called condition numbers, but no one has studied them
carefully. The formulae for the sensitivity of polynomial zeros as functions of the coefficients
showed immediately that the condition numbers were going to be huge as soon as the degree
goes into the hundreds. For tridiagonals the situation is not so clear. We explore this

question in more detail in our study.

The differential quotient difference algorithm with shifts (dqds) was introduced by
Fernando and Parlett in 1994 [16] to compute singular values of bidiagonal matrices to
high relative accuracy but it may also be used to compute eigenvalues of tridiagonal
matrices. In this thesis, based on previous work of Z. Wu [64], we propose a new algo-
rithm for finding all the eigenvalues of a real unsymmetric tridiagonal matrix. This new
algorithm, triple dqds (3dqds), incorporates three dqds steps implicitly. The motivation
for 3dqds is to keep real arithmetic in the presence of complex shifts, efficiency and some
elegance. One advantage of 3dqds over the standard Hessenberg QR (used by MATLAB) is
this property: it preserves the tridiagonal form. The preliminary numerical results show

that 3dqds is a vital tool in the context of eigenvalue problems.

It is possible that perturbations to the tridiagonal entries have just as much effect as
perturbing entries far from the diagonal. That is where the more refined condition numbers

we are also presenting come in, particularly the ones based on the derivative of an eigenvalue



with respect to various matrix entries.

The reader will find that there is a great deal of technical detail in this thesis. The
algorithms that we will present are quite complicated and it was necessary to get all the

details correct in order for the programs to work properly.

Next we are going to sketch an outline of this thesis.

In Chapter 1 we introduce notation, give some background and explain the importance
of the unsymmetric tridiagonal eigenvalue problem.

Chapter 2 describes different representations for tridiagonal matrices beginning with
the LU factorization. Then, new relative condition numbers for measuring the sensitivity
of eigenvalues of tridiagonals are presented, to see if tridiagonal form plays a big role in a
perturbation study.

In Chapter 3 we describe the LR algorithm, giving emphasis to the implicit double
shifted version on an Hessenberg matrix. Then we explain the qds algorithm and show the
relation to shifted LR on a tridiagonal matrix with superdiagonal entries of 1’s.

Chapter 4 deals with convergence results for basic LR algorithm. The central part of this
chapter is the proof of a new convergence result of basic LR algorithm on a real unreduced
tridiagonal matrix with a one-point spectrum. The Jordan form is one big Jordan block.

Chapter 5 shows all the details of the derivation of a first version of the triple dqds - an
algorithm that performs implicitly three steps of simple dqds keeping real arithmetic in the
presence of complex shifts.

Chapter 6 explores the connection between dqds and the Gram-Schmidt orthogonaliza-
tion process to reveal new results about triple dqds. These results lead to the more elegant
and more efficient final version 3dqds.

Chapter 7 gives a preliminary numerical comparison between 3dqds and existing
MATLAB’s function eig. Although the set of test matrices is small, the numerical
results permit us to conclude that 3dqds is a competitive algorithm.

Finally, in Chapter 8 we present a summary of our work and briefly set up some plans

for future work.






Chapter 1

Setting the scene

This chapter describes notation, introduces definitions and some basic results, discusses
canonical forms and perturbation theory in the context of eigenvalue problems. Then
devotes attention to the unsymmetric tridiagonal eigenvalue problem describing the

connection to the general unsymmetric eigenvalue problem and to Bessel matrices.

1.1 The eigenvalue problem

The eigenvalues of matrices or linear operators play a part in a very large number of
applications, both theoretical and practical. In Chatelin [5, Chapter 3] we can find examples
from diverse disciplines that show the extent of applications: they range from mathematics
to chemistry, and to the dynamics of structures, even on economics. The determination
of matrix eigenvalues is generally called the eigenvalue problem and it is a central topic in

numerical linear algebra. From Golub [22] we quote what follows.

The eigenvalue problem for square matrices A, that is the determination of
nontrivial solutions of Az = Ax, is inherently nonlinear and this leads to many
computational problems. Computation of the eigenvalues A via the characteristic
equation

det(A — \I) =0



is, except for very special cases, not an option since the coefficients of the char-
acteristic equation cannot be computed from determinant evaluations in a nu-
merical stable way. And even if the characteristic equation could be determined
accurately, then the computation of its roots, in finite precision, may be highly
unstable since small perturbations in the coefficients may lead to large pertur-

bations of the roots.

The numerical computation of the associated eigenvectors and generalized eigen-
vectors is even more delicate, in particular when eigenvectors of A make small
angles with each other. In the limiting case, when the matrix is defective, A
can be reduced to the Jordan canonical form, but arbitrary small perturbations
in A may yield a nondefective matrix. This leads to many challenging numer-
ical questions, which give rise to the central problem: how can we compute

eigenvalues and eigenvectors in an efficient manner and how accurate are they?

]

A method that is of great significance and serves as the basis for many algorithms
is the Power iteration. It is still in use, but most frequentely as (implicit) part

of more efficient techniques, e.g., krylov methods, inverse iteration, QR-method.

What becomes clear is that all these methods are of an iterative nature, and
this is necessarily the case, since if there were a method of computing the eigen-
values of an nth order matrix in a finite number of computations, depending
only on n, then this would be in contradiction with the fundamental theo-
rem of Abel-Ruffini (and also a well-known result in Galois theory) that no
such algorithm exists for the computation of the roots of a general polynomial
of degree greater than 4. Hence, an algorithm for a matrix with a general
structure (that is, not a diagonal matrix or a triangular matrix or alike) is
necessarily iterative and the problem is to identify iterative algorithms which

have a fast rate of convergence and lead to accurate results.



1.2 Notation, definitions and basic results

We describe the notation used hereafter and briefly set up well-known definitions and basic

facts needed in this thesis.

The vector space of all real m x n matrices is denoted by R™*™ and the vector space of
real column n-vectors by R™. Similarly, C"™*™ denotes the vector space of m x n matrices

with complex entries and C” the vector space of complex column n-vectors.

Generally, we will have

capital letters A H A for matrices
(double) subscripted lower case letters a;j, hij, 0;j for matrix elements
boldfaced lower case letters x,c, h for column vectors
subscripted lower case letters Tr, Ck,y By for vector elements
lower case Greek letters «, B,7,0 for scalars

We may also denote a matrix A = (a;;) € C™*" by its columns, that is, we may choose
tosay A = {al as --- an]. For instance, the n x n identity matrix will be denoted by

I, and we have I, = {61 ey - en},

We denote the transpose of A by AT and, if A is complex, the conjugate transpose
by A*, not A¥. A square matrix A is symmetric when A = AT otherwise is said to be

unsymmetric or nonsymmetric. If A = A* then A is an hermitian matrix.

A square matrix A is upper triangular (lower triangular) if a;; = 0 when ¢ > j (i < j).
And A is said to be diagonal if a;; = 0, i@ # j. A diagonal matrix will be written
diag(aq1, a2, ..., any) and, for d = (d;) € C", we define diag(d):=diag(dy,...,d,).

Other definitions and notation will be introduced when needed.

Precise proofs of the results that will be presented in the following sections can be found

in [51, Chapter 6], [34, Chapter 3], [21, Chapter 7], [11, Chapter 4] or [45, Chapter 12].



1.2.1 Eigenvalues

The notions of eigenvalue and eigenvector do not depend on length, angle or inner product.

Definition 1.2.1 Let A € C"*" and x € C". Then x is a (right) eigenvector of A for the
eigenvalue \ if x satisfies

Ax = x, x #0. (1.1)

Each nonzero multiple of « is also an eigenvector for A and A — p is an eigenvalue of

A — pl with eigenvector x, for every scalar p.
Fact 1.2.1 FEigenvectors corresponding to distinct eigenvalues are linearly independent.

By the theory of linear equations, (1.1) has a non-zero solution x if and only if the

characteristic polynomial of A, x, defined by
X(A) = xa(A) = det(4A — \I),

verifies x(A) = 0.
The roots of y are then the eigenvalues' of A and are also called the characteristic

values, characteristic roots or latent roots of A.

Polynomial x is of degree n and its leading term is (—1)"A™. So A can at most have n

eigenvalues, some of which may be repeated.

Let A1, A2, ..., A\ be the distinct eigenvalues of A. Then x can be represented as
X = O = )™ O = )™,
where the n; are positive integers with ) ", n; = n. The number n; is the algebraic
multiplicity of \;, i =1,...,m. If n; = 1, then ); is called simple.

Since the characteristic polynomial of a real matrix has real coefficients, the complex

eigenvalues of a real matrix occur in conjugate pairs.

In German the word eigen means characteristic or special.



The set of the eigenvalues \;,i = 1,...,m, in the complex plane, constitutes the

spectrum of A and it will be denoted by spec(A). We call
p(A) = max{|A| : A € spec(A4)}

the spectral radius of A.
Fact 1.2.2 spec(A*) = {\: X € spec(A)}.

This result states that if A is an eigenvalue of A, there is a nonzero vector y such
that A*y = y\, or, equivalently, y*A = \y*. We say that y* is a row eigenvector of A.
Commonly, y is called a left eigenvector of A. This means that gy is a right eigenvector of

AT,

Fact 1.2.3 For right and left eigenvectors x and y associated with a simple eigenvalue X,

y*x # 0.

Fact 1.2.4 If X and p are two distinct eigenvalues with right and left eigenvectors x) and

Y, respectively, then yjzy = 0.

For an eigenvalue A with right and left eigenvectors x and y, respectively, {\,x} is

called an eigenpair and {\, z,y*} an eigentriple.

1.2.2 Canonical forms

Most of the computational methods involve reducing a matrix into simpler or even canonical
forms, from which it is easy to compute its eigenvalues and eigenvectors. These transforma-
tions are called similarity transformations. The two most common canonical forms are the
Jordan form and the Schur form. For historical reasons we will also refer to the Frobenius

canonical form. The Schur canonical form is the one that is more useful for pratical use.

Fact 1.2.5 Let B = SAS™!. Then A and B have the same eigenvalues and x is a right

eigenvector of A if and only if Sz is a right eigenvector of B.
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The mapping A +— SAS~! is a similarity transformation of A. If S is unitary
(orthogonal in the real case), that is, ™' = §* (S~! = S7), we say that the transformation
is a unitary (orthogonal) similarity transformation. Matrices A and B = SAS~! are called

similar matrices.
To motivate the Jordan and Schur forms, let us just recall that for a diagonal or a
triangular matrix the eigenvalues are easy to compute: they are simply its diagonal entries.
Below we will see that a matrix in Jordan or Schur form is triangular.

Another particularly important form is the quasi-triangular form, which is a special
case of the block triangular form. A square matrix A is block upper triangular if it can be

partitioned in the form

A A ... Ay
0o A . A
A= TEo (1.2)
0 0 ... Ay

where each diagonal block A;; is square. If each diagonal block is of order at most two, then

A is said to be in quasi-triangular form. Because det(A—\I) = Hi:l det(A;; — M) we have

l
spec(A) = U spec(A;;).
i=1

Next theorem introduces Jordan canonical form and it is followed by some related facts

that we will need in our convergence proofs in Chapter 4.

Theorem 1.2.1 JORDAN CANONICAL FORM. Given A € C™*", there exists an invertible
matriz X such that X YAX = J, where J is in Jordan canonical form. This means that J

is block diagonal, with J = diag(Jn, (A1), Jny(A2), .-, Jn, (Ak)) and

N\ 1 0]
In; (Xi) = )
0 \i

- My XNy



11

J is unique, up to permutations of its diagonal blocks.

There is a good deal of terminology associated with Jordan canonical form. First, each

block Jp,(\;) is called a Jordan block with eigenvalue \;. The determinants
det(Aln, — Jpn;) = (A= A)™

are called the elementary divisors of A. If n; = 1 the elementary divisor is called linear.

If all the elementary divisors are linear, so that J is diagonal, A is said to be

diagonalizable or nondefective; otherwise A is called defective.

If we denote matrix X, that reduces A to Jordan form, as

X = :cgl) 937(111) 3352) az%) wgk) azg?
then, for each Jordan block J,,(\;), the corresponding vectors wgi), . ,wﬁf}, i=1,...,k,
satisfy
Aa:&i) = )\ia:gi)
A$§21 :)\Z$§21+$§l), ]:1,,712—1
Vectors xﬁl? j=1,...,n; — 1 are called generalized eigenvectors or principal vectors of

grade j + 1, verifying
(A- /\iI)ijﬁl =0, (A - )‘if)‘jmﬁl =i #£0.
Fact 1.2.6 If all the eigenvalues of a matriz A are distinct, then A is diagonalizable.

A defective matrix does not have n linearly independent eigenvectors.

T
Fact 1.2.7 A Jordan block has one right eigenvector e = |1 0 --- 0] and one left

T
eigenvector e, = |0 0 --- 1] .
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The number of linearly independent eigenvectors associated with an eigenvalue A is
called the geometric multiplicity of A and does not exceed its algebraic multiplicity. It
corresponds to the number of Jordan blocks associated with .

A matrix is defective if and only if the geometric multiplicity of at least one of its
eigenvalues is less than the algebraic multiplicity - in this case, commonly, we call these

eigenvalues briefly as multiple eigenvalues.

A matrix A is nonderogatory if every eigenvalue has geometric multiplicity 1. This

means that different Jordan blocks J,,, correspond to distinct A;.

The (i,7) minor of a square matrix A is defined as the determinant of the submatrix
obtained by removing the i** row and the j** column of A. The k' leading principal minor

is the determinant of the first k rows and k columns of A.

The Companion matrix of a monic polynomial
p(A) = A"+ A A NP+ a N+ ag

is the matrix

0 —ag
1 0 —aq
Cp =
0 —ap—2
I —ap—

Since p(A) = (—1)"det(Cp — AI) = det(AI — C}), the zeros of the polynomial p are the
eigenvalues of C),. It is easy to see that C), is a nonderogatory matrix: for all A, the (1,n)
minor of Cy, — Al is always 1; consequently rank(Cy, — AI) > n— 1 and the dimension of the
null space of Cp, — I is either 0 (when X is not an eigenvalue) or 1 (when A is an eigenvalue);

this means that there is only one linearly independent eigenvector to each eigenvalue.

Fact 1.2.8 A matriz A is similar to the companion matrix of its characteristic polynomial

if and only if A is nonderogatory.
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A m x n matrix R = (r;j(x)) whose elements r;; are rational functions, that is, ratios

of polynomials, is a rational matrix.

Theorem 1.2.2 FROBENIUS, OR RATIONAL, CANONICAL FORM Given A € C"*", there
exists an invertible matriz P such that P~YAP = F, where F is in Frobenius canonical

form. This means that F is the direct sum of the companion matrices of the elementary

divisors of A, — A.

If A € R"", the Frobenius canonical form of A depends on which field (R or C) over

which it is considered.

This form does not say much about eigenvalues but it is, by construction, the matrix
with fewest nonzero entries that can be achieved by rational operations on the data, but it
is too condensed. The Jordan canonical form tells us all we want to know about eigenvalues
but can not be computed stably in general. So, it is used in theory but is very hard to
compute because it is very unstable in the face of uncertainty. Thus, these two forms are
not used in eigenvalue computations and most of the algorithms will aim to compute the

Schur form instead.

Theorem 1.2.3 SCHUR CANONICAL FORM. Given A € C" " there exists a unitary matriz

Q and an upper triangular matriz T such that Q*AQ =T.

A matrix A is said to be normal if AA* = A*A.

Fact 1.2.9 A matriz A is normal if and only if there exists a unitary matriz QQ such that

Q*AQ = diag(A1, ..., \n).

As said before, a real matrix A can have complex eigenvalues and, therefore, there is
not always a real triangular matrix with the same eigenvalues as A. So, we must either use
complex numbers or sacrifice the triangular canonical form. Because it will be cheaper to
compute, we prefer a canonical form that uses only real numbers and we will settle for a

quasi-triangular form.
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Theorem 1.2.4 REAL SCHUR CANONICAL FORM. If A € R™", there exists a real
orthogonal matriz V. such that VT AV = T is real quasi-upper triangular. Its eigenvalues
are the eigenvalues of its diagonal blocks. The 1 x 1 blocks corresponds to real eigenvalues

and the 2 x 2 blocks to complex conjugate pairs of eigenvalues.

1.2.3 Perturbation theory

In what follows we will discuss how changes in the entries of a matrix A affect the spectrum.
If X is a simple eigenvalue of A, for a given matrix d A, we can identify an eigenvalue X + §A

of the perturbed A 4+ §A corresponding to A: the closest one to A.

So, we want to relate the size of the matrix perturbation to the size of the eigenvalue
change. The norms most widely used in matrix computations are the 1—norm, the Frobenius
norm and the co-norm. Unlike the 2—norm (an example of a p—norm and also of great

importance) the former matrix norms are easy to calculate. And for a consistent matrix

norm ||.|| we have, for any matrix A of order n,
p(A) < [ A]l.
For a real matrix A and a matrix norm ||.||, the quantity

cond(A) = ||A]] HA_1”

defines the condition number of the matrix A. Note that cond(A) = cond(rA) for any
scalar 7 # 0, that is, cond is scaling invariant by multiplication.
Next theorem relates eigenvalue condition numbers to the condition number of the

matrix of all eigenvectors.

Theorem 1.2.5 BAUER-FIKE (CLASSICAL VERSION). If u is an eigenvalue of

A+6AcC™ and X 'AX = D = diag(\1, ..., \n), then

in |\ — | < cond,(X)|5A
Aeggégm)l p| < cond,(X) [|6A],

where |.||,, denotes any of the p-norms.
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Extreme eigenvalue sensitivity for a matrix A cannot occur if A is normal. On the other
hand, nonnormality does not necessarily imply eigenvalue sensitivity. Indeed, a nonnormal
matrix can have a mixture of well-conditioned and ill-conditioned eigenvalues. For this
reason, it is beneficial to refine the perturbation theory so that it is applicable to individual

eigenvalues and not the spectrum as a whole.

Theorem 1.2.6 Let A be a simple eigenvalue of A with right eigenvalue x and left eigen-
value y, normalized so that |||, = ||yl = 1. Let X+ dX be the corresponding eigenvalue

of A+ 0A. Then

oA < O(||6A])* = —F——

+ O(||6A|)?
vl (1[0 All)

is the

where O(y,x) is the acute angle between y and x. In other words, k) = vl
y*x
condition number of the eigenvalue \. It is known as Wilkinson’s condition number.

If the eigenvectors are not normalized the condition number k) is given by

_ =l Iyl
R) = - .
|y~
Each eigenvalue has its own condition number. Some eigenvalues can be well-conditioned
and some can be ill-conditioned. A big condition number means sensitivity; ill-conditioned

eigenvalues are hard to compute accurately because they are not well-defined.

The right and left eigenvectors of a Jordan Block are orthogonal, and so Wilkinson’s
condition number of its eigenvalue \ will be k) = co. At the other extreme are the normal
matrices which have condition number k) = 1. So, the symmetric eigenvalue problem is

always a well-conditioned problem.

Theorem 1.2.6 is useful only for sufficiently small |[§A|. Next theorem increases the

condition number by a factor on n but is true for any modification 4 A.
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Theorem 1.2.7 BAUER-FIKE. Let A have all simple eigenvalues, i.e., be diagonalizable.
Call these eigenvalues \i, i = 1,...,n, and let x; and y,; be the right and left eigenvectors

for A, respectively, normalized so that ||x;||, = ||y;|l, = 1. Then the eigenvalues of A+ J0A
n

lie in disks B;, where B; has center \; and radius P l0A]5.
Y, T
More generally, we can say that
- . 1
VA € spec(A+0A4): min|A — N\ < nmax —— [[04]|,.
g i |y

The proof of this theorem uses a useful inclusion result for eigenvalues, the

Gerschgorin theorem, which we write below.

Theorem 1.2.8 GERSCHGORIN. For a matriz A = (a;j) € C"*™ it holds that

n
spec(A) C UDZ- with D; = A€ C: |A—ay| < Z]aij] , i=1,...,n.
i=1 j#i
Disks D; are called Gerschgorin disks of the matriz A.

The proof of the theorem shows not only that each eigenvalue of A must lie in a
Gerschgorin disk, but also that if the ith component of an eigenvector is maximal, then

the corresponding eigenvalue must lie in the ith disk.

Theorem 1.2.9 If k Gerschgorin disks of the matriz A are disjoint from the other disks,

then exactly k eigenvalues of A lie in the union of the k disks.

Since a multiple eigenvalue has infinite Wilkinson’s condition number, being close to a
matrix which has multiple eigenvalues implies ill-conditioning. The bigger is the condition

number of an eigenvalue, the closer is the matrix to one with a multiple eigenvalue.

Theorem 1.2.10 Let A be a simple eigenvalue of A, with unit right and left eigenvectors x

and y and condition number ¢ = Then there is a 0 A such that A+3dA has a multiple

ly x|’
etgenvalue at A and
oAl _ 1

IAlly — Ve2 -1
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When ¢ > 1, that is the eigenvalue is ill-conditioned, then the upper bound on the distance

1 1
18 Nz ~ —, the reciprocal of the condition number.
c4 — C

Finally, we relate the condition numbers of the eigenvalues to the smallest possible

condition number cond(S) of any S that diagonalizes A.

Theorem 1.2.11 Let A be diagonalizable with eigenvalues \; and right and left eigenvectors
x; and y;, respectively, normalized so that ||x;||, = |ly;|| = 1. Let us suppose that S satisfies

S7YAS = A = diag(\1, ..., \n). Then

1 _
maxm <S5 |5 1H2'

If we choose S = [;1;1 Ty - mn} then
151 1571 < momise
? ’yz x|
that is the condition number of S is within a factor of n of its smallest value.

1.2.4 Relative errors and model of arithmetic

Let & be an approximation to a real number o. The most useful measures of the accuracy

of ¢ is the absolute error

Eas(6) = |o — ],
and its relative error

R o—0

Erel(a) = | ’7 o #0.
o]
Writing
oc=o(l+p),

an equivalent definition of relative error will be E(6) = |p|. Some authors omit the

absolute values from these definitions.
In scientific computation, where answers to problems can vary enormously in magnitude,
it is usually the relative error that is of interest, because it is scale independent: scaling

o — «ao and & — ao leaves Fie(6) unchanged.
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Relative error is connected with the notion of correct significant digits. But while the
number of correct significant digits provides a useful way in which to think about the

accuracy of an approximation, the relative error is a more precise measure.

Floating point arithmetic

The maximum relative representation error in a floating point arithmetic with p digits and
base ( is %Bl_p . When the true value of a computation a ® b (where ® is one of the four
binary operations +, —, * and /) cannot be represented exactly as a floating point number,
it must be approximated by a nearby floating point number. We denote this approximation
by fl(a®b). The difference (a ©®b) — fl(a ®b) is called the roundoff error. If a ® b is within
the exponent range (otherwise we get overflow or underflow), then we assume the model of

arithmetic

flla®b) = (a®b)(1+9), 0] <e. (1.3)

The quantity € is called variously unit roundoff, machine precision or macheps. If we round

as accurately as possible, € is equal to the maximum relative representation error % g,

The terms accuracy and precision are often confused or used interchangeable, but it
is worth making a distinction between them. Accuracy refers to the absolute or relative
error of an approximate quantity. Precision is the accuracy with which the basic arithmetic
operations +, —, %, / are performed and for floating point arithmetic is measured by the unit

roundoff (1.3).

The IEEE standard for binary arithmetic is now common. It includes two kinds of
floating point numbers: single precision (32 bits long) and double precision (64 bits long)

that allow 24 and 53 p bits of precision, respectively.
Normally the “big oh” notation O implies a limiting process. However, in this thesis O
will be a synonym for “of the order of magnitude of” and the usage will be clear from the

context. For example, O(e) will mean “of the order of magnitude of machine precision”.
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1.3 The unsymmetric tridiagonal eigenvalue problem

Tridiagonal matrices have received a great deal of attention since the 1950’s. In the sym-
metric case, every matrix can be stably reduced to a similar tridiagonal matrix by a finite
number of elementary orthogonal similarity transformations. In the unsymmetric case, re-
duction to tridiagonal form is also possible but we have to use non-orthogonal similarities
transformations and the reduction may not be stable.

But why should we be interested in tridiagonal matrices? There is a need for eigen-
value methods capable of exploiting and respecting the elegant structure of an unsymmetric
tridiagonal matrix so that the development of methods for tridiagonal reduction could be
encouraged.

Unsymmetric tridiagonal matrices arise naturally as a result of the execution of the
two-sided Lanczos algorithm (see, for instance, Parlett [39]). When applied to a matrix, the
two-sided Lanczos algorithm builds a k x k unsymmetric tridiagonal matrix at the end of
the Lanczos step k. This is a candidate method for the reduction of a nonsymmetric matrix
to tridiagonal form but in practice it is confined to large sparse matrices. Other methods
to perform this task have been proposed in Geist [20], Dongarra [13] and, more recently, in
Sidje [50].

Tridiagonals also appear as primary data. For example, they are related to orthogo-
nal polynomials because there is a remarkable three-term recurrence relation among these
polynomials. In particular, there are the special Bessel polynomials, which also satisfy a
three-term recurrence relation. Tridiagonals also arise in other numerical methods such as

exponential interpolation [1].

The eigenvalues and eigenvectors of a real nonsymmetric matrix A traditionally have
been computed by first reducing A to Hessenberg form H and then computing the eigen-
decomposition of H by the QR method. But the approach of beginning by reducing the
initial matrix to nonsymmetric tridiagonal form is attractive because finding eigenvalues
of a tridiagonal matrix is much faster than for a Hessenberg matrix. So, the development

of an algorithm for the nonsymmetric tridiagonal eigenvalue problem is therefore a major
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topic of research.
In contrast to the symmetric eigenproblem, that is always well-conditioned, the unsym-
metric eigenproblem can be effectively very ill-posed. However, there is also a need for a

careful study of the sensitivity of eigenvalues of tridiagonals to perturbations.

1.3.1 Orthogonal polynomials

From [38, Chapter 7]. Important in applied mathematics are real functions ¢, 1, ... of one
real variable and, in particular, the set P, of polynomials of degree not exceeding n. We

shall not consider the general integral inner products

b
(@@z/wuwwwmm

but go straight to the discrete case
(6:0) = > wid (&) (&) (1.4)
i=1

To each set of n distinct real numbers {¢1, . . ., &, } and possible weights {w1,...,wp : w; > 0}
there corresponds one, and only one, inner product function as defined by (1.4).
Polynomials are rather special functions and for each inner product there is a unique
family of monic orthogonal polynomials {¢g, ¢1, ..., ¢n—1}; that is, ¢; has degree j, leading
coefficient 1 and (¢;, ¢) = 0 for j # k. This family is the distinguished basis of the inner
product space P,_1 enriched with the given inner product.
Tridiagonal matrices come into the picture because there is a remarkable three-term

recurrence relation among the ¢'s; for j =1,2,...,n —1 and [y = 0,

$5(8) = (€ = aj)pj-1(€) = Bi_10j-2(€)-

Once such a relationship has been guessed, it is straightforward to verify what the o’s and

(’s must be

41 :("7%,%)/(%,%); j:O>"'7n_1
8 =j1,0)/($j-1,8-1),  j=1....n—1,



21

where 7 denotes the identity function n(£§) = £. These numbers may be put into an unre-

duced symmetric tridiagonal matrix 7" in the obvious way,

ar B
B a2 B
T = - - ,
Bn-2 an-1 Bn-1
i Pn-1 om |
and then, for j =1,...,n, we have

¢;(§) = det(&1; — Tj)

where I; denotes the identity matrix or order j and 7} denotes the 4 principal submatrix
of T', that is, T} is the submatrix obtained with the the first j rows and j columns of T'.
Thus the ¢’s and the w’s determine the unique 7.

The question we pose now is how to determine the £’s and the w's from a given T'. In

other words, which inner products make the ¢;, j =0,1,...,n, mutually orthogonal?

Theorem 1.3.1 Let T = SAS* be the spectral decomposition of an unreduced symmetric T
with S = |s; sy --- s,| and A = diag(A1,...,\,). Then the associated inner product
of the form (1.4) is given by

fi:)\i, wizfys?l, ’i:l,...,n,
for any positive v. And v = >"7 w;.

It is customary to take v = 1.
The question “how much of this result extends to the unsymmetric case?” has been

studied under the tittle “formal orthogonal polynomials”, but that is outside the scope of

this thesis. See [26].



22

1.3.2 The ordinary and generalized Bessel polynomials

The definition of the generalized Bessel polynomials (GBP) is given in terms of the

associated family of differential equations

220" 4 (az + b)u' —n(n+a—1)u =0, neN, abeC. (1.5)

It is known [44] that nontrivial polynomial solutions of equation (1.5) exist for every n € N

and a,b € C. If b # 0, there exists a unique polynomial solution uﬁ{hb) that satisfies

the condition u%’b)(o) = 1. The polynomials una’b) defined in this way are precisely the

generalized Bessel polynomials. They can be represented in the form

uft(e) =3 e, (1.6)
k=0
where
@p) _ (n\(n+k+a-2)K
Cnk = <k> bk , k=0,1,...,n, (1.7)
with

@)% =1, @™ =z@—-1)---(x—k+1), keN.
Moreover, it can be shown that they satisfy the following recurrence relations,

(n+a71)(2n+a72)u7(1ib1)(2): (2n+a)(2n+a72)%+a72 .

(2n+a—1)u)(2) + n@n + a)u'(z)  (1.8)

n—1

2(2n +a — 2)u,(1a’b)/(z) =[n(2n + a — 2)z — bn] u{®®) (2) + bnu a’b)(z). (1.9)

n—1

An important result is that for every n € N, a € C and b € C\{0}, the GBP ugf’b) has only

simple zeros.
Formulas (1.7) and (1.8) show that the constant b is a scaling factor and almost all
authors assume b = 2; and the case a € R is the most investigated one in literature. Taking

a=>b=21in (1.5) and (1.6) leads to the particular case of the ordinary Bessel polynomials.
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Let zf;’b) be the zeros of the GBP’s uﬁf’b) and consider the problem of computing these

Zeros.

(a,b)

Matrices whose eigenvalues are the zeros z,;”’ can be derived either from the coefficients

gla}gb) of the polynomials W in (1.6), or from the three-term recurrence relation (1.8). The

c
former procedure leads to the so-called Companion matrices which are Hessenberg matrices.
The latter procedure is the classical one, usually adopted to compute the zeros of orthogonal

polynomials. The matrix one gets this way is tridiagonal and if denoted by Bﬁla’b), we have

) 5

[ (ab a,b

04(1 ) £

a,b a,b a,b
B£ ) Oég ) ’yé )

B1(1a,b) — ,
a,b a,b a,b
4o oleh 4
_ et olod
where (@h)
(@b _ O (@b _ _ (ab) lab) _ O
al . b7 1 . ) /8 (I+ 17
and
(ab) ._ a—2 o
G T T ta-)@j a1y T
’Y(-a’b) =0 jra=2
J (2j4+a—2)(2j+a—3)
(a.b) J :
(@) . _ =2,...,n—1.
g @jta-)@jta-2) 770"

Several methods can be adopted to calculate the eigenvalues of B,S“”’) .






Chapter 2

Representations and measures of

sensitivity

This chapter devotes attention to the unsymmetric tridiagonal eigenvalue problem beginning
with various representations for tridiagonal matrices. Our first contribution is to provide

new measures of eigenvalue sensitivity that exploit the tridiagonal form.

2.1 LU factorization

From Higham [27, Chapter 9]. Much insight into Gaussian Elimination (GE) is obtained
by expressing it in matrix notation. The strategy of GE is to reduce the initial matrix
Al := A to an upper triangular matrix using elementary row operations. Let A* = (afj),
i,j=1,...,n, denote the matrix obtained in the k*" stage of GE. The purpose of the kth

stage of the elimination is to annihilate the elements below the diagonal in the kth column

of A%. This is accomplished by the operations

k+1 k k : ~
a;; = g — Mikag;, i=k+1,....,n,9=k+1,....n

where m;, = afk/algk, i = k+1,...,n, are the so-called multipliers. At the end of the
(n — 1)st stage A1 is upper triangular.

25
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We can write

AL = M AR = AF.

—Mp k 1

The matrix M} can be expressed compactly as M, = I — mkeg, where ey, is the kth unit
T
vector and my = [0 coe 00 mpgak - mnk] . We have e;frmk = 0 for ¢ < k. To invert

My, just flip the signs of the multipliers: ]\4/,;1 = I+ myej. Overall,
My, 1M, o... MiA=A"=:U,
and so

A=M"My*t MM U

=(I 4+ miel)(I+mqel)...(I+m, el U

n—1
= (I + me?) U
i=1

1
m271 1
- m371 m372 c. U = LU
Mmp1 Mp2 ... Mpn—1 1

The conclusion is that GE computes an LU factorization of A : A = LU, where L is
unit lower triangular and U is upper triangular.
There are two problems with the method described. First, there is a break-down with

division by zero if a’,gk = 0. Second, if we are working in finite precision and some multiplier
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myy, is large, there is a possible loss of significance: in the subtraction afj — mikaﬁ > low-order

digits of a?l could be lost. These observations motivate the strategy of partial pivoting.
Let A, denote the k' leading principal submatrix of A, that is Ay, is the submatrix of

the first k£ rows and first k columns of A.

