
1

Verification Templates for the Analysis of

User Interface Software Design

Michael D. Harrison, School of Computing, Newcastle University, Newcastle upon Tyne, UK

Paolo Masci, HASLab / INESC TEC and Universidade do Minho, Braga, Portugal

José C. Campos, HASLab / INESC TEC and Universidade do Minho, Braga, Portugal

Abstract—The paper describes templates for model-based analysis of usability and safety aspects of user interface software design.

The templates crystallize general usability principles commonly addressed in user-centred safety requirements, such as the ability

to undo user actions, the visibility of operational modes, and the predictability of user interface behavior. These requirements have

standard forms across different application domains, and can be instantiated as properties of specific devices. The modeling and

analysis process is carried out using the Prototype Verification System (PVS), and is further facilitated by structuring the specification

of the device using a format that is designed to be generic across interactive systems. A concrete case study based on a commercial

infusion pump is used to illustrate the approach. A detailed presentation of the automated verification process using PVS shows how

failed proof attempts provide precise information about problematic user interface software features.

Index Terms—Human-Computer Interaction, Model-based development, Formal specifications, Formal verification, Prototype Verifi-

cation System (PVS).

F

1 INTRODUCTION
Demonstrating that a device design satisfies safety re-
quirements is part of a process that provides regulators
with confidence that there are barriers that mitigate iden-
tified hazards. Many standards propose requirements
that should be verified to demonstrate safety (i.e., that
the device does not harm people). Some of these safety
requirements are use-centred and domain specific, for
example [1] “The pump shall issue an alert if paused for
more than t minutes”.

User interface software issues are an important reason
for system or device failure in application domains such
as healthcare, avionics, and traffic control. Despite this,
little work has been done to provide tool support for
the analysis of use-related requirements. We therefore
consider the question: given an interactive device, can
formal techniques be used to assess whether the design of the
device satisfies requirements that concern its usability? The
aim is to provide an assessment method for the design
of core user interface software components that is more
concise and complete than existing techniques based on
code inspection and testing.

Formal verification of user interface software has seen
slow take-up because verification technology is per-
ceived as difficult to use and to apply. A review of formal
tools and techniques [2] places these barriers on three
dimensions: implementation cost, specification cost and
verification cost. The work described here aims to reduce
these three costs by introducing a systematic process for
early detection of user interface software issues at the
design stage (see discussion in Section 2.1). The results of

Manuscript received mm, yyyy; revised mm, yyyy.

the analysis are of interest beyond software engineering
and must also be meaningful to other disciplines, for
example related to the domain or to human factors.
In these cases clear demonstrations of the implications
of the results are necessary so that considerations of
the meaning of requirements and exceptions that arise
through the analysis are possible. Furthermore the re-
quirements should have the effect of improving the
safety and usability of the interactive system for the user.

We introduce property templates to facilitate the intro-
duction of formal methods technologies in the develop-
ment life-cycle of core user interface components. These
templates describe general user-centred requirements
that can be adopted to analyze essential usability aspects
of the device and, if true, can mitigate hazards that
might arise through use error. The developed templates
are instantiated to the details of the particular device
represented by a formal specification of its design. The
instantiated properties are then used within a formal ver-
ification system to analyze the conditions under which
the device design satisfies the property.

Model development and verification will be illustrated
using a medical device currently found in many hos-
pitals across the EU and US. We will show that the
analysis, based on templates, enables the identification
of inconsistencies that can result in poor understanding
of the user interface and increase the risk of use errors
with the potential for harm to the patient.

An initial model of the specific medical device had
already been developed. It had been developed using
Modal Action Logic (MAL) [3], the language of the
IVY [4] tool. IVY uses NuSMV [5], a model checker, as
back-end for formal verification. This initial model was

Post-print version of paper accepted for publication at IEEE Transactions on Software Engineering.
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.



2

suitable for the analysis of properties of the modal be-
havior of the device, such as whether data entry modes
were presented by the device without ambiguity [6]. The
model has been extended to allow the analysis of the
number entry system of the device. One effect of this
extension was that the size of the model increased sig-
nificantly, making the use of the NuSMV model checker
time consuming and, for various properties related to
number entry, infeasible (see also [7]). We therefore
decided to change verification technology. Our option
was the Prototype Verification System (PVS) [8], which
is a theorem proving assistant. This technology differs
from model-checking, which relies on automatic and
exhaustive exploration of execution paths described in
a model. Theorem proving builds on logic formulas and
deduction methods, which better support the analysis
of richer properties, and can better handle domains
of variables with larger cardinality. The downside of
using theorem proving is that the verification process
is not fully automatic and temporal properties cannot
be proved without adding constructs to the model. The
theorem prover often needs guidance to complete the
proof of complex properties. Overall, our experience of
the available tools led to the conclusion that the benefits
of using theorem proving outweighed the potential dis-
advantages arising from the lack of automation for two
reasons.

• Translating the original MAL model into a PVS
model was fairly straightforward thanks to the ex-
pressiveness of the PVS language. A manual trans-
lation of the MAL model into the language of a
model checker, different from that supported by
IVY, would have required an excessive amount of
time and effort.

• A prototyping tool, PVSio-web [9], is available that
makes it possible to generate an interactive simu-
lation1 of the device based on the developed PVS
model. This simulation proved significant in vali-
dating hypotheses embedded in the model, as well
as for discussing the analyzed properties and the
results of the analysis with software engineers and
end users of the device (i.e., nurses and medical
device trainers).

Contribution. Three main contributions are offered.
1) A systematic process for the analysis of the de-

sign of core user interface software components is
described. It can be performed either as part of
a model-based development process, or retrospec-
tively, by constructing a model of an existing design.

2) Property templates are described that capture gen-
eral user-centred safety requirements related to user
interface software design. These requirements are
translated into logic formulas that can be checked
using PVS or equivalent verification technology.

1. http://www.pvsioweb.org/demos/AlarisGP

3) A case study is described based on a commercial
medical device in use in many hospitals. The ver-
ification results can be used to complement and
support test data necessary to demonstrate that the
design of core user interface software components
meets general user-centred safety requirements.

The full specification and the documentation of the
illustrated case study may be found at our repository2

and on Github3.

Organization. Section 2 frames the work within the
context of a software development process and relevant
international standards. Section 3 provides background
information about the PVS specification and verification
language. Section 4 introduces the medical device used
for illustration throughout the paper. Section 5 presents
the PVS model of the selected medical device. Section 6
provides the main contribution, illustrating the property
templates and demonstrating how the templates are
instantiated to the details of the model. Relevant aspects
of the verification process are presented and discussed.
Section 7 presents a final discussion of the benefits of the
method. Further related research beyond that described
in Section 7 is presented in Section 8. Section 9 concludes
the paper.

2 USER INTERFACE SOFTWARE: DESIGNING
FOR SAFETY

The focus of the paper is user interface software. Of
particular interest is the design of core software components
responsible for human-machine interaction. These modules
are safety-critical in the sense that latent anomalies in
their design can lead to use error and potential harm.
An example of such an anomaly recently involved a
commercial medical device. A diabetes management
mobile app erroneously resets the recommended insulin
bolus dosage when the user changes the smartphone’s
orientation. This feature opens the possibility that the
user inadvertently commands and receives unsafe in-
sulin therapies [10].

The next sub-sections frame the contribution of the
paper. Typical activities carried out within a software
engineering process are first considered. The contribu-
tion is then related to three international standards that
address usability and safety concerns in the context of
medical devices. Note that, while medical standards are
identified here, similar requirements may be identified in
standards developed for other domains and therefore the
contribution has a wider application. These standards
define:
ISO 14971: the overall risk management process for

medical devices;
ISO 62304: the life-cycle requirements for medical de-

vice software development;

2. http://hcispecs.di.uminho.pt/m/5
3. http://github.com/haslab/hcispecs/archive/1.1.zip



3

ISO 62366-2: the characteristics of a usability engineer-
ing process suitable for minimizing use errors and
use-associated risks in medical devices.

2.1 Software engineering process
A software engineering process typically includes the
following main activities.

1) Requirements. System and software requirements are
defined, including: functional capabilities of the sys-
tem; safety, security, and human-factors specifica-
tions; criteria and conditions to assess compliance
of a software product to its specification.

2) Software design. A detailed software specification is
developed based on the given requirements.

3) Verification. This includes checking conformity of a
design with the stated requirements.

4) Validation. This involves checking that the require-
ments correctly capture the intended characteristics
and functionalities of the system to be developed.

5) Coding / Implementation. Software design documents
are transformed into a concrete implementation for
a target platform.

6) Testing. The software implementation is executed
under known conditions and inputs, and its behav-
ior is compared to expected outputs.

7) Deployment and training. The software is installed in
the target environment, and the necessary training
is provided to end users.

8) Support and maintenance. Activities are carried out
to fix errors/faults, or to improve performance,
usability, security and other quality-related aspects
of the system.

These activities are not sequential. They can interleave
and iterate in different ways depending on the particu-
lar software life-cycle adopted (e.g., waterfall, iterative,
agile).

The paper contributes directly to activities 1–3.
• The property templates presented in Section 6 cap-

ture general use-related safety requirements that can
prevent use error and facilitate recovery when a use
error occurs (Requirements).

• The use of formal methods technologies such as
PVS contributes to the systematic development of
a software specification (Software design). Whilst this
may increase the initial specification effort, experi-
ence shows that it will lead to reduced costs later in
the development process [11].

