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Abstract. This paper presents a performance comparison of a typical nonlinear 

load used in domestic appliances (electronic load), when supplied by an ac and a 

dc voltage of the same rms value. The performance of the nonlinear load towards 

its connection to ac and dc power grids is accomplished in terms of the wave-

forms which are registered in the consumed current, internal dc-link voltage and 

output voltage. A simulation model was developed using realistic database mod-

els of the power semiconductors comprising a nonlinear load with input ac-dc 

converter, so that the efficiency can be calculated and compared for three distinct 

cases: (1) load supplied by an ac voltage; (2) load supplied by a dc voltage; (3) 

load without the input ac-dc converter supplied by a dc voltage. Thus, besides the 

comparison between the ac and dc power grids supplying the same nonlinear load 

(cases 1 and 2), a third case is considered, which consists of removing the input 

ac-dc converter (eliminating needless components of the nonlinear load when 

supplied by a dc voltage). The obtained results show that supplying nonlinear 

loads with dc power grids is advantageous in relation to the ac power grid, and 

therefore it can be beneficial to adapt nonlinear loads to be powered by dc power 

grids. 
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1 Introduction 

Dc power transmission and dc grids have gained attention over the past few years. In 

the last century, ac power transmission was preferred due to transformers, which allow 

the changing of voltage and current levels in a reliable and efficient manner. Despite 

being heavy and bulky, transformers were a more suitable solution than power elec-

tronics-based converters towards the advent of power transmission, more than one hun-

dred years ago. However, power electronics has been undergoing a significant devel-

opment since the second half of the last century. This led to the establishment of the 

high voltage dc (HVDC) transmission systems, which was not only a research target at 

that time [1]-[9], but with real applications in the recent years [10]-[17]. In HVDC 

transmission systems, skin effect and voltage drops due to the conductors’ reactance 

are inexistent when compared to ac power transmission. Moreover, HVDC power trans-

mission can reduce power transmission losses even further with the appliance of super-

conductivity [18]-[24]. 
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Besides the advent of HVDC transmission systems, the development of power elec-

tronics contributed to the implementation of more efficient and lower power demanding 

electrical loads. These loads are named nonlinear loads, i.e., the relation between the 

supplied voltage and the consumed current is not linear. This phenomenon gave rise to 

the widely known harmonic currents issue [25]-[29], as well as the respective proposed 

compensation techniques [30]-[34]. 

From the power grid point of view, nonlinear loads are comprised by a diode 

full-bridge ac-dc converter in the input, therefore operating in dc power at the output. 

In fact, this type of connection is present in the vast majority of domestic appliances, 

such as computers, televisions, modern refrigerators and modern lighting equipment 

such as compact fluorescent and light emitting diode (LED) lamps. Accordingly, the 

operation of nonlinear loads, both from the power grid and from the load point of view, 

can be improved if the traditional ac voltage supply is replaced by a dc voltage supply 

with equivalent rms value. Besides the electrical loads, the paradigm of dc grids is also 

more suitable than ac grids, which is proved by the dc systems based on photovoltaics, 

fuel cells and batteries. Dc microgrids are also an attractive asset for future power sys-

tems [35], [36] and can also be used for wind and wave power generation [37]. With 

the dc approach, power conversions can be reduced and the efficiency can be improved, 

whereby dc smart homes represent a viable alternative in the near future [38]-[41]. 

In this context, this paper presents a study about the performance of a typical non-

linear load connected to ac and dc power grids. The differences between the two types 

of power grids are analyzed in terms of consumed current, dc-link voltage and output 

voltage. A comparison is also made in terms of efficiency and a third case is considered, 

aiming to improve the efficiency of the type of nonlinear load under study in dc power 

grids. The analyses are based on simulation results using realistic database models of 

the power semiconductors comprising the load. 

The paper is structured as follows: Section 2 presents the nonlinear load under anal-

ysis; Section 3 presents the developed simulation model and the obtained results in 

terms of waveforms and efficiency comparison. Section 4 finalizes the paper with the 

conclusions. 

2 Load Analysis: Electrical Model 

This section presents the electrical model of the load under analysis in this paper. As 

aforementioned, the typical loads used in domestic appliances are nonlinear loads. 

These loads are mainly comprised by an ac-dc converter, typically a diode full-bridge 

ac-dc converter with a filter capacitor, which converts the input ac voltage into an un-

regulated dc voltage. A dc-dc converter is connected downstream the filter capacitor in 

order to adjust the rectified voltage to the desired value, as well as to minimize its ripple. 