Theorem 2.1.1 There exists a unique LU factorization of A € R™ "™ if and only if Ay is
nonsingular for k =1,...,n—1. If A is singular for some 1 < k < n — 1 the factorization

may exist, but if so it is not unique.

2.1.1 LU and LDU factorizations of a tridiagonal

A nxn matrix H = (h;;) is said to be upper Hessenberg (lower Hessenberg) if h;; = 0 when
i>j+1(i<j—1). It is unreduced, or irreducible, if h;j;—1 # 0 (hi—1; #0), i =2,...,n.
And H is said to be tridiagonal if it is both upper and lower Hessenberg, that is, h;; = 0
when |i — j| > 1. A tridiagonal matrix is unreduced if h; ;—1hi—1,; #0, i =2,...,n.

Let C be a real nonsymmetric tridiagonal matrix,

al C1
by az ¢

C = € R™™, (2.1)

bp—2 Gp—1 Cn—1

bn—l an |

Whenever convenient we will adopte the notation

C = tridiag(b, a, ¢),

where a = (ag), k=1,...,n,and b = (bg), c = (cx), k=1,...n— 1.

Assume that C has an LU factorization C = LU. Next we will consider details of this

factorization as well as the LDU factorization.
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LU factorization

A matrix B = (b;;) is said to be upper bidiagonal (lower bidiagonal) if b;; = 0 for i # j and
i#£j—13G#75+1).
Assuming there are no break-downs, matrices L and U of the factorization of C are

lower bidiagonal and upper bidiagonal, respectively, and will be given by

1 uy C
ll 1 Uz C2

lo 1 uz €3

ln—2 1 Up—1 Cp—1

ln—l 1 Un

GE for computing L and U is described by the recurrence relations

lic1 =b;—1/u;—
uy = ay, =1 = bic1 /Uiy i=2,....n (2.3)

U = a; — li—1¢i-1

For A = (a;;), let |A| denote the matrix whose entries are |a;j|. An error analysis says

that, in matrix terms, the computed factors L and U satisfy

A=LU+5A, |54 <e|L||0],

where ¢ is the unit roundoff. See Higham [27, p.174]
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LDU factorization

Assume that u; # 0, i = 1,...,n — 1. Then the factorization C = LDU is immediate: in
(2.2) leave L unchanged, define D := diag(dy,...,d,) with d = (u;), and redefine

1 &

1 Cn—1
Un—1

If C is a symmetric matrix we must have U = LT and thus C = LDLT.

2.2 Representations of tridiagonals

One of the powerful ideas in matrix computations is factorization. And the power of methods
come from representations, especially in the tridiagonal case. Naturally, we can represent
a tridiagonal matrix by exhibiting explicitly its entries. Alternatively, we may decompose

the matrix into a product of certain factors and give the entries of these factors.

2.2.1 Normalization

Consider a tridiagonal matrix C' = tridiag(b, a, ¢) as given in (2.1). If for some k, ¢, (or by)
is zero then C' can be split into two tridiagonal matrices, say C of order k and C5 or order
n —k. The eigenvalues and eigenvectors of C' can be recovered from those of Cy and Cs and
in this way the computation may be reduced to finding the eigenvalues and eigenvectors of
smaller tridiagonal submatrices which are unreduced. So, there is no loss of generality in

confining attention to the unreduced case, that is, when bycy #0, k=1,...,n — 1.
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If C' is unreduced, the nullity (dimension of the null space) of C'— A\I can not exceed 1.
Notice that the minor of the (1,7n) element of C'— AI is bibs ...b,—1 # 0 and, consequently,
rank(C' — A\I) > n — 1. So, the dimension of the null space of C'— AI is either 0 (when A is

not an eigenvalue) or 1 (when \ is an eigenvalue).

Fact 2.2.1 Unreduced tridiagonal matrices are nonderogatory.

It is known that the eigenvalues are determined by the diagonal elements and the products

of the off-diagonal elements.

In the eigenvalue computation context there is no loss of generality in supposing that
tridiagonals are normalized so that all entries in positions (7,74 1) are 1. So we may assume

that ¢, =1, k=1,...,n — 1. In fact,

Lemma 2.2.1 Any tridiagonal matriz C that does not split (unreduced) is diagonally

stmilar to a form with 1’s above the diagonal.
Proof. If we consider the diagonal matrix
D= dlag(l, C1,C1€2,...,C1 cn—l)v

then the similar matrix DT'D~! has the form

al 1

b1 c1 Qa2 1

bp—2Cn—2 Gp—1 1

bn—1Cn—1 Qn |

Such tridiagonals will be denoted by J. Lets say we will always have

al 1

b1 a9 1

bp—2 ap—1 1

bp—1 an
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This is called the qd form.

2.2.2 Products of bidiagonals

Most, but not all, such J permit triangular factorization
J=LU

where L and U are bidiagonal matrices of a special form that will play a leading role. Precise
forms are shown below: L is a lower bidiagonal matrix with 1’s in positions (i,7) and U is

an upper bidiagonal matrix with 1’s in positions (7,7 + 1),

l2 1 us 1

lp—oa 1 Up—1 1

by 1 Up,

The attractive feature here is that, in the n x n case, because the 1’s need not be
represented explicitly the factored form of J requires no more storage than J itself: L and
U together are defined by 2n — 1 parameters, exactly the same degree of freedom as in J.
Later we will argue that the pair L, U is preferable to J itself.

The pair L,U determines two triangular matrices: first

Ul 1
liwr 11 +us 1
lous lo + usg 1

lp—2upn—2 lp—2+up—1 1

lp—1Un—1 lp—1 +up
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and second
uL + 0 1
usly Uy + I 1
F UL - usglo ug + I3 1

Un—1lp—2 Up—1+1l—1 1

Unlp—1 Up,

Note that both tridiagonals have their superdiagonal entries, that is, entries (7,7 + 1),

equal to 1. Also note that J' = L~1JL, that is, J and J’ are similar.

The inertia of a symmetric matrix A is the triple of integers
Inertia(A) = (v, ¢, ),
where v is the number of negative eigenvalues of A, { is the number of zero eigenvalues of
A and 7 is the number of positive eigenvalues of A.
If X is a nonsingular matrix, we say that X7 AX and A are congruent.

If X is orthogonal, then X7 AX are similar and so have the same eigenvalues. When X
is only nonsingular, X7 AX will generally not have the same eigenvalues of A, but the next

theorem tells us that the two sets of eigenvalues will at least have the same signs.

Theorem 2.2.1 Sylvester’s inertia theorem. Let A be symmetric and X be nonsingular.

Then A and XTAX have the same inertia.

A proof of this result can be found, for instance, in Demmel [11, p. 202].

In the past most attention has been paid to the positive case: [; > 0,

i=1,...,n—1,u; >0, j=1,...,n — 1. Remember the following standard results.
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Lemma 2.2.2 Iflju; >0, ¢t =1,...,n—1, then J = LU is symmetrizable by a diagonal
similarity and the number of positive (negative) u; is the number of positive (negative)

etgenvalues.

Proof. Consider the diagonal matrix

D= dlag (1, \/llul, \/l1u1l2u2, ey \/Z1U1ZQUQ s lnflunfl) .
Then the ith subdiagonal and superdiagonal entries of the tridiagonal matrix T = D~'JD
are equal to V6u;, i =1,...,n—1.

Now, notice that
T=D'JD=D'LUD = (D 'LD)(D~'UD) = L'U’,

where L' = D™'LD and U’ = D~'UD is the LU decomposition of 7. The symmetry of T
permits us to write

T=rDL"
where D’ = diag(uy,ug, ..., u,). So, we have that J and T are similar and 7" and D’ are
congruent. By Sylvester’s inertia theorem, J and D’ have the same inertia. The eigenvalues
of D' are the values u; and, then, the number of positive (negative) u; is the number of

positive (negative) eigenvalues of J. [

Lemma 2.2.3 Iflju;y1 >0, i =1,...,n—1, then J' = UL is symmetrizable by a diagonal
sitmilarity and the number of positive (negative) u; is the number of positive (negative)

etgenvalues.

The proof of this lemma is entirely analogous to the proof of the previous lemma.

2.2.3 Balancing

Ordinarily, balancing improves the conditioning of the initial matrix, enabling more ac-
curate computation of eigenvectors and eigenvalues. It is an attempt to concentrate any

ill-conditioning of the eigenvector matrix into a diagonal scaling.
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Let A = (a;;) € C™" be a n x n matrix and let AT = (aj;) be its transpose. We say
that A is balanced if ||a;||, = ||ai]ly, i = 1,...,n, that is, i® column and i*" row of A have

the same norm.

Lemma 2.2.4 Any unreduced tridiagonal matriz C € C"*™ may be balanced by a diagonal

stmilarity transformation.
Proof. Note that we now consider complex matrices. Let
C = tridiag(b, a, ¢)

be an unreduced tridiagonal matrix so that

. C1 C1C2 C1C2 "+ Cn—1
D=diag 1,/ =, /—. ..y 4y/ —————
8 ( V b1\ bibo bibg - - - bn—1>
is defined. Then the similar matrix DCD~! is symmetric,

al \/blcl
Vbier  az Vbacy
DCD™! = g & . ,
\/bn—QCn—Q Gp—1 \/bn—lcn—l
\/bn—lcn—l Qn ]

and, thus, balanced. [

In practice, balancing only attempts to make the norm of each row equal to the norm
of the corresponding column and, usually, can not turn a real nonsymmetric matrix into a
real symmetric matrix.

So, any unreduced tridiagonal matrix C' may be symmetrizable. If C' is real and b;c; > 0,
i=1,...,n, then DCD~! is also real and, thus, hermitian. In this case, all eigenvalues of C

are real. Otherwise, DC'D~! will have complex entries and may have complex eigenvalues.

Symmetrizing is not the only way to balance a matrix. If we consider the diagonal

C1C2 " Cp—1 )

biba b1

similarity defined by

Dzm%<h/q,
by

Cc1C2
biba |’
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the matrix DCD~! will also be balanced. It will be equal to

al ei‘m \/ |b161|

eiel \/ ’5161’ a9 er \/ ‘bgCQ’

ei0n72 \/ ’bn—QCn—2’ anp—1 ei<,0n71 \/ ‘bn—lcn—l‘

eien_l \/ |bnflcn71| an

(2.6)

where b; = el% |b;| and ¢; = €%i|c;|, i = 1,...,n — 1, with 6;,¢; € [0,27], and i is the

imaginary unit.

Lemma 2.2.5 Any unreduced tridiagonal matriz C' € R™*™ is diagonally similar to a form

AT where T is symmetric and A = diag (61, 02,...,0p), 6; = £1.

Proof. Consider the diagonal similarity shown in (2.6) and let B = DCD~!. Since C is

real, ; and 6; are either m or 0, for all i. So, el?i = sign(b;) and el = sign(c;). Let

0 =1, 0p =0k_1sign(bg_1ck-1), k=2,...,n.

"= Sign(cl)> Yk =0, sign(ck), k=2,...,n—1

Notice that sign(dxyx) = sign(cg), k& = 1,...,n — 1, and sign(dxyx—1) = sign(bg_1),
k=2,...,n.
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Now we can write B as B = AT where A = diag (d1, d2, . . .

11/ |b1ca

dra1

Y/ |biei] Y24/ |b2ca

doas

Yn—21/ ‘bn—an—2‘

And C = D7'ATD. O

Matrix A is called a signature matrix.

Consider the following 5 x 5 example.

Example 2.2.1 We have

1 2 ] 1
3 2 2 ~1
-1 3 -2 =D! 1
3 4 2 —1
I -1 5] I 1
where )
1
%
D=

7671)7

Op—1Gn—1

Yn—11V/ |bnflcn71|

1 V6
-6 =2
—V2
.o
8
9
16
9_.

and

Tn—1v/ ’bn—lcn—ﬂ

Onan
-2
3 -6
6 —4 —V2
—V2 5_
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2.3 Generalized eigenproblem

A generalized eigenvalue problem is an eigenproblem involving more than one matrix. In
this section we will only give the definition and a result relating this problem to the standard
one.

The standard eigenvalue problem asks for which scalars A the matrix A — AI is singular;

these scalars are the eigenvalues. This notion generalizes in several important ways.

If A and B are m x n matrices, A — AB is called a matrix pencil or just a pencil.

Definition 2.3.1 If A and B are square matrices and det(A — \B) is not identically zero,
the pencil A— AB is called regular. Otherwise it is called singular. When A— A\B is regular,
p(A) = det(A — AB) is called the characteristic polynomial of A — AB and the eigenvalues
of A — AB are defined to be

1. the roots of p(\) =0,
2. oo (with multiplicity n — degp) if degp < n.

Matrix pencils arise naturally in many mathematical models of physical systems and the
generalized eigenvalue problem is, in principle, more difficult than the standard one. The
next fact relates the eigenvalues of a regular pencil A — AB to the eigenvalues of a single

matrix.

Fact 2.3.1 Let A— AB be regular. If B is nonsingular, all eigenvalues of A— AB are finite
and the same as the eigenvalues of AB™' or B~YA. If B is singular, A— \B has eigenvalue
oo with multiplicity n — rank(B). If A is nonsingular, the eigenvalues of A — A\B are the
same as the reciprocals of the eigenvalues of A~'B or BA™!, where a zero eigenvalue of

A™1B corresponds to an infinite eigenvalue of A — \B.

For a proof see [11, p. 174].

For a balanced matrix AT the standard eigenvalue problem (AT —AI)v = 0 is equivalent

to the generalized eigenvalue problem

(T'— X\A)v = 0.
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In fact, we have
(AT - MN)v=0<= AAT - MN)v=0<= (T — A\A)v =0.

Both T and A are real and symmetric and, so, we are in the presence of a symmetric
generalized eigenvalue problem. If either T or A is positive definite then the eigenvalues
must be real. Usually T is not symmetric positive definite. Thus, the case of interest here
is when neither 7" nor A is positive definite (both indefinite) and so there may be complex

eigenvalues. See Parlett [38, Chapter 15].

2.4 Measures of sensitivity

Nonsymmetric matrices can have a mixture of poorly and well conditioned eigenvalues.
Small perturbations in the matrix, such as roundoff errors, can lead to large changes in the
eigenvalues.

In this section we present several measures, some new, for the sensitivity of eigenvalues
of a tridiagonal matrix. Tridiagonal matrices may be represented as products of bidiagonals
in various ways depending on properties such as symmetry and positive definiteness, and
different representations lead to different measures of sensitivity. These are relative condi-
tion numbers (relative perturbation results) for a simple eigenvalue A # 0 of products of
bidiagonals. The constraint that A # 0 is always a weakness of a relative approach. When

A = 0 the relative approach looses its meaning and we go back to the absolute approach.

Recall that for A = (a;;), |A| denotes the matrix whose entries are |a;;|. No use will be

made of norms.

2.4.1 Balanced product of bidiagonals TA = LDU

As shown above, any unreduced tridiagonal matrix C' may be transformed into a balanced
form by a diagonal similarity transformation. So, in this section we will restrict our attention

to balanced tridiagonal matrices in the form B = AT (specially relevant for the computation
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of eigenvectors) and such that symmetric tridiagonal matrix 7" admits the product
T =LDL"

where L = I+[O/,

and D = diag(dy,...,d,).
Since A™'BA = A“'ATA = TA, matrices B and TA are similar. Thus we will be

interested in the factorization of TA that will be
TA = LDU

where U = (I + ZOLT)A. As observed before, when T is real, A = diag(1,+1,...,+£1).

In detail, we are just saying that an unreduced tridiagonal matrix C' is always diagonally

similar to a form T'A where T is symmetric,
C = D{'BD, = D{'ATD, = D;'ATAA™'D; = (D{'A)(TA)(DPA) L.

Now, let us concentrate on the factorization TA = LDU for the real case. The ofl-

diagonal entries of T'A are £l;d;. The perturbations will be of the form
L= Li(l+a),  di—di(1+ i),
with |a;| <, |Bi] < 7. In matrix terms,
L— L+6L, D—D+6D,

with §L = diag(aq, ..., an)IOJ and 0D = diag(ps, ..., 3,)D. However the «; and f3; play no

role because we majorize such terms by 7.
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Then, element by element, we write
6Ll <nlL|,  |6D| <n|D|,  |6U| <nlLTA]=n|L"].

Matrix A does not change.

Consider the change in a simple eigenvalue A # 0 satisfying
LDUx =z, y*LDU = \y*, y*x # 0. (2.7)
The perturbed values satisfy

(L+0L)(D+dD)(U +U)(x + dx) = (x + dx) (A + 5N). (2.8)

If 1 is small enough then, after multiplying out the factors in (2.8) and using (2.7), we

obtain

(LDSU + L6DU + §LDU)x + LDUSz + O(n?) = x5\ + dxX + O(n?). (2.9)

Multiply (2.9) on the left by y* to get

y* (LDSU + L6DU + SLDU) x + y*LDUSx = y*xé\ + y*dz\ + O(n?).
Now use (2.7) to see that y* LDUdx = y*dx A so that

S \y*x = y* (LDSU + LoDU + SLDU) = + O(n?). (2.10)
There are two ways to proceed. First insert U, §D, and 0L and majorize to find
oA ly*a| < nly|” (|LDIILT|+ |L|IDIU| + |LIIDU]) |a| + O(r?).
Use the fact that L=1I+ L, U = I + LTA to find
oA ly"@| < nly|” (1D] + 3ILDLT| +2/DL| + 2|LD] ) [&| + O(r?).

Defining Gy = |D| + 3|LDLT| + 2|DLT| + 2|LD| we have

N _ Il Gl
BYRRRATRDY

+O(1?).
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This gives the first relative condition number

ly|"G1|x]
relcond; (A\; LDU) := Tyl
and
il 2|1 '
2du||la]  |dof + 3ldal|la|? 2|da||l2]
G =
Q‘dn—2wn—2‘ ‘dn—l‘ + 3‘dn—2wn—2‘2 2’dn—1Hln—1‘

I 2[dn—1|ln—1] |dn| + 3|dn—1]|ln-1/*]

The second approach avoids the presence of |A| in the denominator. The division by ||
will be done implicitly and, thus, more elegantly. So, return to (2.10) and use the relations

(the constraint A # 0 implies that U is invertible)
y*'LD =) U™, y*'L=X\yU D7, Uz=D"'L7'Az and DUz =L ')z
to find
S y*z = Ay* (U U + U 'D'$DD LN+ 6LL™ )z + O(n?). (2.11)

In order to majorize each term we will use the fact that Lisa nilpotent matrix. We have

L" = (LT)" = O, and then

()" =3 (1) -5 (1) 212
(1eir) " =3 (i) =5 (1) e

Thus - -
U = H(I+ET) A]_l' _ ‘(I+iT)_l‘ S (1-1E7)" e
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and

n—1 -~
L7 = ’(I+E)_1‘ <M L) = (I— |i\) '
1=0

Since |6U| < n|L|7,

and, since |[§L| < 77|l°/|,

U] <wlEf” (1-1L7)

SLLY <nli) (1 |E)

Finally, since |6D| < n|D|, we have

U=t p=tepD L7 < (1~

(-

L") ool o (1 - 1E)

° -1 o\ —1
L") oIt (1 |L)

Insert these three values, (2.16), (2.17) and (2.18), in (2.11) to find

L (= 12) " (1= i) i (- 1)

’ n!yl

It is easy to see that |L|T and (I — LT

(1= 1LY L (1 -

’ nlyl
=y -’L'!

Now, using the fact that

L7 (1~

and that

we define

|iy) + (1 -
(r-ir)

1L (1-11) | el + 002

-1
) comute, so we can write

L)) + DI A+

e (L) B (1= 120) el + 00

LIT) 1] = |LIT + L] - 2/L)7| L]

e m)‘lr,

=D Al -

2|L|T|L| + LI + |L).

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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Note that G4 is scaling invariant because it is a sum of scaling invariant matrices. This is
important because the relative error is scaling invariant and, then, the formulae should also
be scaling invariant. When we multiply the matrix 7" by a nonzero scalar «, the eigenvalue

changes to aA and the factor D to aD,
oT = L(aD)L",

Factor L does not change neither does |D| ™' A, ie., [aD| ™ |aA| = |D| 71|\l

So (2.20) can be written as

° - r ° -
) <ner[(I—rL|) | e (r-121) "

< + O(n?).
B vl )

Our second relative condition number is

vI Gow

ly* x|

relconds(\; LDU) :=

where v and w are the solutions of the lower bidiagonal systems
(1 - |1i|) v=l|y|  and (1 - |[i|) w = |z|

and

Alldy| =" — 213 |11]
1] [Allda| " — 213 2]
Gy =
|ln—2] Mldn—a ™t =205y [ln1]
[ln—1] [ Alldn| ™

Both condition numbers are computable when & and y are known. The former requires only

the use of a tridiagonal matrix while the second also requires the solution of two bidiagonal

systems with no divisions.
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2.4.2 Product of bidiagonals J = LU

Consider a simple eigenvalue of a tridiagonal matrix J represented by LU (relevant for the

computation of eigenvalues) where

L=I+L and U =N + diag(u) (2.21)
with u = (uy,uz, ..., u,)7,
K ] 0 1 ]
L 0 0 1
L= and N =
lnoa O 0 1
I ln—1 0] I 0]

Both N and L are nilpotent matrices, N" = L"=0.

Without loss of generality we assume that u; # 0,7 =1,2,...,n — 1. We also assume

that A # 0.

A simple eigenvalue A has right and left eigenvectors satisfying
LUx =z, Yy LU = \y", y*x #£0. (2.22)

There is no need to normalize & and y.

The perturbations of interest are relative:
i — Li(1+ ), u; — ui(1+ Bi),

with |a;| <, |Bi] < n. Early in the analysis we will majorize the perturbations |«;| and

|Bi] by n << 1.

In terms of matrices, the perturbations are
L — L+ 6L, U—U-+4U,

with 0L = diag(ay, ..., a,)L and 6U = diag(By, . . . , B, )diag(w).
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Then, element by element, we write
[0L) = 6L <n|L|, U] = |odiag(w)| < nldiag(u)| (2:23)

We are now ready to make a first order analysis in terms of . The perturbed values
satisfy
(L+6L)(U 4 6U)(x + dx) = (& + dx) (A + IN). (2.24)

If n is small enough then, after multiplying out the factors in (2.24) and using (2.22),
we obtain

LéUx + 6 LUx + LUz + O(n?) = 2o\ + dz\ + O(n?). (2.25)

Premultiply by y* to get
Yy LUz + y* S LUx + y*LUdz = y* 2o\ + y* oz + O(n?).
Now use (2.22) to find
S \y*x = y* (LU + 6LU) x 4+ O(n?). (2.26)

There are two ways to proceed. To first order, after using (2.23),

oM y*e| < nly" (ILl|diag(w)| + |LI[U]) |2] + O@?). (2.27)
Use the fact that L = I 4+ L, U = N + diag(u) to find

6XIly*a| < nly|" (|ding(w)| +2|Ll|ding(w)| + LIN) || + O(?).

Defining M; = |diag(u)| + 2|L||diag(u)| 4+ |L|N we have

[6A] _ |yl" M|

<t +0(n?).
R\ [y*x||A|

This gives the first relative condition number for the form J = LU,

T
M
relcond; (\; LU ) := W
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and
|

201 || l1] + |uz]

M,y

2|ln—2||un—2| lln—2| + |un—1|

2l 1l|tun—1]  |ln—1] + ‘un’_

The second approach tries to bring A into the right side. Return to (2.26) and, from (2.22),

use the relations

Ux =L 1) and y'L =\ U™

to find

S y*x = Ay* (U'6U +6LL™ )z + O(n?). (2.28)
After using (2.23), we have
oA ly*@| < nlAllyl" (U ldiag(w)] + L [L7!]) J2] + O(?). (2.29)

In order to majorize the term |L]| ‘L‘l‘ we will use the fact that L is a nilpotent matrix.

We have L" = (LT)" = O, and then
1 o\ —1 o\ ¢
L= (I + L) - <—L) . (2.30)
Note that the supports of the powers of L are disjoint. Hence, term by term,

n—1 _
L < UL = (1 1E) (2.31)
=0

Then

LN < L (115 = (1= L) 1 (2.32)
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To majorize |U~!| |diag(u)| = |U‘1diag(u)}, note first that U~ 'diag(u) = (diag(w)™'U) .

Hence
_1 ul_1 ]
1 u;l
diag(u)~'U =
1wty
L 1 .
It is convenient to define the nilpotent matrix
0 ul_1 ]
0 u;l
U=
0wyl
L 0 a

1

So, U™ = O and diag(u)~tU = I + U. There is no addition or subtraction of scalars in

expanding the inverse of I + U and from that it follows that
n—1

> (o)

=0

(diag(u)_lU)_1 = (I—i— (QJ>_1 =

And, term by term,
el o\ -1
U diag(w)| < 3|0V = <I - \U|) .
i=0

Now insert majorations (2.34) and (2.32) into (2.29) to find

2 tret <otal { (1-107) "+ [(1-120) " = 1] el + 002

.\ -1
But matrix (I - |L|> — I is not invertible.

We define

My = (I— \[7]>_1 + [(I— \i|>_1 —I} .

(2.33)

(2.34)

(2.35)
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So (2.35) can be written as

6A _  Jyl" M|

= <+ O,
RY ly*z|
Our second condition number is
Tpr
relconds(\; LU ) := 7‘1/‘ - 2||
[y x|
where
1 |U1‘71 \ulqu’l ‘U1UQU3‘71 L. . ]u1u2 .. .’U,n_llfl
‘11| 1 |U2|_1 |U2U3|_1 . |u2...un,1|_1
M |l1l2| |l2’ 1 |U3‘_1 . |U3...un_1|_1
2 —
|l1...ln_2‘ ’lg...ln_2| |l3...ln_2| . 1 |un_1|_1
[E T Y R 1Sy S R 1 Oy Ay . R 1

We do not need this matrix explicitly. Instead we can solve two bidiagonal systems. Going

back to (2.35) we can write

o o7 (- 101) e (1-121) " 1] 1

<7 :
R aed

+0(n?)

where v is the solution of the system
(1-101) v =la|
and w satisfies
o\ —1 o
{(I— L)) —I] @] = w = (1= |L]) (w + [2]) = ||

If we solve the system

(1— \i|) 2= |z
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then w =z — |z|.

We may be bothered by the fact that U is not scaling invariant. This defect is a
consequence of the normalization in the representation LU that keeps the superdiagonal
entries at the value 1. In other words the eigenvectors  and y have to change along with

L and U. In more detail, the matrix 10LU has representation
D'(10LU)D = (I 4+ 10L)(10diag(u) + N)

where D = diag(1,107%,1072,...,10'™").
The qd representation is not scaling invariant. The factors L and U will change if we
multiply the matrix J by a scalar; and the condition number will change too. We need a

diagonal scaling.

2.4.3 Derivatives from AT = ALQLT

In this section, from Parlett [42], we will describe sensitivity in terms of the generalized
singular value decomposition. We will present formulas that state the relative sensitivity of
the eigenvalues of ALQLT to L’s entries.

Any real tridiagonal is diagonally similar to AT, where AT is real symmetric and
A = diag(d1, 92, . ..,dn), 6; = £1. This similarity transformation is an instance of balancing
a nonsymmetric matrix. We assume that the eigenvalues \; are distinct but we allow them

to be complex. Thus

TSi:ASi)\Z', izl,...,n

S = [31, . -75n:| , possibly complex. (2.36)
Suppose such matrix T may be written as
T =LOQLT, (2.37)

where L is lower bidiagonal and €2 is diagonal.



50

If T is positive definite then Q = I and T'= LL" is the Cholesky factorization of 7. If

T is indefinite and has the factorization
T =1L,DLT,

with D = diag(dy,...,d,) and

oo 1
b1 1)

then, defining
Dy :=diag(\/|d1],...,/|dn]) and Q:=diag(wy,...,wn), w;= sign(d;),
we can obtain the factorization (2.37). We will have
T = LiD:QD LT = LQL” (2.38)

with L = L1 D;. This is the closest factorization to the Cholesky factorization that we can

get.

A standard normalization for the eigenvectors is
STAS =1. (2.39)

Let A = diag(\1,. .., \,) and denote by A/? the principal square root of A. That is, if

i = pie?% then )\2-1/2 = pl-l/Zeiei, —5 <0; <F and
AMZ = diag(AL/2, . A2,
As in the symmetric case there is an indefinite singular value decomposition of L,

L =ASA/2pPT (2.40)
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defining P which is complex in general. This is a generalization of the familiar singular
value decomposition ULV of L.

Note first that from (2.36), we have
TS = ASA & (AS)'T = AS™! (2.41)
Also note that

PTQP =A"V2(AS) ' LQLT(AS)"TA™Y2, by (2.40),
=A"2(AS)TIT(AS)TATY2, by (2.38),
=A"V2 [ASTHAS)TT]ATY2 by (2.41)

=1, by (2.39).
So, P is defined by (2.40) as

P=LT(AS)"TATY/2,

With A and € fixed we will study how A depends on L. Write

a;

b, a,

b an_:

L bt‘l—l al’l_
and let P i= [p,,...,p, | So, PTQP = I and, from (2.40),
L(QP) = ASAY2PTQP = ASAY2,

Also, using (2.39),
STL = (AS)™'L = AY2PT,
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Consider a typical singular triple (A, s, p)

L(Qp) = (As)A\/? (2.42)

sTL = )\1/2pT.

Recall that we use to note p = (p;) and s = (sg), k=1,...,n.

We can now state the relative sensitivity of the eigenvalues of AT = ALQLT to L’s

entries. The expressions may be complex.

Theorem 2.4.1 Let A = diag(d1,d2,...,0,), 0; = 1, and Q = diag(wr, ..., wy), w; = 1.
If AT has distinct eigenvalues and (2.37) holds then, for A # 0,

la; OX J ks . =
% 4 m=1 =J k=j+1
16, oA -
16 0A _ S [wmpt = mst] = 3 [GmsZ —wmp] - (2.44)
2 X 0b; m=1 m=j+1

For a proof see [42, p. 430 |.

2.4.4 Derivatives from AT = ALDLT

From Z. Wu [64]. In this section we will give theoretical evidence that eigenvalues may
be determined to high relative accuracy by the bidiagonals. Consider a tridiagonal matrix
written in the balanced form AT, where T is symmetric and A = diag(dy, d2,. .., d,) with
9; = £1. Consider a typical eigenpair (A, v) of AT with the normalization v*v = 1. That
is,

ATv = <= (T —AA)v =0 (2.45)
Lemma 2.4.1 If S\ # 0 then v*Av =v*"Tv =0

Proof. Since (T — AA)v = 0, we have

v (T — AA)v =0. (2.46)
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Also, since v*Tv is a scalar and T is real and symmetric, we have
v Tv =vTo = (UTTi)T =v"Tv
Using the same arguments, we have that v*Aw is also real. So, from (2.46),
M Av = v T,
that is, Av*Aw is also real. Let A = a + bi, where a = R\ and b = SA. Then
A Av = av*Av + (bv*Av)i

and, therefore, if b # 0, we must have v*Av =0. O

First consider the two following basic facts.

Fact 2.4.1 LetV = [’01, va,..., v, | bethe matriz of eigenvectors of AT. If \i # X;, 1 # J,

ey

then V' is invertible.

The proof of this fact rests on the invertibility of the Vandermonde matrix (eigenvectors

corresponding to distinct eigenvalues are linearly independent).
Fact 2.4.2 If \; # )\ fori # j, then vl Av; = 0.
Proof. From (2.45), suppose that A\; # A; and vectors v; and v; satisfy

Tvj; = Avj); and Tv; = Av; ;.
Then

viTij = viTAvj)\j and ’U]TT’UZ‘ = ’U]TA’UZ')\Z'. (2.47)
Note that, since we are dealing with scalars and T is symmetric,
vl Tv; = (vlTij)T = ’U?T’UZ‘ and vl Av; = (vZTAvj)T = 'vaAvi.

Now, subtracting in (2.47) , we get

0= ’UlTA’Uj()\j — )\1)



54

and, since \; # Aj, we obtain that
vl Av; =0. O

Lemma 2.4.2 Let v;, i = 1,...,n be eigenvectors of AT. Assume that \; # \j fori # j.
Then U?Avi #0,1=1,...,n.