• Formal verification of the property templates pro-
vides objective evidence that the software design
meets general human factors design principles, as
recommended in ISO 62366-2, Annex 1 (Verification).

When a model-based development approach is
adopted, the benefits can also extend beyond activities
1–3.

• Models used within the approach can be imported
into tools such as PVSio-web [9], and converted to

realistic prototypes suitable for both design valida-
tion [12] and training of end users [13].

• The same analysis models can be used as a basis for
code generation [14], thus reducing implementation
cost.

• Verification results can inform test case genera-
tion [15], thus reducing the cost of testing.

2.2 ISO 14971
ISO 14971 describes five distinct activities that are re-
quired to implement a disciplined risk management
process. (i) A hazard analysis is performed to identify all
known and foreseeable hazards and their causes, where
a hazard is defined as a potential source of physical
injury or damage to people or the environment. (ii)
Risk estimation is performed to assess the probability
of occurrence and severity of harm of each hazard,
the combination of which is defined as risk. (iii) Risk
evaluation is conducted to decide if every identified risk
is acceptable based on justifiable acceptability criteria.
(iv) Control measures are designed and implemented to
eliminate the risk, or to reduce it to an acceptable level,
if a risk is considered to be unacceptable. (v) Verification
and validation activities are conducted to ensure that
the designed control measures are effective. These five
activities iterate and interleave until the device’s overall
residual risk after mitigation is acceptable.

This paper contributes to the process described in
ISO 14971 by defining:

• a set of property templates that can be used to gen-
erate requirements that mitigate known use-related
hazards (Activity (iv) in the standard);

• a method for applying existing formal methods
technologies to perform the verification of user in-
terface software design against the property tem-
plates (Activity (v) in the standard).

2.3 ISO 62304
To demonstrate safety of software artefacts, ISO 62304
requires the definition and adoption of a rigorous de-
velopment process. This requirement applies to any de-
velopment strategy (waterfall, incremental, evolutionary,
etc.), and follows from the observation that software
testing alone is not sufficient to demonstrate that the
software will operate safely. One of the key activities
necessary to support such a rigorous process involves
the definition of a set of safety requirements that can
be verified based on objective criteria. The identified set
of requirements can be used as a basis to argue about
the safety of the system. The possibility of verifying the
requirements gives developers the means to demonstrate
that the device design is acceptably safe.

Our work contributes to the process described in
ISO 62304 in two ways.

• Property templates define verifiable usability re-
quirements of the user interface software design.



4

The templates are general in the sense that they are
not limited to specific software implementations or
architectures.

• Formal methods technologies provide developers
with tools necessary to create objective evidence
that a software design complies with given require-
ments.

2.4 ISO 62366-2
ISO 62366-2 defines the characteristics of a usability
engineering process suitable for identifying use-related
risks that might arise through poor user interface design.
It is an iterative process that includes the following four
main activities. (i) A conceptual user interface design is
defined. (ii) Testable requirements are defined for user
interface functions that are directly related to the safety
of the medical device. (iii) A detailed user interface
design is created. (iv) The user interface design is eval-
uated against the identified requirements. The standard
exemplifies some common violations of user interface
design heuristics. It states that developers need to take
these into account when defining the requirements, as
these violations could lead to use hazards. Examples
include: complex controls or poor mapping of controls
to actions; unclear medical device state; controversial
modes, settings, measurements, or other information;
insufficient visibility, audibility or tactility.

This paper is aligned with ISO 62366-2. It provides:
• property templates based on user interface design

heuristics explicitly mentioned in the standard;
• a process for defining a detailed user interface de-

sign that can be verified, though the use of formal
methods technologies, against the property tem-
plates.

3 THE VERIFICATION TECHNOLOGY

The theorem proving system used in this paper is
the Prototype Verification System (PVS) [16]. It combines
an expressive specification language based on higher-
order logic with a theorem proving assistant. PVS has
been used extensively in several application domains. It
provides the usual basic types such as bool, integer
and real. New types can be introduced either in a
declarative form (these types are called uninterpreted), or
through type constructors. Examples of type constructors,
used in the case study, are function and record types.
Function types are denoted [D -> R], where D is the
domain type and R is the range type. Predicates are func-
tions with Boolean range type. Record types are defined
by listing the field names and their types between square
brackets and hash symbols. For instance, record [# a1:
A1, a2: A2 #] has two fields (a1 of type A1, and a2
of type A2). The fields of a record type are accessed using
the corresponding field names. Hence if a record r has
the type defined above then a2(r) or r‘a2 can be used
equivalently to access the value of field a2 in record r.

Predicate subtyping is a language mechanism used for
restricting the domain of a type by using a predicate.
An example of a subtype is { x:A | P(x) }, which
introduces a new type as the subset of those elements of
type A that satisfy the predicate P. The notation (P) is an
abbreviation of the subtype expression above. Predicate
subtyping is useful for specifying partial functions. This
will be used in the case study when defining actions that
are only permitted given specific constraints.

A specification in PVS is expressed as a collection of
theories which consist of declarations of names for types
and constants, and expressions in terms of these names.
Theories can be parametrized with types and constants,
and can use declarations of other theories by importing
them.

Properties of a PVS specification are expressed as
named formulas declared using the keyword THEOREM.
Structural induction will often be used to prove that
a given property is an invariant of the system model.
This process involves proving a property is true of all
relevant reachable states when universal quantification is
not possible as will be discussed in Section 6.

The prelude is a standard library automatically im-
ported by PVS. It contains useful definitions and proved
facts for types, including among others common base
types such as Booleans (bool) and numbers (e.g., nat,
integer and real), functions, sets, and lists. The prelude
has been used explicitly in the proof of several of the
properties developed from the templates.

The interactive theorem prover of PVS provides a col-
lection of powerful primitive inference procedures that
are applied interactively under user guidance within a
sequent calculus framework. These include propositional
and quantifier rules, induction, rewriting, simplification
using decision procedures for equality and linear arith-
metic, data and predicate abstraction. Additional infor-
mation about the PVS theorem proving assistant will
be given when necessary in Section 6, while presenting
example proofs of property templates.

4 CASE STUDY OVERVIEW
This section introduces the case study used throughout
the paper as a reference. It will be used to define and
illustrate the use of the property templates for automated
analysis of user interface software.

4.1 A programmable infusion pump
The selected device is an infusion pump (see Figure
2). It is an existing device [17] used in many hospitals.
Infusion pumps are devices used by clinicians to inject
fluids (typically, medicines or nutrients) into patients.
The typical architecture of an infusion pump includes
the following main components (see Figure 1): a user
interface, which allows operators to program infusion
parameters and monitor the infusion process; a con-
troller, representing the device components that drive
the administration process; a pump delivery mechanism,



5

Fig. 1. Generic pump architecture (adapted from [22]).

representing the physical pump that injects the fluid in
the patient; and the giving set representing the tube that
connects a fluid reservoir to the patient.

Infusion pumps are “programmable” in the sense that
infusion parameters and pump settings can be config-
ured by clinicians. The characteristics of this case study
are common to many devices that control the delivery of
a therapy over time. Infusion pumps are used in several
contexts within a hospital, including chemotherapy and
intensive care. The clinician (usually a nurse) sets infu-
sion pump parameters and connects the patient to the
device using the “giving set” (i.e., a flexible clear plastic
tube, one end connected to a bag with the fluid to be
infused, the other end connected to the patient’s veins
through a needle) and then monitors the infusion process
using the device. This type of device was chosen because
it is susceptible to use error. In the United States, the
US Food and Drug Administration (FDA), as reported
in [18], received approximately 56,000 reports of adverse
events relating to infusion pumps between 2005 and 2009
including at least 500 deaths. Many of the adverse events
were use-related. 87 infusion pump recalls have resulted
to address identified safety concerns, according to FDA
data. Of these adverse event reports use error, due to
anomalies in software design and user interface designs,
has been a significant factor. Use error, as mentioned in
ISO 62366-2, means for example: number entry errors;
confusions over input modes (for example updating
the wrong parameter value), transcription errors from
prescription to device; failure to check that the value has
been entered correctly.

Recent estimates over the whole spectrum of device
types indicate that the number of deaths associated with
preventable adverse events due to use error is over
400,000 per year in the US alone [19]. Mitigation of use
errors has been indicated several times as one of the
top priorities in device design for infusion pumps [20],
ventilators [21], and other interactive medical devices.

Fig. 2. The pump user interface and actions

4.2 The modes of the user interface
The user interface of the example device is characterized
by a set of entry modes that determine the effect of user in-
teractions. These modes are specific to the device brand
(although a given manufacturer may have families of
devices with similar mode structures). The entry modes
are used by developers to make most effective use of the
keys and displays available on the device front panel. For
example, entry modes determine whether chevron keys
alter infusion rate, VTBI (volume to be infused), time
or move the cursor up or down the options or infusion
bags menu. They also have an effect on the function keys
(key1, key2 or key3). The mode structure for the device
considered in the case study is relatively complex. This
will become clear later in the paper as properties of the
device are identified and analyzed. A full list of the entry
modes of the device and a brief description of each mode
is in Table 1.