This load is basically a power supply that can be found in computers, televisions, mod-

ern refrigerators and battery chargers, for instance. Fig. 1 depicts this type of load, 

where the aforementioned elements can be seen. The ac-dc converter is comprised by 

diodes D1 to D4 and contains a filter capacitor (Cdc) in order to smooth the dc-link volt-

age (vdc) and an input inductive filter (Lg) in order to smooth the absorbed grid current 
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(ig). The dc-dc converter (S1, D5, Lo and Co) is a buck converter, whose function is to 

step-down the dc-link voltage (vdc) into a controlled output voltage (vo) with low ripple. 

Additionally, a resistor is connected in the output (Ro) to emulate the power consump-

tion of the load. 

 

Fig. 1. Nonlinear load under analysis. 

3 Simulation Model and Results 

This section presents the simulation model developed in the software PSIM v9.1 and 

the subsequent performed analysis for the nonlinear load described in the previous sec-

tion when fed by ac and dc power. Three different cases are considered: (1) load sup-

plied by an ac voltage (Fig. 2 (a)); (2) load supplied by a dc voltage (Fig. 2 (b)); 

(3) load without the input ac-dc converter supplied by a dc voltage (Fig. 2 (c)). Case 1 

represents the traditional connection of the considered nonlinear load to an ac power 

grid. Case 2 represents the same load connected to a dc power grid instead, meaning 

the case of a traditional nonlinear load connected in a possible dc home that can also be 

connected in a regular ac power grid. On the other hand, case 3 represents a possible 

evolution suffered by the considered type of load, being possible to discard the diode 

full-bridge ac-dc converter since both the input and the output are dc. However, this 

type of load can operate only in a dc power grid, whereby this scenario is only feasible 

when dc smart homes and dc grids would be widespread. Furthermore, case 3 is more 

prone to failure, as the input terminals of the load are polarized; an input voltage with 

a reverse polarity cannot supply the load properly and even can destroy the electronic 

components, while a diode full-bridge ac-dc converter assures a fixed polarity in the 

dc-link voltage. 

The parameters considered in the simulation model for the ac and dc power grids 

and the loads are listed in Table 1. It should be mentioned that the value of 24 V used 

in the ac power grid refers to the secondary side of a 230 V/24 V transformer, typically 

included in this type of loads, whereby the transformer is excluded from the analysis in 

order to compare the same load being supplied with ac and dc power. 
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Fig. 2. Considered cases for the analyzed nonlinear load: (a) Load supplied by an ac voltage; 

(b) Load supplied by a dc voltage; (c) Load without the input ac-dc converter supplied by a dc 

voltage. 

In order to perform an efficiency evaluation for the three cases, realistic database 

models of diodes and MOSFETs were used. The diodes used in both ac-dc and dc-dc 

converters are ST Microelectronics STTA206S (600 V, 8 A), and the MOSFET used 

in the dc-dc converter is International Rectifier IRF1010EZ (60 V, 75 A) switched at 

20 kHz. It should be referred that the focus of analysis is the efficiency comparison 

between the cases and not the efficiency values per se. 
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Table 1. System parameters of the developed simulation model. 

Parameter Value 

Ac Power Grid (vg_ac) 24 V, 50 Hz 

Dc Power Grid (vg_dc) 24 V 

Output Voltage (vo) 12 V 

Line Impedance (ZL) 1 mΩ, 50 µH 

Input Inductor (Lg) 1 mH 

Dc-link Capacitor (Cdc) 1 mF 

Output Inductor (Lo) 2 mH 

Output Capacitor (Co) 470 µF 

Output Resistor (Ro) 10 Ω 

 

3.1 Waveform Comparison 

This section compares the waveforms of the main voltage and current quantities of the 

system comprised by the power grid and the load. In this analysis, only case 1 and 2 are 

scrutinized so that a comparison of ac and dc voltage supply with the same rms value 

for the same connected load is performed. 

The waveforms of the current consumed by the nonlinear load from the power grid 

point of view can be seen in Fig. 3, where ig_ac relates to the ac power grid and ig_dc to 

the dc power grid. As expected, the current consumed by this type of load presents a 

distorted waveform when supplied by an ac voltage, while presenting a constant value 

when supplied by a dc voltage. Besides the difference in the waveforms, the current 

rms values also differ for the same rms supply voltage, being 1.1 A and 0.75 A for ac 

and dc voltage, respectively. This can be explained by the consumption of reactive 

power in the ac case, which in dc does not exist. 

 

Fig. 3. Current consumed by the load when supplied by ac voltage (ig_ac) and when supplied by 

dc voltage (ig_dc). 