Proof. Using both facts above, we have that VAV is a diagonal matrix with diagonal

entries v} Av;, i = 1,...,n. Thus
det(VTAV) = HviTAvi.
i=1
Since both V and A are invertible, we must have det(VTAV)) # 0 and, therefore,

v?Avi#O, 1=1,...,n. O

Theorem 2.4.2 Assume that T admits the factorization T = LDL", where L is unit
bidiagonal with subdiagonal elements ly,la,...,l, and D = diag(dy,da,...,d,). Suppose
that all the eigenvalues of AT are distinct. Then for A # 0 and corresponding eigenvector
v = (vj) we have, for k=1,...,n,

dp 0N (v'Ley) (ef L' Av)
A 0d, vT Av

and, fork=1,...,n—1,
l@ s (efL‘lAfv)

NOl, v Av ’
And
e%L‘lAv = 0pV% — Op—1Vk—1lp—1 + (_1)25k—2vk—2lk—1lk—2+ oot (—1)k_151’01lk_1lk_2 ol
k=1,...,n,
UTLek:vk—i—kalk, k=1,....,n—1,

UTLen = Up.
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Proof. Differentiate

Tv = \Av (2.48)
with respect to di to obtain
0 0
T AA
5 dk( v) =35 dk( v).

Since we have T = LDLT it follows that

O(LDL™ ) ov O\ I(Av)

— =—Av+ A\ . 24
Ody, T@dk Ody, Ody, (249)
. 0D ¢ OL LT O(Av) v
— = =M —, f 2.4 t
Since od, erej, , o, odr =0 and A od, ad;. rom (2.49) we ge

61) 8)\

Now, multiplying by T on the left,

ov () o Aw.

vl Lepel LTv + 0T (T - )\A)adk Bdk

From this we obtain
2 (vT'Ley) (ef LTv)
ady, v Av ’

because vT (T — AA) = [(T — MA)v]T = 0, since T and A are symmetric, and vT Av # 0 by

lemma (2.4.2). And multiplying both sides by dy,

d o\ B (UTLek) (dke;‘gLT'v)
k(97dk N vTAv '

To make A appear in the denominator, note that, using (2.48) we can write
drefL"v =el DLTv = el L' LDL v = e} L™ 'Tv = e, L ' Av). (2.50)
Then when A # 0,

dp ON (UTLek) (e;‘gLflAv)
A Od, vl Av '
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The second relation is obtained similarly. Differentiating (2.48) with respect to I} we

obtain
O(LDL™) ov O\ I(Av)
_ T—=—A A . 2.51
o U o ot T (2:51)
) oD OL oL” 0(Aw) ov .
Since - 0, . eri1er, EI ekefﬂ and A od, )\Aa—dk, it follows that
A
err1er DL v + LDekeerlv + (T - )\A)a—v = a—Av.
ol 0l
Again, pre-multiplying by v” and using the same arguments as before,
o\ B 'vTekH (e{DLT'v) + ('UTLDek) e;‘gﬂfv
ol v Av
T
Ukt (e%DLT'U) + (e{DLT'U) Vk+1
n vl Av
Using again (2.50) it follows
1ON  2up4 (e%LilAv)
Aol v Av '
Finally, the result
et L7 'Av = §jup — Sp—10p—1lk—1 + (=1)265—2vk—olp—1lp—2t+ ...+ (=1 Torolp_1lp—2 ... I,
k=1,...,n,
vTLek:Uk—i—kalk, k=1,...,n—1,

'vTLen = Up.

follows from direct calculations. O

Notice that dj, like A, is proportional to || 7’| while [ is not. That is, if we multiply T
by p # 0, then L(uD)LT = uT. Consequently, it is natural to consider relative changes to
dy, but absolute changes to l. In particular, when k =1,

dy O\ . (’U1 + U2l1)51111
A\ ddy v Av

1 6)\ 2’[)2511}1

Aol vTAw
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Theorem (2.4.2) permits us to define the following condition numbers

17, Tr—1A
relcond(A, dj; ALDL") := |” eﬁ‘;T"eAkv] :

and

2|vs1] |ef L7 Av|
|vT Av|

relcond(\, l; ALDLT) :=

A comparative study of all these measures of sensitivity we just presented with the more
general ones would be useful and is part of the next stage of our study. Classical Bauer-
Fike theorem states one condition number for all the eigenvalues and must certainly be too

crude. Wilkinson’s condition number gives one condition number,

[yl ]
Ally*z|

for each eigenvalue but must also be pessimistic. It is still too general. The condition

numbers we gave are more refined because they exploit the tridiagonal form. The hope is

that they will be realistic estimates of sensitivity, not just bounds.






Chapter 3

LR and dqds

The focus of this chapter is the description of LR and qds algorithms showing the connection
between them. The dqds version demands a little more of arithmetic effort than qds but

has compensating advantages - it enjoys the property of mixed high relative stability.

3.1 LR algorithm

For more than forty years the standard algorithm for calculating eigenvalues has been the
QR algorithm of Francis [18]. But historically the LR algorithm preceded the QR algorithm.
The whole field had its genesis in 1957 with Rutishauser’s quotient-difference algorithm
[46, 47], which Rutishauser then generalized to the LR algorithm [48]. The QR algorithm
followed shortly thereafter. Surprisingly, the quotient-difference algorithm has had a recent
revival. In 1994, Fernando and Parlett [16] introduced new versions for finding singular
values of bidiagonal matrices and eigenvalues of symmetric tridiagonal matrices but it may
also be used in the unsymmetric tridiagonal case.

Contrary to QR, the LR algorithm preserves bandwith and thus it is one of the most
efficient methods for calculating all the eigenvalues of a nonsymmetric tridiagonal matrix.
Most of the improvements that have been incorporated into QR over the years such as

implicit double-shift iterations, deflation, splitting, and arbitrary shifts, can also be used in

59
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the context of LR iteration.

LR algorithm

The LR transformation gives a reduction of a general matrix to triangular form by means
of non-unitary similarity transformations. It is based on the LU decomposition of a matrix.
Under mild conditions a square matrix admits triangular factorization, A = LR, where L
is unit lower-triangular and R is upper triangular.

The method bases essentially on the fact that by starting with the given matrix A =: Ay,

the infinite sequence of similar matrices A1, As, As, ..., generated by

LR algorithm
A=A
fori=1,2,...
(3.1)
Factor A; = L;R; (LU factorization)
Ai1 = RiL;

end

converges to a triangular or diagonal matrix A;,r, under reasonable assumptions.

In words, we decompose A; and multiply the factors in reverse order to obtain a matrix

A;41 that is similar to A. This process is repeated until convergence occurs. In fact,
Aip1 = RiL; = Ly Y (LiR)L; = L7 A; L

and then, by induction, A;;1 is similar to Aj.
If A is symmetric and positive definite, and if the decomposition of A; into L;R; is
such that L; is lower triangular and matrix R; is the transpose of L; for any 7 (Cholesky

decomposition), then lim A; exists and is diagonal. A proof of this is given in Rutishauser

[48]. o

But not every matrix has an LU decomposition and difficulties arise when we are close

to a matrix that has no LU decomposition. The LR algorithm may not be stable. Stability
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can be improved markedly by the introduction of pivoting but this destroys the bandwith
structure. Wilkinson [60] uses the LR method with row and column interchanges to produce
an algorithm which is stable and requires no more arithmetic than the basic LR. In practice,
this variation seems both fast and accurate but no convergence proof has been published yet
nor is it apparent how to adapt the technique to give, economically, the complex eigenvalues

of real matrices.

3.2 QR algorithm

A standard approach in computing the eigenvalues of a general square matrix is to reduce
the matrix first to Hessenberg form by a sequence of orthogonal transformations, and then
to determine the eigenvalues of the Hessenberg matrix through an iterative process known
as the QR algorithm. The reduction to Hessenberg form requires O(n?) operations, where
n is the order of the matrix, and the subsequent iterative phase also requires O(n?) opera-
tions. The function eig of MATLAB uses this scheme to compute all of the eigenvalues and
eigenvectors of a general matrix.

If the original matrix is symmetric, then the symmetry can be preserved in the initial
reduction, so the reduced matrix is tridiagonal. Although the reduction to tridiagonal form
still requires O(n?) operations, the subsequent iterations preserve the tridiagonal form and,
hence, are much less expensive, so that the total cost of the iterative phase is reduced to
O(n?) operations.

The attractively low operation count obtained when iterating with a tridiagonal matrix
suggests that the tridiagonal form would be extremely beneficial in the nonsymmetric case
as well. Such an approach presents two difficulties, however. First, QR iteration does not
preserve the structure of a nonsymmetric tridiagonal matrix. This problem can be overcome
by using LR iteration, which preserves the tridiagonal form. Second, it is difficult to reduce a
nonsymmetric matrix to tridiagonal form by similarity in a numerically stable manner. But
promising methods to improve the stability of this reduction have been developed recently.

See Sidje [50]. See also Dongarra [13] and Geist [20].
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QR algorithm

As implemented in the late 1950’s and early 1960’s, LR proved insufficiently reliable and was
displaced by the QR algorithm in the mid 1960’s. The QR algorithm, developed by Francis
[18], is closely related to the LR algorithm. Based on the use of unitary transformations,
the QR algorithm avoids the possible instability of the original LR transformation but it
is slower. However, in many respects, this has proved to be the most effective of known
methods for the solution of the general algebraic eigenvalue problem. In comparison with

current reliable methods, the QR technique is fast and highly satisfactory.

QR algorithm
A=A
fort=1,2,...
Factor A; = Q; R; (QR factorization)
Aip1 = RQ;

end

Orthogonal similarities give stability to the QR algorithm and preserve symmetry as well

as the Hessenberg form; thus, the symmetric tridiagonal form is also preserved.

Lemma 3.2.1 Let A = QR be the QR decomposition of A and
A=QTAQ
be its QR transformation. If A is tridiagonal, symmetric and non-singular, then A is also

tridiagonal, symmetric and non-singular.

The QR algorithm does not preserve the tridiagonal form in the non-symmetric case.
If A is non-symmetric tridiagonal, then A will be upper Hessenberg. But it never breaks

down.

Convergence of the basic QR algorithm may be too poor for pratical computations.
Convergence rates depend on the ratios of eigenvalues and to speed up convergence, shifts

of origin should be incorporated.



63

QR algorithm with a shift

A=A
fori=1,2,...

Choose a shift o;

Factor A; — o;1 = Q; R; (QR factorization)
Aip1 = QiRi + oil
end

Ideally we want to shift by the eigenvalues. If o; is an exact eigenvalue of A;, then
the QR iteration converges in one step. See Demmel [11, p.162]. So, shifts o; close to
eigenvalues hasten convergence. Note that near convergence to a real eigenvalue, the last
diagonal element of A; = (a,(jj)) is close to that eigenvalue, so o; = a,(f% is a good choice for

a shift.

3.3 Shifted LR algorithm

So, in order to accelerate convergence (and also to be able to treat indefinite symmetric
matrices) the simple decomposition-recombination procedure (3.1) of LR algorithm must

be modified in the following way:

LR algorithm with a shift

A=A

for:=1,2,...
Choose a shift o;
Factor A; — 0,1 = L;R; (LU factorization)
A1 = RiL; + o;1

end
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Notice that matrices A; and A;y1 continue to be similar,
Aiy1 = RiL; + ;] = Ly Y(L;R; + o;1)L; = L; YA Ly, (3.2)

and we call the transformation shift restoring.
By proper choice of ¢;, the last diagonal element a%% of A; will, in general, converge to
the smallest eigenvalue of A. If o; is chosen to be close to an eigenvalue of A; then A; — o1

has an eigenvalue close to zero.

There are no simple expressions for convergence rates in shifted LR algorithm because

it depends on all shifts o;’s.

Lemma 3.3.1 If A— ol is singular and A — ol = LR is the LU decomposition of A —ol,
then the transformation A = L~ AL deflates in one step.

Proof. Let A be of order n. Since A — oI is singular, if L = (l;;) and R = (r;;) are the
factors of its LU factorization, then, by theorem 2.1.1 (page 27), we must have r,, = 0.
Therefore,

L'AL =LY (LR+0oI)L = RL +ol.

But el R = 07 and then

el (RL +oI)=0" +oel =cgel. O

n

To say that A = L 'AL deflates in one step, means that the first eigenvalue o is
obtained and the remaining eigenvalues of A are the eigenvalues of the submatrix that
results from discarding the last row and the last column of A. This reduction of the order
of the eigenproblem is called deflation.

In the general case, with LR algorithm there is still much work to be done in finding
clever shift strategies that approach an eigenvalue in a stable way. The development of

reliable shift strategies is an open domain.
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3.4 Implicit double shifted LR algorithm

When A =: A; is a real unsymmetric matrix and has complex eigenvalues, to speed up the
convergence to a complex eigenvalue it is necessary to choose a shift close to an eigenvalue
and hence to choose a complex shift. If on iteration i we take a complex shift o;, then the
resulting matrix A;11 = R;L; + 0,1 will be complex. This means that all arithmetic has to
be complex, increasing the cost by a factor of about 4. Since complex eigenvalues of real
matrices occur in complex conjugate pairs, we can shift by o; and &; at the same time. It
turns out that this will permit us to maintain real arithmetic. This double shift technique
was developed by Francis for the QR algorithm: it uses real arithmetic and converges to
real Schur canonical form. For the details on the implicit double shifted QR algorithm see
Demmel [10, pp.170-172]. In this section we will describe a similar technique for the LR

algorithm.

Implicit double shifted LR algorithm

We will see in detail how to combine two consecutive iterations of LR algorithm choosing
successive complex shifts ¢ and & such that the result after this double shift is again real.

Considering the first two steps, the result of shifting by ¢ and & in succession are

Ay — ol =L Ry

Ay =RiLi+ 0l so Ay=L7 AL (3.3)
Ay —GI =LyRy

A3 =RgLy + &I so Az =Ly'Agly =Ly L7 AL Ly (3.4)

The real part of o will be denoted by o and the imaginary part by So.

Lemma 3.4.1 Consider the application of two steps of LR algorithm with successive shifts

o and o. Then

(L1Lo)(RoRy) = A — 2(Ro) Ay + |o|*1.
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Proof. Since LoRy = As — &I and L1Ry = A1 — ol, we get

Li1LoRyRy = Li(As —GI)Ry
= Li(L7'A Ly —GT)Ry
= (A —ol)L1 Ry
= (A, —GI) (A, — o)
= A2 —2(Ro) Ay + |0’ 1. O

Define M = A2 — 2(Ro) Ay + |o|?I. Thus (L1Ls)(ReR;) is the LU decomposition of the
real matrix M and so (L;Ls2) and (R2R;) are both real. This means that

Az = (L1 Ly) YA (L1 Ly)

is also real.

Moreover, the first column of L Ly is proportional to the first column of M:

M61 = (LlLQRQRl)el

=r(L1L2)eq,

where r is the element in position (1,1) of upper triangular matrix RoR; (remember that

e is the first unit vector).

Our implementation of double shifted LR iteration will depend on the following theorem,
known as the Implicit L Theorem. We will suppose that a reduction of the initial matrix
A to Hessenberg form has been performed. Thus, we will be considering double shifted LR

on an Hessenberg matrix which is also a form that is preserved by this algorithm.

Theorem 3.4.1 IMPLICIT L. THEOREM Suppose that L is unit lower triangular and
L= YAL = H is unreduced upper Hessenberg. Then columns 2 through n of L are deter-
mined uniquely by the first column of L.

Proof. Let l; and hj, 1 <j<n, be the columns of unit lower triangular matrix

L = (lij)1<i,j<n and upper unreduced Hessenberg matrix H = (h;j)1<i j<n, respectively.
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Thus,
L= [ll I 13 --- 1, and H = hi hy hs --- h,
1 hi1 hi2 hiz - hin
lor 1 hor hag hoz -+ ha,
= |l3 I3 1 = h3a hzg - h3n
_lnl an to ln,n—l 1_ L hn,n—l hnn_

Equating entries on each side of the equation
AL=LH
shows, for the first column, that
Aly = Lhy = lih11 + lLahoy. (3.5)
Then, looking at the first and second elements of Aly, we get
elAly =hyy and el Aly = ly1hyy + hoy.

So, given a matrix A and the first column I; of L, elements hi; and ho; are uniquely

determined. That is, the first column h; of H is uniquely determined by ;.

Now we can use (3.5) to obtain the second column of L,
li2: (All—llhll)m/hgl, i:3,...,n

since, by assumption, hoy # 0.

To obtain columns h; and 111, 2 < j < n — 1, notice that

J
Alj = Lh; = Zlihij +ljv1hji (3.6)
=1
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Then, the first j 4 1 elements of Al; are
E{Al]’ = hlj

eQTAlj = hljlzl + th

(3.7)
e;‘FAlj = hyjlj1 + hojljo + -+ hj;
ef 1Al = hijliag + hajliiae + -+ hyjliag + hjg g
Given columns Iy, ...,1;, these equations determine, in turn, elements hyj,...,hjy1 j, that

is, column h; of H. And, since hjy1; # 0, from (3.6) we get column 1,1,

1 J
lij+1 = h <Alj - Zlihij> , 1=74+2,...,n.
i=1

1
J+1,7 i+l

Note that if j =n — 1 we have l;1 = e,, and there is no need for any calculation.
T
Finally, for j = n, we obtain the last column of H, h, = {hln . hm} , the same way,

but using only the first j equations in (3.7). O

The implicit L theorem implies that in the double shifted LR algorithm, to compute As

in (3.4) from A; we will only need to:

1. compute the first column of Lq Ly which is proportional to the first column of M and

so can be gotten just by normalizing this column vector.

2. compute other columns of LiLo implicitly using the implicit L theorem through ele-

mentary transformations.

Next we will describe a technique called bulge chasing that, after performing 1, allow

us to achieve goal 2.

3.4.1 Bulge chasing

The technique of bulge chasing is justified by the implicit L theorem. This theorem plays
the same role as the Implicit @@ Theorem [10, p.168| in the implementation of the implicit
double shifted QR algorithm.
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When A = (a;;)1<i,j<n is upper Hessenberg, then the first column of M is

G%I + a12a91 — 2(§RO‘)CL11 + |O’|2

az1 (a1 + age — 2(Ro))

421032 (3.8)
0
0
We have
Az =L71AL (3.9)

where L = L1 L9 and the first column of L is proportional to (3.8). We will present a 6 x 6

example of bulge chasing to show how we obtain A3z and L from A;.
Example 3.4.1

If we consider n = 6, the transformation of A; to As occurs accordingly to the following

steps.

T
1. Letlyb =11 % % 0 0 0| be the first column of L, obtained just by normalizing

T
(3.8). Consider the elementary matrix L; = I+|’16{, where I' = [0 * %« 0 0 0] )

that is l; with 0 in first position instead of 1. So, since I-1_1 =1- Iae{,

r r r r T <X r r r xr T X
r r r ¥ T <X r r r ¥ T X

LflAlz + z z xz x x and A(I)ELflAlle + z x x = x
r r T x + r Tr T z

r T x r T x

r T T X

We see that there is a 2 x 1 bulge, indicated by plus signs.
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Next we will apply a sequence of elementary similarity transformations such that each
transformation pushes the bulge one row down and one column to the right. Finally

the bulge is gotten rid of to restore upper Hessenberg form.

2. Form an elementary matriz (Gauss matriz) L 1 which affects only rows 3 and 4
of Ly'AMW | zeroing out entries (3,1) and (4,1) of AN, So, Ly = T + lhed with

T
=10 0 = 0 0 ,L2 =TI —lhel and

LytAW = and A® =1;1A0L, =
+ r *r T x + r r T x
r T z + r T T
T T r x

3. Form an elementary matriz Lgl which affects only rows 4 and 5 of L_IA(Q),

zeroing out entries (4,2) and (5,2) of A®. We will have Ly = I + e} with
T
000 % % 0| ,Lz'=T-1el and

L;tA® = and A®) = L31A0)L; =
X r T X T r T X
+ xz z x + z z x
r T + xr X

4. Form an elementary matriz LZI which affects only rows 5 and 6 of LflA(?’),

zeroing out entries (5,3) and (6,3) of A®). We will have Ly = I + ljel with
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T
=10 0 0 0 x| ,L;'=I-1lel and

AW = L7 ABL, =

T
5. Finally to zero out entry (6,4) of A® we form Ly = I—|—|’565T with I} = [0 000 0 *] .

We have Ly ' =T — l;es”,

and we are back to upper Hessenberg form.

In the end we have

A®) = (LLyLsLyls) P A L LoLsbyLs.
In exact arithmetic the implicit L theorem ensures that

A; = A® and L= L1Ly = LiLoLsLyLs. o

The rest of the this chapter is concerned with qd algorithms and its relation to LR

algorithm.
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3.5 The qd algorithms

Consider a tridiagonal matrix normalized into J form as presented earlier in the previous
chapter (page 30), that is, such that all superdiagonal entries are equal to 1. When LR is
rewritten in the LU representation for a J matrix one obtains the (progressive) qd algorithm.
The letters q and d stand for quotient and difference. When we incorporate shifts we have
the qds algorithm.

The differential qd algorithm (dqd) is a variant of qd that requires a little more of
arithmetic effort than qd itself. Shifted version is named dqds. They are new to the scene
of matrix computations and one feature that makes them attractive is that they seem to
be more accurate than their rivals (see Parlett [40]). In particular, in the positive case, all

eigenvalues can be found to high relative accuracy as long as the shifts preserve positivity.

3.5.1 Stationary qd algorithms

Triangular factors change in a complicated way under translation. Given L and U of the

factorization J = LU as presented in section 2.2.2 (page 31),

1 (51 1

ll 1 u9 1
12 1 us 1

ln—2 1 Up—1 1

o1 1 Un

the task here is to compute L and U such that
J—ol=LU -0l =LU

for a given suitable shift ¢. Equating entries on each side shows that
l’i+ui+1_U: Zi+ﬂi+17 i:O,...,n—l, l0:07 50:07

Liug = l;ug, 1=1,....,n—1.
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These relations yield the so-called stationary qd algorithm with shift:

stqds(o): w1 =u; — o
fori=1,...,n—1
li = liu; /U
Uip1 = li + uip1 — 0 — 1

end for.

Naturally it fails if @; = 0 for some i < n.
An alternative algorithm for L and U involves more arithmetic effort and an auxiliary
variable but has some advantages in accuracy for finite-precision arithmetic. To derive this

algorithm we define a variable t; by

tit1 = Ujp1 — Uigp1 =l — l; — 0.

Observe that
tiv1 = l; — lluz/ﬁl —0
= li(ﬂi*ui)/ﬂifd
= tl; / U; — 0.
The associated algorithm is called the differential form of the stationary qds algorithm. We

will name it as dstqds.

dstqds(o) : t1 = —0
fori=1,...,n—1
U; = U; + t;
li = u;(l;/ ;)
tiv1 = ti(li/u;) — o
end for

Up = Up + Ty
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In practice the t-values may be written over each other in a single variable t. If the
common subexpression /; /u; is recognized then only one division is needed. Thus the dstqds

exchanges a subtraction for a multiplication, so the extra cost is not excessive.

3.5.2 Progressive qd algorithms

Recall that the product UL = J’ has the superdiagonal entries also equal to 1. This section

seeks the triangular factorization of J' — oI, not J — ol:
J —ol=UL—ol =LU

for a suitable shift . Equating entries on each side of the defining equation gives:

~ ~

Uil +liv1 —o = i + Uiq1, 1=0,....n—1, lp =0, [, =0,
liuz‘+1: Ziﬁi, izl,...,n—l.

These relations give the so-called progressive qd algorithm with shift which we will call qds.

qds(o) : uy =uy +1; — o
fori=1,...,n—1
l; = it /1
i1 = Uip1 + i1 — o —;

end for.

The algorithm qds fails when @; = 0 for some ¢ < n. When o = 0 we write simply qd, not
qds.
There is an alternative implementation of qds that is slightly slower than qds but has

compensating advantages. Lets define an auxiliary variable
dit1 = i1 — lix1 = ujp1 — l; — 0.
Observe that
diy1 = g1 — Luig /0 — o
= ui+1(ﬁ,~ - lz)/ﬁz — 0

= diuﬂ.l/ﬁi — 0.
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Rutishauser seems to have discovered the unshifted version some years after discovering qd
but he did not make much use of it. He called it the differential qd algorithm (dqd) and the

new shifted version will be called dqds.

dads(o): di=u1 —o
fori=1,...,.n—1
Uy =d; +1;
li = Li(uiy1 /)
diy1 = di(uig1/U;) — 0
end for

Up, = dp,.

By definition, dqd=dqds(0). In practice each d;;+1 may be written over its predecessor
in a single variable d.

In the positive case (I; > 0, i = 1,...,n—1; u; > 0, i = 1,...,n) dqd requires no
subtractions and enjoys very high relative stability. In the symmetric case, dqds, even with
the current simple shift strategies, achieves good accuracy in all eigenvalues and is faster
then QR. See Fernando and Parlett [16]. In fact, this algorithm finds the singular values of
a bidiagonal matrix in O(n?) time, but as accurately and rather more efficiently than QR
algorithm. It is the sequential algorithm of choice for singular values and is implemented

in Lapack ! [2].

In what concerns to an error analysis of dqds, it was proved in [16] that dqds yields
mixed high relative stability. Given matrices L and D and shift o, suppose that the dqds
algorithm in finite precision produces representable output L and D. We introduce ideal
matrices f), D, L and D such that L and D is the output of dqds acting on L and D in

exact arithmetic. Moreover L and D are small relative perturbations of L and D, and L

'LAPACK is a library of Fortran 77 subroutines for solving the most common problems in numerical linear

algebra.
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and D are small relative perturbations of L and D. See figure bellow. This property is
called mixed stability in [9] but note that the perturbations are relative ones. And dqds

enjoys high mixed relative stability even with element growth.

dqds

LU LU
computed
change each
change each
lg by 1 ulp .
lg, U by 2 ulps
ug by 3 ulps
A A dqds o v
o RN S 5
exact

Figure 3.1: Effects of roundoff for dqds

The diagram shows that, in the absence of division by zero, underflow or overflow,
the diagram commutes and, for all &, I, and 4y, differ from I, and g by 3 and 1 ulps 2,

respectively, and Zk and 1y, differ from ik and g, respectively, by 2 ulps, at most.

3.6 Relation of LR algorithm for J matrices to qds

The LR transform of J is J’ and the LR transform of J’ is the matrix J” defined in two
steps by
J=LU, J' =UL.

In fact, the first step of the LR algorithm
J = LU, J =UL,
defines J’ and the second step defines .J”,

J =LU J'=U'L".

2One ulp, “unit in last place”, of the normalized floating point number y = +£8° x .dida...d; is
ulp(y) = 3° x .00...1 = B3°7%. It is the right unit for discussing relative errors since it avoids reference

to the magnitude of the numbers involved.
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Now qd applied to L and U yields L' and U’ and so defines J” implicitly. There is no
need to form J’ or J”.

When shifts are employed the situation is a little more complicated. It is necessary to
look at two successive steps with shifts o1 and 0.

In shifted LR we have

Ji—ol =L1U;
Jo=UiL1 + 011
JQ — 02] == L2U2

J3 = UsLg + 09l.
In other words, the shifts are restored so that Jy, Jo, J3 are similar. Note that

Jy = ULy + 011
= L' LU Ly + o1 T
=L (i —o )Ly + o1
= Ly 'L,
and
J3 = Lyt JaLo.

However, if Js is not to be formed one cannot explicitly add o1 back to the diagonal.
On the other hand,
Jy — ool = ULy — (09 —01) I = LaUs.

In general, we have
Jiv1i —oipil =ULi+ ol —oipa1l
=U;L; — (0i41 —03) I = Liz1Us41.
Thus, to find Le and Uy from L; and Uj it is only necessary to apply qds(c2 —o1). In other

words, to get qds equivalent to LR with shifts {o;};2, it is necessary to use the differences

(07 — 0i—1) with qds.
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In LR the shifts should converge to an eigenvalue of the original J or J’. In qds the
shifts should converge to 0 and u, — 0, {,_1 — 0 too and all shifts must be accumulated.

See diagram in Figure 3.2.

LR LR
I (01) T (02) 7s
K _7( K _y( K
Li,Uy Ly, Uy L3, Us

dqu(Ug — 01) dqu(Ug — 02)

Figure 3.2: Relation of LR to qds

In the positive case both LR and qds are accurate and efficient.

In practice, the LR algorithm for J matrices avoids explicit calculation of the L’s and
U’s and the transformation J; — J;;1 is effected via a sequence of elementary similarity
transformations. For comparison purposes, two implementations of LR, the explicit and

the implicit shifted versions, can be found in [40, pp.469-471].

We end this section summarizing some advantages and disadvantages of the factored

form LU.
Advantages of the factored form

1. L,U determines the entries of J to greater than working-precision accuracy because
the addition and multiplication of I’s and w’s is implicit. Thus, for instance, the (i,7)

entry of J is given by l;_1 + u; implicitly but fI(l;—1 + u;) explicitly.

2. The mapping L,U — J is naturally parallel; for example, if I = (I;) and v = (u;),
then I xu gives the off-diagonal entries of J. In contrast, the mapping J — L, U, that

is, Gaussian elimination, is intrinsically sequential.

3. Singularity of J is detectable by inspection when L and U are given, but only by

calculation from J. So, LU reveals singularity, J does not.
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4. First experiments with the measures of sensitivity presented in Chapter 7 show that

LU defines the eigenvalues better than J does (usually).

5. Solution of Jx = b takes half the time when L and U are available.

Disadvantages of the factored form

The mapping J — L,U is not everywhere defined. Even when the factorization exists
it can happen that ||L|| and ||U|| greatly exceed ||J||. This is very bad for applying the LR
algorithm but harmless when eigenvectors are to be calculated. So, some care is needed
to consider the goal before stigmatizing a process as unstable. Moreover, in the eigenvalue
context we are free to replace J by J — ol = LU for some suitable chosen shift ¢ that
gives acceptable L and U. And there is a lot that can be done in improving existing shift

strategies so that element growth can be monitored.






Chapter 4

Convergence results for LR

In this chapter we establish a new convergence result for the basic LR algorithm on a real
unreduced tridiagonal matrix with a one-point spectrum - the Jordan form is only one big
Jordan block. First we show the classical convergence results and summarize eigenvector

properties of real unreduced unsymmetric tridiagonal matrices.

4.1 Classical results for the convergence of LR algorithm

The k™ iteration of the basic LR method is based on the LU decomposition Ay = LiUj
and on the multiplication of the factors Ly and Uy in reverse order to get the matrix Agyq.

The sequence of matrices A =: Ay, Ao, As, ... is then generated by

LR algorithm
A=A
fori=1,2,...
Factor 4; = L; R; (LU factorization)
Aip1 = RiL;

end

It is easy to see that Ay, is similar to Ay,

81
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A1 = RpLy, = Ly, (LiRy) Ly, (4.1)
and then, by an inductive argument, Ay is similar to A;.

Lemma 4.1.1 Let Ay = A and {A;}2, be the sequence of matrices generated by
LR algorithm, 1 = 1,2,.... Then

Aig1 = (LlLQ ... Li)71A1(L1L2 - Li), 1=1,2,......
Proof. Use (4.1) repeatedly. O

Lemma 4.1.2 Let matrices L; and U; be defined by
ﬁi = L1L2...LZ’ and Z/{i = RiRifl ...Rl.

Then Li; is the LU decomposition of A%.

Proof. From lemma 4.1.1 we have
LiLs... LiflAi = A1L1L2 L. (42)

Notice that matrices £; and U; are unit-lower triangular and upper-triangular, respectively.

Consider the product £;U;. For i = 2,3, ..., we have

EZZ/{, = LlLQ NN Lz‘—l(LiRi)Ri—l oo R1
= L1L2 e LZ'_1A7;RZ'_1 Ce Rl
= A1L1L2 NN LiflRl',l NN R1 (fI‘OIIl (42))

= A Li Ui
Repeated application of this result shows that
Ll = A3, (4.3)

so that £;i4; gives the LU decomposition of A%. O
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Thus, we have

Ai+1 = [,iilAl,Ci and LiU; = All,
that is, 7 steps of LR applied to A; are equivalent to a similarity given by a factorization
of Al.
4.1.1 Convergence of LR algorithm in the simplest case

We now restrict ourselves to the case when A; is nonsingular and has eigenvalues
Ai, © = 1,...,n, of distinct modulus, so that it necessarily has linear elementary divisors.

We may write
Ay = X diag(A1,...,\)X ! = XDy, (4.4)

where the columns of X are the right eigenvectors of A; and the rows of Y are the row
eigenvectors of Aj.

Suppose we order the eigenvalues \;, i = 1,...,n, of A; so that they satisfy
A1 > A2 > > | A (4.5)

Then, under certain restrictions, we have

_)\1 * * * ]
Ay ok *
L,—1 and R, — A — ' _ as 1 — 00.
- An—

Theorem 4.1.1 If A = X diag(\y,...,\,) X! and
1o A1 > A > - > Al

2. the leading principal minors of X and X! are nonzero,
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then

exists and is upper triangular with the i™ diagonal entry of Ass equal to \;.
Before writing the proof of this result, observe two simple properties of triangular de-
composition. The triangular decomposition of a nonsingular matrix X, if it exists, is unique.

Further, if
X=I+F

then, if || F'|| is sufficiently small, the triangular decomposition of X exists, and if
X=I+F=LU
then
LU—1I as I|F|| — 0.
This can be verified if we think in terms of Gaussian elimination.