5 MODELING USER INTERFACE SOFTWARE
DESIGN
Different types of models can be used to describe an
interactive system (e.g., focusing on user interface layout
or focusing on the interaction between user and system).
The method to be described here structures models as a
set of actions initiated by the user. The model specifies
the effect that each action has on the state of the device.
The device state is detailed as a set of state attributes.
Each state attribute has a type, e.g., if the attribute is an
infusion rate, as will be described in Section 5.2, then
it is a number restricted to infusion rate values that the
operator can input. Although user action is the focus of
the analysis, the model also includes autonomous actions
that describe the ongoing behavior of the underlying
process controlled by the device (e.g., the amount of
fluid infused by the device) insofar as they affect the user
interface. It is not usually possible for realistic systems
to get an understanding of the behavior of user actions
without describing those autonomous actions that also
modify the state of the device.



6

Entry Modes Short Description

rmode Infusion rate can be adjusted; this mode is only available when the pump is paused.
bagmode VTBI can be selected from an infusion bags menu when the user is entering rate and vtbi.
tbagmode VTBI can be selected from the infusion bags menu; this mode is accessed when entering vtbi over time and is only

available when the pump is paused.
qmode Query mode, in which a menu of options is made available to the user.
vtmode VTBI can be adjusted, this also modifies time - calculating time using the infusion rate that has been entered.
vttmode VTBI is being entered in vtbi over time mode that is accessed via the options menu.
ttmode Time is being entered in vtbi over time mode that is accessed via the options menu.
infusemode The home mode when the device is infusing. This mode can be recognised by checking the top part of the display,

which shows “infusing”. This mode also allows the rate to be changed unless the infusion rate has been locked.
nullmode This mode describes a set of display only situations - for example where alarm displayed in top line, or options menu

elicits an information display. In this mode no data entry is possible.

TABLE 1

The entry modes of the device

Some state attributes can be temporarily or perma-
nently perceivable (usually visible, but could be audible,
for example in the case of an alarm, or haptic). These
attributes trigger the appropriate use of actions and
indicate the effect when action has been taken. For
example, the visibility of an attribute such as infusion
rate can be used by the operator to decide whether the
rate should be increased or decreased to meet the value
prescribed, and what its effect on the patient should be.

The model of the interactive system also makes it
clear what actions are permitted. The effect of an action
can depend on modes. These modes, unless clearly
signposted, can confuse users about an action’s effect
and can be difficult to understand [23].

5.1 A more rigorous description
A more rigorous definition of the elements of the model
is now introduced. Throughout the paper, the following
naming conventions will be used:

• A indicates the set of actions
• S indicates the set of states of the device
• B is the set { true, false }
• C is a set of state attributes;
• MS is a set of modes

The illustrated PVS models comply with the following
structure.

• Actions are typically partial functions over states
of the system A = S ! S. An action may be
associated with a permission function per, which is
a predicate that asserts whether an action is defined
for a state in its domain per : A ! (S ! B) such that
per(a)(s) = true if a(s) is defined. An action could
be, for example, number entry (pressing a key on
a number pad), or a mode transition (for example
pressing an ok key). Entry of a number may only
be permitted if it falls within specific bounds.

• Functions of the form filter : S ! C will often
be used in the model to extract state attributes.
The extracted attributes will sometimes be linked
to corresponding perceivable elements also rep-
resented as attributes. The function p filter will

be used to describe the perceivable counterpart
to the filtered value if available, and the predi-
cate vis filter : C ! B may be used to assert
whether a filtered attribute is perceivable. For ex-
ample, filter(s) could be a value of a variable
in the underlying process being controlled by the
interface, p filter(s) could be a visible attribute that
represents the variable and vis filter(s) would be
true if the underlying variable is visible.

• A function mode. This function is a particular form of
filter specifically designed to extract state attributes
representing modes of the device. The function is
in the form mode : S ! MS. Information about
modes will be used in the description of some of
the property templates to be described in the next
sections.

The following sub-section exemplifies the use of the
modeling approach for the selected case study.

5.2 PVS model
The PVS model is specified as a set of three PVS theories.
The first theory contains common definitions of con-
stants and types. The second theory (hereafter referred
to as the pump theory) contains a specification of the
underlying pump process (cf. Figure 1), which describes
basic characteristics that are common across a variety
of infusion pumps, syringe drivers and PCA (Patient
Controlled Analgesia) pumps. These two theories have
been designed to be reused in the modeling and analysis
of other similar devices. Types are parametrized in these
theories, e.g., the type identifying the range of infusion
rates is a parameter that can be set when importing
the theory. This allows maximum flexibility. These two
models can be reused to represent the behavior of a
family of infusion devices supporting different ranges
of infusion rates. These parameters will come into play
when analyzing requirements for the data entry system
of the pump, e.g., in Section 6.4.3, as some of the
properties hold true only under certain conditions on
the range values.

The third theory (referred to as the interface theory)
describes features of the user interface software and



7

is particular to this specific device brand. It describes
whether attributes are perceivable, how the entry modes
are handled by the device, and how the user sets, con-
trols and views the operation of the pump as specified
in the pump theory. While this theory is specific to the
particular infusion product, parts of it may be reused,
for example, in families of the same brand of pump.

The specification of the model uses transition func-
tions to describe actions. These functions take the fol-
lowing form in PVS (where state is a PVS record type
listing the state attributes of the model):

action(st: state): state

The circumstances in which the actions are permitted
must also be described. This specifies when the action
is available to the user. Note that the availability of an
action does not indicate that it is obvious to the user that
the action is available. Rather, it indicates only that the
function can be activated by the user. A family of action-
indexed predicates of the form:

per_action(st: state): bool

assert whether actions are permitted. An autonomous
function tick describes the effect of updating key under-
lying state attributes associated with the pump process
at discrete intervals. When permissions are used then
actions will have the following form of signature in PVS:

action(st: (per_action)): state

which limits the domain of the function to the subset of
states for which the action is permitted. A deterministic
modeling approach is used to describe the effect of each
transition function. That is, each event/action has one
possible effect. The order in which functions are executed
is not fixed in the model, i.e., functions can interleave in
any order. Transition functions are atomic, i.e., the execu-
tion of a transition function is completed before another
transition function is executed. This modeling approach
is sufficient to represent the actual behavior of the user
interface and does not compromise the veracity of the
model for the analysis of the considered requirements.

The state attributes of the pump theory are encapsu-
lated within a separate state attribute, device, which is
itself a PVS record type. The state attributes for the pump
process model (e.g., vtbi, infusionrate, volume and time)
are therefore referenced as device(st)‘vtbi and so on,
where st has type state and represents the current state
of the device.

The developed PVS model of the user interface in-
cludes a description of the display elements that are
presented on the device screen. Specifically, the display
elements indicated in Figure 2 are specified. The at-
tribute topline(st) describes the information contained
in the top part of the display. Actions key1, key2 and
key3 are associated with the function displays (fndisp1,
fndisp2 and fndisp3, respectively). An array of Booleans
(middisp) indicates whether information is visible to the

user, for example middisp(drate) = true means that
the infusion rate is visible.

The example of the pause function presented in List-
ing 1 and discussed below illustrates the use of the
state attributes to describe the interaction. The pause
function is defined in the interface theory. It has the effect
of pausing the infusion. The function updates various
display elements.

1 pause(st: (per_pause)): state =
2 st WITH [
3 topline := holding,
4 middisp := LAMBDA (x: imid_type):
5 COND (x = drate) OR (x = dvol) -> TRUE,
6 (x = dvtbi) OR (x = dtime) ->
7 device(st)`vtbi /= 0,
8 ELSE -> FALSE ENDCOND,
9 fndisp1 := fvol,

10 fndisp2 := fvtbi,
11 fndisp3 := fnull,
12 entrymode := rmode,
13 pauselight := TRUE,
14 runlight := FALSE,
15 device := pause(st`device) ]

Listing 1. Transition function pause

The display element topline is set to display the
information “holding” (line 3 in Listing 1), and the
function middisp specifies that infusion rate and volume
are made visible (line 5 in Listing 1), as are vtbi and time
if the value of vtbi is not zero (lines 6-7 in Listing 1). The
function key labels for key1 and key2 are set to “volume”
and “vtbi” (lines 9-10 in Listing 1). The function key
label for key3 is blank (line 11 in Listing 1). The entry
mode of the device is set to rmode (line 12 in Listing 1).
This allows the infusion rate to be changed when the
pump is paused unless the rate has previously been
locked. The pause light is set to on, and the run light
switched off (lines 13-14 in Listing 1). Finally, a call to
a function pause, defined in the pump theory, updates
relevant state attributes of the pump process (line 15
in Listing 1). Hence, the pause function is overloaded,
being defined in both the pump theory and the inter-
face theory. Disambiguation is carried out as in object-
oriented programming languages, by checking the type
of the function argument.

To complete the specification of the pause function,
it is necessary to indicate when the function is permit-
ted. The domain of the pause function is specified to
be restricted to those states for which per pause(st)
is true. This is indicated in the pause function using
the subtyping notation (per pause) to specify the type
of the function argument. The permission function is
defined as follows for the case study.

per_pause(st: state): bool =
per_pause(st`device) AND no_button_down(st)

AND ((topline(st) = infusing)
OR (topline(st) = dispkvo)
OR (topline(st) = dispvtbi)
OR (topline(st) = volume)
OR (topline(st) = locked))

This specifies that the pause function is permitted when:



8

• The device is switched on and is infusing. These
constraints are found in the permission function
per pause(st‘device) defined in the pump theory.