Besides the differences in the grid current, the connection of this type of load to ac 

or dc power grids also results in differences in the dc-link voltage, i.e., the voltage rec-

tified by the diode full-bridge ac-dc converter and the input voltage of the buck dc-dc 
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converter. Fig. 4 shows the waveforms of the dc-link voltage for the same load when 

supplied by an ac power grid (vdc_ac) and when supplied by a dc power grid (vdc_dc). As 

expected, the dc-link voltage in the ac power grid case exhibits a double grid frequency 

ripple (100 Hz) resultant from the ac-dc power conversion, while the ripple in the dc 

power grid case is negligible. Besides, the average value of the dc-link voltage is higher 

in the first case (29.5 V) because the 24 V rms sinusoidal voltage has a peak value of 

34 V. Nevertheless, in the ac case occurs a voltage drop in the load input inductor (Lg), 

which is inexistent in dc. The average value of the dc-link voltage in the dc case is 

20.9 V, with the diodes voltage drop being the main source of voltage decrease with 

respect to the power grid voltage. 

 

Fig. 4. Dc-link voltage of the load when supplied by ac voltage (vdc_ac) and when supplied by 

dc voltage (vdc_dc). 

Fig. 5 shows the waveforms of the output voltage of the load for the ac case (vo_ac) 

and the dc case (vo_dc). The buck dc-dc converter is responsible for the synthetization 

of this voltage, in both cases controlling its value to 12 V. Although the ripple is small 

in both cases, it is even smaller in the dc case, since the constant dc-link voltage facili-

tates the control of the output voltage. Consequently, the ripple component of the output 

voltage in the dc case consists of switching ripple only. It should be noted that the same 

control strategy was applied in both cases. 

 

Fig. 5. Output voltage of the load when supplied 

by ac voltage (vo_ac) and when supplied by dc voltage (vo_dc). 

3.2 Efficiency Comparison 

The previous results compared the voltage and current waveforms of the power grid 

and the load for the same load being supplied with ac and dc voltages. In this section, 
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case 3 (load without input ac-dc converter supplied by a dc voltage) is also analyzed 

and compared with the other two cases in terms of efficiency. 

Table 2 presents a comparison in terms of input power, output power and efficiency 

for the three designed cases. Since the load output voltage is the same for the three cases 

(12 V), as well as the output resistor (10 Ω), the output power is 14.4 W for all the 

cases. In terms of input active power, i.e., the active power absorbed from the power 

grid, it should be noted that case 1 presents a lower value than case 2 (17.9 W against 

18.1 W) and, consequently, a higher efficiency (80.4% against 79.6%). This is justified 

by the fact that the power losses in the diodes of the ac-dc converter are 1.92 W in case 

1 and 2.32 W in case 2. However, in case 1 there is an apparent power of 26.7 VA, 

corresponding to a power factor of 0.67, which does not exist in cases 2 and 3, since 

these are related to dc grids. Nonetheless, the highest efficiency is attained by removing 

the ac-dc converter (case 3), resulting in a 96% efficiency for the same load supplied 

by a dc power grid. 

Table 2. Power and efficiency comparison for the three cases. 

Case 
1 (ac grid with 

ac-dc converter) 

2 (dc grid with 

ac-dc converter) 

3 (dc grid without 

ac-dc converter) 

Input Active Power 17.9 W 18.1 W 15.0 W 

Output Active Power 14.4 W 14.4 W 14.4 W 

Efficiency 80.4% 79.6% 96.0% 

 

4 Conclusions 

This paper presented an analysis of a typical nonlinear load used in domestic appliances 

and its behavior when connected to an ac power grid and to a dc power grid, both with 

the same rms voltage value. The considered load was a diode full-bridge ac-dc con-

verter followed by a buck dc-dc converter, representing a typical power supply that can 

be found in computers, phone battery chargers, among other domestic appliances. Three 

distinct cases were considered, namely: (1) load supplied by an ac voltage; (2) load 

supplied by a dc voltage; (3) load without the input ac-dc converter supplied by a dc 

voltage. A simulation model was developed considering realistic database models of 

the power semiconductors used in this type of load, i.e., diodes and an MOSFET. The 

attained simulation results aimed to perform a comparison in terms of waveforms and 

efficiency, which was feasible due to the database model of the power semiconductors. 

It was seen that efficiency can be significantly improved (from 80% to 96%) in a dc 

power grid by simply removing the input ac-dc converter of the analyzed type of non-

linear load. This fact corroborates the feasibility of dc smart homes and dc grids, mak-

ing them more suitable, not only from the renewable energy generation and from energy 

storage systems point of view, but also from the perspective of the vast majority of 

electrical appliances. 
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