The proof of theorem 4.1.1 is rather technical (see Wilkinson [59] and [60, pp.487-492])
and it was first given by Rutishauser [49]. It is based on the fact that if matrix X of right

eigenvectors of A admits triangular factorization
X =LxUx
then

L;i—Lx and  A; =L YA1Lio1 — Ly ALy = Ux X 'AXUy!
= Uy diag(A1, ..., \)Ux ",
showing that the limiting A; is upper-triangular with diagonal elements Aq,..., \,.

Proof. From (4.3) we have
L = A} = XD'Y (4.6)

and hence £;Uf; is the LU decomposition of X D'Y.
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Since we are assuming that the leading principal minors of X and Y are non-zero, then

X and Y have LU decompositions. We write
X =LxUx and Y = Ly Uy,
and attempt to construct the LU decomposition of X D'Y. We have
XD'Y = XD'Y = XD'LyUy = X(D'LyD™")(D'Uy). (4.7)

If we write

D'LyD™" =1+ F;, (4.8)

with F = ( f,g;>) and Ly = (I4;), we have

I (R). k>

0, k<j

(4.9)

From relations (4.5) and (4.9) we see that F; — O as i — co. Hence

XD'Y = X(I + F;)D'Uy = LxUx(I + F;)D'Uy
= Lx (I + UxFUx") UxD'Uy

= Lx(I + G))UxD'Uy

where G; — O as i — oo. Thus, for sufficiently large ¢, I + G; has an LU decomposition

which we may write in the form

1+Gi=(1+1) (1+0)
where L(C?, Ug) — 0 as 1 — o0.

Finally from (4.6) we have
Lid; = Ly (I n Lg>) (I n Ug>) Ux DUy,
which, from the uniqueness of the LU decomposition, gives

L;=Lx <I+Lg)>—>LX as 7 — 00.
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Hence, since A;j11 = £; 1 A1L;, we have
Aip1 =L ' XDX 'L, — L' LxUxDU' L' Ly = Ux DU (4.10)

The matrix Ux DU )}1 is upper-triangular and has diagonal elements Ay, ..., A\, in this order.

O

According to [59, p.80], we should note that it was assumed that A; has a triangular
decomposition at all stages. This is not assured by the non-vanishing of the principal minors
of X and Y and hence even when these conditions are satisfied, the LR method can break
down. Such a failure corresponds to the non-existence of a decomposition of I + G;. Since

I + G; — O this cannot happen at a late stage in the process.

If we remove the condition that Y has non-vanishing principal minors, a phenomenon
called disorder of latent roots occurs - A;11 tends to an upper triangular matrix having as
its diagonal the eigenvalues but no longer in monotonic decreasing order. The eigenvalues
are therefore disordered in the limiting matrix and this phenomenon happens to be unstable
in practice.

The speed of convergence of the LR algorithm is determined essentially by the speed
Ak

A
at which the elements of F; tend to zero and hence on the quantities )\—k, k>j. If
J J
is close to 1, that is, if the separation of the eigenvalues is poor, convergence may be slow.
So, the speed of convergence of A; to upper-triangular form depends, particularly, on the
Ak41
k

ratios which are the highest.

If we let L; = (l,(fj)), from the relation L; = E;_llﬁi it can be proved that

' AN . .
l,(fj) =0 <)\J> as i — 00 (k> 7).
So if we have A\, = 0 then ‘
1
i) _ An .
lnvj = O <)\]> s Vi <n.
converges quickly to 0, that is, the last line of L; converges quickly to eg. Thus A;41 = R L;

will have the last line converging quickly to A,el = 0. This explains why it is more
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efficient to apply LR algorithm to A — oI with o close A, and how shifts of origin accelerate

convergence.

Note that in establishing this result of convergence we made the assumption that all
the eigenvalues are of different magnitude and in this case A can not be a real matrix with

complex conjugate eigenvalues.

4.1.2 Eigenvalues of coincident absolute value

If = 1 it appears at first sight that we no longer have convergence. But this is not the

Ak
j

case. If the |)\;| are not distinct then, loosely speaking, A; may be said to converge to block

triangular form. See Parlett [41]. More precisely, suppose
Al =[Aef = ... = [Ap] > [Apsal.

Strictly speaking, Ao, may not exist but, as i — 00, Ay, becomes reduced. The elements
in the first p columns may not converge but the characteristic polynomial of the leading
principal submatrix of order p does converge to the monic polynomial with roots A1,..., Ap.
The complementary submatrix has eigenvalues which converge to A\py1,...,A,. If any of
these eigenvalues have equal modulus then this submatrix will become reduced also. Thus,
as i — 00, the submatrix blocks which become isolated along the diagonal correspond to
groups of eigenvalues of equal modulus.
In the important case of real matrices with complex conjugate pairs, A; may be

expected to have along the diagonal, for large i, isolated 2 x 2 real submatrix which yield

the eigenvalues very conveniently.

Theorem 4.1.2 Let A =: Ay be a diagonalizable real square matrix. Suppose that the LU
factorization of A; exists at every step i = 1,2,... of LR algorithm. Then A; tends to a
block upper triangular form as i — oo. The diagonal blocks, say X, X%, cy X;, need
not converge but the eigenvalues of X;, j=1,...,p, converge to the set of eigenvalues of

Gt largest magnitude. In particular, if the eigenvalues have distinct magnitude, except for
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complex conjugate pairs, then the blocks in» are either 1 x 1 for real eigenvalues, or 2 x 2,

for a complex conjugate pair.

In [59] Wilkinson separates the proof of this result into two parts: equal eigenvalues
having linear elementary divisors and unequal eigenvalues of equal modulus. That is, it is
still assumed that the matrix A is diagonalizable.

For the case of non-linear divisors it is given in the last section of [59] a simple counter-
example that shows immediately that the LR algorithm does not necessarily give conver-

gence to an upper-triangular matrix. The matrix

a 0 0
A: 1 a O 7GER7

01 a

is LR invariant, that is, A; = A for all 4.

4.2 Eigenvector properties of an unreduced tridiagonal

Eigenvector matrices of real unreduced symmetric tridiagonal matrices have several attrac-
tive properties and have been studied widely in the literature. See Parlett [38, Chapter 7].

The eigenvalues are real and distinct and key properties are

e the first and last entries cannot vanish; there are very elegant formulae for the squares

of entries of normalized eigenvectors.

e When the off-diagonal entries are all of the same sign, the eigenvector for the right-
most (largest) eigenvalue has no sign changes, for the second largest eigenvalue, the
eigenvector has one sign change, and so on. The eigenvector for the leftmost (smallest)
eigenvalue has the maximal number of sign changes, namely n — 1 for a n X n matrix.

See Gantmakher and Krein [19] and Fiedler [17].

Our interest is in the real unsymmetric case and we expect the matrix spectrum to have

a mixture of real and complex eigenvalues. Of the properties above only the first extends to
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the case of our interest. The proof is identical to the symmetric case and will be omitted. A
new difficulty in our case is that the eigenvalues need not be simple, so the Jordan form may
not be diagonal. In such cases the eigenvector matrix must be filled out with the so-called

generalized eigenvectors with the property that
(C = M)v=0, (C—=X)"tv+#£0.

We say v is an eigenvector of grade j (see page 10).

In what follows we shall present some properties of eigenvector matrices that are
sufficient to guarantee convergence of the basic LR algorithm without invoking the ex-
tra hypotheses needed by Rutishauser and Wilkinson for the general case. To the best of

our knowledge these results are new.

Our convergence theory for LR algorithm requires that certain matrices X permit
triangular factorization X = LDU or X = L(DU). This property plays a prominent
role in Linear Systems Theory.

We will say that X is strongly (or completely) regular with the meaning that X and all
its leading principal submatrices are invertible. We shall use the terms “strongly regular”
and “permits LU” interchangeably. To be precise, we note that a singular matrix may permit
triangular factorization but in our work all the matrices of interest will be invertible.

We proceed from the easier cases to the more difficult in stages.

Most of our results extend directly to complex unreduced tridiagonal matrices but we

focus on real matrices for simplicity and because it is the most frequent case in applications.

Consider an unreduced real tridiagonal matrix C' = tridiag(b, a, ¢),

ap €
by ax e

C = e R™"

bp—2 Gn—1 Cn—1

bn—1 Gn

with b;c; #0,i=1,...,n— 1.
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Define monic polynomials pg, p1, ..., pn by
po(T) =1, pj(7) :=det(rl; = Cy), j=1,...,n,
where I; represents the j x j identity matrix and C; the 4§ leading principal submatrix of
C.
4.2.1 All eigenvalues distinct
Suppose all eigenvalues of C' are distinct and let the spectrum be
A={A, .. A )
The following matrix plays a key role in our results,
P =Po=[pi1(\)]} - -

The notation means that the (4,) element of P is equal to p;—1();). So the 5 column of

P is given by the column vector

p(Xj) == po(Nj) pi(Nj) ... pnfl()\j)}T’ J=1...,n,
that is,
1 1 1
P p1(')\1) p1 (.)\2) p1(.)\n) ' (411)
[Pn—1(A1) Pn—1(X2) o pa—1(An)

P and P7T are called polynomial Vandermond matrices. The standard Vandermond matrix

V' is defined by

n

V=vi= [N

ij=1"
that is,
LA A2 ot
1 X A2 ..ot
v=| o (4.12)

1 A, A2 . an!
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The valuable property of V is that

det(V) = [ [ = A5) (4.13)

1>7
where the product extends over all pairs (i, ) with n >4 > j > 1; n(n — 1)/2 terms in all.
When the )\; are distinct then V is strongly regular because each leading principal

submatrix of V is also a Vandermond built from a subset of the eigenvalues.
Lemma 4.2.1 If all the eigenvalues \;, © = 1,...,n, are distinct then V is strongly regular.

Moreover IV is strongly regular for any permutation matrix II because no particular

ordering of the eigenvalues was specified in the definition.
Lemma 4.2.2 det(P) = det (V) = det(V).

Proof. P may be reduced to VT by elementary row operations that leave the determinant
unchanged. For example, if p1(7) = 7 — k then add k times row 1 to row 2 of P and the

second row becomes {)\1 )\n] = egVT. And soon. O

With the aid of P = {p()\l) p(X2) -+ p(\,)| we can find simple forms for the

column and row eigenvectors of C.

We will denote

Dy, = diag(1, by, biba, bibabs, ..., biby - by_1),

D, = diag(1,c1,c1c0,c10903, ... ,c1C2 - - Cp—1).

Lemma 4.2.3 With the notation given above
C(D;'P)=(D;'P)A,  (PTD,Y)C=A(PTDY).

Proof. The result is a reformulation of the celebrated three term recurrence (3TR) associ-

ated with C:

Pj+1(7) = (T — aj1)pj (1) — bjcjpj—1(7), j=12,...,n—-1 (4.14)

pi(7) = (1 —a1) = (1 —a1)po(7), since po(7) = 1.
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If we define p_1(7) = 0 then we may use the 3TR for j = 0.
Rewrite the 3TR in the form

bicipj—1(T) + (ajr1 — 7)p;(7) + pjp1(r) =0, j=0,...,n—1.

The key step is to divide through by c; ---¢; (# 0) and rearrange coefficients,

O R /(O I 721G R SO

b.
J
Cocl...cj_l COCI...Cj Cl"'cj-i-l

where by = 0, b, = ¢, = 1 and ¢y = 1. This set of equations may be written as

pn(T)
Cl1: " Cn—-1Cn

(C —7I)D'p(r) = —e,
Thus, since for each 7 = A\, we have

pn()‘k) =0,

it follows that

(C— MDD p() = —en— 22 g gy (4.15)

€1 Cp—1Cn

Thus, in matrix terms,

CD;'P=D;'PA.

Note that CT = DcDb_lCDc_lDb and then

CTD;'P = D.D;' (CD;'P) = D.D;' (D;'PA) = Dy ' PA. O

These row and column eigenvectors are not scaled properly to be inverses of each other.
Since the row eigenvectors for A; annihilates all the column eigenvectors for different eigen-

values we may define a special diagonal matrix A = A¢g by

(P"D; ") (D7'P) = A := diag(61, ..., 6,),

§; = p(\)T (DpDe) ' p(A;) # 0.
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Note that, if 6; = 0 then the row eigenvector for A; annihilates all the column eigenvectors
and would be 07 which contradicts the definition of an eigenvector.
The matrix A~! may be attached to either D! P or DglP or shared between them. In

general, A will be indefinite. We will have
(P"D,; ") (D7'PA™Y) = (D;'PATY) (PTD, ) =1

and

(A~'PTD, Y (DPP) = (D'P) (A~'PTD,Y) =1

Theorem 4.2.1 The spectral decomposition of C' with simple eigenvalues may be written
C=(D;'P)A(A'PTDY) = (D'PATY) A (PTDyY) .
Theorem 4.2.2 When C has simple eigenvalues then both column and row eigenvector
matrices D;'PA~Y and PTDgl, respectively, are strongly reqular.
The proof needs only the following easy results.

Lemma 4.2.4 For any invertible diagonal matrices D' and D", M 1is strongly reqular if,

and only if, D'M D" is strongly reqular.

Proof. Let (D'MD"); be the j*® leading principal submatrix of D’M D”. We have
det ((D'MD");) = det(Dj}) det(M;) det(D]) # 0, ji=1,...,n,

since all the determinants are nonzero. [

Lemma 4.2.5 When all the eigenvalues \;, i = 1,...,n, are distinct, both P and PT are

strongly regular.

Proof. Use lemmas 4.2.1 and 4.2.2 O

Next we consider the opposite extreme, a maximal Jordan block of C.
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4.2.2 The one-point spectrum

Suppose now that C’s spectrum consists of a single nonzero point A and such that its Jordan
form is

J=M+N

where N is the nilpotent matrix

0 1
0

From the previous section we know that the relation (4.15) is verified only for \,
(C —A)D'p(\) = 0.

So, the only column eigenvector of C' is D !p()\) and its single row eigenvector is p(A\)T D, *.

The most elegant way to find eigenvectors of higher grade is to differentiate the 3TR as

many times as is necessary. Thus, from (4.14),
Pia(7) = (7 — a1 )pi(7) + pj(7) = bjeipj (), j=12...,n—1
and rearranging the terms we have
bicipj_1(7) + (aj41 — T)PG(T) + Pl (T) = p;(7). (4.16)
Then, dividing by ¢ - - - ¢j,
P}—l(T) P}(T) p3'+1(7') p;i(7)

bj —I—(aj_|_1—7') + Cj+1 = , 7=0,1,...,n—1,
Cocl“‘cjfl Cocln--cj Cl---cj+1 Cocla.-Cj

where we define p’ {(7) =0, b, = ¢, = 1 and ¢p = 1. In matrix terms

(C—7D)DZ'P(r) = D' (p(7) — enpy,(7)).
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Hence, when 7 = A,
(C = ADDZ'P(\) = D7'p(N),  since py(A) = 0,

and

(C = A’DI'p'(N) = (€ = A)DZ'p(N) = 0,
since pp(A) = (7 — A)™ and A is a multiple zero of p,,.

To obtain the next vector differentiate (4.16) again,

bicipi1(7) + (a1 — 7)pj (1) + Lpf (1) = 2pj(7).

In order to keep the superdiagonal entries in the Jordan form at the value 1 we divide

through by 2 to obtain

(€= D30 (7) = D2 (1) = engal(r)).

Putting 7 = A and since p”(\) = 0,
1
(C=AD5Dp"(A) = D P/ (N),

and

1
(C=ADPD;'p"(A) = (€ = ADPD; ' (N) = 0.

It may be verified that the appropriate definition of P in the confluent case is the unit lower

triangular matrix

PA:PZ[p(A) PO 5p' () o e IO

and so

(C = \XI)D;'P = D;'PN. (4.17)
The next lemma summarizes this result.
Lemma 4.2.6 If C has one-point spectrum \ and D. and P are as defined above, then

C(D;'P) = (D;'P) (N + Al) = (D;'P) J.
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So, the matrix of generalized right eigenvectors of C' is D_!P. To find the row eigenvectors

for C we first use

¢’ =D.D,'CD;' D,

to find, analogously to (4.17),
(CT —A\I)D,'P =D, 'PN.
Now, transposing this equation we get
P'D;IC = (M + N PT'Dt = I(\T+ N)IPTD; !, (4.18)

where

1

is the reversal or anti-diagonal matrix (all entries (i,j) are zero except when
i+j =mn+1). We used the fact that 7 7 = I and N¥ = 7N 7. Thus, pre-multiplying
(4.18) by £, we find that

(1P"D;YYC = (M +N) (1P"D;").

So, £ PTDb_ s the matrix of generalized row eigenvectors of C.

Summarizing,

Lemma 4.2.7 If C' has one-point spectrum A and Dy and P are as defined above, then

(rP'DyYYC=J(IPTD;Y).
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Recall that D P is lower triangular and PTDb_ ! is upper triangular. Nevertheless, it
is not true that the product (IPTD;I) (Dc—lp) is diagonal, as was the case for simple
eigenvalues. The reason is subtle: for a Jordan block, the eigenvectors of grade higher than
1 are not uniquely defined. The phrase “the Jordan basis” that can be found in some text
books is incorrect; it is not unique.

Consider the equation above in (4.17),
CD;'P=D;'P(\+ N).

Post-multiply by any invertible matrix ¢(N), ¢ a polynomial, that comutes with A\l + N
to find that

CD;'Po(N) = D;'P(AT 4+ N)p(N) = D' Pp(N)(M + N).

Thus D, !'P is only unique up to post-multiplication by any invertible polynomial ¢(N).
And there is no loss in normalizing ¢ to satisfy ¢(O) = I.
Chosen
(1PTD;Y) (D7'P) = o(N),

we have proved
Theorem 4.2.3 If C has one-point spectrum A and P, Dy, D. are as defined above then
C=D;'Pp(N)'(\I+ N)IP'D; !,

for some polynomial ¢ with p(O) = I.

The example that follows exhibits this feature.

Before, recall that a square matrix A is Toeplitz when the entries of A are constant
down the diagonals parallel to the main diagonal and is Hankel when the entries of A are

constant along the diagonals perpendicular to the main diagonal.
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Z. S. Liu [31] devised an algorithm to obtain one-point spectrum unreduced tridiagonal
matrices of arbitrary dimension n x n. These matrices, that we will call Liu’s matrices,
have only one eigenvalue, zero with algebraic multiplicity n and geometric multiplicity 1.

The Jordan form consists of one big Jordan block. We will represent Liu’s matrices as
Liu, = tridiag(1", a™,~4™)

where 1™ always stands for a vector of 1’s of length n — 1. For n = 6 we have

a6=[0 0 -1 10 o} and76=[—1 1 -1 1 -1
Example 4.2.1

Consider the transpose of Liug matrix

0 1
-1 0 1
1 -1 1
C =
-1 1 1
1 0 1
-1 0

We have
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Then
(1 00 0 0 0
0 10 0 00
1 01 0 00

j = ,
1 01 1 00
0 10 0 10
-1 00 -1 0 1

Now, we have

PTD; P =
defining U.
Thus,

10

0 1

_ 00

U= (1P"D;'P)"" =

00

0 0

0 0

o o o o o

—

0
0
0

Dy = diag(1,-1,—-1,1,1, 1),

o o o o

_ o O O

o O

00 1]
01 0
100_12/{_1,
00 1

01 0

10 —1]

- -1 -

-1 100 —1
0 010 0
1| foo1 o0
ol Jooo 1
0 000 0
1| 000 0

that is, Y = I — N3 4+ NP is a polynomial in N and thus commutes with A\I + N which is

also a polynomial in N.

Thus IPTDb_lP =U1 =T+ N3~ N°=p(N) is unit upper triangular and Toeplitz.

So,

C=PU(0I+N) IP'D; ",

I=(1P"DyY) (PU).



100

Note that PU is in LU form and PTDb_ s upper triangular. It will be shown that C' + o1,

o # 0, can admit the basic LR algorithm with no breakdowns and will converge to

U +NU =0T+ N. o

4.2.3 The general case

In general, unreduced C' will have some simple eigenvalues and some multiple ones. The
unreduced property implies that C' is nonderogatory, meaning that there is only one Jordan
block, and thus one eigenvector, for each eigenvalue.

It follows directly from the previous sections that the matrix P has a column p for each
simple eigenvalue A and a block of columns [p(/\) p'(\) %p/’()\) %p(m)()\) if A
has multiplicity m + 1. The only constraint on ordering of columns is that each block must
be treated as a whole.

As shown in the section on one-point spectrum matrices, the order of the row eigenvec-

tors must be reversed within each block.

We state without proof.

Theorem 4.2.4 Let J be the (upper) Jordan form of unreduced matriz C'. Then the spectral

decomposition may be written
C =D;'PUIWPTD;?

where U is a unit upper triangular matrix that commutes with J and W is a symmetric
permutation matriz that is a direct sum of reversal matrices f conforming to the block

structure of J. W also commutes with J. P, and therefore PT, are strongly reqular.

4.3 Convergence of basic LR algorithm on an unreduced

tridiagonal

We will show that the assumptions required by Wilkinson in the general case to ensure the

convergence of LR algorithm are no longer needed on an unreduced tridiagonal matrix.
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First we recall the essencial facts from the beginning of this chapter. Set C; = C and

for k =1,2,... define
Cr = LRy, Lg being unit lower triangular

Ci+1 = RyLg.

The LU factorization of C*¥ is
Lildy = CF

with £ = L1Lo...Ly and U, = RpR;_1 ... R1. And then
Cl1 = Ly, ' CLy.

The L factor of a matrix M will be denoted by L(M), provided that M is strongly

regular. In this new notation we will write

Cry1 = L(CHYLOL(CH). (4.19)

4.3.1 Eigenvalues of distinct absolute value

The result in this section is not entirely new but helps to understand the new case.
Let C' be a nonsingular unreduced tridiagonal matrix. Without loss of generality, we

may write

C=XAX"!

A:diag()\l,/\g,...,)\n), ‘)\z| > |)\i+1|, for all .
With the notation of previous section,
X =D 'PAL, X '=pP'D;?

where P = P, is the polynomial Vandermond matrix given in (4.11). Since P is strongly

regular (and also X and X! by theorem 4.2.2) we may write

P = LDU,
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where L is unit lower triangular, D is diagonal and U is unit upper triangular. Then we

can manipulate C* into LU form as follows

Ck = XAFx!
= D;'PAT'A*PT D!
= D_'LDUA™'A*UTDLT D!
= D' LDUA™ Y (A*UTAF)A* DL D!
= (D;'LD.)(D;*DUATY (I + Ey,)(A*DLT D)
= (D;'LD.)(I + F,)(D;'DUA™Y(A*DLT D) (4.20)

where

Fy = (D;'DUA™Y) By, (D 'DUAY) !

Notice that

X = (D;'LD.) (D;'DUA™Y) =: LxUx (4.21)

Y =0 (DL'D; ') =: LyUy

are the LU factorizations of X and Y, respectively.
Also, we had written
ANUTA* =T+ E.

So, E}, is strictly lower triangular and, if we let U = (u;;) and Ej, = (eE?), we have

(k) =

Uii |\ ) 1>

NONEY B IAPF I (4.22)
0, i<

) k
Thus the (j +m, j) entry of Ej is u; j1m <)‘J)\ﬂ) and tends to zero as k tends to infinity,
J

since |Ajim| < |A;|. Hence

|Fy|l < cond (D;'DUATY) [|[Ex| -0 as &k — oo.
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It seems likely that I + F}, is strongly regular for all k£ but it certainly holds for large
enough k, say

I+ Fy, = LU, with Ly, U, — 1 as k — oo.
Thus, for large enough k, from (4.20),
Ct = (D7'LD.) (LyUy) (D' DUATY) (AFDLT DY) |
and then
£(C*) = D'LD, L,
since Uy (Dc’lDUA’l) (AkDLTDb_l) is upper triangular. Thus
£(C* - D'LD, =Ly  as k — oo.

Finally, from (4.19),

Crp1 = L(CH)rCL(CF),
and thus

Cy1 — (D7'LD,) " XAX ™" (D;'LD,)
= L' LxUxAUY'Ly' Ly
= UXAU)_(1 as k — oo,

showing that Cj1 converges to an upper triangular matrix with diagonal elements equal

to )\17-”7)\71-
Recalling that the tridiagonal form is preserved by the LR algorithm, we have proved

Theorem 4.3.1 Let C' be a nonsingular unreduced tridiagonal matriz with distinct eigen-

values A\, 1 = 1,...,n. Given the notation above,
limCy, = Cy
exists and is upper bidiagonal with the i" diagonal entry of Cso equal to ;.

We should note that we are assuming that Cj permits triangular decomposition at all

stages of the LR algorithm.
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4.3.2 One-point spectrum

Recall that the Vandermond matrix P for this case is unit lower triangular,

P=1p\) P(\) PN .o e VO]

From theorem 4.2.3,
C=XWM+N)x! (4.23)

with
X=D'"Pp(N)™" and X '=1rP'D;"

Then
CF = D7'Po(N)"Y (AT + N)*1PTD; .

Note that PT is unit upper triangular. Next we invoke the following lemma.

Lemma 4.3.1 For all k > n, (\ + N)* I for X # 0 is strongly reqular and thus admits

triangular factorization, say
(M + NI = LUy = Ly Dy LY,

and, as k — oo, Ly, = I + Ey, Ex — O. The rate of convergence is low, O(1/k).

The proof of this lemma will be given later.
Now, we can factor C*, k > n:
C* =D'PD.D; o(N)™ (I + E)UyP'D; !
= D;'PD.(I + Fy)D;'o(N)"'U, P D,
with
Fr = (p(N)D.) ' Ex (o(N)D,) — O as k — oo,

since

| Fx|| < cond (p(N)D.) ||Ek|| — 0 as k — oo.
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Thus,
L(C*) = D;'PD.L(I+ Fy) — D;'PD,  as  k — oo,

since Dc_lap(N)_lUkPTDb_l is upper triangular (¢(N)~! is upper triangular and Toeplitz).
Finally, notice that the LU factorization of X is

X = (D;'PD.) (D' o(N)™!) := LxUx
and then

Cry1 = L(CHYLCL(CF)
= L(CHTIX (AT + N)XLL(Cr) (by 4.23)
— (D;'PD,) "' X(AI+ N)X ' (D;'PD,)
= L' LxUx (M + N)Uy'Ly' Ly
=Ux(\ + N)Uyx"
= D o(N) 1M + N)p(N) D,

= DY\ + N)D,,

since p(N) commutes with (Al + N). Notice that D_*(A + N)D, is upper bidiagonal with

diagonal entries equal to A.

We have just proved

Theorem 4.3.2 Let C be a nonsingular unreduced tridiagonal matriz that permits trian-
gular factorization and has a one-point spectrum M. Given the notation above, the basic
LR algorithm applied to C' produces a sequence of matrices Cy that converges (in exact
arithmetic) to

DY\ + N)D,

with D, defined above lemma 4.2.3 (page 91).
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Proof of lemma 4.3.1:

The proof rests on the form of powers of Jordan blocks. These are Toeplitz matrices

and involve binomial coefficients. We have (see [29, p.138])

k
k o
k __ k—i a1t
(Al +N) _Z<i>/\ N
1=0
If J is n x n then all terms N* = O for i > n. Then, for k > n,
n—1 k ' ‘
o =3 ()

?
i=0

So (M + N)* F is the Hankel matrix

R P R e N (1 P U
O T B D (P 2 P U
(,F5) A= (n=3) S (5) A2 RARZL R 0 0
(5)Ak—2 AR Ak 0 0 .0
kAR AR 0 0 0 0

i AR 0 0 0 0 0]

As long as A # 0, it can be factored out of all the powers and is just a scalar converging
either to 0 or to oo attached to Uy but it does not alter Ly (if A = LU then aA = L(aU)).
Thus, let Ay be the matrix defined as

Ay = diag(1, A\, N2, A"
and factor out \*~"*+1 to get

(A 4+ N)EF = Nem"HIALH Ay
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where
LR GE) G (5 & 1]
() (Es) (k) & 10
(ns) (k) & 1 0 0
Hy, =
&k 1 0 0 0
k 1 0 0 0 O
1 0 0 0 0 0]

So, factoring out A*~"*! and with a diagonal scaling we are free of the powers of A and will
concentrate on ET k-

For i +j < n+ 1, as a function of k, the (i,7j) entry of Hy is a polynomial of degree
n+1—i—j. Since Hy is strongly regular (which will be proved below), it has an LU

factorization. If we say H, = Ekf]k, it may be verified that

1
o) 1
o o) o
L, =
0 (i) o) o) 1
O(s) O() .. O(%) o) 1
| 0(s) O() O () o) o) 1

So, for p > 1, the (j + p, j) entry of Ly is O((%)p) and thus
Ek — I+ E;,, E.— O as k — oo. (4.24)

But the convergence is very slow, governed by the terms of O (%)
Since fNIk is symmetric we can write LiUp = LkaLg. The diagonal matrix Dy is

also a function of k£ but it does not converge to a finite matrix. Nevertheless, for each k,



108

(M + N)* I has an LU factorization. We have

(ML + N)EF = X" tIA H LA
= A\ AL LU A
= A)\zkAxl)\k_n—HA)\ﬁkA/\

= LUy
with Ly = A,\EkA_l and U = )\k_”HA)\ﬁkA,\. Since (4.24) occur we will also have
A
L, —1+G, Gp— O as k — o0,

with G, = AAE]CA)_\l. O

In what follows we will prove that the matrix Hy, is strongly regular.

Lemma 4.3.2 H, L 18 strongly regular.

Proof: As noticed before, as a function of k, the (7,j) entry of ﬁk, i+j<n+1,isa
polynomial of degree n + 1 — (i 4 j). It is given by

n+l—i—7j

( k )_k(k—l)-~-(k—(n—i—j))
m+1—i—j)!
 (B)ny1-i—y
C(nt+1—i—j)!

where (k)p,+1 is the Pochammer symbol defined as

(k’)o =1, (k)m+1 = k(]{ — 1) <o (/{ — m), m € Np.

So, in each entry (i,7), i +j < n+ 1, the dominant term is

k’nri’lfifj
n+1—i—j)!




109

and thus H L= H ¢ plus lower order terms with

n—1 kn—2 fn—3
(n=1)!  (n=2)! (n=3)!
kn—Q kn—3
=21 (n-3)!
kn73 k:2
(n—3)! 2r
Hy =
2
L k 1
k 1 0
1 0 0

In order to eliminate k from H r we define

Ay, == diag(1, k, k2, . ..

and we have

IAL T = diag(k™ 1.

Now it can be verified that

Hy = AJF D IALT

with F,(ln_l) given by

[ 1 1 1
(n=1)!  (n—=2)! (n-3)!
1 1
(n—2)!  (n—3)!
1 1
(n—3)! 2!
FT(Lnfl) _
% 1 1
1 1 0
1 0 0

k2
PR ?
2
L
|
0 0
0
0
’kn—l)
k2 k1),
1
2!
5 1
1 1
0 0
0
0

0
0

0
0

To prove that H, & is completely regular it suffices to prove that FT(Lnfl) has this property

(see lemma 4.2.4, page 93). First observe that F,(ln_l) is nonsingular since

det (F}(Ln_l)) = (=1)»!'. Now we still have to show that all the I*" leading principal
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minors of F,Snil) are nonzero, | = 1,...,n — 1. This follows immediately from the next

lemma. O

Recall that the factorial of a positive integer is defined as

m!=m(m—1)(m—2)---2.1, m e N

By convention 0! = 1. We will say that for a negative integer m, m! = 0. Also we define

the double factorial symbol (!!) as follows

m!l =m(m — 1)!(m —2)!-.. 211!, meN

o =1.

This definition is not universal.

Define the j x j Hankel matrix

1 1 1 1
(n—1)! (n—2)! (n—3)! T (n—j)!

1 1

1) (n—2)! (n—3)! T T (n—j=1)!
n—1) 1 1

F,] T m DRI DR ... (n_j_z)!
1 1 1 1

L(n—5)! (n—j-D! m—35-2)! " (n—25+1)!]
The following lemma gives us a useful result to calculate the determinant of Fj(nfl). It

seems likely that this result may be already known but we couldn’t find it in a search of

the literature.