• No other button has been pressed or is being
pressed (predicate no button down(st)).

• The top line display shows “infusing” or “KVO” or
“vtbi” or “volume” or “locked”.

This permission includes attributes that are visible to
the user (e.g., the value of topline). This choice is
driven by the fact that the developed specification is a
description of the device behavior of the user interface,
and not a translation of user interface software code.
Display elements are therefore used in the model to
describe when actions are permitted, as this makes the
model more readily understandable without compromis-
ing the veracity of the model. The other actions in the
PVS model are specified using the same approach.

6 PROPERTY TEMPLATES CAPTURING US-
ABILITY REQUIREMENTS

The property templates, used in this paper, are generic
mathematical formulas designed to help developers to
construct conjectures appropriate to the analysis of user
interface features. The templates to be considered are:
completeness, feedback, consistency, reversibility, visibil-
ity and universality. They are based on interaction design
guidelines described, for example, by Nielsen [24], Dix
and others [25], and Thimbleby [26]. Initial formaliza-
tions of some of these guidelines have previously been
described in [4], [27] with a model checking context in
mind. Our aim is to establish a set of template formal-
izations that can be translated easily into PVS theorems4.

This section introduces the templates with illustrations
of the use-related concerns captured by each of them.
They are initially formulated in general terms using the
concepts of actions, states, modes (introduced in Section
5), and a transition relation transit : S ⇥ S that relates
states that can be reached by any action. Some templates
will be special cases, syntactically, of others (e.g., the
visibility and universality templates – Sections 6.5 and
6.6 – are special cases of the state consistency template
described in Section 6.3). However, the goal is not to
provide a syntactic classification of the formulations
(as in for example, [28]) but to support analysts in
expressing properties that capture relevant use-related
requirements. The templates are designed to be useful,
acting as triggers for the analyst.

In this section the templates are described and their
instantiations are illustrated using the infusion pump
case study introduced in Section 4. Instantiation involves
tailoring the template to the characteristics and func-
tionalities of the device under analysis, and formulating
(based on the instantiated template) PVS theorems that

4. Note that the word ‘theorem’ is used in this section to describe
the syntactic element in the PVS theory that translates a property to
be checked. It does not indicate that the property has been proved.

can then be analyzed using PVS. Part of this process in-
volves defining the relation transit based on the actions
supported by the device, and producing precise descrip-
tions of the guards, goals and filters that are relevant
to the PVS theory that models the interactive behavior
of the device under consideration. This process will be
described in more detail in the following sub-sections for
each template. Each template will be motivated in part
using ANSI/AAMI HE75:2009 [29] as a reference. The
relevant sections of this document will be referred to in
each template description.

6.1 Completeness template
Accessing device features should require less than three
interactions (Section 21.4.3: User interface structure [29]).
Otherwise the user will consider the feature “buried”
in the user interface. The completeness template is de-
signed to address this type of concern, i.e., that the
software allows the user to reach significant states in
one (or a few) steps. For example, being able to reach
the “home” screen (where all infusion parameters are
presented) from any device screen in one step is a
completeness property.

Completeness

8 s 2 S : guard(s) ^ ⇠ goal(s)
) 9 a 2 A : per(a)(s) ^ goal(a(s)) (1)

The template asserts that there is always a user ac-
tion (specified as a) that transforms a state satisfying a
predicate guard : S ! B into a state satisfying predicate
goal : S ! B. For instance, the goal could be true
when the system is in some defined home screen. There
may be situations where it is not possible to reach the
home screen in one step or, for example, the property
may only be relevant when the pump is paused. The
guard used in the template makes it possible to exclude
these cases, limiting the property to the situation of
concern. It is envisaged that a final formulation of the
template is always developed in discussion with human
factors specialists and domain experts. This consultation
will consider the implications of these exceptions and
determine appropriate exclusions and definitions.

6.1.1 Instantiation of the completeness template
An instantiation of the completeness template is now
illustrated by considering the possibility of reaching
certain home screens when the pump is infusing or
paused. These home screens allow the operator to watch
relevant pump variables, and use the chevron keys to
adjust the infusion rate (unless the infusion rate has
previously been locked).

The relevant home screen, when the pump is paused,
is signified to the user by a top line of “holding” or
“set rate”. The device shows this screen automatically at
start-up, or after an alarm has occurred when there has
been no user activity for a period. When the pump is



9

infusing, on the other hand, the home screen is signified
by a top line display showing “infusing”. In this screen,
the clinician can update the infusion rate (unless the
infusion rate is locked).

6.1.2 PVS translation of the completeness template

A PVS theorem for the paused pump is first considered.
The first step in creating the PVS theorem involves
specifying the guard and goal. The goal can be specified
as a PVS predicate goal hosr5 indicating that the top
line should be “holding” or “set rate”.

goal_hosr(st: state): bool =
topline(st) = holding OR topline(st) = setrate

The only constraint imposed by guard is that the pump
is switched on and paused (i.e., not infusing).

simple_guard_hosr(st: state): bool =
device(st)`powered_on? AND NOT device(st)`infusing?

The completeness property simple complete to hosr is
then expressed using the PVS syntax as follows. The
property aims to check that one of the user actions key1
or key3 will always reach the goal.

simple_complete_to_hosr(st: state): bool =
(simple_guard_hosr(st) AND NOT goal_hosr(st))
IMPLIES (per_key1(st) AND goal_hosr(key1(st))

OR (per_key3(st) AND goal_hosr(key3(st))))

Finally, a PVS theorem is formulated that is suitable to
prove the template. It needs to consider only accessible
states, that is states that can be reached from the initial
state of the device using the actions that the device
supports. The PVS theorem (shown in Listing 2) is
therefore formulated as a structural induction:

• The base step (lines 3-4 in Listing 2) proves that the
property is true of the initial state (init?(st)) in
which all the state attributes are initialized and the
device is switched off.

• The induction step (lines 5-7 in Listing 2) assumes
the property is true of a state (pre) and aims
to prove that the property is also true for all
states post related to pre by the transition relation
state transitions release. This relation is true
if post is related to pre by any of the permitted
actions supported by the device. In this case actions
related to the chevron keys are combined with a
release action to specify that the chevron key is
permitted only when no other key is held down.
This reflects the actual behavior of the device. The
full specification, referred to in Section 1, contains
the definition of this relation.

The completeness theorem that follows from these
deliberations is as follows:

5. Note that in this formulation of goal hosr it is not required that
the key parameters are also visible. This requirement could be added
to the goal, though for illustration it makes the property more complex
because time and vtbi are only actually visible if vtbi is non-zero.

1 simple_comp_pause: THEOREM
2 FORALL (pre, post: state):
3 (init?(pre) IMPLIES
4 simple_complete_to_hosr(pre))
5 AND ((state_transitions_release(pre, post)
6 AND simple_complete_to_hosr(pre))
7 IMPLIES simple_complete_to_hosr(post))

Listing 2. Completeness theorem

6.1.3 PVS analysis of the completeness template
The PVS theorem cannot be proved in the form described
in the previous section. PVS generates counter-examples
indicating that the guard predicate simple guard hosr
admits states for which the theorem is false. Refinement
of the theorem, to exclude the conditions under which
the property fails, may be appropriate. Exclusion can be
justified if it can be demonstrated that these conditions
are irrelevant for the considered property. The process
necessary to refine the completeness theorem is now
illustrated.

Consider the sub-goal of the completeness theorem
shown in Listing 3. Sequents [-1], ..., [-5] are assertions
that are true, and can be interpreted as the hypotheses
under which the sub-step is being analyzed. Sequents [1]
and [2] are goals. If either goal is true then the sub-goal
of the theorem is successfully verified.
1 simple_comp_pause.2.6.1.5:
2 [-1] ((topline(pre!1) = options) AND
3 (fndisp1(pre!1) = fok) AND
4 (entrymode(pre!1) = qmode))
5 [-2] device(pre!1)`powered_on?
6 [-3] no_button_down(pre!1)
7 [-4] post!1 = key1(pre!1)
8 [-5] simple_complete_to_hosr(pre!1)
9 |-------

10 [1] device(pre!1)`infusing?
11 [2] simple_complete_to_hosr(post!1)

Listing 3. Sub-goal of the completeness theorem

The symbolic constants pre!1 and post!1 are called
skolem constants and are obtained from pre and post
when removing the universal quantifier over states.
Hence, pre!1 represents the state before taking the tran-
sition, and post!1 represents the state reached by the
model after the transition is taken. This specific sub-step
in the proof involves the action key1 (this can be seen by
inspecting sequent [-4]). The top line for the state before
the transition shows “options” (line 2 in Listing 3), the
function display for key1 shows “ok” (line 3 in Listing 3),
and the entry mode of the device is qmode (line 4 in
Listing 3).

The case to be proved starts from the hypothesis
that simple complete to hosr is true for pre (sequent
[-5]), and attempts to prove that either the device is
infusing (sequent [1]), or that the property is true for
post (sequent [2]). The value of post can be seen in
sequent [-4], i.e., post is obtained from pre by pressing
key1.