Lemma 4.3.3 Let j < n. Then

-1\ _ ( qyiG-120 =D n—j -1
det (F"7) = (-174 CES T
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Proof. There are two cases to consider: first, j < ”TH and, second, n > j > ’%rl

g 41
Case 1: j < "3~

Factor out ﬁ from column [, [ =1,2,..., 4, to obtain the new integer matrix
[ 1 1 1 ]
n—1 n—2 n—j
~(n—1 . .
F"Vi=1 (n-1)n-2) (n=2)(n—3) ... (n—j)n—j-1)
(n—=1)--(n—j+1) n—2)---(n—3) ... (n—j) - (n—2j+2)
with
_ 1 1 1 ~(n—
det (F" V) = det (F") .
e(] ) n-Dln—2)1" "(n—7) e(] >

By subtracting suitable multiples of higher rows from lower rows we are left with the

transpose of the standard Vandermond Matrix (see (4.12), page 90)

V{n—l,n—?,...,n—j} = V}

In fact, if we use the Pochammer symbol defined above, it is clear that ﬁj(nfl) is a polynomial

Vandermond matrix,

1 1 1
(n=1)1 (n—2)h (n—ih
F'"V=| m=1); (-2 ... (—ja|. (4.25)
((n=1);-1 (n—=2)j-1 ... (n—J)j-1]

and the determinant of any polynomial Vandermond matrix is just the determinant of the
standard Vandermond matrix (see lemma 4.2.2, page 91).
To be more precise, if we denote the k" row of ﬁj(n_l) by Row;, I = 1,...,7, the row

operations we have to perform are

Rowy, « Rowy, +(k — 2) Rowy_1 +(k — 3)(n — 1) Rowj_o + ... + 1.(n — 1) 73 Rown,
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for k=mn,n—1,...,3 (note that we start from the bottom). We will end with the leading

(monic) terms

1 1 1
n—1 n—2 n—17j
(n—1)*  (n-2) (n—j)?
(=17 =2f L =g
Hence,
-1y _ 1 1 1 :
det (F") = R T

But, from (4.13), page 91, we know that

det(V;) = [ ((n—k)—(n—1)

j>k>i>1

= JI @-#

J>k>i>1

= (—1)7U—1/2 H (k —1i)

i>k>i>1

= (=1)PUD2( — 1)1 —2)!-- - 21

Notice that j(j —1)/2 is the number of terms in the product [[;5 ;5100 — k).

Finally, we can write

e -2 =D (G —2)! 0!
det (FJ'( D) = (-1 ((r,jz— 1))! ((iL—Q))! ()
Tt e DL G A DL
= (-1 (n— 1)l ’
n+1

We have established the result for n > 25 — 1, that is, for j < —

n>2j—1.

(4.26)

(4.27)
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1
Case 2: Now consider the case n > j > ntl . In this case we will have

[ 1 1 1 1]

1 1 1
(n_2)| (n_3)' e PR e e .. .. PR 7(71_.7_1)'

1 1
m .. .. .. “ .. .. .« .. o .. .. m

F(n—l) _ 1

’ 1 1

1 1 0

11 0 ... 0

1 1 1
G s o 1 1 0 ... 0 0 |
Again, if we factor out ﬁ for column [, I =1,2,...,7, we are left with the polynomial

Vandermond matrix with the Pochammer symbol as in (4.25). Its just the case that some

values of the Pochammer symbol are equal to zero. So, some zeros appear in the lower right

corner of F (n—1)

i but it is still valid that

det (ﬁ}”‘”) = det(V})

1
and, then, formula (4.27) also applies to the case n > j > %

Observe that from the symmetry of the formula (4.27) it follows, up to the sign,

det (Fj(n_l)> = det (Fgﬁ;l)) . O






Chapter 5

Triple dqds algorithm

In this chapter we describe the derivation of a first version of the triple dqds - an algorithm
that performs implicitly three steps of simple dqds keeping real arithmetic in the
presence of complex shifts. A preliminary version was developed by Z. Wu [64]. We start by
describing the connection to the implicit double shifted LR algorithm and then go into the
details of a practical implementation. The relation between dqds and the Gram-Schmidt
orthogonalization process can be used to establish new results about triple dqds. We defer
this study to the next chapter. For a discussion of the relation of LR to dqds see Fernando

and Parlett [16].

5.1 Triple dqds algorithm

The essential point of triple dqds algorithm is the conversion of the implicit double shifted
LR algorithm (see page 65) into a dqds format. There are two main reasons to pursue this
goal - first, there is both theoretical and practical evidence that the eigenvalues are usually
better defined by the entries of L and U rather than by the entries of the product J = LU,
and, second, dqds produces with no cost the quantities d;, i = 1,2,...,n, (see page 75) that

may be used in a more efficient shift strategy than the one used by the LR algorithm.

115



116

Let Ly and U; be real and have the form presented in section 3.5.1 (page 72),

1
Iy

1
la

1

ln72

1

ln—l

1

u1

1

U2

1

u3

1

Up—1

1

Un,

Consider that we apply three dqds steps to L1 and R;. The results of shifting by o1, o9

and o3 in succession are

U1L1 — 0'1] :L2U2
U2L2 - UQI :L3U3

U3L3 — (73[ :L4U4

The following lemma relates Ly and Uy to L1 and Uj.

Lemma 5.1.1 Consider that matrices Ly and Uy result from the application of three dqds

steps with successive shifts o1, oo and o3. Then

where L = LoLsg.

Proof. We have

where £ = LoLs. O

LUy = ﬁ_lUlLlﬁ — (0'1 + o9 + Ug)[

LUy =UsL3 — 03]
=L3'(L3Us)L3 — o3l
=L3'(UaLy — 02I) L3 — 031
=L;'(Ly' (UL — 011) Ly — 03) Ly — 03]
—(LoL3)'U Ly (Lo L3) — (01 4+ 09 + 03)]

:L_lUlLlﬁ — (01 + o092 + 0‘3)1,
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Observe that
E_lUlLlﬁ — (01 + o9 + Ug)[ = ﬁ_l(UlLl — (01 + 09 + Jg)[)ﬁ

to realize that lemma 5.1.1 just says that matrices LyUy and ULy — (01 + 09 + 03)] are

similar.

Now consider the matrix & = UsUs. Next lemma tells us about the LU decomposition

LU.
Lemma 5.1.2 Let L = LoLs and U = UsUsy. Then
LU = (U L1)? — (201 + 02)U1 Ly + (0109 + 03)
Proof. We have
LU =(L2L3)(UsUs)
=Lo(L3Us3)Us

=Ly(UsLs — 021)Us

(LoUs)? — 09 LaUs

(U1Ly — 011)? — 09(U Ly — 011)

(U1L1)? = (201 + 02)Ur Ly + (0102 + 07)1. O

Next we will show how to do a triple shift in order to keep real arithmetic in the presence
of complex eigenvalues. That is, we will see how to combine three consecutive dqds iterations
with complex shifts o1, o2 and o3 such that the resulting matrices L4 and U, after this triple

shift will be again real.

Matrices £ = LyL3 and U = UsUs will have real entries if we choose
o9 = —2(S01)i,

where Qo denotes the imaginary part of oy and i is the imaginary unit. This is the only

nontrivial complex solution to

201 +02 €R

01024—0% eR
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It is easy to verify that this choice for oy is such that
201 + 09 =2(Roq1) and o109 + a% = |01|2,
where o1 denotes the real part of ;. Thus, according to lemma 5.1.2 above,
LU = (U Ly)? = 2(Ro1)UL Ly + |01 1,

which is the same matrix that appears in the double shifted LR algorithm if we consider

Ay = ULy (see lemma 3.4.1, page 66).

By lemma 5.1.1, the accumulated shift is then
o1+o02+03=01+03
and if we choose
o3 =a+ (So1)i, a€R,
the arithmetic will be retained real.

Finally, notice that the choice

03 = —01

ensures that the transformation from L; and U; to Ly and Uy is a restoring shift transfor-
mation since o1 + 09 + o3 = 0.

What we have just showed is summarized in the following lemma.

Lemma 5.1.3 Performing three steps of dqds algorithm with successive shifts o1 € C,
o9 = —2(S01)i and o3 = 71 retains real arithmetic and the shifts are restored. We will

have

LU = (U1L1)2 — 2(%01)U1L1 + ‘01|21

LU, = L7'U L L

where L = LoLs and U = UsUs.
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Now the three dqds steps (5.1), (5.2) and (5.3) become

U1L1 — 0'1[ :LQUQ (5.6)
U2L2 - ( - 2(%0’1)1]) :L3U3 (57)
UsLs — (—51[) =L,Uy (5.8)

and can be rewritten in a more revealing way:

ULy — o011 =LyUs
(UQLQ + 0'1[) — o011 =L3U;

(U3L3 —I—Elf) — 01 =L4Uy.

Notice that if we only applied the two dqds steps (5.6) and (5.7), the transformation
from Ly and U; to L3 and Us would not be a restoring shift transformation, Ls and Us
would be complex as well as the accumulated shift o1 + 09 = 01 + (—2(S01)i) = 71. The
third step (5.8) is therefore needed to come back to real factors Ls and Uy, restoring the
shift and getting L,U, similar to Uy L;.

Another way of analyzing the need of a triple shift is as follows. If we consider only the

two steps (5.6) and (5.7) we will have

L3Us = Ly (UyLy) Ly — 511
UsLz = L3 'Ly (U1 Ly) Lo Ly — 511 = LY (UL Ly )L — &1 1
LU = (U1L1)2 — 2(%0’1)U1L1 + |O’1‘2I,

where £ = LoL3 and U = UgU,. Thus Ly, Uy, £ and U are real and we can write
E_I(UlLl)L =UsLs + 711,

which means that Us L3 4+ is also real. So, we must have to do the third step (5.8) to get
the factors L4 and Uy of the LU factorization

UsLs + 71 = LyUy.



120

The goal now will be to avoid complex factors Lo, Us, L3 and Us and go straight from L

and Uy to Ly and Uy, performing the three steps implicitly - implicit triple dqds algorithm.

5.2 Connection to the implicit double shifted LR algorithm

This section aims to relate the double shifted LR algorithm to the triple shift dqds algorithm
and use the implicit version of the first to derive the implicit version of the second.

If we performed the products U;L;, ¢ = 1,2,3, and added back the shifts ¢ = o1 and
o = 01, the three dqds steps (5.6), (5.7) and (5.8) would correspond to a basic iteration
(zero shift) followed by a double shifted iteration (shifts o and @) of the LR algorithm with

an extra LU factorization in the end. In more detail,

LR algorithm dqds
Ji= LU
Jo= Uil
Jo—ol = LolUs ULy — ol = LU,

Jg = U2L2 +ol

J3—ol = L3U; (UQLQ—FUI)—EI:LgUg
Jy= UsLs+7ol

Js= LUy (U3L3 + EI) — 0] = LUy

Figure 5.1 below also exhibits this relation - LR algorithm goes with matrices J; and

triple dqds goes with the factors L; and U; - and shows clearly the need of three dqds steps

in order to go from real L, and Uj to real Ly and Uj.
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LR(0 LR LR(c
, LRO) . LRG) . LR@)
\ / X / X = \
Ly, Uy Ly, Uy L3, Us L4,U4
dqds(o) dqds(a — o) dqds(—7)

Figure 5.1: Double shift LR and three steps of dqds

Recall from lemma 3.4.1 (page 65) that after a double shifted LR iteration applied to

Jo with shifts ¢ and & we will have
LU =J7 —2(Ro)Jz + |0’ T= M

and

Js =Lt

where L = Ly L3 is unit lower triangular and U = U3U, is upper triangular. This is exactly
what lemma 5.1.3 tells for the triple dqds algorithm but focusing on the factors of the LU

decompositions Jo = U1 L1 and Jy = L4Uy,

LU = (U L1)? — 2(Ro)U1 Ly + |01

LUy = L7YU LU

with L=L and 4 = U.

To obtain matrix Jy, the implicit double shifted LR algorithm uses the technique of
bulge chasing described in section 3.4.1 (page 68) going directly from tridiagonal matrix
Jo to Jy. This is justified by the implicit L theorem that says that matrix L is uniquely
determined by its first column which we can compute because it is proportional to the first
column of M.

Using the same notation of example 3.4.1, L will be given as a product of elementary or
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Gauss matrices L;, i =1,...,n—1,
L=Lilo-- Ly,

T
where L; = I+lel with I}, = [0 .0 x x 0 ... 0} (the non-zero elements x appear
in entries i + 1 and i + 2) and J4 will be the result of successive similarity transformations

given by L;,

Jy = L;il"’LI1J2L1"'Ln—1

=(Ly--- Ln71)_1J2|-1 s Lyq.

So, L; is computed and the first similarity transformation L1_1J2L1 spoils the tridiagonal
form of Js. Then the bulge is pushed down and to the right to restore the tridiagonal form
using the transformations given by L;, ¢ = 2,...,n — 1. In the end we have Jy.
Analogously, to obtain L4 and Uy, the implicit triple dqds algorithm will construct £ as
a product of elementary matrices £;, ¢ = 1,...,n — 1, obtained through a similar process

of bulge chasing, such that the factors Ly and Uy will result from
LaUy = (£, L3700 (InLaLa o Loa) -

But things will be done in such a way that the products Uy L; and L,Uy are not computed
explicitly. We will get Ly and Uy from L and Uy without computing any products of the
form LU or UL explicitly.

We can now ask: “Do we have L; = £;,i=1,...,n—17" Implicit L. theorem guarantees
that L = L, because the first column of both matrices is the same and there is no more

choice. And the expression for the product (see section 2.1, page 25)
L1L2“'|—n—1 = L:£:£1£2...£n,1

ensures that
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In summary, starting with the factors L; and U; and the shift o, if we

e normalize 15* column of (U;L1)? — 2(Ro1)UiLy + |o1|*I (equal to first column of £)

and compute £;

e spoil the bidiagonal form with £1_1U1 L1£4 and
——

e apply bulge chasing to get L' and U’

LU =C L et UL L Ly L L,

we will obtain implicitly the same result of performing the three dqds steps (5.6), (5.7) and
(5.8), that is, we will get L' = Ly and U’ = Uy.

We could have started thinking only in performing the two dqds steps (5.6) and (5.7),
that is a double dqds algorithm. If we decided to use bulge chasing, we would’t get L3 and
Us but L4 and Uy, ending up realizing that we were effectively performing a triple dqds

iteration.

5.3 Derivation of triple dqds

The role of the implicit triple dqds algorithm will be to construct matrices £;, i = 1,...,n,

and the unique matrix X such that

Ly=L'ct o ocotei'u x !
Uy =XL1L1Lo ... Lo 1Ly

(we will have £,, = I). Matrix X will be best written as
X =X,X0--- X
and each X;, ¢ =1,...,n, will be the product of two matrices
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Conceptually, for each step of the implicit triple dqds algorithm we will start with

F :=U; and G := Ly and, at each minor step 7, ¢ = 1,...,n, matrices Z;, £; and Y; are

chosen to chase the bulges. After n minor steps, F' will be transformed into L4 and G into

Uy. So, we will be transforming an upper bidiagonal U; into a lower bidiagonal L4 and a

lower bidiagonal L; into an upper bidiagonal Uy. Details will be given in the next section.

Consider matrices L; and U as follows

L 1

s 1
Ly

The product UyLq is

ln—Q

ur + 0

usly

1

lp—1 1

1
ug + lo

uglo

(75} 1
u2
and U1 ==
1
uz + I3 1
un—lln—Q

and the first column of (U1 L;)? — 2(Ro)U1 Ly + |o|?1 is

u211(U1 + 11 +ug+ 1y — 2(?}?0’))

(w1 + 1) + ualy — 2(Ro) (w1 + lh) + |o]?

U2l1U3l2

0

us 1

Un—1

Un—l'%ln—l 1

Unlp—1

Un

(5.9)

(5.10)
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We will start by presenting a 6 x 6 example to illustrate the general pattern of matrices

Z;, L; and Y;. If we work through the example in detail, we will understand the algorithm.

Example 5.3.1

For a 6 x 6 example consider

1 w1 ]
1 1 ug 1
o 1 U 1
Ly = ? and U = 3
lg 1 U4 1
l4 1 Us 1
L l5 ]._ L u6_
We seek
1 | (4, 1 .
L 1 iy 1
lh 1 s 1
Ly = ? . and Uy := s
13 1 ﬁ4 1
Iy 1 a5 1
I I5 1] I Q|

Initially, we define

F .= U1 and G = L1

and
FO .- and G0 .= q.
Step 1

1.a) Define Z; ! and obtain

FZ' 720G =Uh 7!
N—_——

Z1Ly .
—— N——
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Matrix Z1_1 is chosen to zero out entry (1,2) of F' and put 1 into (1,1) entry.

Observe that

Then we have

z!

Thus

up 1
0 wuo
-
1
1
1
1
0
uy 1
ug 1
ug 1
Uus

Ug

1 0 (31 1
0 u9 0 1
_ul 1
0 1
1
and A=
1
1
-ll—i—ul 1
1 1
b 1
and Z,G =
I3 1
la

Observe that entries (1,1) of F and (1,2) of G became 1.

Let

1.b) Define elementary matrix £ to get

Fe—FZ!

and

G — ZlG.

LIYFGLy = L7 27 200y L
—_—_— N —

T
Letli=11 % x 0 0 0| Dbethefirst column of £, obtained by normalizing

T
(5.10) for n = 6. We will have £; = I + l}el, where I} = [O x* % 0 0 0] )

and L7 =T — Ijel. Thus,
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1.c)

10 | (47 1 ]
* ug 1 + 1
cp= |t amd  aL=| " P!
ug 1 + I3 1
us 1 Iy 1
i ug | i I 1]
Let
F«—L{'F and G «— GL;.

Note that the preliminary transform Z; ensured that, at this point, column 2 of
F' is unchanged. The first row of F' and first row of G are in final form, but first
column of F' and first column of G have bulges that are indicated by plus signs.

Next, the 3 x 1 bulge in G will be chased.

Define elementary matrix Y7 to obtain
FY7'NG = L7 0 27 YT ' N2 L Ly
~——— —
Matrix Y7 affects only rows 2, 3 and 4 of Y1 G, zeroing out entries (2, 1), (3,1) and
T
(4,1) of G. So, Yy ' =T+ ylel withy, =10 % x « 0 0| ,Yi=1—1vy\el

and
1 0 ] 4 1 ]
Zl u9 1 *

1 =+ ug 1 + 1

FY; ! = and  Y,G =

+ uy 1 + I3 1
us 1 l4 1

L u6_ L l5 1_
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Let

F«—FY7' and G+« VG

and define

F@ =F =7tz 'y

G(z) =G = }/1Z1L1£1.

This completes the first step. The first column of G is in final form but the first

column of F is not yet in final form - there exists a 2 x 1 bulge.

The pattern shown above is carried down the matrix by later transformations Z;,
L;and Y;, i = 2,...,6, forcing the bulges down by one row and one column at
each step. This way in the end F' will be transformed into the lower bidiagonal

matrix L4 and G into the upper bidiagonal matrix Uy.
Step 2

2.a) Define Z; ' and get

FZy' 7,G = FP Z;1 2,63
—— —— ——

Matrix Z, ' will zero out entry (2,3) of F' and place 1 into entry (2,2). Matrix
Zy will turn entry (2,3) of G into 1. We have
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2.b)

and
1
I
1 +
FZzZy =
_|_
Let

1 0
ug 1
ug 1
us 1
Ug
F«— FZ;!

and

Define elementary matrix Lo to obtain

ZyG =

G — ZQG.

L3YFGLy = L1 FP 27 2,62, .
—_—

~——

Matrix Lo will affect only rows 3 and 4 of £;'F, zeroing out entries (3,1)

and (4,1) of F

Lot =1 lhel

Let

. SO, £2
. Thus,
0
us 1
ug 1
us 1
’LL6_
F— L;'F

and

and

GLs

G «— GL,.

= I + lyel, where I}, = [0 0 « = 0 0

T
, and

Bulge 2 x 1 in F' was chased and second row of F' and second row of G are now

in final form.
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2.c) Define matrix Y3 to get

FY, ' Y9G = £ FP 2 Y 2,6 L,
—— ———

Matrix Y5 affects only rows 3, 4 and 5 of YoG, zeroing out entries (3, 2), (4,2) and
T
(5,2) of G. So, Yy ' =T+ yhed withyhb =10 0 % * % 0| ,Yo=1—19hel

and
1 | [, 1 |
L 1 0 ay 1
Iy 1 *
FYy ' = © and V3G =
+ ug 1 + 1
+ us 1 + Iy 1
L ’LLG_ L l5 1_
Let
F«—FY,' and G+ ¥2G
and define

FO .= F = ;' F@ z 1y

GO = G = Yy 2,GP L.

The second step is complete. The second column of G is in final form but the

second column of F' is not yet in final form.
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Step 3

3.a) Define Z; ' and get

FZ3' Z3G = F® 731 2,600
——— —— ——

Matrix Zz ! will zero out entry (3,4) of F and place 1 into entry (3,3). Zz will
turn into 1 entry (3,4) of G. We have

g - g i
1 1
1 1
zyt = woow ; Z3 = v
0 1 0 1
1 1
- 1_ . 1_
and
1 ] (a1 ]
Zl 1 ﬁZ 1
. b 1 0 x 1
FZ;' = : Z:G =
+ ug 1 + 1
+ us 1 + Iy 1
L U6 | L l5 1_
Let

Fe—FZ;' and G+« Z3G.

3.b) Define elementary matrix L3 to obtain

L3P GLy = L3 FP 7271 2,60) 2.
—— "~ —_——— ——

Matrix £3 will affect only rows 4 and 5 of £3'F, zeroing out entries (4,2)

T
and (5,2) of F. So, L3 :I—I—lgeg, where I = [0 0 0 = * 0| , and

L31=T— el Thus,
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1 a1
il 1 ﬁg 1
Is 1 0 a3 1
L;'F = ? and  GL3= ’
* Uy 1 + 1
+ us 1 + Iy 1
L u6_ L + l5 1_

Let
Fe—r(;'F  and G+« GLs.

Third row of F' and third row of G are in final form.

3.c) Define elementary matrix Y3 to produce

FY; ' V3G = £ FO 21V, V3 2,600 L5
—— ————

Matrix Y3 affects only rows 4, 5 and 6 of Y3G, zeroing out entries (4, 3), (5, 3) and
T
(6,3) of G. So, Y}fl =T+yhel withys=10 0 0 = * *| ,Ys=1I—ysel

and
_1 | _111 1 |
Zl 1 112 1
b 1 0 ds 1
Fy; ! = 2 and V3G = ’
lg Uy 1 *
+ us 1 + 1
L + Ug | i + 5 1_
Let

F«—FY;' and G« V3G
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and define

FW.=F = £ F® z7 1y, !

GW .= G =Y325GP) L.

The third step is complete. The third column of G is in final form but the third

column of F' is not yet in final form.
Step 4

4.a) Define Z; ' and get

FZ' 2,G = FWzt 2,0 |
e —_—— —

Matrix Z; ! will zero out entry (4,5) of F and place 1 into entry (4,4). Z will
turn into 1 entry (4,5) of G. We have

1 1
1 1
L 1 1
2y = 1 1 ’ 21 =
74 —?4 Uy 1
1 0 1
- 1_ - 1_
and
1 | (4, 1 ]
Zl 1 '&2 1
lh 1 s 1
Fzpt=| 7 , 746 = ’
I3 1 0 * 1
+ us 1 + 1
i + ug | i + s 1]
Let

F——Fz;' and G+« Z,G.
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4.b)

4.c)

Apply elementary matrices £4 and 521,

LIYFGL, =L FWZ 2,6We, .
—— —_——— ——

Matrix £4 will affect only rows 5 and 6 of £L;'F, zeroing out entries (5,3)
T
and (6,3) of F. So, £y = I + l}el, where I, = [0 0 0 0 % x| ,and

L' =T-1Uel. Thus,

1 | a1 ]
L 1 a1
cop—| P27 and  GLy= E
s 1 0 g 1
*  uz 1 + 1
i + U | i + 5 1]

Let

F«—L'F and G — GL4.

Fourth row of I and fourth row of G are in final form.

Apply Yy and Y[l,

FY'VG = L FY Z v v zaaWe, .
—— N————

Matrix Yy affects only rows 5 and 6 of YiG, zeroing out entries (5,4) and (6,4)
T
of G. So, Y4_1 =I+yel withy,=10 0 0 0 x | ,Ya=1-1vel and
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1 ] [a, 1 |
Zl 1 '&2 1
lh 1 a3 1
FY;! = 2 and VG = ’
s 1 0 iy 1
lA4 us 1 *
i + Us | i + 1]
Let
F— FY4_1 and G —Y,G
and define

FO .= F = FWz v

GO .= G =Yv,2,GWL,.

The fourth step is complete.
Step 5

5.a) Define Z; ' and get

FZ' 72:G = FO 751 2;G0)
—— N —

Matrix Z5 ! will zero out entry (5,6) of F and place 1 into entry (5,5). Z5 will

turn into 1 entry (5,6) of G. We have

g i} g i}
1 1
» 1 1
Zs = ; Zs =
1 1
1715 —uld us 1
i 0 1 ] i 0 1_
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and
1 ] (4, 1 ]
Zl 1 '&2 1
Is 1 a1
Fz7l = 2 , 75G = 3
Is 1 Gy 1
Iy, 1 0 1
i + Ug | i + 1_
Let

F——Fz;' and G+« Z5G.
5.b) Apply matrices L5 and £5—1 to obtain
LVFGLs = L' FO 21 2,600 L5 .

Matrix L5 will affect only rows 6 of LglF , zeroing out entries (6,4) of F. So,
T
Ls=1+ lgeg, where I. = [() 00 0 0 *} , and £5_1 =71 lgeg. Thus,

1 a; 1
il 1 '&2 1
Iy 1 a3 1
L;'F = 2 and  GLs= ’
s 1 g 1
Ib, 1 0 is 1
i *Ug | i + 1]

Let
Fe—r('F  and G+« GLs.

Fifth row of F' and fifth row of G are in final form.
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5.c) Apply matrices Y5 and Y5_1 to obtain

FY; Y56 = L5 FO) 22V Vs 2,60 s
~—— S———

Matrix Y5 affects only rows 6 of Y5G, zeroing out entries (6,5) of G. So,
T
Vil=T+ylel withy,=1{0 0 0 0 0 | ,Ys=1—ykel and

FYEf1 = and Y;G =

l5 Ug *

Let

F<—FY571 and G — Y5G

and define
FO .= p = PO z-y !

GO .= G =Y 7:GO) Cs.

The fifth step is complete and the two bidiagonals are found. There is only need
to place 1 in entry (6,6) of F.

Step 6
6.a) Apply Zs and ZG_I,

FZg' ZsG = FO 751 725G
—— —_—— ——
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Matrix Zg ' place 1 in entry (6,6) of F. We have

Zgt
and
FZyl =
Let

Matrices F' and G are already in final form.

1

6.b) Let L5 =TI and

Thus,

Fe—FZ;!

and

Lo FGLs = L' FOZ51 26O g .
—_—

——

and

1
1
1
g =
(4, 1
Us
Z6G =
G — ZGG.
(4, 1
Us

GLg

Ue
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Let
F— EglF and G +— GLg.

6.c) Let Y4 = I and finally

FY; ' YoG = L5 FO 251V V626G L6
—— ~ N————

and

F«—FY;' and G« Y5G.

In the end we have

Ly=F and Uy =G. ¢

For general matrices L and U as in (5.9), we will have

LyUs =0 ootz 2 Y Yz, YA 2L Ly -

ZETZI---EflUlel--~X771Xn---X1L1£1---En

=L\ X' XL L
N —— N —

where

L=Ly---L, and X =X,,--- X3

Wltth:Y;ZZ,lzl,,n
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And for a complex shift o, the triple dqds algorithm will be called tridqds and is given
by:

tridqds(o) :
F=U;; G=1,
F=FzZ ' G=7G
F=L'F; G=GL [form £; using (5.10)]
F=Fy% G=%G
fori=2,...,n—3
F=FZz" G=2G
F=CL7'F;, G=GL;
F = FY[l; G =Y,G [Z; with one, £; with two and Y; with three
end for off-diagonal entries|
% step n-2
F=FZ' G=2,.G
F=CL'F; G=GL, 2
F=FY % G=Y, G [Y,,—2 with two off-diagonal entries]
% step n-1
F=FZ'G=27,.G
F=CL'F,G=GL,
F=F Yn__ll; G=Y,1G [Y,,—1 and £,,_; with one off-diagonal entry]

% step n
Ln,=1,Y,=1
F=Fz1 G=2,G [Z,, diagonal]

Ly=F; F; =G



141

5.3.1 Details of tridqds

In this section we will go into the details of the tridqds algorithm described in the previous

section. Consider matrices Ly and U; as defined in (5.9) and let us say that matrices L4 and

U, have the same shape with subdiagonal entries il, ey Zn_l and diagonal entries 1, ..., Uy,
respectively.
For each iteration of tridqds, in the beginning of a minor step i, ¢ = 2,...,n — 2, the

active parts of F' and G are

1 Ui—q1 1
iz_l Uq 1 *
F = and G = . (5.11)
+ uipr 1 + 1
+ Uit - + ligr 1

So, F' starts to be U; and is transformed into Ly and G is given initially as L; and is
transformed into Uy.

For i =2,...,n — 3, a general minor step ¢ consists in what follows.

Typical minor step i

i.a) Define Z; and let
F FZi_1 and G — Z;G.

Matrix Z; ' will zero out entry (i,i + 1) of F' and place 1 into entry (4,i). Z; turns
into 1 entry (i,i+ 1) of G.
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and
1 Ui—1 1
liiy 10 1
FZ7' = -t ZG =
+ Uip1 1 + 1
Uj42 + L1 1

i.b) Define elementary matrix £; and let
Fer'F  and G+« GL;.

L; will affect only rows ¢ + 1 and ¢ + 2 of L. LF, zeroing out entries

(i+1,i—1)and (i +2,i—1) of F;
T
Li=1+1Uel wherel;=10...0  * 0...0| ,L;'=1-"Uel and

(2

1 ;1
L7F = ot 1 ., GL;i = o
* Uigl 1 + g1 1
+ Ui4-2 1 + lz‘+2 1

i.c) Define elementary matrix Y; and let
F«—FY7' and G+ YG.

Y; affects only rows i + 1, i + 2 and i + 3 of Y;G, zeroing out entries (i + 1,4), (i +2,1)

and (i + 3,17) of G,

T
Yi_lzl—i-ygeiTwithy;:[O...O *+ x *x 0...0 7Yi:I—y;eZTand
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1 a; 1

L 1 *
FY;-_I— 7 i+1 7 }/'ZG:

+ Uiy 1 + 1

- Uiyg + itz 1

Compare with (5.11) to see that we are back to the same pattern from which we began: the
bulges have been chased one column to the right and one row to the bottom. Turning to
a practical implementation, next we will see how the calculations involved in this process
can be organized.

For each minor step i, : = 2,...,n — 3, consider F' and G as in (5.11). Denote the 2 x 1
bulge in F', indicated with plus signs, by [xl yl]T. And denote the entries (i,1), (i + 1,1)
and (i+2,1) in G, indicated with %, +, 4, by {xr Yr ZT]T. Subscripts [ and r derive from

“left” and “right”, respectively. This way we have

1 ai—l 1
lich u 1 T
F= S and G = ’ (5.12)
x] Ui41 1 Yr 1
Y Uita - Zr lig1 1

and the typical minor step ¢ can be accomplished using only these auxiliary variables. The

details will be shown in the following pages.
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Typical minor step i

i.a) e The inverse Z; ! and Z;

1
11
Z—l — u; Usg Z_l —
7 1 K3
1
e The effect of Z; !
1
FZz-_l _ lica 10
x U1 1
Y Ui+2
e The effect of Z;
w—1 1
T 1
ZiG = '
Yr 1
zr by 1

where

Ty < Tp * U + Yy
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i.b) e The inverse £;*

1‘11

Yl 1

Ty < —.%l/l;'_l

Yy — _yl/iz’—l

£l=
where _
e The effect of ﬁ;l
L7MF =
e The effect of £; _
GL; =

Ly

Yr

Zr

Ty Ui4+1 1

Yi Ui42
1
1
li+1 1
livo 1
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where

i.c) e The inverse Y; !

where

e The effect of Yi_1

where

U; —— Tp — I}
Ty < Yr — I
Yr < 2r — Y1 — Ty * iy

Zp —— =y * lip2

. 1

Yr 1

Zp 1

Ty — Ty /Uy
Ypr < yr/ﬂi

Zp — Zp /U4

Li uiyn 1
x uirg 1

Y Ui+-3

li<—l‘l—|—yr—|—$r*ui+1
Ty Y1+ 2 + Yr ok Uit2

Y < Zp ¥ Uj43
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e The effect of Y;

Ty

Y:G =
yr 1

zr g2 1

where
T «— 11—z,
Yr < li-i-l — Yr
Zp — — 2

Now the details of the last three minor steps.

Minor step n-2

[n-2].a) e The inverse Z, ', and Z,,_»

1 1
-1
Zn_2 - ’U/n,];2 B 7Jan172 ’ ZTL*2 - un_2 1
0 1 0 1
L 1_ L 1_

e The effect of Z !,
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[n-2].b)

e The effect of Z,,_o

e The inverse E;iQ

e The effect of E;EQ

Zn—QG =

b1 1]

Ty & Ty * Up—2 + Yr

ct,

n

I

Y

x — —x1/ln3

Y — —y1/ln_3

I

Y

Up—1 1

Un
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e The effect of £,,_2

iy 1
GL, 2= Up—o 1
Ty 1
I Yr o lpo1 1

where

ﬁn_Q S Ty — I
LTy —— Yr — T

Yr ¢ 2p — Y| — X ¥ lp_1

[n-2].c) e The inverse Yn__12

YTL_—12 = ].

xr 1

where
Ty l'r/fan—Q
Yr — Yr/ln—2

e The effect of Yn__12

FY 1 =

n—
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where

~

ly—o &— 1 + Yr + Ty * Up—1

Ty — Y+ yr xup

e The effect of Y,,_o

where

Minor step n-1

[n-1].a) e The inverse Z, ', and Z,_;
zt = ! Z
n—1 — 1 ! ) n—1 —
Un—1 Un—1
- O 1 -

-1
e The effect of Z ~,;

1

F Zr?—ll = R
lp—o 1
- xl

Tp —— 1 —x,

Yr lp—1 — Yr
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e The effect of Z,,_1

Up—o 1
Zn_lG _ n—2
zr 1
- yr 1_

where

337" «— J;fr *urn—l +y7"

[n-1].b) e The inverse L;il

£_11 -

n—

z; 1

where

Xy — _-Tl/in72

e The effect of £},

ﬁnle: ~
ln—2 1
I T Up
e The effect of £,,_1
Uy 1
Gﬁn_l _ n—2
ﬁn—l 1
L l”” 1'
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[n-1].c)

where

e The inverse Ynill

where

e The effect of Y},

where

e The effect of Y,,_1

where

Up—1 —— Tp — Ty

F Yn_—ll =

Ty < Yr — I

ln—1 &z + 2 * Uy

Y,1G =
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Minor step n

n.a) e Theinverse Z;! and Z,
z;l =
e The effect of Z,1
FzZ 1=
e The effect of Z,
ZnG =
where
n.b) e Theinverse £, ! =T
e The effect of L,
GL, =

Ty Ty ¥ Up,

Un
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where

(U Ly
n.c) e Theinverse Y, ! =1

Now the last detail that is missing is how to initialize auxiliary variables x;, y; and x,.,

yr and z,, that is, how to organize the first step of the tridqds algorithm.

Minor step 1

Initially we let

up 1 Ty,
up 1 yr 1
F = u3 , G=|z 1o 1
1
Un, i ln-1 1_
where

Tr— 1
yr — b
zr— 0

1.a) e The inverse Z; ' and Z;

1 1

a —71 Ul 1

0 1 0 1
z7! = 1 = 1
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e The effect of Z; 1

1 0
u9 1
rzy t= us
1
Unp
e The effect of Z;
_xr X -
yr 1
21G= |z Iy 1
L ln_l 1_
where
Ty — Xy kUL + Ypr
1.b) e The inverse £]*
g -
r; 1
ﬁ;l = 1Y 1
- 1_

where
zp — (ug +11)? +ugly —2(Ro)(ur + 1) + |of?

Y — —ugliusla/x;

T — —ugly (u1 + 1 +uy + 1y — 2(%0’))/%[
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e The effect of ,Cl_l

e The effect of £

GLy =

where

i 1 0
Tp U2
Yi

u; 1

. 1

Yr o

Zr

us

ﬂ1<—$r—1‘l

Ly < Yr — X7

Yr < Zr*ylf-rl*lQ

Zp —— =y * 3

1.c) e The inverse Y,

Yr

Zr

lnfl

Un

1_
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where
Xy — T,/

Yr — Yr/1

Zp Zr/ﬁl

e The effect of Y1_1

1 0
Zl u9 1
FY[ ' = | us
i 1
Up,
where
li — o+ yp + @ % uz
Ty Y1+ 2r + Yr kU3
Y < Zpr ¥ Uy
e The effect of Y3
w1
Ty
Y 1
YiG = '
zr I3 1
ln—l 1

where

mr<—l—l'r

y'r’(_lQ_yT

Zp < —2p
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It can be verified that minor step 1 could be incorporated in the inner loop,

i =2,...,n — 3, but that would demand an extra auxiliary variable and it is not worth-

while. The final version of tridqds algorithm is presented in the following pages (comments

are included to make it easier to relate to the matrix formulation in page 140).

tridqds(o) :

=1 y.=10l; 2z =0

% the effect of Z;

Ty = Ty * UL + Yy

% the inverse L'

2= (ug +11)% +ugly — 2(Ro)(ug +11) + |o]?
Y = —ugliugla /7

xp = —uly(ur + 11 +ug + la — 2(Ro)) /2y

% the effect of £

U = xp — x5

Ty =Y — 15 Yr=2r —Y— T xly; 2p = —yr*ly
% the inverse Y !

T =2 /Uty Y = yr/Ul; 2 = 2 /U

% the effect of Y; !

Iy =T+ Y+ Tp x U2

Ty =Y+ zr +Yr kU Y= 2 kUL

% the effect of V3

Tr=1—2p; Yp=1l—yr 2 =—2

fori=2,...,.n—3
% the effect of Z;
Ty = Ty * Uj + Yr
% the inverse £; !

x = —xflic1; y = —y/lio1;
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% the effect of £;

Uy = Ty — T

Tp =Yr — T Yr =20 — Y — Ty ¥ lig1; 2p =~y * ligo

% the inverse Y; !

Ty =2 Ui Yr = Y/ 2 = 20U
% the effect of Y,

l; =T+ Yr + T kUit

Ty =Y+ 2r T Yr ¥ Uig2; Y = 2r ¥ Uit 3
% the effect of Y;

Tp=1—2p Yp=livi—yr; 2r=—2%

end for

% step n-2

% the effect of Z,,_o

Typ = Ty * Up—92 + Yr

% the inverse /J;Ez

T = _xl/in—ii; Yy = _yl/in—?ﬁ
% the effect of £,, o

Up—9 = Tp — Ty;

Ty =Yp — XL Yp = 2Zp — Y — X ¥ lp—1
% the inverse Yn112

Ty = Ty [Un-2; Yr = Yr/ln—2
% the effect of Yn__l2

In—2 = Ty + Yr + Ty * U1

Ty =Y +Yr*up

% the effect of Y,,_o

xp =1 —my; yT:lnfl_yr
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% step n-1

% the effect of Z,,_1
Ty = Ty * Up_1 + Yy
% the inverse L;LEI
= —xl/fn_g

% the effect of £,,_1
Up—1 = Tp — 7

Ty = Y — Ty

% the inverse Yn__l1
Ty = Ty [Up—1

% the effect of Ynill
[n_l =X+ Ty *x Up

% the effect of Y,,_1

Tr=1—z,

% step n

% the effect of Z,,

Ty = Ty * Uy

% the inverse £, 1 =1
% the effect of £,

Uy = Tp;

% the inverse Y, 1 =1

5.3.2 Operation count for tridqds

In this section we will see how three steps of simple dqds algorithm compares with one step
of tridqds in what respects to the number of floating point operations required. In order to

make easier this comparison we first remember dqds algorithm from section 3.5.2 (page 75).
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dads(o) : di=u; — 0o
fori=1,...,n—1
U =di+1;
I = li(ui1 /) (5.13)
div1 = di(uig1/0;) — 0

end for
Up, = dp,.

In practice, each d; 1 may be written over its predecessor in a single variable d and, if the

common subexpression u;11/4; is recognized, then only one division is needed if we use an

auxiliary variable.

Table 5.1 below shows that the operation count of one step of tridqds is comparable
to three steps of dqds (table expresses only the number of floating point operations in the

inner loops).

tridgds | 3 dqds steps
Divisions ) 3
Multiplications 6 6
Additions 5 3
Subtractions 6 3
Assignments 16 12
Auxiliary variables 5 2

Table 5.1: Operation count of tridgds and 3 dqds steps

But to make three steps of dqds equivalent to tridqds we have to consider dqds in complex
arithmetic and the total cost is raised by a factor of about 4. Thus, in complex arithmetic,

three steps of dqds are much more expensive than one step of tridqds.






Chapter 6

New version of triple dqds

In this chapter we will first describe the connection of a generalized Gram-Schmidt process
with the LU factorization and explain how dqds may be derived from this relation indepen-
dently of qd. Then, we show that quantities d; in dqds provide useful information about
the diagonal of (UL)~! and can be incorporated in a shift strategy. For the case of complex
eigenvalues we try to generalize these results and exhibit similar ones for tridqds.

A new version of the triple dqds algorithm follows from several results that we establish
for the quantities involved in tridqds. This version will be called 3dqds and is more elegant
and more efficient than tridqds. Numerical results of an implementation of 3dqds will be

shown in the next chapter.

6.1 Gram-Schmidt factors

Finding the LDU factorization of any product BC' is equivalent to applying a generalized
Gram-Schmidt process to the rows of B and to the columns of C so that B = LP*, C' = QU,
and P*@ is diagonal. See Parlett [40]. When this Gram-Schmidt process is applied to DU L
in an efficient manner one obtains the variant dqd of qd algorithm that, as we have discussed
earlier, requires a little more arithmetic effort than qd itself. So, in this section we show

that dqd could have been discovered independently of qd.

163
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The Gram-Schmidt process is the standard way of producing an orthonormal set of
vectors {quqz, L 7%} from a linearly independent set {flhfz, e fk}. The defining
property is that span(qy,qs,...,q;) = span(fy, fa,..., f;), for each j = 1,... k. The

matrix formulation of this process is the QR factorization
F=QR

where F = [fl fa ... fk}, Q= {ql a - q and R is a k X k upper triangular
matrix.

The generalization of this process to a pair of vector sets { fisfo e, fk} and
{91,927---79/%} is so natural that there can be little objection to keeping the name
Gram-Schmidt. The context determines immediately whether one or two sets of vectors

are involved. Recall that F'* denotes the conjugate transpose of F'.

Theorem 6.1.1 Let F' and G be complex n X k matrices, n > k, such that G*F permits
triangular factorization

G*F = LDR,
where L and R are unit triangular, lower and upper, respectively, and D is diagonal. Then

there exist unique n x k matrices Q and P such that

This result can be proved by construction.

We will use X;; to denote the (4, j) element of matrix X.

Note 6.1.1 When G and F are real and G = F, the traditional QR factorization is
recovered with an unconventional normalization. Suppose that FTF permits an
LU factorization. We must have

FT'F =LDLT
and then, from

F = QI = PIT,
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we get Q = P, since LT is invertible. Thus

Now,

where () = Qbf% We have

=
Il

Y
=
Il

LY
b‘z
[ I
S
aol}
Il

O
oy

SIS
N[

R=D

R=Dz3L".

Observe that we have assumed that D is invertible.

Note 6.1.2 In practice, when n =k and D is invertible one can omit Q and write

and still call it the Gram-Schmidt factorization. The important feature is the uniqueness of

Q and P.

The Gram-Schmidt factorization leads directly to the differential qd algorithms. Let us

show how.
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6.2 Derivation of dqds from Gram-Schmidt

Consider
1 (75} 1
ll 1 (%) 1
l2 1 us 1
L = y U — 9 (6 1)
ln—2 1 Up—1 1
lo—1 1 Un
1 u; 1
Zl 1 ﬂg 1
. h 1 A a3 1
L= . U= (6.2)
Zn_g 1 ﬂn—l 1
anl 1 fan

and dqds algorithm shown in (5.13), page 161, with o = 0, that is, dqd algorithm.

Corollary 6.2.1 Let L and U be n x n bidiagonal matrices as given above. Suppose UL

permits factorization

UL=LDR=LU, (6.3)

where L and R are unit bidiagonal, lower and upper, respectively, and D is diagonal. Then

there exist unique matrices P and Q such that
U=LPT, L=QR, PTQ=D.

Proof. In previous theorem just take F' = L and G* = U and use the fact that U and L

are real. O



167

In words, apply Gram-Schmidt to the columns of L and to the rows of U (or columns
of UT), in natural order, to obtain L and R. Then note that U = DR. In fact, after

Gram-Schmidt, we have

UL=LPT"QR=LDR=1LU.

We certainly have PTQ = D because L and U are invertible and the two QR factorizations

are unique.

Also notice that if U; = 0, ¢ < n, then UL does not permit triangular
factorization. However, the theorem allows ﬁnn = 0. When Um # 0 then U is invertible
and so is D. In this case matrices Q and P are also invertible and, since Q = P~TD and

Q'L =D'PTL = R, we can rewrite the factorization as
UL=UPTPTL = (UP—T) [f) (f)_lﬁTLﬂ — LDR=LU.
If we define K := PT we can write

UK KL= LU. (6.4)
The matrix K is hidden when we just write UL = LU. However the identification of K
with the Gram-Schmidt process goes only half way in the derivation of the dqd algorithm.
The nature of Gram-Schmidt process shows that P and @ are upper Hessenberg matrices.
We are going to show that they may be written as the product of n simple matrices that are
non-orthogonal analogues of plane rotations. That means that L may be changed into U
and U into L by a sequence of simple transformations and neither K, Q nor P need appear

explicitly.

A plane transformer in plane (i,j), i # j, is an identity matrix except for the entries

(i,7), (i,74), (4,7) and (j, 7). The 2 x 2 submatrix they define must be invertible.
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Let us describe the first minor step in mapping U — IA/, L — U. We seek an invertible

matrix ) )
Tz
—y w
1
X —
1
1
such that
1 0 ;1
Lo 1 0 1
L ug 1 b 1
UX = and XL =
Up—1 1 ln—2 1
Un ln—l 1
where * may be anything. Note that
o . -
det ~ det
X
det det
X1 = 1
- 1_

where det = xw + yz. Thus, we are left with the following two equations

T oz 1 0 ;1

—y w| ({1 1 0 1

up 1 w —z 1 0
=|. .det

0 wuo Yy x l1 *
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We must have

x—l-le:le

z=1
—y+wl =0

w=1
uiw + y = det

—wz+x=0
Uoly = il.det

usx = *.det.

So, z = w = 1, equation (6.7) shows that y = [; and equation (6.10) gives x = uj. Thus

det = u; + 1 which verifies (6.9). From (6.5),
Uy =uy + 1y

and from (6.11) we learn that

Uy = 'LL2Z1 = Zldet = Zlﬂl.

Finally, and of most interest, from (6.12),

* = ugx /det = uguy /det = uguy /.

This gives the intermediate quantity us in dqd and we see it here as something that gets

carried to the next minor step.

If we write d; = u; we obtain the start of the inner loop of dqd:

) =di + 1l

I =l (uz/t)

d2 = dl(UQ/’fbl).
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The typical minor step is similar. Below we show matrices part way through the transfor-

mation U — l:, L — U. At minor stepi,t=1,...,n—1, we have
1
X d; 1 Cxo i, —1/a
—; 1 Li/t; d;/u;
1 1
Consider that after completion of step 7 we let
U« UX; " and L« X;L.
So, at the end of minor step ¢ we have
1 0 a; 1
li d; 1 0o 1
UX;' = P , XL
Uj4-2 1 li+1 1
Uit 3 lit2
At the end of minor step n — 1,
1 Uy 1
UX; ! = ) and X, L = e
ln—2 1 0 ’LALn,1
lno1 dy 0

(6.13)
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If d,, # 0 we simply multiply row n on the right by d,, letting 4, = d,, and divide

column n on the left by d,, leaving 1 in its place. This is achieved by defining

and finally

That is,

So, recalling matrix K in (6.4) we can write

UK 'KL = LU
S——

where K = X,,... X1.

If d,, = 0 we can not define X,,. Observe that

1 G2
lhoo 1
L Zn—l dn_ L
B 1 1
N o 1 1 0
I b1 1] | o] |

1
Up_1 1
1_
U2 1
IALnfl
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So, L does not change and we let 4, = 1 and d,, = 0. U is not invertible but the

factorization LDR in (6.3) with U = DR exists.

We have derived the dqd algorithm without reference to qd. Of more significance is the
fact that the quantities d;, ¢ = 1,...,n, provide useful information about UL, that qd does

not reveal, and so dqd facilitates the choice of a shift.

6.2.1 The meaning of d;

The meaning of d; is revealed by the next theorem.

Theorem 6.2.2 Consider L and U as described in (6.1). If U is invertible and U L permits
triangular factorization then the quantities d;, i =1,...,n, generated by the dqd algorithm

applied to L and U satisfy

dt=[(UL)].., i=1,...,n

9
Note that if U is invertible and UL = LU then U must also be invertible. This means

that u; and 4; are all non-zero.

Proof. The algorithm may be considered as transforming L to U by premultiplications and

Uto L by inverse multiplications on the right, as described in the previous section. At the

end of the (i — 1) plane transformer X; 1,7 = 2,...,n, the situation is as indicated below:
1 0 i1 1
- iy di 1 0 1
UKi—ll = ' ' 5 Ki_1L =
Ui41 1 ll 1
Uit livi 1
where

Ki—l = Xi_lXi_g e Xl
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and X; is the plane transform given in (6.13).

The striking fact is that row i of K; 1L and column i of UK, 11 are singletons. That is

e;-rKZ-_lL = e%p and UK;llei =e;d;, 1=2,...,n.
Rearranging these equations yields, for i =2,...,n,
eiTKZ-_l = eZTLfl, Ki__llei = Uﬁleidi

and

Now for case ¢ = 1. We also have
e{L = er{ and Ue; = ejuq,
and, analogously,
[(UL)*l}ll = (e{Lfl) (Uﬁlel) = e?ul_lel = dl_l. O
In the positive case (I; > 0, u; > 0), UL is diagonally similar to a symmetric positive

definite matrix (see lemma 2.2.3) and the quantity min |d;| gives useful information on the

eigenvalue nearest 0.

Corollary 6.2.3 In the positive case

min; d;

< Amin (UL) < mind;.
n 7

Before writing the proof of this corollary we need to remember that if A is a symmetric

positive definite matrix then

trace(A) > Apax(A) and Apax(A) > Ay
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This is simple to prove: eigenvalues A1, ..., A, of A are all positive and the first inequality is
immediate. Also, A is orthogonally similar to D = diag(\g,...,\,). We have A = QT DQ),

for an orthogonal matrix ) and then

A = [QTDQ} i
= €] Q" DQe;
= Q?DQi
= Mgii + -+ Mgy

< Amax(A) 14:l3 = Amax(4),

T
where we let g; := [QM, .. ~7Qni} .

Also recall that for a matrix M diagonally similar to A we have
Mi; = Ay

because a diagonal similarity does not affect the diagonal entries of A.

Now we write the proof of corollary 6.2.3.

Proof. For any matrix M = (mj)1<i j<n that is diagonally similar to a positive definite

symmetric matrix we have
max mj; < Amax(M) < trace(M).
7

If we let M = (UL)™" we have [(UL)™!], = d;! and then

-1 n -1
(mindi> = maxdi_1 < )\max((UL)*l) < Zdi_l <n (mjndi> .
7 (2 i—1 3
Since (Amax(UL)™1) = (Amin(UL)) ™ we can write
-1

<miin di> @I < n <miin di>

or, equivalently,

< A\min (UL) < mjn di. O

n
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Even in the general case, as u, — 0, min;|d;| becomes an increasingly accurate

approximation to |Amin|-

LR, QR and qd algorithms are only as good as their shift strategies. In practice, one
uses qds and dqds, the shifted versions of qd and dqd.
The derivation of dqds(o) in terms of Gram-Schmidt process is not obvious. Formally

if (U — aLfl) L admits triangular factorization we write
UL—-o0l=U~-oL™"Y)L=LDR=LU
and apply Gram-Schmidt to the columns of L and to the rows of U — o L™! to obtain
U-oL™ ' =LPT, L =QR, PTQ = D.
If D is invertible, we can eliminate Q:
L:(QD—Q(DR>:E¥TU, U—oL™t =LP7,

that is

KL=U, (U—-oL Y)YK =1,

with K := PT. At first glance the new term —oL~! appears to spoil the derivation of K
as a product of plane rotations. However, it is not necessary to know all the terms of L~!
but only the (i + 1,4) entries immediately below the main diagonal. The change for the
unshifted case is small.

If one looks at the two matrices part way through the transformations L — U,
U —oL™' — L, the singleton column in the second matrix (from theorem 6.2.2) has

disappeared and the relation of d; to (UL)~! will be more complicated.

6.2.2 Complex eigenvalues and dqd

Theorem 6.2.2 gives information about the diagonal entries of (UL)~! that can be used in a

choice of a shift strategy. In the presence of a pair of complex conjugate eigenvalues it will
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be useful to know not just the diagonal entries but also the entries (i + 1,4) and (i,7 + 1),
that is, the diagonal 2 x 2 blocks of (UL)™L.

We will use the notation Aj.; ;. to represent the submatrix of A lying in rows 4 through
7 and columns k through [.

Next result gives the entries of the 2 x 2 submatrix

(L)' (6.14)

Gt 1,041
and then we will analyze when we may have complex eigenvalues.
Theorem 6.2.4 Consider L and U as described in (6.1). If U is invertible and d;,

i =1,...,n, are the intermediate quantities generated by the dqd algorithm applied to L
and U, then

1 1
-1 _ | & Tduw .
[(UL) ]i:i+1,i:i+1 - A 1 i , t=1,...,n—1
d; dit1
Proof. From theorem 6.2.2
1 _1 )
JZ:[(UL) ]ii’ ZZL...,?’L.

Also from the proof of theorem 6.2.2, we have
eZTKi_l = e;pr_l and dl-_lKiillei =U7le;, i=2,...,n,

where

Kiflinlei72...X1, i:2,...,n—1

and X; is given by (6.13).
Thus,

[(UL)™'] e/ L) (U eit)

i+l (
= (e Ki-1) (di} K7 leiga)
—drel (KK e

=dl (e] X eipn)
1 1

dit1 Uy
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In dqd algorithm we have

dit1 = di(uiy1/0)

and then
1
—1 _
(OD s =
Analogously,
[(UL)*]HM = (el 1 L7Y) (U 'e)

= (ez‘THKi) (dz‘_lKi_—llei)
=d; el (KK e
= d;l (eiT_HXiel-)

= _dj"
For ¢ = 1, notice that di = u; and we have

e{ = L_leip and ul_lel = U_lel.

So,
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and, finally,

Now we are interested in finding the eigenvalues of the 2 x 2 submatrix of theorem 6.2.4.

It can be verified that the discriminant of the characteristic polynomial is

dig1r —di\° 4l;
< didit1 > - d?uit1 (6.15)

Lemma 6.2.1 If ljuj+1 > 0 then the 2 x 2 matriz in (6.14) has real eigenvalues.

Proof. According to (6.15), if lu;4+1 > 0 then A; > 0. O
If lju;+1 < 0 we must evaluate A; to know if we are in the presence of complex eigen-
values.

6.3 New version of triple dqds

Consider matrices L and U as given in (6.1) and the application of tridqds algorithm.

Initially, we define

and
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At the beginning of each minor step i, i = 2,...,n, we have

FO = LA PV 205

G(Z) = i_1Zi_1G(i_1)£i_1.

Therefore
FO = (7 Lt ey U (20 Yy 2y, z2 )
G = (Y 1Zi 1 ... YaZoY1Z))L(L1Ls ... Li 1)
and
FOGW = (£74 Lo LY (UL)(L1Ly ... Lia). (6.16)
As established in (5.12), page 143, at the beginning of minor step i = 2,...,n — 2, of
tridqds algorithm we have
1 U—1 1
PO — o eOn g ,
- uipr 1 g1 1
At Uiy2 g5 lipz1 1
(6.17)
where we defined
ffl =ay and d; == x,
= g5 =y
gé =R

The superscript refers to the column at which the element is positioned.
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At the beginning of minor step n — 1,

N Un—3
Fn—l _ In—3 1 Gn—l _
~ )
ln2 up—1 1
and for minor step n
1 Uy —
Fn = R ) Gn = "

[— 1

L in—l Un |

Since initially we let

then

6.3.1 New notation for tridqds

Next we will rewrite tridqds algorithm with the notation introduced in (6.17). First column

of F) is uje; and quantities 1Y and f9 presented at minor step 1 are just auxiliary variables

used for clarity and do not belong to F(1),
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The first minor step of tridqds.

Minor step 1:
di=1; gy =h; g3=0

do = di *uy + g%

f{) = (u1 + l1)2 + ugly — 2(Ro)(uy + 1) + |U|2
f3 = ualiugla/ f7

fP = uali(ur + 11 + ug + la — 2(Ro)) / f7

fi=-1 f=-1

4y =dy — f1;

do=gl — fl; 2=g3—f3—fi*lo; g3 =—f3xl3

dy = da/tn; gi =gi/tn; g5 =93/l

i1=f11+g%+d2*u2

fI=fi+g+gi*us; f3=g5%us

dy =1—dy; g7 =12—9i; 95=—03
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The inner loop is changed to:

fori=2,...,n—3

dit1 = d; % u; + g}

fi=—f Yoy fi=—ft i

U = diy1 — fi;

. o S o
div1=91— f{; 91 =95~ fs— fi*xliv1; 95 = —fa*lipo

. 1 i1~ i1 i1 -
diq1 = dig1 /s gt =g s gyt = gbT

. o
li = fi+ g7 + diy1 % uip

. L o
fi=f+0" + g *uigo; fi=g5" xuigs

_ ot i1 il it
dig1=1—diz1; 97 =liv1—9]" 5 95 = —Gy

end for

We begin the loop with quantities ff_l, fé_l, di, gt and g4 and end with quantities f},

fa, diya, giﬂ and gé“, and all values are preserved. For completeness we will also write

down the minor steps n — 2, n — 1 and n with this new notation.
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Minor step n-2:

dnfl = dnf2 * Up—2 + 971172

P = T sy J3 7= Sy s

~ n—2,
Up—9 = dp—1 — 1 s

. n—2 n—2, n—1_ n—2 n—2 n—2
dp1=97 =75 6 =9y T[T =1 xlaa

dp—1 = dn—l/an—% g?_l = g?_l/ﬂn—2
7 S (] n—1
lp—o = 1 + 9 +dp_1 % Up_1

n—2 n—2 n—1

dp1=1-— dn71§ g?_l =lp_1 — g?_l
Minor step n-1:

n—1

dn = dn—l * Up—1 + g1

?71 = *f{l72/in72

~ n—1
Up—1 = dp — 1

_n—1 n—1
dn =91 — f1
dn = dn/an—l

lpn1 = {L_l—i-dn*un

Minor step n:
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notation

1 =n,

We will write

where

0
0

It is well known that

1

0 0 AL RYL O ... 0

T
00 h?*l} ;

E;lzl—hie?

To represent elementary matrix £; at minor step i, ¢ = 1,...,n — 2, we will use the

(6.18)

Elements k% and h% are at positions (i + 1,4) and (i + 2,1), respectively. For i = n — 1 and
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and

1
Rt o1
hy h?
R: .1
LiLo. .. L;= A
Ry 1
R 1

In what follows we will need to refer to the columns and to the rows of £1L5...L;. For

i=1,...,n, the columns are
( k.th
=
E ok g k
<
(LrLs ... Li)ey, = 0 01wk o o] =t (6.19)
€k, k>1
T
Note that (£1L2...Ly—1)€n—1 = [0 .0 1 h’f‘l} and (L1Ls...Ly)e, = e,. And
for:=1,...,n, the rows are given by
kth
~~
[0 . 0 RS2 ol 10 Ll o}, k<i+1
eg(ﬁlﬁz .. ﬁz) = (6.20)
[0 .0 R2 010 ... o], k=i+2
e, k>i+2

Note that elT(clcz...,ci):elTandezT(ﬁlﬁg...zi):[h} 10 ... 0.
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6.3.2 From tridqds to 3dqds

The next sequence of lemmas will permit us to change the tridqds algorithm into an equiv-
alent but more efficient format. This is a central contribution of the thesis and lead us to

the new version, 3dqds, that will be presented in page 201.

Lemma 6.3.1 Consider tridqds algorithm applied to matrices L and U as given in (6.1).

For L1 we have

hi=f  and  hy=f3.

For L; at minor step i, 1 =2,...,n— 2, we have
hll = liil/iifl and th = 21171/11;1.

Finally, for L,

n—1 n—2 /7

Proof. In tridqds algorithm the inverse [Zi—l, 1=2,...,n — 2, is chosen to zero out entries
(i+1,5—1) and (i +2,i— 1) of F) using entry (i,7 — 1) as the pivot. Thus

o 1
Lol = . (6.21)

—fffl/l}fl 1
_fé_l/zi—l 1

So, entries h¢ and h} in L; are the symmetric of the corresponding entries in E;l. Ln_11is
chosen to zero out entry (n,n —2) of F"~!. The case i = 1 is immediate (see minor step 1

to observe the initialization of f{ and f9). O

In all the results that follow we will consider n > 4.
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Lemma 6.3.2 Consider tridqds algorithm and matriz F at the beginning of minor step i,

1=2,...,n—1. Then, fori=2,

fi=—H+ - f2+ -9 and 2 = —=—J2
uy Ui ui Ui
Fori=3,...,n—2,
i1 Wil o il F U — Uil g | Uil g
1 =7 1t ~ 2 ~t 92
li—oti—1 li—oti—1 i—1
and
i1 Uitaliv 4o
2 T F 2
i—2Ui—1
At the beginning of minor step n — 1,
n—2 _ Unlp—1 n—3 , Un — lin—2 n—3 Un  n—2
1 =7 1T 2 T ) 92
ln—3un—2 ln—3un—2 n—2

Proof. At the end of minor step 1 we obtain

==+ (£ *13) Jaa] + [(93 + f3 + f * l2) /] * ug
ugla 0+l3+u3—ﬂ

1,0, U3 1
= — + =
i 1 i /2 i 92
and
1 0 N uglz
fa = [(f2 *53) /ul] *Ug = i f3-
The sequence of assignments to compute fi, i =2,...,n — 3, is

fzi — *féil/iifl

i1 ;
gy —fa*lit2

i+1 i+1 /A
9o 9 [
i i+1
Jo 95 *xuiys.

Doing forward substitution we get

f5= {{— <—f2i_1/ii—1> * li+2} /ﬁz} * Uit 3

fi_ll‘+2

2 7

= T *Ui43
li_lui

_ Uitsliyo g
— SR il
li—11;
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So, in the beginning of minor step ¢, i = 3,...,n — 2, we have
i1 Uitalivr 4o
2 T F 2
li—ot;—1
Analogously, to obtain fi, i =2,...,n — 3, the sequence is

fle——f" i
fy — =15 lia
g =95 = i — fi g
géﬂ — —fé * lito
gt — gt Ja;
g g5
fie—f+g + ot xuipa,
Thus, after minor step i,
fi= (—fé_l/ii—1) + { [— (—fé_l/ii—1) * lz’+2} /ﬂi} +
+ { [922 - <—f§71/iz’71) - <—ﬁ.71/[¢—1> * li+1} /ﬂi} * Uiy 2
5! n fé_lli+2 n (gé 5 f{;_llz’-&-l) i

2424

~

li1 li—11; Ui g0y li—11;
1 . l; 4 u; < u; - Wirol; ,
i—1 i+2  pi—1 i+2 4 42 pi—1 1+20+1 pj—1
=—v—Jo tr—Jo t—9t——Jo +t—— "/
li—1 i1ty Uj i—1U; i—1U4
_ Uigalipr g g Ui — Ui g | Uig2
= —= ~ fl + ~ - 2 + 3o
li—1ty li—1t; Ui
In the beginning of minor step i, i = 3,...,n — 2, we have
i1 Uirili o lipn F Ul —Uim1 g | Uikl g
1 = h Tt I 2 T 9
li—2t; 1 li—2t; 1 i—1

At the end of minor step ¢ = n — 2, or at the beginning of minor step n — 1,

172 = (=5 ) + {072 = (21 ) = (<107 ) b ] i

unln—l n—>3 Up — an—Z n—>3 Un, n—2
= 1t 2 T 9 O
ly—3Up—2

ln—3tn—2 n—2
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Lemma 6.3.3 Consider matriz G at the beginning of minor step i, i = 2,...,n —

tridgds algorithm. Then, for i =2,
1

lo fY 9 I3
g%:l2—<f1+{2+€]2 and g5 =——f3.
U U Uq uy

Fort=3,....,n—1,

, L a i—2 i—1
gi:li<A iop2y 2 4 9
li—oti—q  Wi-1

i i o
9o =~ J2 -
li—2t; 1

Proof. At the beginning of minor step ¢ = 2, from minor step 1, we have

2 _ 0, N __LSO
92 = [(fz l3)/ul]— a1f2

and
l fO fO 1
2 1 0 0 - 2J1 2, 92
g1 = b2 [(92+f2 + fi 2)/“1] 2 <ﬁ1 +ﬂ1+ﬂ1
The sequence of assignments to compute géﬂ, 1=2,...,n—3,1s

f; — _fé_l/ii—l

- .
gy —fa*lig2

i+l i+l A
gy =gy /U
i+1 i+1

9o < —G9 -

Again, substituting forwards, we get

gé—H = - { [_ <_f§_1/ii—1> * li+2} /sz} = —ZlH_QAfQI_l.

i—1;
Thus in the beginning of minor step i = 3,...,n — 2 we have
g = — liv1 -2,

li—ot;—1

1, of
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Now the sequence of assignments to compute gzﬁl, 1=2,...,n—3,is

fl——=f"lia

fy — =5 lia

i+l i i i

91— go— fa— fixlita
i+l i1 n

g1 g1/l

i+1 i+1
91 liy1 — 91

and we obtain

) 1—1 i—1
:li-i-l_T_A — — = li+1

~

Ui gty Lty

I a i—1 i
Zli+1—<Al+1 T 2 +“({2>

i—1U; liqt; Wi
Thus, in the beginning of minor step i, i = 3,...,n — 2, we have
' I - i—2 g
gi = ll - (H f 2 + =~ 2A + ,\? .
i—2lli—1 liot;—1  Wi-1

Finally, at the beginning of minor step n — 1,

e e el G Ca ) ol G () Ry M Ly

lnfl 3 n—3 gn72
:zn_1—<A1"—+A2 + 22 ).D

ln—3Un_2 ln—3Un_2 Up—2

Lemma 6.3.4 Let F) and G be the matrices obtained at the beginning of minor step 1,
1=2,...,n—1, when we apply tridqds algorithm to L and U. Then

1—1

i
2 = —Uit+292,

fori=2,...,n—2, and

2n—2 = _f;_3/ln—3'
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Proof. From lemmas 6.3.2 and 6.3.3 we know that, for i =3,...,n — 2,

i—1 Wit2liv1 Lo i lit1 i—2
2 T ]2 and 9o = —x——J2 -
li—2t;—1 li—otli—1

The result follows immediately.