In attempting the automatic proof of this sub-goal,
PVS stops and presents an unprovable sub-theorem (see



10

Fig. 3. Selecting vtbi over time when infusion rate is

locked

Listing 4) which can be regarded as a counter-example.
The important elements in Listing 4 are as follows.
Sequent [-7] asserts that the user has selected the menu
entry “set vtbi over time” (see Figure 3 for an illustration
of the situation). The entry mode is qmode (line 10 in
Listing 4). Sequent [-8] asserts that the infusion rate is
locked. Sequent [-9] asserts that, after pressing key1, the
transition leads to a new state post!1 in which the top
line shows “locked” (line 5 in Listing 4) and all function
key displays are blank (lines 7-9 in Listing 4), meaning
that they are not enabled.
1 {-7} setvtbiovertime?(optionsmenu(pre!1)
2 (qcursor(pre!1)))
3 {-8} rlock(pre!1)
4 {-9} post!1 = pre!1 WITH [
5 topline := locked,
6 middisp := LAMBDA (x: imid_type): FALSE,
7 fndisp1 := fnull,
8 fndisp2 := fnull,
9 fndisp3 := fnull,

10 entrymode := qmode ]
11 ... % more sequents omitted

Listing 4. Counter-example for the completeness theorem

This particular counter-example is not a concern be-
cause this device state is temporary. In fact, the PVS
model (reflecting the behavior of the device) specifies
that the device automatically returns to the previous
state. This behavior is described in the tick func-
tion, which models automatic actions taken by the de-
vice. It can therefore be safely excluded by modifying
simple guard hosr.
guard_hosr(st: state): bool =
device(st)`powered_on? AND

NOT device(st)`infusing? AND
(topline(st) /= locked AND
NOT (topline(st) = dispvtbi

AND (entrymode(st) = bagmode
OR entrymode(st) = tbagmode)))

The new guard excludes situations when entering vtbi
where actions keep the device in an entry mode in which
vtbi is entered. For example when selecting an infusion
bag, the only exit is to the “outer” mode where the vtbi
value can be further modified using chevron keys.

Further completeness theorems have a similar format.
For example, in the case that the pump is infusing,
“home” is to return to the entry mode in which the top
line shows “infusing” or “kvo”. The initial guard simply
indicates that the pump is switched on and infusing.
guard_infuse(st: state): bool =
device(st)`powered_on? AND device(st)`infusing?

The goal in this case is that the device displays a top line
of “infusing” or “kvo” (the latter is the display when
vtbi has been exhausted and the pump is continuing the
infusion to keep the vein open).
goal_infuse(st: state): bool =
topline(st) = infusing OR topline(st) = dispkvo

In this case action key3 should be sufficient to enable
users to move to the home screen in one step. Through
a similar series of attempts and analysis of counter-
examples, it can be found that this initial formulation of
the guard is not strong enough, and again it is necessary
to prove the theorem under the hypothesis that the
top line is not showing locked and the device is not
in bagmode while infusing. The final formulation of the
guard that makes it possible to prove the theorem is as
follows:
guard_infuse(st: state): bool =
device(st)`powered_on? AND
device(st)`infusing? AND ((topline(st) /= locked)
AND NOT ((topline(st) = dispvtbi) AND

(entrymode(st) = bagmode)))

6.2 Feedback template
Information presented in the user interface should allow
the clinician to understand the effect of important actions
(Section 5.2: Types of use errors [29]). The feedback
template addresses this concern by describing proper-
ties that demonstrate that state changes are perceivable.
Feedback may be considered in two contexts. The first
is state feedback, which requires that any change in the
state (usually specific attributes of the state rather than
the whole state) is perceivable to the user.

State feedback

8 s1, s2 2 S, guard(s1) ^ guard(s2) ^
filter(s1) 6= filter(s2)
) visible change(s1, s2) (2)

More specifically, action feedback requires that a specified
action always has an effect that is perceivable to the
user. The expression visible change is a place marker that
describes how the perceivable change is represented in
the model. Two choices can be used to instantiate the
expression. The choices differ in how perceivability of
attributes is specified in the model.



11

Action feedback

8 a 2 S ! S, 8 s 2 S : per(a)(s) ^ guard(s) ^
(filter(s) 6= filter(a(s)))
) visible change(s, a(s)) (3)

The first case of visible change assumes that there are
perceivable attributes (p filter(s)) that represent the val-
ues filter(s) (for example, numerals that represent the
numbers). In this case:

visible change(s1, s2) :=
(p filter(s1) 6= p filter(s2))

In the second case, the specification simply indicates that
the attribute extracted by the filter is perceivable, that is
vis filter(s) is true for s 2 S if filter(s) is perceivable.
In this situation,

visible change(s1, s2) :=
(vis filter(s1) ^ vis filter(s2))

6.2.1 Instantiation of the feedback templates
An instantiation of the feedback templates can be used to
check whether means are provided by the user interface
of the pump to allow a clinician to monitor the infusion
process. This involves making relevant changes of basic
pump variables (i.e., infusion rate, VTBI and time) visible
to the clinician. Hence, example instantiations of the
feedback templates are the following.

• If a pump variable (e.g., infusion rate) is changed,
then that change is visible in the user interface.

• If the entry mode changes, then that change is made
visible in the user interface.

6.2.2 PVS translation of the state feedback template
When considering feedback related to infusion rate, the
relevant filter is:
filter_rate(st: state): irates =

device(st)`infusionrate

where irates is a subtype of reals defining the range
of rate values supported by the device. The visibility or
otherwise of this attribute is defined by a Boolean. As
was noted in Section 5.2 the developed model contains
a Boolean function middisp that specifies whether this
and other key attributes are visible or not. This attribute
can be used to define a predicate vis filter rate rep-
resenting the filter used in the state feedback template:
vis_filter_rate(st: state): bool =

middisp(st)(drate)

The feedback property then becomes:
state_feedback_simple(pre, post: state): bool =
(filter_rate(pre) /= filter_rate(post))
IMPLIES (vis_filter_rate(pre)

AND vis_filter_rate(post))

This property is not true for all states. A structural
induction is required. The feedback theorem then is of
the following form:

feedback_rate_theorem: THEOREM
FORALL (pre, post: state):

state_transitions(pre, post)
AND guard_vis_rate(pre) AND guard_vis_rate(post)
AND state_feedback_simple(pre, post)

The transition relation state transitions includes all
actions – in this case, it is not necessary to include
the additional constraint that the chevron key has been
released, as is done in Section 6.1.2 for the complete-
ness template. Note also that guard vis rate has been
included which in this initial form of the theorem is
trivially true. The guard is further refined in the next
sub-section.

6.2.3 PVS analysis of the state feedback template
The initial attempt to prove feedback rate theorem
generates a counter-example indicating that when the
top line shows “vtbi over time” (sequent [-6] in Listing 5)
a temporary attribute newrate is visible (sequent [-8] in
Listing 5) and not the actual infusion rate. The reason for
this is that the actual infusion rate value will be updated
only after the clinician confirms the value by pressing the
ok button.

1 [-1] device(pre!1)`powered_on?
2 [-2] nob?(which_press(pre!1))
3 [-3] pressed(pre!1) = 5
4 [-4] fok?(fndisp1(pre!1))
5 [-5] middisp(pre!1)(dnewvtbi)
6 [-6] vtbitime?(topline(pre!1))
7 [-7] ttmode?(entrymode(pre!1))
8 [-8] middisp(pre!1)(dnewrate)
9 [-9] middisp(pre!1)(dnewtime)

10 [-10] newtime(pre!1) = 0
11 ... % more sequents omitted

Listing 5. Counter-example for the feedback theorem

The fact that the displayed value of the infusion rate
is temporary before the confirmation action is important
because if the machine is switched off then the modified
value of infusion rate is lost. This subtle corner case
needs to be discussed with domain experts to make
sure that it is unlikely to lead to dangerous use errors.
The team might recommend, for example, that when
switching off the software automatically saves the mod-
ified value and on restart prompts the user. The current
design asks the user whether the pump variables are
to be cleared or restored to the values they held at close
down. This request could include information about any
temporary variables in cases such as this one. Prototypes
based on the formal model (using PVSio-web [9]) can be
used to present the issues to the designers, domain and
human factors experts.

The following guard can be used to ease the ex-
ploration of additional corner cases. The proof process
involves excluding the highlighted case and continuing
the theorem:

guard_rate(st: state): irates =
NOT (topline(st) = vtbitime)



12

With the above guard, the proof of the theorem can
be completed successfully, indicating that the case with
“vtbi over time” is the only corner case.

6.2.4 PVS translation of the action feedback template
It is to be expected that key user interface variables show
change when the infusion process is running. The action
feedback template is instantiated for the tick action of
the PVS model, which represents progress of the ongoing
infusion process – after each tick, the time to infuse and
the volume to be infused are reduced. When the pump
is paused, these two state attributes no longer change,
and the tick action updates the time delay since the last
user action.

A preliminary guard used to formulate the property
requires that the pump must be infusing, and VTBI has
not been exhausted (otherwise the pump infuses to keep
the vein open while alarming to alert the user). Hence
the following guard is employed.
guard_tick(st: state): bool =

device(st)`infusing? AND NOT device(st)`kvoflag

The pump attributes that are the primary focus are the
ones that change, namely vtbi and time. Although infu-
sion rate should remain unchanged, this state attribute
is also considered here because of its importance to the
clinician in the infusion calculation. Hence the relevant
predicate is defined as follows:
vis_tick(st: state): bool =

middisp(st)(dvtbi) AND middisp(st)(drate) AND
middisp(st)(dtime)

The PVS theorem is as follows, where the tick action
is only defined for specific states as constrained by the
permission per tick.
action_feedback_tick: THEOREM
FORALL (st: state):
(per_tick(st) AND guard_tick(st) AND
guard_tick(tick(st))) IMPLIES vis_tick(tick(st))

The proof is attempted in this case for all possible
states (as opposed to all accessible states). If the proof
fails, depending on the type of counter-examples re-
turned by the theorem prover, either the guard is refined,
or the theorem is reformulated as a structural induction,
or genuine design defects are identified that require re-
designing device functions. Refinement may also involve
more than one of these possibilities.