For ¢« = 2, that is at the end of minor step 1, we have in sequence

1 2
Jo e g3 xuy

g5 — ;-
Thus,
2 f3 1 2
92 === 6 fy = —uags.
ug
For i = n—1, f372 = —f2=3/I,_3 comes from the last assignment for f2'~2 in step
n—2. [0

Lemma 6.3.5 Let FD and G be the matrices obtained at the beginning of each minor

step i, © = 2,...,n, when we apply tridgds algorithm to L and U. Then
fl=us(la—gi) — 95— 13,

fori=2...,n—3,

1—1
[ . i+1 i+1 2
fi=viro(liyi— g1 ) — 95" —
lia
and
n—3 n—2
-2 —1 —1 1
{b :Un(ln—l_g? )_A ) {b =77

ln—3

Proof. From lemmas 6.3.2 and 6.3.3 we know that, for i = 2,...,n — 3,

i UWiralitn i Lo Ui — U g Uigo
fi=—7-H + = . 2 T —9
i1 L1 Uj

and
' I ' i—1 i
G =l - <AZ+1 f1+~2+gA2) :

A~ ~

i—1U; -1y Ui
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Also for i = 3,...,n — 2, from lemma 6.3.4,
i1 _ b2 i
9 =7 J2 -
li—1ty
So,

i—1 )

A~

i—11; licqt; Wi

. I - g
Ji = uiyo (i ol e s "CZQ) + (lite —Uz)Afzi

i1 i1
_ it+1 5
= tit2(lit1 — 97 ) tlito7=— — %

Licqt; L

i—1
=uip1(li —g}) — g5 — 32
li—1

~

i—1Uj

The cases i = 2 and i = n—2 also derive from lemmas 6.3.2 and 6.3.3. The case i =n—1

follows directly from step n — 1. O

Lemma 6.3.6 Consider G® at the beginning of minor step i, i =

algorithm. Then quantities d; satisfy

==

dl—l, dg—l—( +

s
o
N———

§>‘1Q
=

and

gz’—l i—2
di—l—(} + 4 ) i=3,...,n.

Ui—1  lj_oli—1
Proof. From minor step 1 the result for ds is straightforward,
dy =1~ (g1 + f7)/a).
In minor step ¢, ¢ = 2,...,n — 1, we obtain d;4; through the sequence
fie— —f i
dit1 — g — fi
diy1 «— dit1/;

diy1 +— 1 —diy1.

1,...,n, of tridqds
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Then,

b=~ ()] = (4 )

li—11;

For ¢ =3,...,n we have

g i—2
di=1- (Al + = 1 > . O
Ui—1  lj_ol;

Lemma 6.3.7 Consider u;, i = 1,...,n, obtained when tridqds algorithm is applied to L
and U. Then

a1 = dyur + g1 + f7,
' i1

;= dyu; + gt + 22—, 1=2,...,n—1,
i1

Up, = dpUp,.

Proof. For i =1 we have
1 = (dy *wy +91) + f) = dius + g1 + f1.
To obtain 4;, 2 = 2,...,n — 1, we need to compute

diy1 — di % ui + gi
fie— =f7" i

N i
U «— dit1 — [y

Thus,
‘ - A i—1
= o ) () =+
i—1
In the end

Uy = dp * Up. O
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The result of the next theorem is quite surprising. It gives for the quantities d; generated
by the triple dqds a relation to the quantities u; and 4; similar to the one that exists in dqd.

Recall from (5.13), page 161, that in dqd algorithm we have

and for tridqds

Theorem 6.3.1 For quantities d;, 1 = 1,...,n, generated by tridgds algorithm applied to
L and U we have d1 = 1 and

Uj
dn = @
Unp,
Proof. From lemma 6.3.6 and lemma 6.3.7, for : = 3,...,n — 1, we have
i ogit i—2 i 1di i—1
dizlfw and ’Lzl'zdiUi+’ng}—+fl.
li—2t;—1 li—1
Thus .
L % i—1
ﬁi:diui—i-ﬁi—l 1?1 +Af1 :diui+ﬂi(1—di+1), 1=2,...,n—2.
i—1U;

Solving this equation yields

. U U
Ui = diui + Ui — Uidip1 < dip1 = d; (ﬁz) :
(2
For ¢ = 1 this result also holds. Using the same lemmas, we have
l 0
do=1-— 1—j_f1 and ’U,A1:U1+l1+f{)
u1l

since dy = 1 and g{ = l3. Then
o=l <UI>
(51 (5%
For d,, the result is immediate. O

Next lemma show us the expressions for Zi, i=1,...,n—1.
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Lemma 6.3.8 Consider fi, t1=1,...,n—1, obtained when tridgds algorithm is applied to
L and U. Then

. lo +ug — U gl gs + f2
1= 7]01 + —0g1 +
U1 U1
c il — W g w1l — i ,
l; = — =g+ — 9a, i=2,...,n—2,
li1ty Ui li1ty
~ Up, — Up—1 _9 Un -1
ln—1 == N 1n + = 9?
ly—2ty,—1 Un—1

Proof. For Zl we have

=—f1+ [(ga+ f3+ f *l2) Jan] + [(91 + fD) /] * ug

lo + ug — U2 g + f
bt g ath

U1 Uy
To calculate Zi, 1=2,...,n— 2 we need to follow

fle— =" lia
fse— = i
diy1 — g} — fi
gt e—gh—f5— fixlin
dip1 < diy1 /7
i+1 Z—i—l/ui

g1 0

i — fi+ g7 + digy * i
This way,

l; = (—ff_l/fH) - { [gé - (—fé_l/fz'—l) - (—fi_l/iz'—l) * lz‘+1] /ﬁz‘} +
{[ ( 1/@—1)} /@i} * Uiy

. Az { ! lz 192 + f2 + lz—f—lfl + z 191 + f ’U/.|.1
- B 1
lz_luZ l _14y; l _10;

il — g wi g ST 192
= < ~ 1 + . g1+ =
li—11; Ui i1t
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From lemma 6.3.4 we know that, for i = 2,...,n — 2,

i—1 g
2 = —Ui4+292-

So,

oo Wittt lin — gy | Ui g Ll — Uig
i = R 1ttt = 2
li1ty Uj li1ty

To compute Zn_l we have

i [

Thus,
= () {7 = ()] )
But these expressions for l}, t=1,...,n— 1, can still be simplified.

Lemma 6.3.9 Consider l;, i =1,...,n— 1, obtained when tridgds algorithm is applied to
L and U. Then

I =up(1—do) + (I2 — g}) — f1,

i1
li:ui+1(1—d¢+1)+(lz+1—g§+1) _Zli’ 1=2,...,n— 2,
i1
. n—2
ly_1= un(l - dn) -
n—2
Proof. By previous lemma, for ¢ = 2,...,n — 2,
j = Wit :l- li—i:l — Uy i1y uiﬂgi n li—} - in-l—Q i
i1 Uj i1
w1 (fI0, ligt — W g | licl —wigs
= = +tg; )+ —— 1 + ———92- (622)
Ui\l i—11; li—11;
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From lemma 6.3.7 and theorem 6.3.1, we can write

U ;

Uiyl , . u;
Ly — dyug) = ui (1 - dzf) = uip1(1 —diy1).

Now the last term in (6.22). We have

[ — ey i o i i—1
Sl bR G2 Toubalh Ty 2
li—11; Uj i1 Uil gty
since, from lemma 6.3.4, it holds
5;1 = —ui+29§-
Then joining the last two terms in (6.22) gives
bt =@ oy i —wive Ly g S0 g S5
T 92 =7 1 T3 -t

li—11; li—11; i1ty

1 . i1
= <All+1 {:_1 + ~ 5 + €%> - A{

i—11U; li—qt; Wi li—1
i—1
(7. i+1 1
- (ll+1 — 01 ) - )
li—1

since, from lemma 6.3.3,

) L ) i—2 i—1
g;:zi_(A T g 2 )
li—otii—1 liotij—1  Wi-1

Finally, from (6.22), (6.23) and (6.24), we obtain

i—1
2 i+1 1
li= w1 (1= digr) + (lipn —g1™) — 52—,
li—1
Fori=n—1,
7 Up, — Up—1 pp_9 Un p-1
ln—l - = R 1 + = 1
ln—2tn—1 n—
n—2 n—2
Un -1
= - (} ‘*’9? > _ Al
Un—1 ln72 n—2
n—2
un N 1
= = (un—l dn—lun—l) - =
Un—1 ln_o
n—2
1
=up(l —d,) — =

(6.23)

(6.24)
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The case 7 = 1:

-+ +
l1=2 1;2 f1+@%+92uf2
1
U lg — iy g +f0
:a*(f?‘kgi)"' 7 1+ 2111 :
us f
= — (U1 — dyur) + < L+ 2) —f
3}

=uz(l —dz) + (l2—g%) _f{)v

using lemma 6.3.7, theorem 6.3.1 and lemma 6.3.3. [

Combining all these results we obtain the new version of tridqds algorithm that we will

call 3dqds. We introduce a new temporary variable auzx.

The changes to the first minor step:

Minor step 1:
di=1; g =1li; 9g3=0
JY = (ur + 1)? + uly — 2(Ro) (w1 + 1) + |o]?
f9 = uolyusly/ fY
1Y =ualy (u1 + i +uy+1ls— 2(%0))/]‘{]
iy = dyuy + g + f7
dy = dyuy /iy
aux = (lgf{) + f9 +g§) /i
g2 =ly — aux
Ii = us(1 — do) + auz — f7
g5 = —l3f3/in
fi = ug.aux — g5 — f3

1 1
f2 = —U49y
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The inner loop is changed to:

fori=2,...,.n—3
Ui = dyw; + g+ fi L
dit1 = diu; /U,
aur = (i1 fi' 4+ f3 "+ limagh) /(i)
gttt =l — aux
li = uis1(1 — diy1) + aux — f_l/ii_l
g5t = Lo fit ) (livity)
fi = uipg.auz — g5 — fi7 /I

i i+1
f% = —Ui+395
end for

The last three steps become:

Minor step n-2:
o = dp—2Un—2+ g7 2+ 17 fln_s
dn—1 = dp—2Up_2/Un 2
auz = (L1 172+ 157 + lu-3g5 %)/ (ln—siin—2)

g{‘_l =1l,_1 —aux

ln—o=tn1(1 —dn_1) 4 auzx — f3/1, 3
2 = yy.aur — f2”73/lAn,3
Minor step n-1:
Qo1 = dp—1tn_1 + g7 + [/ lns
dn = 1= (g7 + 12 ) fitns
lAn—l = up(l —dy) — flniQ/zn—Z
Minor step n:

Up, = dp, * Up,



200

Now, turning into a computacional implementation we will go back again to variables
x; and y; to play the role of fi and fi, respectively, and to variables y, and z,. to replace g
and gb, respectively. Variable d; will substitute z,. Recognizing common subexpressions,

we will introduce some changes with the goal of reducing the number of divisions needed.

If we let
_ 1 1
= = and U= —
liq Uj
and initially
xry = {_1 Yr = gli
ywo=ft Z =g}

then the inner loop will be

fori=2,...,n—3
xp=x %1
yr=yr*l
Ui = di * u; + yr + a3
u=1/u;
dig1 =d;*u; xu
aur = (L1 *x;+ 1y + 20) %@
Yr = liy1 — aux
li = wip1 — dip1 % uiy1 + auz — 2

2r = —lita* Yy xu

T] = Uj42 * QUL — 2p — Y|

Y = —Ui3 * 2r
=1/,
end for

So, we incorporated two additional auxiliary variables but we reduced the number of

divisions to only 2.



201

It is still possible to reduce the number or multiplications by noticing that the multipli-

cation d; * u; can be performed implicitly. If we define t; by
ti = d; *u;

then
tiv1 = digp1 * Ujr1 = dj % U % U * U] = T % U * Ujy1.

Thus, @; and I; will be given by

’Utz:tz"i‘yr"i'l'l
Lig1 =t * U * Ujt1

~

li = Uj+1 — ti+1 + aux — x.

It can be verified that there is no need for both variables [ and @. The variable aux;

will play the role of both. The final version of 3dqds algorithm is presented below.

3dqds(o) :
t=1; yr=1l1; 2 =0;
;= (ur +11)2 +ug xly — 2(Ro) * (ug +11) + |o|?
Y = ug x Iy xug x la /2y
X = ug * [y * (u1 + 1l Fug+ily— 2(?)?0))/:61
t=1txu;
U =t+y +a
auxry = 1/uq
auxr = (log *x x4+ y; + 2) * aux;
yr = lo — aux
t =1%ug *xaur;
Zl =uy —t+ aur — x;
zr = —l3 * Yy ¥ auxy

T = U3k QUL — Zp — U]
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Y= —Ug * 2p

aur] = 1/[1

fori=2,...,.n—3
T] = T * aux]
Y1 = Yy * auxy
U =1+ Yr + 24
auxry; = 1/4;
aux = (li11 %z + Y + 2r) * auzy
Yr = lit1 — aux
t = Ujr1 * ¢k auxy
fi:ui+1—t+aux—:vl
2p = —lip2 * Yy * auwy

Tp = Uj42 % AUT — Zp — Y]

Y = —Ui43 * Zr
aur] = 1/ZAZ
end for

T = I * auxy

Y| = Yy * aUT]

@n_g :t—i—yr—i—xl

aury = 1/tp—o

auxr = (ln—1 * 2 + Yy + 2r) * auxy
Y = lp—1 — aux

t = up_1*t*xauxry

Zn_Q =Up—1 —t+auxr —x;

T] = Up * QUT — Y]

aur] = 1/in_2
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T] = T * aux]
Up—1 =1+ yr + 1
auxry) = (yr + xl)/an—l

~

lp—1 = Up * auT|] — Xy

Un = (1 — auxy) * uy,

6.3.3 Operation count for 3dqds

Table 6.1 below shows that the more elegant version 3dqds of triple dqds algorithm has the
advantage of performing less three divisions than the version tridqds. The price to pay for
this reduction on the number of divisions is worthwhile considering that in certain machines

the cost of a division is much more expensive than the cost of a multiplication.

tridqds | 3dqds
Divisions 5 2
Multiplications 6 10
Additions 5 )
Subtractions 6 5
Assignments 16 12
Auxiliary variables 5 7

Figure 6.1: Operation Count of tridqds and 3dqds

The simplicity of 3dqds is very attractive and preliminary numerical tests reveal its

robustness.
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6.3.4 Entries of (UL)™!

In this section we will present results for the entries of (UL)~! analogous to the results

shown for dqd in theorem 6.2.4 (page 176). So, the goal is to obtain expressions for

[(UL)_IL,i [(UL)_I]MH i=1,...,n—1

Gitlaitl J

[(UL)™]
[(UL)_I]H-LZ' [(UL)_IL-&-LH-l

when we apply triple dqds.

The first lemma gives the expression for entries (i—2,14), (i—1,7) and (4,4) of (F(i)G(")) -

that will be used to obtain the diagonal of (UL)~!. See page 179 for recalling the properties
of the matrices F() and G,

Lemma 6.3.10 Consider F9 and GW at the beginning of minor step i, i =1,...,n, when

we apply tridqds algorithm to L and U. If U s invertible then

. A\ —1 1
) ) _ -
) N =1 1
(@) () _ L ':
[<F ¢ ) L—u diuitii—1’ 1=2..,m (6.26)
[< “ ) o dititi_1Ui—o’ 1=3..,m (6.27)

Proof. We start by using the interesting fact that row i of G?) and column i of F(®) are

singletons (see (6.17)). We have, for i = 1,...,n,

F(z) €, = Uu;€e; and E,LTG(Z) = dzelT

and, equivalently,
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Therefore,
[( F(i)G(i))l} T {(F@)Gm)l] .
N\ -1 A\ —1
_ {e; ) ] [( FO) ei]
= d;leiTu;lei
1
- dl-ul- '
Analogously, for ¢ = 2,...,n, we can write

(roe0) | e [(F060) e

- [6?1 (Gm)‘l} [(Fm)‘lei]
= [%T_l (G("))_l} u; ;. (6.28)

But now row (i — 1) of G is not a singleton. We have

i—1,

el (G(i)> =d;_1el | +el.

Then
ey = (el s +ef) (G0)

= d;_1el (G(")>_1 +ef <G<Z))_1

= el (G(”)fl +d el
And

el y (G0) " = (e —d el . (6:29)
Thus, from (6.28), we get
[(F(i)G(")>_1L = (el —d el i Y] uy e
= —d; o tut

1
- ~ )
diuitii—q
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as we wanted to show.

Finally, for i = 3,...,n,

- [eiT_Q (G“))l} ule;. (6.30)

We have

e, (G(i)) = {;_sel 5, +el (6.31)

and then

= [el'y — (el —d;"el) a7 ] a . (6.32)
From (6.30) we get
. A\ —1
[(F(l)G(Z)) } = [ez‘T—2 - (ezr—l - di_lelT) 71;_11] ﬁi__lgui_lei
i—2,
= d iy
1

The next theorem gives the expression for the diagonal of (UL)™1.

In (6.16) we already saw that

FOGW = (£ ... L7 (UL) (L1Ls ... Lio1)

(2

= (£1L2 . -Ei—l)_l(UL)(ﬁlﬁg . »Ci—l) .

Then

UL=(L1Ly...Li ) )FOGD(L1Ly. .. Li 1) .
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and

. A\ —1
(UL = (£1Ls .. £i1) (FOGD)  (£1z... £50) 7

(6.33)

Theorem 6.3.2 Consider L and U as described in (6.1). If U is invertible and tridgds

algorithm applied to L and U s successful, then the quantities d;, ff_l and fé_l generated

by the algorithm satisfy

W=
0
(0D =g (1-2)

(L)™', = ! (1-&1 +g>

~ dgus

1 1—2 i—3
(wrL)™,. (1—A1A + —2 > i=4,...,n.

* diug li—otiy—1  li—3t; 110; o

Proof. Using (6.19), (6.20) and (6.33), for i =4,...,n,

(L)Y, =el [(UL) '] e

2,0
-1

= eT(L1Ls.. . Li1) (F@G(i)) (L1Ls...Li1) te;
= (el (L1Ls .. Li1)] {(F(i)G(i)>—1ei]
:[o L0 RS R 10 L. 0} [(F(i)G(i))_lez}

. . . A\ —1
= (n %l y + hitel | +el) {(F“)G“)) ez}
. . A\ —1
= hi~2eT, (FU)G(Z))

=hy” [(F@)G(i)) _1} R [(F(i)G(i)>_1]

i—2i i—1/

Using lemma 6.3.10 yields

1—2 i—1
(L)), = i i !

W diuity1Ui—e diuiti—1 diug

i1 i—2
(i
diu; Uiy Ui—1Ui—2

eit bl (FOGO) " ey ol (FOGV)

N [(F(nG(i))‘l]

-1

€;

(6.34)
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Finally, by lemma 6.3.1, we have
Wt =f2/liis  and b= i1,

and then

SR S
(VL) ]” = dow 1-= T :

li—otii—1  li—3U;—10;—2

Now let us see the cases ¢ = 1,2,3. By lemma 6.3.10, we have

w1, = |(Fe0) ] -

11 dyuq

For i = 2, using lemmas 6.3.10 and 6.3.1 again,
(UL)™,, =€ [(UL) '] ez
= el (FP6P) T Lites
_elr [( F@)G@))‘l 62]
— 10 ..o [(F(“))G(“’))1 62]
= (nlel +el) [(F(2)G(2)> - eQ}

_ plel ( F(2>G<2>)*1 es+el ( F<2>G(2>>*1 e

_pl {(F@)G@))‘l} T [(F(Q)G(Z))_I] )

hi 1
— — + —
d2U2U1 ngg

L (R
_d2u2 ﬂl '

Finally, for i = 3, (6.34) also yields,

1 h2 hi
e I ) 2
(L) ]373 dsus < Ua * (A

and by lemma 6.3.1 we have

n? = fl/i and  hi=fI.
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So,

1 0
(wrn)™],, ! (1—fl Af%).m

’ d3us 1119 U2U1

Next lemma will drive us to the off-diagonal elements of (UL)~!.

Lemma 6.3.11 Consider F) and G at the beginning of minor step i, i = 1,
we apply tridgds algorithm to L and U. If U is invertible then

(F“')G(i)y1 R
L dit1,i diu;
(Fm(;(i))‘l e T
L Jiit1 diuitit
[(F(i)G(i))l} S S —, i=2,...,n—1
imtit1 Qi1 Ui
[(F(i)g(i))_l} - _ lA — i=3,...,n—1
i—2.i41 diuiti1Ui—1TU;—2
Proof. Fori=1,...,n— 1, we can write

We already know that
N\ -1 A\ —1
ui_lez- = (F(z)) e; and dtel = el (G(z)> ,
and for row (i 4 1) of G® we have

e;ﬂﬂ (G(i)) =gle] + eli‘r+1-

...,n, when

(6.35)



210

Then
ely = (giel +ef) (¢)
— giel (G©) Sl (¢9) -
= gid el v el (@)
And

-1
' T j —1,T
€ (G(z)) =ej1 —9id; e

Thus, from (6.35) we get

[<F(i)G(i))_1]i+u = (el —did; el ) u; e
_ 49
diu;
Fori=1,...,n—1, we have
[(F(’)G(Z))_l} - =el { F(l)G(’)>_1] €i+1
=l @) [() e
—d T [(F@))_l ei@ . (6.36)

Column (i 4 1) of F() is
(F(i)> €it1 = € + Uit1€i11.

Then

€iy1 = (F(i)) - € + Uiyl (F(i)>7l

which gives

~1
1 i
€1 =1U; € + Ul (F( )> €it1,

A\ —1 ) )

(F(1)> €i+1 = (ei+1 — uz_ ei)uijrl. (6.37)
Thus, from (6.36), we get
Ny -1
{(F(Z)G(Z)) } =d; 'e] (€41 — u; Te;)uiy
ii+1
_ 1
diuiuisr
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Fori=2,...,n — 1, using (6.29) and (6.37), we have

[(F@:)G@'))l]i_ml [( G(z) 1} eit
= [ (00) ] [ () e

= (eiT_l — dfleiT) U —1 (ez+1 —u; 1el) qul

(A
1
diuiui 101

Finally, for i = 3,...,n — 1, using (6.32) and (6.37) gives

|
O

ittt 1y
Next theorem give the entries (i,i + 1) of (UL)™ Y, i=1,...,n—1.
Theorem 6.3.3 Consider L and U as described in (6.1). If U is invertible and tridqds

algorithm applied to L and U is successful, then the quantities d;, fli_1 and f;‘l generated
by the algorithm satisfy

1
~1
[(UL) ]1,2 - diuqus
_ 1 f
1 1
(W) ]2’3 T daugug <1 U1>
(D)™, = ! 1-— f3
34 dguguy l1u2 Uty
1 1 S
D) = 1 + - . =4, n—1
D™ i diuitiity ( limotiym1  li- 3%-1%‘-2)
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Proof. Using (6.19), (6.20) and (6.33), for i =4,...,n,

[(UL)AL',Z'H = ezT [(UL)A] €i+1

= €ZT(£1[,2 e £i—1) (F(Z)G(z))_l ([,1£2 . Ei_l)_leiﬂ
= [e?(ﬁlﬁg . Ei—l)] [(F(i)G(i))_l ei+1:|
. . , A\ —1
= [0 L0 RS2 RN 10 L o} [(F(’)G(Z)) 6i+1}
_(hi—2 T i—1_T T (2) () -1 )
= (hy “e;_o+hi e, +e€) (F G ) €ir1

=1Ly (FOG0) e waiTtel (FOGY) T ennr v ef (FUGY) ery
= b2 [( F(i)g(i))l} +hi! [(F@G(i))l] + [(F@G(i))l]

Using lemma 6.3.11 yields

1—2,1+1 i—1,5+1 4,141

i—2 i—1
wo, =M Wt
vt diviui 1 Ui—1ti—  diwguiprti—1 diuguign
1 hi—l hi—?
_ (1_ e ) (6.38)
diuiuigq Ui Uj—1Ui—2

Finally, by lemma 6.3.1, we have
W= iy and  hE?=fi7%/l s,

and then

(L)~ ! <1—A i + = 1 )

WL diuguga li—otii—1  li—3U;—1U;—2
Now let us see the cases ¢ = 1,2,3. Using lemma 6.3.11, we have

1
d1U1UQ '

w1, = | (m6) 7| -
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For ¢ = 2, lemmas 6.3.11 and 6.3.1 give

[(UL)],, =e3 [(UL) ] es
= elLy (F<2>G<2>) T e
_ L [( F<2>G<2>>‘1 63]
=l 1o .0 [(F(Z)G(Z’))1 eg]
= (el + el [(F(Q)G(2)> - eg}

— plef (F<2>G<2>> eyt el (F<2>G<2>) e

_ [(F@)Gm)l} N [(Fm)G@))l]
1,3

hi 1
douguztty  dausug

(R
N ngQUg ’111 '

Finally, for i = 3, (6.38) also yields,

(A pp— ( _h, h%)

2,3

dsusuy Uy Uolq

d3usziy l1y  U2U1

since by lemma 6.3.1 we have

h2=fl/ly  and  hi=f). O

Finally the entries (i +1,7) of (UL)™ Y, i=1,...,n— 1.

Theorem 6.3.4 Consider L and U as described in (6.1). If U is invertible and tridqds

algorithm applied to L and U is successful, then the quantities d;, ff_l é_l and gt generated
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by the algorithm satisfy

1
—1 _ 1
[(UL) ]271 - dlul 91,
1 19
)1 _ 2, J2
[(U ) ]3,2 dotiy <91 + f“) ’
(25 P (S B i=3,...n-1
l+1,l dzuz 1 Zi72fa7;71 ) ge ey .

Proof. Using (6.19), (6.20) and (6.33), for i = 3,...,n,

(UL el [(UL) e

i+l
= eZTJrl(ﬁl,CQ L) (F(l)G(l)>_1 (L1Lo . .. Ei_l)flei
= [el1(L1Lo. .. Li1)] {(F(i)G(i)>_lei]
TR |
= [0 .00 RN 01 L 0} [(F(’)G(”) ei]
= (hy 'el_1 +ef) [(F(i)G(i)>1 61}

= ny el (FOGO) et el (FOGV) e

_ it [(Fu)G(i))‘l] -+ [(F(i)G(i)>_1]

i—1,2 141,

Using lemmas 6.3.10, 6.3.11 and 6.3.1,

hi! g
1 _ 2 L
[(ur) ]i—l—l,i T it diw

I hg—l)
= (gi+ 2
diu; (91 Ui—1

1 : a2
= — gZ + —= ) .
diu; ( P i

For ¢ = 2, (6.40) also holds,

(W), =1 | (F06)

N\ —1
’ 1,2 " [<F( ¢! )) }3,2

(6.39)

(6.40)
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Again, using lemmas 6.3.10, 6.3.11 and 6.3.1,

-1 - _
[(UL) ]3,2_ dountliy  dous

Finally, for ¢ = 1, by lemma 6.3.11,

- ey ], -

Finally, theorems 6.3.2, 6.3.3 and 6.3.4 together give the entries for the matrix

) )

«Q Y
_1 _ _
(L) ]i:i+1,i:i+1 = 7 t=1L...,n—1,
g aitl
where
= -1 i ~1
a' = [(UL) ]”’ 7' = [(UL) ]i,i+1
L — -1 i1 . -1
p=[UL) ]i+1,i’ o= [(UL) ]i+1,i+1'
Theorem 6.3.5 Given the notation above, fori=4,...,n—1, we have
aizl_ai ,yi:_l—ai
diu; diujuiy1
, 1 : 2 ; 1 —ain
522_ <g1_’_A 2 >7 aerl: ,
diu; ! i—oli_1 diy1Uipy
i—2 i—3
where a; = —= + = 2

~

liol;—1  li—30; 102

Proof. Use theorems 6.3.4, 6.3.3 and 6.3.2. [






Chapter 7

Implementation details and

numerical examples

The implementation of 3dqds and all our numerical experiments were carried out in
MATLAB 7.2.0.232 (R2006a) on a Pentium M 1.6GHz machine under Windows XP. All
our computations were done in IEEE standard floating point arithmetic using double
precision arithmetic with unit roundoff € = 273 ~ 1.1 x 10716, We used the advantages of

the exception handling feature incorporated in this arithmetic.

In what follows eigval refers to our function to obtain the eigenvalues of an unreduced
real tridiagonal matrix using 3dqds and eig to MATLAB’s function which uses LAPACK [2]
routines that implement the QR algorithm on Hessenberg matrices. We report comparative
results on carefully chosen tridiagonal matrices for test purposes: Bessel, Toeplitz, Clement,
Liu’s and symmetric matrices. We also present the first numerical results for a comparative

study of some of the condition numbers presented in Chapter 2.
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7.1 Implementation details

Next sections describe some of the details we had to consider in our implementation of eigval
function. They are concerned with the shift strategy, the stopping criterion for deflation,
the tolerance for element growth in 3dqds code, the need to choose a different shift after a
failure and the possibility that the initial LU factorization of the J form of the input matrix

C does not exist.

7.1.1 Choosing a shift for 3dqds

Consider matrices L and U as described in (6.1), page 166, and remember that the shift

information for 3dqds is coded in the first column of (UL)? — 2(Ro)UL + |o|*I that, for a

shift o, is given by ) )

(ur 4+ 11)? + ualy — 2(Ro) (ug + 11) + |o?
uoly (uy + 11 + ug + Iy — 2(Ro))

UQll’ILglg

0

0

So, to completely specify one iteration of 3dqds we need

2Ro)=0c+7 and |o*>=o00.

Since 3dqds is a restoring shift transformation, in the case of a real eigenvalue, a reasonable
choice of a single shift is the (n,n) element of UyLy, where Ly and Uy are the factors
obtained after the k' iteration. The generalization for double shifting is to use the Francis

shift, which means that o and & are the eigenvalues of the bottom 2 x 2 corner of Uy Ly,

ln—1 + Up— 1
n—1 n—1 (71)
Unlp—1 Un
This will let us converge to either two real eigenvalues in the bottom 2 x 2 or a single 2 x 2

block with complex conjugate eigenvalues. When we are close to convergence, we expect
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the (n — 1,n — 2) entry, and possibly the (n,n — 1) entry, to be tiny so that the eigenvalues
of this 2 x 2 submatrix are good approximations to eigenvalues of J.

If o and & are the eigenvalues of (7.1) then

o+ =Ip_1+up_1+u, = Sum

00 = UpUn—1 =: Prod

and Sum and Prod will be the shift information given to 3dqds. When the (n,n — 1) entry
is negligible, then u, will be an approximation for a real eigenvalue of J. If not, and if the

(n — 1,n — 2) entry is negligible then

o1 = % (Sum +v/Sum? —4 Prod)

g9 = PI‘Od/Jl

will be the approximations to the eigenvalues of the 2 x 2 corner block which may be both
real or complex conjugate. Then deflation takes place and the algorithm proceeds with the
remaining submatrix until approximations to all eigenvalues are found.

In our present shift strategy, each time deflation occurs, we may choose to use first zero
shifts (Sum = 0 and Prod = 0) until [,,_; or l,_2 is small, and only then switch to the

Francis shift. In general, this procedure improves convergence.

7.1.2 Criterion for deflation

Since we expect UpLj to converge to a quasi-bidiagonal form, we use only tests to decide
when [,_1 or l,_o is negligible. These tests are performed before a 3dqds transformation

takes place (not after) and consist in verifying if
|ln_1‘ < TOlDef or ‘ln_2| < TOlDef

for a given tolerance Tolp.s. If we choose Tolp.; = €, it may be too severe and it will
take more time to converge; if we relax too much, we will converge faster but we may loose

accuracy seriously. So, we must find a compromise between the speed of convergence and
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the accuracy we want to attain. By default, in our experiments we used T'olp.s = € since
we were mainly concerned with accuracy. This is the most crucial parameter and needs

more study.

7.1.3 Tolerance for element growth

The LU transformation fails when zero pivots do occur. Furthermore, for reasons of
numerical stability, we do not accept the result of a particular transformation if, in conse-
quence of the occurrence of pivots of very small size, elements of excessive size do appear in

L or U factors. For this reason, we monitor the element growth and reject L and U when
max |li| > Tolgrowtn || /]| or max lui| > Tolgrowth |||

for a given tolerance Tolg,owin. When this happens, we signal a breakdown but it must be
emphasized that is not a dramatic situation since we may recover. It is just a transformation

whose result is neglected.

If we allow less element growth, we will have more breakdowns and it will take more
time to converge. Allowing huge element growth will imply less accuracy. Again, there must

be a trade-off between element growth and accuracy. Usually we let Tolgrowin = 1/V/€.

The possibility of dealing with divisions by zero in IEEE arithmetic allows 3dqds trans-
formation to be carried out till the very end, even when a pivot is zero or too small.
Comparison of the size of the new values of I; and u; with TolGrowtn ||/]| is only performed

at the end of a transformation.

7.1.4 The shift after a failure

After a failure, there is the question of what shift to use next. We don’t want to move away
from the previous shift too much, just the necessary amount so that the 3dqds transforma-

tion does not breakdown. We also have to admit the possibility of a succession of failures.
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So, while we do not have a successful transformation we will repeat the following

if Prod # 0
Sum = (14 0) * Sum
Prod = (1 + 6)? * Prod
0=2%0

else
small = /¢ x local
Sum = 2 * small
Prod = small?

end if

where “local” is a local norm and, initially, we let 6 = y/e. This procedure forces to define

a limited number of failures allowed.

7.1.5 Initial LU factorization

The J form of C' may not have an LU factorization. In this case we must choose an initial

shift 7 so that the factorization

J—71I=LU

is possible and the 3dqds transform may start. Initially, we let 7 = 6, for a small 8, and
then, if we are still not successful, we increase 7 by 6 until we have success. In the end 7
must be added to the approximations given by eigval. But this choice needs more thought

because it seems to affect the accuracy more than we expected.

7.2 Numerical examples

In the figures containing the plots of the computed eigenvalues that are presented in this
section, the results obtained with eig are represented by a plus sign and the ones provided

by eigval are represented with a big dot.
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7.2.1 Bessel matrices

Bessel matrices, associated with generalized Bessel polynomials (see section 1.3.2, page 22),

are nonsymmetric tridiagonals matrices defined by Bfla’b) = tridiag(ﬂ(a’b), alwb) ’y(“’b)) with
G0 O @b _ (@b lab) _ o
1 p N 1 5 P atl
and
(ab) . _p a—2 o
YT T2 ra—2)(2jta—a)y o™
(ab) _ jta—2
7 (2j+a—2)(2j +a—3)
gl = —p J j=2...n—1.

(27 +a—1)(2j+a—2)

All the eigenvalues are simple and below we report three theorems from [44] that contain

information about the localization of these eigenvalues. These theorems apply to the cases
aeR, n>1—-a, b=2. (7.2)

Theorem 7.2.1 Let the condition (7.2) be satisfied. Also let n > 1. Then all the eigen-

values of BT(La’b) lie in the cardioil region

; 1 —cos# —2
C =3z=pe’€cC: 0 ———bUq——— .
(n, ) {Z pem < <p<n+a—1} {n—l—a—l}

Theorem 7.2.2 Let the condition (7.2) be satisfied. Also let n > 2. Then all the eigen-

values of B,(La’b) belong to the sector

S(n,a) = {z:peie €C: |6 > cos? <2n+—§—2) , —m <6 <7T}.

Theorem 7.2.3 Let the condition (7.2) be satisfied. Also let n > 1. Then all the eigen-

values of B,(La’b) belong to the infinite region

I(n,a) := {ZGC: |z| > 2}.

2n—|—a—%
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Thus, the eigenvalues of the matrix Bfla’b) lie in the intersection of the inclusion

regions defined by the sets C(n,a), S(n,a) and I(n,a). But these eigenvalues suffer from

)

ill-conditioning that increases with n. Matrices B,(La’b are close to defective matrices.

Figure 7.1 shows, along with the inclusion regions defined above, the results obtained
with Matlab function eig (plus sign) and with eigval (big dot) for the classical case
a=0b=2, forn =30 and n = 40. As n increases, computed eigenvalues even fail to

belong to the inclusion regions. But the answers of eigval are usually better.

Bessel matrix Bessel matrix
T T T T T

0.04 0.03f

0.031
0.02|
0.02
0.01f
0.011
ol
-0.01f
-0.01}
-0.02
-0.02|
-0.03f

-0.04f -0.03f

. . . . . . . . . . . . . . . .
-0.06 -0.04 -0.02 0 0.02 0.04 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 001 0.02 0.03

(a) n =30 (b) n =40

Figure 7.1: Bessel matriz with a =2 and b =2

In [44] it is mentioned that the ill-conditining seems to reach its maximum when a ranges
from —8.5 to —4.5. We also report the cases a = —8.5, b = 2 (for n = 18 and n = 25),
a=—45,b=2 (for n =20 and n = 25) and a = 12, b = 2 (for n = 40 and n = 50). See
Figure 7.2. The number of iterations needed for eigval to converge is approximately equal
to 2n.

Bessel matrices are notoriously difficult. There is an interesting phenomenon of bifur-
cation in the eigenvalues computed by both algorithms and the regularity, in spite of the
presence of ill-conditioning, is quite interesting. The approximations given by eigval follow
the same pattern as the ones given by MATLAB but seem to be better. As n increases the

huge deviation from the expected curve is not due to element growth - it rarely occurred.



224

Bessel matrix Bessel matrix
T T T T T T T T T —+ + T T
F 1 +
0.15 008l i
01r 4 0.06 - 4
+
0.04 . 4
0.05 4
0.02 1
oF 4 o + . 4
-0.02 4
-0.051 4
~0.04} Lot 1
—01r 1 -0.06f 1
_oasb 1 -0.08 1
. . . . . . . . .
-0.25 -02 -015 -0.1 -0.05 0 0.05 0.1 -0.15
(a) a=—85,b=2;n=18 (b) a=—-85,b=2,n=25
Bessel matrix Bessel matrix
01F T T T T 3 T T
0.08f 1 0.06 |
0.06 1
0.04 1
0.04 B
0.02 - 4
0.02- 4
of 1 of 1
-0.02 1
-0.02 1
-0.04 1
-0.04 1
-0.06 1
-0.08 1 -0.06 [ 1
-0.1t L L E| L L L L L L L L L J
-0.15 -0.1 -0.05 0 0.05 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06
(c)a=—-45,b=2,n=20 (d)a=-45b=2,n=25
Bessel matrix
T
0.025 7 0.021 1
0.02 4
0.015 1
0.015- 1
0.011 1
0.01 4
0.005 4 0.005 [ 4
or 1 of 1
-0.005 1 -0.005 [ ]
-0.01 1
-0.01 1
-0.015 1
-0.015 1
-0.02 1
-0.025 4 -0.02 4
. .
-0.03 -0.02 -0.01 0 0.01 0.02
(e) a=12, b=2; n =40 (f) a=12, b=2;n =50

Figure 7.2: Bessel matrices with a = —8.5,b=2; a = —-4.5,0=2 anda =12,b=2



225

Condition numbers

For a simple eigenvalue A # 0 of a given matrix A, redefine now k) as the Wilkinson’s

relative condition number for A (see section 1.2.3, page 14), that is,

|| ||
ix(A) = ly* [l 1|l

My
For J = LU the relative condition numbers (see section 2.4.2, page 44)
o lyl" M|
relcond; (\; LU ) = RS
and
relconda(A\; LU ) = M
|y* x|

give the sensitivity of eigenvalues to perturbations in the entries of the factors L and U.

In Table 7.1 we display the condition number k) for By(la’b) with a = —4.5, b = 2 and

n = 20, and for the corresponding J form. We also display the condition numbers relcond;

and relconds for the LU representation of J. It may be seen that, although the eigenvalues

are much more sensitive to perturbations in J than to perturbations in Bﬁla’b), the situation

improves significantly in the L, U representation, that is, these factors define the eigenvalues

not only much better than J does but, also, they define better the eigenvalues than B

itself.

éa’b)

The eigenvectors we used to produce these numbers were the eigenvectors delivered by

eig function of MATLAB.

7.2.2 Clement matrices
The so-called Clement matrix (see [4])

Cn = tridiag(ﬁv 07 '7)

with v = (v;), 75 = j and B = (B;), Bj = Ym—j, J = 1,...,n — 1, has exact eigenvalues

+n—-1,n-3,...,1, for n even,

+n—-1,n-3,...,0, for n odd.
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A kx(B) kx(J) | relcond;(A; LU) | relconda(X; LU)
—3.8107% —6.7107% || 6108 31022 310° 6 10°
-3.81072 +6.7107% || 6108 41022 510° 910°
—7.1107%2 -1.61072%i || 510 410% 510° 10 109
—7.1107241.6107% || 510 | 410% 3106 10 106
-1.91072 —7.2107% || 110" 310% 3106 2106
~-1.91072 +7.2107% 110" 31073 9108 1108
—341072 —-7.2107% | 110" 210% 8108 1108
—3.41072 47.2107% || 110'? 210% 310% 310°
—6.51072 —4.6 1072 || 110'? 310% 310% 2 10°
—6.51072 44.6 10721 || 110 | 310% 10 1010 6 10°
—4.71072 =6.9107%1 || 110" | 610%* 10 10%° 7107
—4.71072 46.9107%1 || 1103 | 610* 510 31010
—6.01072 —6.61072%i || 110 9 10% 4 101 31019
—6.01072 46.6 10721 || 110 | 910* 11012 9100
—8.01072 =5.9107%1 || 110 4 10% 11012 810
—8.01072 4+5.9107% || 110" 4 10% 31012 2 101
~-1.0107" —4.3107%1 || 110" 110% 210" 110
—1.0107" +4.3107%1 || 210" 110% 310'2 2 101
-12107' -1.61072%i || 210" 5 10% 21012 2 101
~1.2107" +1.6107%1 || 210" 510% 210" 110

Table 7.1: Relative condition numbers for the eigenvalues of 3564'5’2)




227

Figure 7.3 illustrates the results of both algorithms for the Clement matrices with

n = 150 and n = 200. All the approximations given by eigval are real while the ap-

proximations obtained with MATLAB have large imaginary parts.

Clement matrix

.
+

4 + +
L + +
8 + +
+ +
2 + +
1 + +
+ +

-1 + +
-2 + +
o, Lt
-3 + +
-4 + +
+ o4 o4t

= ‘ ‘ ‘ ‘ ‘
-150 -100 -50 0 50 100

(a) n =150

150

Clement matrix

40

. e .
+++++ + +++++
+ 4
30r + +
+ +
+ +
20 —+ +
++ r ++
101 A " J
+ +
ﬂt ﬁ
+ +
-101 + + 1
+ T +
-20( + +
+ +
+, o
-30( +, R
+4 L+
40 ‘ ‘ R ‘ ‘
-200 -150 -100  -50 o 50 100 150 200
(b) n = 200

Figure 7.3: Clement matriz

Table 7.2 shows the largest and the smallest Wilkinson’s relative condition number,

Kmax = maxy kx(Cp) and kpin = miny £)(C),), and also the largest and smallest of the

relative condition number relcond; (A\; LU ), maxrelcond, and minyelcond, , respectively.

n RKmax Kmin MaZyrelcond minrelcondl
150 || 3.5 1020 | 1.0 104 6.4 10* 2.8 10!
200 || 1.210%8 | 2.3 10! 2.3 104 2.3 10%

Table 7.2: Relative condition numbers for the Clement matriz

The minimum and maximum relative errors, rel,,;, and rel,q., respectively, for n = 150

and n = 200, as well as for n = 300 and n = 450, are presented in Table 7.3. When n

increases almost all the approximations given by Matlab exhibit significantly high relative

errors, while with eigval we can consider that all the approximations produced have satis-

factory relative accuracy.
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eigval eig

n relmin relmaz relmin relmaz

150 || 7.810712 | 8.11072 | 3.21071% | 7.8 10*
200 || 1.2107" [ 6.4107° | 2.910716 | 1.1 10?
300 | 3.610°" | 1.1107® | 6.61073 | 1.710?
450 || 451072 | 1.8107% | 451072 | 2.6 10?

Table 7.3: Relative errors for the Clement matrix

MATLAB function eig does not detect that Clement matrices are symmetrizable matri-
ces. Our function eigval gives much better results than eig, almost as good as the ones

MATLAB delivers if we give as input a symmetric matrix similar to C,.

7.2.3 Liu’s matrices

Z. S. Liu [31] devised an algorithm to obtain one-point spectrum unreduced tridiagonal
matrices of arbitrary dimension m x n. These matrices, that we already introduced in
Chapter 4 and called Liu’s matrices, have only one eigenvalue, zero with multiplicity n, and

the Jordan form consists of one Jordan block. We represent Liu’s matrices as
Liu, = tridiag(1", a",~™)

where 1" always stands for a vector of 1’s of length n — 1. Notice that the transpose of
Liuy, is already in J form.

We considered Liu, for n = 6,

LZ"LLﬁ = s
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for n = 14,
a*=[000000 -1100000 07T

AM--111 =11 -1 -1 —11 —-111 =17,
and for n = 28,

a®® =10,0,0,0,0,0,-1,1,0,0,0,0,0,—1,1,0,0,0,0,0,1,—1,0,0,0,0,0,0]"

728 = [_17 17 17 _17 17 _17 _17 _1a 17 _17 17 17 _17 _17 _la 17 17 _17 17 _17 _17 _17 17 _1a 17 17 _1]T

Now a note on perturbation theory for multiple eigenvalues. Consider the example of

perturbing by € the (n,1) entry of an n x n Jordan block. Let

0 1

1
€ 0

Then the characteristic equation changes from A = 0 to A" —e = 0. So the eigenvalues of the
perturbed matrix C are the n possible complex roots of €, A\ = %ei%Tw, k=0,...,n—1.
The n'™ root of € grows much faster than any multiple of € for small e. More formally, the

condition number of a multiple eigenvalue is infinite because at ¢ = 0, for n > 2,

dA 1

— = = 00.

de  pel=w
For example, if we take n = 16 and ¢ = 107!6, then for each eigenvalue )., we have
|IAx] = 0.1, a change 10 times greater than e. However, having an infinite condition

number does not mean that the eigenvalues cannot be computed with any correct digits.
The more apart from the diagonal entries the perturbations occur, the worse the effect
on the eigenvalues seems to be. So, we decided to show our numerical results together with
the circles |z| = {/e where ¢ is the unit roundoff. If the approximations are inside this circle
we may consider the results good enough, since they are not worse than the ones that we
would get in exact arithmetic for the Jordan block similar to Liu’s matrix perturbing by e

the (1,n) entry .
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The results we obtained with eigval and eig for n = 6, n = 14 and n = 28 are shown in

the following figures.

X107 Liu's matrix Liu's matrix

T T T T T T T 0.08 T T T y
25F 1

0.06 - 1
2L 1

15F 1 0.04} b
1k 1

0.02 1
0.5r 1

> or + + B > 0 B
-0.51 1

-0.02 1
1t 1

_1s) 1 -0.04f ]
2L 1

-0.06 [ 4
250 1

. . . . . . . ~0.08L . n . |

-3 -2 -1 0 1 2 3 -0.1 -0.05 0 0.05 0.1

X X107 X
(a) n=26 (b)yn=14

Figure 7.4: Liu’s matrices

Liu's matrix

0.3

0.2

0.1

-0.2

-0.3
-0.4

Figure 7.5: Liu’s matrix for n = 28

The accuracy of our approximations is slightly better than the accuracy of those provided
by MATLAB and the convergence is surprisingly quick. The number of iterations needed for

eigval to converge is less than 2n.
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7.2.4 Toeplitz matrices

A tridiagonal Toeplitz matrix has the form

b a ¢

b «a

Such matrices arise, for example, when discretizing partial differential equations or boundary
value problems for ordinary differential equations [Higham, p.522] . The eigenvalues are
known explicitly:

a + 2(be)/? cos <k‘7r>’ kE=1,...,n.
n+1

If be < 0 then the exact eigenvalues are complex with real part equal to a.

We first show the results for T5¢ and Tgg with a =1, b = 2 and ¢ = —1. In Figure 7.6
we also represent the exact solutions with a times sign (x). For an exact eigenvalue A and

an approximation A we do not represent A\ or Abut A —a and X — a.

Toeplitz matrix Toeplitz matrix
e Kt oo —t T “++ +—
25¢ + L 25¢ *
+ + +
2 o4 2 + * 4t
* X + + +
+ x + 4
15r X T 15r- + 4
x + i +
+ x +
1r x I 1 1r 4 +
+ x + ¥ +
05 oy 05 Ii +
T £
of i 0 ®,
Xeo
_ ot _05h +§
0.5 ot 0.5 n +
+ x 4
1 x + b + 4
+ x +
x + +
x + +
-15 x -15 + N
+ x + 4
x + N +
-2 - o+ -2 + +
+ + +
25 5 % * 25 * *
- A o5l
‘ L Y L + i L
-3 -2 -1 0 1 2 3 -8 -6 -4 -2 0 2 4 6 8 10
x107° x107°
(a) n =50 (b) n =280

Figure 7.6: Toeplitz matriz with a =1, b=2 and ¢ = —1
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We also show the results for n = 150 and n = 200.

Toeplitz matrix Toeplitz matrix

e I =T T e B
| *++ ++¢ ifff» Hjéj:
25 L 5 25} + oy
+ T T ++ T+
# 4 ¥
2 v, L 2F o, . Lo+
15 + t oy I + oy
+ +
i +f T s
1 o+ +, * L Rt +F
+ + + . . +
0.5 + + 0.5 +
Lt + o, |+ + + +
0 OF { +
toy + 7 + 4 s
_05 + + —05| + . + p
+
+ + +
-1 P o+, - st ty
+ + e, A
-15 + . Lt -15 oy . N
+ + + +
-2 =+ o -2 + o+
hes +7 i
o+ + t e o+t
-25 4 + -25 + o o
. L R, e . . AT R
-015  -01  -0.05 0.05 01 0.5 -0.2 -0.1 0 0.1 0.2
(a) n = 150 (b) n = 200

Figure 7.7: Toeplitz matrix witha =1, b=2 and c = —1

The accuracy of the approximations given by eigval is better than the accuracy of the
approximations delivered by MATLAB. See Table 7.4 for a report on the relative errors for

the different values of n.

eigval eig
n relmin relmaz relmin relmaz
50 || 3.8107* | 2,610~ | 3.8107 12 | 3.610°1°
80 | 54107 | 3510719 | 50107 | 1.210°
150 || 1.210713 | 43107° | 321072 | 1.8107!
200 || 2.710713 | 21107t | 211073 | 231071

Table 7.4: Relative errors for the Toeplitz matrix witha =1, b=2 and c = —1



233

7.2.5 Symmetric matrices

Finally, as an example of a symmetric matrix we will just consider the tridiagonal Toeplitz T},

as described in the previous section with b = c. For this case the exact eigenvalues are

a+2bcos<lm), k=1,...,n.
n+1

The behavior of eig function of Matlab is better than eigval. In table 7.5 we show the
bounds for the relative errors of the approximations obtained with eigval for the case of

a="5,b=1and ¢ =1. The approximations provided by MATLAB have full accuracy.

eigval

n relmin relmaz

50 || 4.8 107 | 5.410712
100 || 1.8 1071 | 1.4 10712
200 || 3.0107 | 2.110°8

Table 7.5: Relative errors for the Toeplitz matrix with a =5 andb=c=1






Chapter 8

Summary

The unsymmetric eigenvalue problem is, in general, much harder than the real symmetric
eigenvalue problem for the basic reason that it is not always well posed. More precisely, the
derivative of an eigenvalue with respect to certain matrix entries may be infinite. When
executed in computer arithmetic any method finds itself aiming at a target (an eigenvalue)
that may change at every step in the process. In contrast the derivatives in the symmetric

case are all bounded by 1.

The ideal algorithm should compute each eigenvalue to nearly the accuracy to which it
is determined by the data (matrix entries). Ideally the algorithm should report what that
attainable accuracy is. The traditional way to do this is to deliver well chosen condition
numbers along with the computed eigenvalues. It turns out that computing the condition

numbers is just as difficult as computing the eigenvalues themselves.

We focus on the tridiagonal eigenproblem which occurs in its own right (for instance
with Bessel polynomials) and also as a condensed form of a real square matrix. The first
contribution of this thesis is to consider the sensitivity of the eigenvalues to different repre-

sentations of an unreduced tridiagonal matrix C"
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a) the non-trivial entries of L and D where TA = Dl_lCDl = LDU = LDLT A with A

a signature matrix and 7" symmetric;

b) the non-trivial entries of L and U where J = D5 'C'Dy = LU, and the (i,i+ 1) entries
of J are all 1.

These new measures are, in general, smaller than Wilkinson’s condition number and are
sometimes quite realistic despite being upper bounds. Our measures take advantage of the
tridiagonal form and play a fundamental role in assessing attainable accuracy. See Chapter 7

for examples.

A second contribution is purely mathematical. We follow a hint given in Wilkinson’s
monumental book “The Algebraic Figenvalue Problem” and produce a rigorous proof that
the LR algorithm, and our dqd algorithm, converge without breakdown to the nonzero
eigenvalue of an unreduced tridiagonal matrix with a one-point spectrum. The context
is exact arithmetic and the rate of convergence is very slow (O(1/k) as k — oo) but the
surprise is that the algorithm actually does converge in the presence of a (large) Jordan

block.

The main contribution of this thesis is practical: the presentation of a robust and efficient
algorithm 3dqds that computes both real and complex eigenvalues of a real tridiagonal
matrix while employing real arithmetic throughout the computation. In general, in our
numerical tests, the output is more accurate than MATLAB’s procedure eig and requires

O(n?) arithmetic effort instead of MATLAB’s O(n?).

To the best of our knowledge this is the first robust algorithm that takes advantage of
tridiagonal form. However more work needs to be done in tuning some of the parameters.
Deep study of a variety of cases is needed. The basic difficulty is easy to state: demand
too much accuracy and any procedure will fail (never converge), demand too little accuracy
and the unnecessary errors in accepting one eigenvalue can spoil the accuracy in another

one.
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8.1 Future work

Our test bed is far too small to draw conclusions. We are not yet in a position to claim
that eigval function (that uses 3dqds code) always delivers more accurate approximations
than eig function of MATLAB. The first results we obtained are very good results but we
need a a more comprehensive study of test matrices with a variety of distributions.

Finding a general shift strategy that is efficient over a wide range of matrices is very
difficult. It is a research topic in itself. In future work we plan to dedicate effort in trying
to improve the shift strategy implemented in the present version of our code.

We also plan to develop a more sophisticated deflation strategy that monitors conver-
gence to each eigenvalue (or conjugate pair) to detect when the process has stagnated, i.e.,
when further steps will not reduce the corresponding off-diagonal entry.

A different aspect of 3dqds is that it converts the given tridiagonal matrix to LU form via
the factorization J — oI = LU. This initial shift affects the attainable accuracy and needs
more study. In this context, the issues of a numerical error analysis need to be considered.

We have now a tool to tackle the tridiagonal eigenvalue problem. It will be of in-
terest to compare the performance of eigval with the possible rival algorithms: Francoise
Tisseur’s Ehrlich-Aberth method [3], the Extended HR algorithm of A. Liu [31] (unpublished
finite precision implementation) and David Day’s complex dqds algorithm [7] (unpublished
preliminary version).

The computation of row and column eigenvectors is beyond the scope of this thesis
but it is a necessary component to assess the attainable accuracy and to refine initial
approximations. Our ultimate goal is to produce a software package that is both more

efficient, more accurate and more informative than MATLAB’s eig procedure.






Bibliography

1]

G. Ammar, W. Dayawansa and C. Martin. FEzponential interpolation:
theory and numerical algorithms. Applied Mathematics and Computation, 41

(3):189-232 (1991). Cited in [30].

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J.
Du Croz, A. Greenbaum, S. Hammarling, A. McKenney and D. Sorensen.
LAPACK User’s Guide. Third Edition, STAM, Philadelphia, 1999.

http://www.netlib.org/lapack/lug/lapack_lug.html

D. A. Bini, L. Gemignani and F. Tisseur. The Ehrlich-Aberth method for the
nonsymmetric tridiagonal eigenvalue problem. STAM J. Matrix Anal. Appl.,
27(1):153-175, 2005.

P. A. Clement. A class of triple-diagonal matrices for test purposes. STAM
Review, 1 (vol.1), January, 1959.

F. Chatelin. Figenvalues of Matrices. John Wiley and Sons, Inc., 1995.

A. Dax and S. Kaniel. The ELR method for computing the eigenvalues of a
general matriz. STAM J. Numer. Anal., 18:597-605, 1981.

D. Day. The differential qd algorithm for the tridiagonal eigenvalue problem.
In preparation, 1997.

239



240

8]

[13]

D. Day. An efficient implementation of the nonsymmetric Lanczos algorithm.

STAM J. Matrix Analysis and Applications, 3 (vol.18):566-589, 1997.

L. S. DeJong. Towards a formal definition of numerical stability. Numerische

Mathematic, 28:211-220, 1977.

J. W. Demmel. Open Problems in Numerical Linear Algebra. IMA Preprint
Series #961, Institute for Mathematics and its Applications, University of
Minnesota, Minneapolis, MN, 1992.

J. W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and
Applied Mathematics, 1997.

J. W. Demmel. LAPACK Working Note 60, UT CS-93-192. Parallel Numerical
Linear Algebra. Computer Science Division and Mathematics Department,

University of California at Berkeley.

J. J. Dongarra, G.A. Geist and C. H. Romine. Algorithm 710: FORTRAN
subroutines for computing the eigenvalues and eigenvectors of a general ma-
triz by reduction to general tridiagonal form. ACM Trans. Math. Software,
18:392-400, 1992.

M. 1. Falcao and M. J. Soares. Andlise numérica, um curso prdtico com o

MATLAB. Departamento de Matematica da Universidade do Minho, 2004.

K. Fernando. Accurate ordering of eigenvectors and singular vectors with-
out eigenvalues and singular values. Linear Algebra and its Applications,

374:1-17, 2003.

K. Fernando and B. Parlett. Accurate singular values and differential qd algo-

rithms. Numerische Mathematic, 67:191-229, 1994.

M. Fiedler. Special matrices and their applications in numerical mathematics.

Martinus Nijhoff Publishers, 1986.



241

[18]

[19]

J. G. F. Francis. The QR transformation - a unitary analogue to the LR trans-

formation, Parts I and II. Computer Journal, 4:265-272 and 332-245, 1961/62.

F. R. Gantmakher and M. G. Krein. Oscillation matrices and kernels and small
vibrations of mechanical systems. United States Atomic Energy Commission,
Office of Technical Information. Translated from a publication of the State
Publishing House for Technical-Theoretical Literature, Moscow-Leningrad,

1950.

G. A. Geist. Reduction of a general matriz to tridiagonal form. STAM J. Matrix
Anal. Appl., 12:362-373, 1991.

G. H. Golub and Charles F. Van Loan. Matriz Computation. Johns Hopkins
University Press, Baltimore and London, 3rd ed., 1996.

G. H. Golub and Henk A. van der Vorst. Numerical Progress in Eigenvalue
Computation in the 20th Century. Working document, September, 1999.

G. W. Golub and W. Kahan. Calculating the singular values and pseudoinverse
of a matriz. SIAM J. Numer. Anal. Ser. B 2:205-224, 1965.

R. T. Gregory. Defective and derogatory matrices. SIAM Review, 2 (vol.2),
April, 1960.

R. T. Gregory and D. L. karney. A collection of matrices for testing computa-
tional algorithms. John Wiley and Sons, Inc., 1969.

M. H. Gutknecht, D. Boley, S. Elhay, G. Golub. Nonsymmetric Lanczos and
finding orthogonal polynomials associated with indefinite weights. Numerical

Algorithms 1, 21-43, 1991.

N. J. Higham. Accuracy and Stability of Numerical Algorithms, Second Edition.
Society for Industrial and Applied Mathematics, 2002.



242

[28]

[31]

D. J. Higham and N. J. Higham. MATLAB guide. Society for Industrial and
Applied Mathematics, 2000.

R. A. Horn and Charles R. Johnson. Matriz Analysis. Cambridge University
Press, 1996.

E. R. Jessup. A case against a divide and conquer approach to the non-
symmetric eigenvalue problem. Applied Numerical Mathematics, 12:403-420,
1993.

Z. S. Liu. On the extended HR algorithm. Technical Report PAM-564, Center
for Pure and Applied Mathematics, University of California, Berkeley, CA,
USA, 1992.

H. Liitkepohl. Handbook of matrices. John Wiley and Sons, Inc., 1996.

MATLAB. The MathWorks, Inc., Natick, Massachusetts, USA.

http://www.mathworks. com.

M. Marcus and H. Ming. A survey of matriz theory and matriz inequalities.

Allyn and Bacon, Inc., Boston, USA, 1964.

B. N. Parlett. The development and use of methods of LR type. SIAM Rev.,
6:275-295, 1964.

B. N. Parlett. Canonical Decomposition of Hessenberg Matrices. Mathematics

of Computation, 98(vol.21):223-227, 1967.

B. N. Parlett. Global Convergence of the Basic QR algorithm on Hessenberg
Matrices. Mathematics of Computation, 104(vol.22):803-817, 1968.

B. N. Parlett. The Symmetric Figenvalue Problem. Prentice Hall, Engelwood
Cliffs, New Jersey, 1980.



243

[39]

[40]

[41]

[44]

[45]

[46]

[50]

[51]

B. N. Parlett. Reduction to tridiagonal form and minimal realizations, STAM

Jornal on Matrix Analysis, 13:567-593, 1992.
B. N. Parlett. The new qd algorithms. Acta Numerica, 459-491, 1995.
B. N. Parlett. What Hadamard Missed. Unpublished Technical Report, 1996.

B. N. Parlett. Spectral sensitivity of products of bidiagonals. Linear Algebra
and Its Applications, 275-276:417-431, 1998.

B. N. Parlett and Osni A. Marques. An implementation of the dqds algorithm.
Linear Algebra and Its Applications, 309:217-259, 2000.

L. Pasquini. Accurate computation of the zeros of the generalized Bessel poly-

nomials. Numerische Mathematic, 86:507-538, 2000.

R. Plato. Concise Numerical Mathematics. Graduate Studies in Mathematics,

volume 57. American Mathematical Society.

H. Rutishauser. Der Quotienten-Differenzen-Algorithmus. 7. angew. Math.
Physik 5:233-251, 1954. Cited in [55].

H. Rutishauser. Der Quotienten-Differenzen-Algorithmus. Mitt. Inst. angew.

Math. ETH, no.7, Birkhauser, Basel, 1957. Cited in [55].

H. Rutishauser. Solution of eigenvalue problems with the LR-transformation.

National Bureau of Standards Applied Mathematics series 49:47-81, 1958.

H. Rutishauser and H.R. Schwarz. The LR transformation method for sym-
metric matrices. Numerische Mathematic, 5:273-289, 1963.

R. B. Sidje and K.Burrage. QRT: A QR-based tridiagonalization algorithm for
nonsymmetric matrices. SIAM J. Matrix Anal. Appl., 26:878-900, 2005.

G. W. Stewart. Introduction to Matriz Computations. Academic Press, Inc.

(London) Ltd., 1973.



244

[52]

G. W. Stewart and Ji-guang Sun. Matriz Perturbation Theory. Academic
Press, Inc., 1990.

L. N. Trefethen. Three mysteries of Gaussian elimination. ACM SIGNUM
Newsletter, 20:2-5, 1985. Cited in [27].

H. Xu. The relation between the QR and LR algorithms. STAM J. Matrix Anal.
Appl., 19(vol.2):551-555, 1998.

D. S. Watkins. QR-like algorithms - An overview of convergence theory and
practice. Lectures in Applied Mathematics, 32:879-893, 1996.

D. S. Watkins and L. Elsner. Convergence of algorithms of decomposition type
for the eigenvalue problem. Linear Algebra and Its Applications, 143:19-47,
1991.

J. Wilkinson. Calculation of the eigenvalues of a symmetric tridiagonal matriz

by the method of bisection. Numerische Mathematic, 4:362-367, 1962.

J. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, Engle-

wood Cliffs, New Jersey, 1963.

J. Wilkinson. Convergence of the LR, QR, and related algorithms. Computing
Journal, 8:77-84, 1965.

J. Wilkinson. The Algebraic FEigenvalue Problem. Clarendon Press, Oxford,
1965.

J. Wilkinson. Global convergence of tridiagonal QR algorithm with origin shifts.
Linear Algebra and Its Applications, 1:409-420, 1968.

Wolfram Mathematica, Documentation Center.

http://reference.wolfram.com/mathematica/guide/Mathematica.html



245

[63] Yao Yang. Error Analysis of the qds and dgqds Algorithms. Ph.D thesis, Uni-

versity of California, Berkeley, 1994.

[64] Z. Wu. The Triple dgds Algorithm for Complex Eigenvalues. Ph.D thesis, Uni-

versity of California, Berkeley, 1996.