6.2.5 PVS analysis of the action feedback template
The initial formulation of the theorem fails. A revised
guard is developed based on the counter-examples re-
turned by PVS. When the device is not connected to
mains power, that is flag ac connected is false, then
a warning may appear momentarily in the top line
that conceals the displayed values of the infusion rate.
Furthermore, this display does not show the pump
attributes immediately after vtbi is first exhausted. In
that case a display is generated with top line of “vtbi

done” and a function key display “cancel” is associated
with key 3.

guard_tick(st: state): bool =
device(st)`infusing? AND NOT device(st)`kvoflag
AND device(st)`ac_connect
AND topline(st) /= vtbidone

The refined property can be proved successfully. The
exception introduced, however, indicates that when the
pump is not connected to the mains, feedback attributes
may be concealed when the error message is displayed.
This could be a cause for concern. Running infusion
pumps on battery by mistake is a common problem in
hospitals. For this specific infusion pump, however, it
could also be argued that because an alarm is shown to
the user when the pump runs on battery the potential
hazard will be avoided. It could also be argued in this
context that the user will be aware of the situation and
therefore recognize the fact that the pump variables
may be obscured from view. Again, developers need to
discuss these arguments with human factors specialists
and domain experts to be assured that the constraints
imposed by the guard are reasonable.

Further action feedback properties have been proved,
e.g., related to the use of the switch action that changes
the device’s power source. This action toggles flag
ac connected in the model. The feedback property re-
quires that the value of ac connected is always re-
flected in the mains and battery lights. The attributes
(ac light and battery light) are two Booleans that
specify whether the mains and battery lights are on.
This property shows that changing from mains to battery
and vice-versa is indicated through the feedback of the
two status lights. It does not show that the status lights
have a consistent effect (this will be proved as a visibility
property in Section 6.5).

guard_switch(st: state): bool = per_switch(st)

The relevant action feedback theorem expressed as follows
can be proved automatically in PVS:

action_feedback_switch: THEOREM
FORALL (st: state):
guard_switch(st) IMPLIES
(battery_light(st) /= battery_light(switch(st))
AND (ac_light(st) /= ac_light(switch(st))))

6.3 Consistency template

Users quickly develop a mental model that helps them
interact with a user interface. To encourage the devel-
opment of an accurate and complete mental model, a
user interface should be consistent in its layout, screen
structure, navigation, terminology, and control elements
(Section 21.4.13: Consistency [29]). The action consistency
and state consistency templates address these concerns.
Action consistency is defined to require that the action
consistently changes state attributes, for example irre-
spective of what the mode is. State consistency requires



13

that all states reachable within the device have a com-
mon property, e.g., the function display “quit” is always
associated with the same function key.

The action consistency template is formulated as a
property of either a single action, or of a group of
actions (we will refer to them as Act) which may ex-
hibit similar behaviors. A relation ' : C ⇥ C connects
a filtered state, before an action occurs (captured by
pre filter : S ⇥ MS ! C), with a filtered state after
the action (captured by post filter : S⇥MS ! C).

Action Consistency

8 a 2 Act, s 2 S,m 2 MS :
guard(s,m) ^
pre filter(s,m) ' post filter(a(s),m) (4)

Note that both the filters may depend on the mode. As
the template is expressed, the filters are both assumed to
be dependent on mode. In practice this will not always
be true – particularly if the effect of action is to change
mode. In the example to be used as illustration, for
the actions that are considered, the mode does change
as a result of the action but the filter that is used as
post filter depends on the mode before the action is
taken. It may be appropriate in other cases to relax
the mode constraint, either completely or on one of the
filters. The relation ' is in the set {=, 6=, <,, >,�}. The
guard on states is also sometimes extended within this
template to be sensitive to mode (guard : S ⇥MS ! B).

The state consistency template more generally requires
that for all accessible states, possibly constrained by a
guard, an invariant : S ! B is always satisfied.

State Consistency

8 s 2 S : guard(s) ) invariant(s) (5)

6.3.1 Instantiation of the consistency templates
A consistency property may require that in a given mode
(defined in the guard), specific attributes (defined in
the filters) are never changed, or alternatively always
changed or may demonstrate that all state changes
satisfy consistent properties. Examples of consistency
properties for the illustrative device are as follows.
(1) Actions designated as function keys always change

the entry mode.
(2) A chevron key will always change the pump vari-

able relevant to the entry mode (entrymode) if that
mode is relevant to entry of that type of pump
variable. Note that in some modes chevron keys are
used to navigate the cursor. Different properties will
apply in these cases.

(3) When a function key is associated with a soft dis-
play of ok then the value of the relevant pump
variable is changed, when that action is taken, to
the value set within the entry mode.

(4) When a function key shows a soft display of quit
then the value set in the mode is discarded, when

that action is taken, and the pump variable remains
the value it had when it entered the mode.

(5) The same function keys are always associated with
the same soft key displays.

6.3.2 PVS translation of the consistency templates
An example instantiation of state consistency is that quit
never appears as the function key display for key1 or
key2. This is easy to express using the state consistency
template. The invariant in this case is
f3quit_invariant(st: state): bool =

fndisp1(st) /= fquit AND fndisp2(st) /= fquit

The theorem uses the invariant property within a struc-
tural induction as follows:
f3quit_consistent_theorem: THEOREM
FORALL (pre, post: state):

(init?(pre) => f3quit_invariant(pre)) AND
(state_transitions(pre, post) AND
f3quit_invariant(pre) IMPLIES

f3quit_invariant(post))

An example instantiation of action consistency template
relates to the chevron keys that increment or decrement
values, or navigate menus up or down, depending on
entry mode. We formulate a requirement that these
actions shall never change entry mode. The pre filter
and post filter both extract the entry mode, and are of
the form:
filter_entrymode(st: state): emodes = entrymode(st)

In this case it is not necessary to use mode as a parameter
as the filter definition is the same in all modes. A tran-
sition function state transitions chevrons is defined
that relates a pre state to a post state by a chevron action
(sup, sdown, fup, fdown). The relation ' in this case is
equality. The theorem that instantiates the consistency
template is:
consistency_entrymode_theorem_chevronkeys: THEOREM

FORALL (pre, post: state):
(state_transitions_chevrons(pre, post))

IMPLIES (filter_entrymode(pre) =
filter_entrymode(post))

6.3.3 PVS analysis of the consistency templates
We consider the ok example (3) shown in Section 6.3.1 in
more detail. The guard requires that key1 is permitted
and that the function display shows ok. The guard is
parametrized by entry mode and excludes the case of
entry mode being vttmode (i.e., vtbi is being entered in
vtbi over time mode, see Table 1). The failure of the
theorem in the case of vttmode is because the system
supports a sequence of actions. Updates are not made
until both vtbi and time have been entered. At the
interim stage defined by vttmode the process is not
complete and should make a smooth transition to ttmode
(i.e., when time is being entered). The example infusion
device allows entry of both vtbi and rate and vtbi and
time. However the mechanism for entry in each case



14

is different. The differences between the two are suffi-
ciently significant that they would lead to a discussion
with relevant parties about whether the inconsistency is
a problem.
guard_em_ok(em: emodes, st: state): bool =

per_key1(st) AND fndisp1(st) = fok
AND entrymode(st) = em
AND entrymode(st) /= vttmode

Other counter-examples include when the ok function
key display does not appear. This happens in the cases
of entry modes when infusion rate is being updated (that
is rmode and infusemode). It also occurs in the bag modes
(bagmode and tbagmode) when the temporary value of vtbi
is updated with the bag specified by the selected menu
item before returning to the vtbi entry modes (vtmode
and vttmode). The pump variable vtbi is not updated
using ok until exiting vtmode. In the case of vttmode,
transition is made to a mode in which time is updated
and the pump variable is not updated at that stage
(hence the exception). The “real” value filter extracts the
actual attribute that is updated and used in the pump
process for each of these modes.

The filters used in establishing the consistency both
depend on the entry mode before the action is taken. The
“temporary” value before key1 is pressed is defined in
this case as:
temp_mode_filter(em: emodes, st: state): real =
COND
em = rmode -> device(st)`infusionrate,
em = infusemode -> device(st)`infusionrate,
em = vtmode -> newvtbi(st),
em = vttmode -> newvtbi(st),
(em = bagmode OR em = tbagmode) ->

COND bagscursor(st) = 0 -> 0,
bagscursor(st) = 1 -> 50,
bagscursor(st) = 2 -> 100,
bagscursor(st) = 3 -> 200,
bagscursor(st) = 4 -> 250,
bagscursor(st) = 5 -> 500,
bagscursor(st) = 6 -> 1000,
bagscursor(st) = 7 -> 1500,
bagscursor(st) = 8 -> 2000,
ELSE -> 3000 ENDCOND,

em = ttmode -> newtime(st),
ELSE -> device(st)`infusionrate
ENDCOND

and the “real” filter specifies the actual pump parameters
that are updated when the ok action is taken. Again
the filtered value depends on the entry mode before the
action.
real_mode_filter(em: emodes, st: state): real =
COND
em = rmode -> device(st)`infusionrate,
em = infusemode -> device(st)`infusionrate,
em = vtmode -> device(st)`vtbi,
em = vttmode -> device(st)`vtbi,
em = bagmode -> newvtbi(st),
em = tbagmode -> newvtbi(st),
em = ttmode -> device(st)`time,
ELSE -> device(st)`infusionrate
ENDCOND

The instantiation of the consistency template leads to
the following theorem:

consistency_ok_em: THEOREM
FORALL (em: emodes, st: state):
guard_em_ok(em, st) IMPLIES
temp_mode_filter(em, st) =
real_mode_filter(em, key1(st))

Further consistency properties can be proved subject
to relevant constraints applied through specified guards.

• When the function display shows quit then key3
takes the top line to show “holding”.

• When top line is volume and the infusion pump
is not infusing then key2 always changes volume
infused to zero and changes the entry mode to
rmode.

6.4 Reversibility template
Users may perform incorrect actions, and the device
should provide appropriate reversing functions that al-
low users to easily stop, modify, and restart the auto-
mated processes in the case of problems or abnormal
situations (Section 20.2.4: User understanding of the
automation [29]). An example of such a function is an
“undo” function in an editor, or in the case of a number
entry action, an “increment value” action to reverse the
effect of a “decrement value”. The reversibility template
is formulated for a group of actions Act ⇢ S ! S using
guard : S ! B, and a filter : S ! C relevant to the entry
mode. For each a 2 Act, there corresponds a b 2 Act
such that:

Reversibility

8 s 2 S : guard(s) )
filter(b(a(s)) = filter(s)) (6)

Note that this property could be formulated to be
sensitive to mode. We chose to deal with each mode
separately to ease formulation and verification of the
property.

6.4.1 Instantiation of the reversibility template
Reversibility can be used to ensure that data entry with
chevron keys allows the clinician to undo a value change
with a single reversing action in the example infusion
pump. We consider one example to illustrate the process,
namely that “single chevron up” can be used to reverse
the effect of “single chevron down”.

6.4.2 PVS translation of the reversibility template
A guard needs to be specified to construct the PVS
theorem for infusion rate entry requiring that the device
is ready to enter the infusion rate (rate entry ready).
Additionally, the guard should require that the relevant
action, and its reverse action, are enabled. The guard can
be specified as follows in PVS:

guard_supsdown_rate(st: state): bool =
rate_entry_ready(st) AND per_sdown(st)
AND per_sup(release_sdown(sdown(st)))



15

where rate entry ready takes into account the fact that
rate values can be entered only when device is switched
on and the infusion rate is not locked (line 2 in Listing 6),
and that the entry mode actually allows the clinician to
enter rate (lines 3-4 in Listing 6).

1 rate_entry_ready(st: state): bool =
2 switchedon?(st) AND NOT rlock(st)
3 AND (entrymode(st) = rmode
4 OR entrymode(st) = infusemode)

Listing 6. Guard for the reversibility theorem

6.4.3 PVS analysis of the reversibility template
The reversibility theorem is proved by first considering
pairs of chevron keys, and a specific parameter (vtbi, rate
or time). Proving each theorem based on the template
initially results in failure. The failures indicate anomalies
at certain values or ranges of values. These are compen-
sated by augmenting the guard as will be illustrated. For
example, let us check whether sup can be used to undo
sdown, in the case of infusion rate:

supsdown_rate: THEOREM FORALL (st: state):
guard_supsdown_rate(st) IMPLIES
filter_rate(release_sup(sup(

release_sdown(sdown(st))))) = filter_rate(st)

This part of the reversibility theorem fails. The first
counter-example that reveals an issue is as follows:

[-13] device(st!1)`infusionrate < 100
[-14] (ceiling(10 * device(st!1)`infusionrate)

- 1) / 10 > maxrate
[-15] holding?(holding)

|-------
[1] device(st!1)`infusing?
[2] device(st!1)`vtbi = 0
[3] rlock(st!1)
[4] maxrate = 0

This counter-example suggests that it is necessary to
constrain the parameterized constant maxrate (sequent
[4]) – the theory is parametrized to allow the analysis
of different designs (as discussed in Section 5.2). Ex-
perimentation with the device under analysis and other
similar devices indicates that a reasonable hypothesis
is to set the maximum rate to be at least 1000. This
constraint is added to the existing guard.

As a result of this change, a further counter-example
is revealed:

[-15] device(st!1)`infusionrate < 100
[-16] maxrate > 1000
|-------
[1] device(st!1)`infusing?
[2] (device(st!1)`vtbi = 0)
[3] rlock(st!1)
[4] (ceiling(10 * device(st!1)`infusionrate)

- 1) / 10 > maxrate
[5] (ceiling(10 * device(st!1)`infusionrate)

- 1) / 10 < 0
[6] (ceiling(10 * device(st!1)`infusionrate)

- 1) / 10 = 0
[7] floor(ceiling(10 *

device(st!1)`infusionrate)) / 10 =
device(st!1)`infusionrate

This particular branch of the proof is focusing on the
case infusionrate < 100 (see sequent [-15]). The goal
to prove in this branch is in sequent [7]:

floor(ceiling(10 *
device(st!1)`infusionrate)) / 10 =

device(st!1)`infusionrate

Sequents [4] – [6] suggest that additional conditions
need to be introduced to take into account the decimal
accuracy supported by the device. In fact, in the specific
range considered in the branch, the device allows only
one decimal place.

A further attempt to prove the theorem with this
additional constraint returns a further counter-example.
Indeed in proving all the reversibility theorems relating
to chevron keys several anomalies can be identified.

• Applying double chevron up to 99 and then apply-
ing double chevron down produces 90.

• Applying double chevron down to 100 and then
applying double chevron up produces 91.

• Applying single chevron up to 99.9 and then apply-
ing single chevron down produces 99.

• Applying single chevron down to 100 and then
applying single chevron up produces 99.9.

The team of experts would likely argue that these
anomalies are unacceptable in that they increase the
likelihood of failure when attempting to recover from
data entry error. In this analysis our aim was to scope the
problem, recognizing the cases where these anomalies
occur. Therefore in the lowest range case, being used
here as an example, the following constraint was used.

maxrate > 1000 AND v <100 AND v >= small_step/10
AND floor(v*10) = v*10 AND ceil_rate(v*10) = v*10

where v is a shorthand for device(st)‘infusionrate.
It is clear that this theorem has highlighted issues

about the way the number entry behaves that could
affect the usability of the device. After producing this
analysis, we noticed that new releases of the device
firmware have fixed these corner cases. The chevron keys
now have the required reversing effect and therefore
the more general theorem can be proved for the new
firmware.

6.5 Visibility template
Visual or auditory cuing should be used to draw the
user’s attention to important information necessary for
correct decision-making (Section 25.3.3: Design guidance
related to cognitive capabilities and limitations [29]).
The visibility template is designed to help the analyst
identify situations where users must be made aware of
relevant status information about the system. It does this
by describing a relation between relevant state attributes
(which may not necessarily be visible to the user) and
user interface elements that are perceivable. This tem-
plate complements the feedback templates described in
Section 6.2, which deal with awareness of changes.



16

Visibility

8 s1, s2 2 S : transit(s1, s2) ^ guard(s1) ^
visible(s1) ) visible(s2) (7)

The predicate visible relates the filtered attribute(s)
(filter) to the relevant visible attributes (p filter(s)):

visible(s) := (filter(s) = p filter(s))

6.5.1 Instantiation of the visibility template
An example instantiation of the visibility template for
infusion pumps is a property that requires that the
status of the pump process is always unambiguously
mirrored in the user interface. This includes, for example,
displaying the power status (on battery, or connected to
mains) and lighting up the “paused” light and “run”
light according to the status of the pump process.

6.5.2 PVS translation of the visibility template
The property to be proved in this case is:
visible_run(st: state): bool =

run_filter(st) = run_p_filter(st)

run filter and run p filter are defined as:
run_filter(st: state): bool =
device(st)`powered_on? AND device(st)`infusing?

and
run_p_filter(st: state): bool =

runlight(st) AND NOT pauselight(st)

and the PVS theorem is:
visible_run_theorem: THEOREM
FORALL (pre, post: state):
(init?(pre) => visible_run(pre))
AND ((state_transitions(pre, post)
AND visible_run(pre)) IMPLIES visible_run(post))

The guard has been omitted in the formulation because
no constraints are required to complete the proof of this
theorem. Further visibility properties can be formulated
to demonstrate the visual distinctness of entry modes.
The following property provides the link between entry
mode rmode and the top line display.
visible_rmode(st: state): bool =

guard_vis_rmode(st) IMPLIES
rmode_filter(st) = rmode_p_filter(st)

Filters and guards are defined as follows:
rmode_filter(st: state): bool =

entrymode(st) = rmode

rmode_p_filter(st: state): bool =
topline(st) = holding OR topline(st) = setrate

guard_vis_rmode(st: state): bool =
topline(st) /= locked

The case that is excluded by the guard is when the
infusion rate is locked and the user presses a chevron
key – the top line shows a temporary screen where the
top line is “locked”.

6.6 Universality template

Specific guidelines are concerned with the design of
user interface elements such as soft keys (e.g., on-screen
labels and soft keys should be consistent between data
screens), knobs (e.g., rotating the knob in a particular
direction should change a value in a particular way), and
touchscreen user interfaces (e.g., whenever possible, touch
targets should be placed in the same location on every
screen) (Section 21.4.11: Special interactive mechanisms
[29]).

Universality captures these concerns. It is designed to
be useful when the analyst requires that focused state
attributes always have defined values. Universality is a
particular example of consistency designed to encourage
the analyst to consider these circumstances. Universality
differs from visibility because it is concerned with the
relation between perceivable attributes or between other
state attributes, for example mode and internal state
attributes. Visibility on the other hand always relates
a state attribute to a perceivable state attribute. The
formulation of the universality template is as follows:

Universality

8 s1, s2 2 S : transit(s1, s2) ^ guard(s1) ^
universal(s1) ) universal(s2) (8)

where

universal(s) := (filter1(s) = filter2(s))

6.6.1 Instantiation of the universality template

A universality property for the example is that a partic-
ular top line display is always associated with the same
function key displays. In this case two sets of display
attributes are related. For example, we may want to
prove that whenever the top line shows “volume”, the
function displays for the three action keys are “blank”,
“clear” and “quit” respectively, see Figure 4.

6.6.2 PVS translation of the universality template

The universality property discussed in the previous sub-
section involves instantiations such as the following:

pred_filter_volume_keys(st: state): bool =
(topline(st) = volume)

pred_filter_keys_volume(st: state): bool =
fndisp1(st) = fnull AND fndisp2(st) = fclear
AND fndisp3(st) = fquit

Hence, the universality property becomes:

universality_volume_keys(st: state): bool =
pred_filter_volume_keys(st) =
pred_filter_keys_volume(st))

This property can be proved in PVS using structural
induction.



17

Fig. 4. The same function keys are always shown when

top line is “volume”.

7 DISCUSSION

The techniques described in the paper have been applied
to medical devices but are clearly applicable to a broader
range of systems. Preliminary studies have explored
aspects of a nuclear power interface [30] and the flight
control unit of a large commercial aircraft [31]. It is clear
that there are many real systems whose user interfaces
can be analyzed in this way. Important features, not
yet explored but scheduled for future work, relate to
interfaces that depend on access to large scale databases
and networked data. Modeling techniques are required
to provide suitable abstractions for these extensions as
well as property templates that will help developers
consider appropriate usability concerns. This is relevant
to the current example in relation to new developments
defined to verify and control the entry of prescriptions
for particular medications (in the case of the device used
in the case study this is referred to as “Guardrails”). This
is a topic also under development as part of the analysis
of a newly designed pill dispenser device and analysis
of the Integrated Clinical Environment (ICE) [32].

Model checking and theorem proving can both per-
form analyses of the type described in the paper but
at different levels of detail. With the model checking
technology that we used, the technology was considered
to be easier to understand, but it was often necessary to
simplify models, making them more abstract, to make
the process tractable. Model checking is algorithmic
which means that when the property is true it is not
necessary to understand how to prove it is true. When
it fails, counter-examples are produced that can be used
to correct the model or to change the model or to under-
stand why the property fails. Using the model checking
tools, performance deteriorated rapidly as the model
grew and then became infeasible to use in an interactive
style. In the example used in this paper, performance

of the verification tool was an important consideration
because an analysis of the full number entry system was
required as part of the process. For these reasons, and
because the alternative technology was familiar to us,
theorem proving was used as the basis for analysis.

Four issues were important in the analysis and are
topics of current and future research.

• The model accurately reflected the fielded system
(see Section 7.1).

• The process of producing theorems that reflected
use-related requirements was capable of mechaniza-
tion (see Section 7.2).

• Tools were available that would ease the modeling
and proof process (see Section 7.3).

• The approach was relevant to actual or proposed
certification requirements (see Section 7.4).

We briefly address these issues in this section, mention-
ing relevant research, and describing current plans for
further research.

7.1 Modeling and specification
Our approach assumes that a model is constructed from
an existing system. This model was developed by hand
using the user manual of the device, a simulation6 and
the device itself. Tools also exist for generating models
from program code using transformation rules that guar-
antee correctness (see [33] and [34]) but program code
was not available to us. States of the earlier MAL model
[6] on which the PVS specification was based had been
analyzed by examining the traces of actions produced
by the model checker, as counter-examples, with actual
sequences generated by the device itself.

When the template properties were proved of the
theory, then any counter-examples discovered, as proof
of the theorems were attempted, were compared with the
actual device. A prototype was produced automatically,
as a further process of validation, from the model to
compare the “look and feel” of the actual device with
the prototype, see [35] for details. The simulations were
indistinguishable from the behavior of the physical de-
vice. The only difference between the simulation and
the real device was that precise timings differed. This
difference, however, is not relevant for the considered
use-related properties. The simulations were generated
with the aim that the developed device models could be
explored by regulator or manufacturer (this allows them
to gain confidence that the model correctly represents the
actual device behavior). It is of course the case that they
only allow an exploration of the paths that the regulator
chooses to explore. The same simulations in our case
are also used to illustrate what the failure of a property
means. Part of the argument to the regulator that this
is acceptable may then involve a demonstration of the
features of the device that fail the requirement, showing
that they do not present a risk.

6. http://cs.swan.ac.uk/⇠cspo/simulations/medical/
infusionpump/agp/ downloaded 8/4/17



18

The described device is typical of a range of medical
devices indicating that the modeling approach scales
to devices of this kind. The techniques described can
therefore deal with this scale but further work is required
to analyze devices and requirements that relate to net-
worked devices as well as more complex data structures.
An important limitation of a theorem proving approach
is the inability to express, simply, temporal properties.
This means that reachability and liveness properties are
not simple to analyze with a theorem prover. For this
reason it makes sense to consider the complementary use
of model checking and theorem proving tools. Further
properties, for example relating to time, and to multi-
ple viewpoints within a collaborative configuration of
device, are currently being considered.

7.2 Mechanised analysis of the property templates
in PVS
Proofs of the properties were developed using a prag-
matic approach. In many cases universal quantification
of states was first attempted, before moving to a struc-
tural induction. The process of proof therefore uses the
following heuristics.

1) The PVS theorem is formulated and the proof at-
tempted for all possible states.

2) If the proof fails then either the PVS theorem is
refined to exclude irrelevant cases or the theorem
is reformulated as a structural induction.

3) If the structural induction fails then the PVS theorem
may also be refined to exclude irrelevant cases.

Proof therefore is a process of refinement that takes
account of possible exceptions. Counter-examples are
discovered while the proof is attempted. This may be
because the property is wrongly formulated (as illus-
trated in some of the cases above), or because the theory
fails to represent the behavior of the device accurately,
or because the device fails to satisfy the requirement.
It is therefore always necessary to consider carefully
the nature of the failure identified in the proof. The
PVSio-web tool [9] can be used to present and discuss
the counter-example with domain experts and human
factors specialists. When the failure can be compensated,
the theorem is extended by changing the guard or in
some cases qualifying the goal. If the device fails to sat-
isfy the requirement with significant consequences this
may indicate the need for redesign. However it is also
possible that the failure is not significant. For example
it may be considered highly unlikely to be an issue in
practice or it may be the case that the broader system
defends against the discovered weakness. This may be
achieved by requiring that an operating procedure must
be followed to avoid the circumstance. In this sense, the
failure can be compensated. Deciding what to do when
a property is not true needs to be carefully evaluated. In
the case study under consideration, this was usually not
a difficult process. However in some circumstances the
appropriate step may be difficult to establish and require

further analysis from a human factors perspective, for
example through user studies.

The representation of counter-examples is less clear
than is the case with model checking tools such as the
IVY tool. Typically it requires some understanding of
the details of PVS to make full use of them. Further
research and development is required to make the na-
ture of the counter-example more transparent to the
broader range of analysts. This is discussed again briefly
in the next sub-section. At this stage the analysis of
counter-examples is a manual process and requires some
knowledge of the proof system. As mentioned in the
conclusion, an important next step in this research is to
produce tools to support this process.

7.3 Modeling and proof tools
Tools are being developed, by the authors and others,
that are designed to be accessible to developers who are
not specifically expert using formal techniques. These
developments include the following.

• Specification templates or patterns are being de-
signed to ease the construction of formal specifica-
tions, see for example Bowen and Reeves [36] who
focus on specifications of interactive behavior.

• Patterns have been designed to ease the process
of generating properties as originally described by
Dwyer [37]. The templates used in this paper are
based on this work and our earlier work using
model checking techniques [27].

• Tools are being developed for presenting proofs and
counter-examples to aid comprehension, for exam-
ple earlier work upon which this paper is based [38].

• Strategies have been devised and mechanized to
support proof, for example early work in the context
of SCR [39].

• Approaches designed to ease the development of
models of interactive systems have been developed,
for example Degani [40] uses a statechart based
approach to modeling devices as well as the user’s
model of the device and Berstel and others [41]
describe a framework for describing widget level
interface behavior.

Tailoring these tools to the particular requirements
described in this paper is part of our ongoing research.
Further templates would include, for example, those
that relate to timing and error recovery. Tools are being
developed to facilitate the construction of conjectures
from the templates, using an analogous approach to that
provided by the IVY tool [27] tailored to PVS conjec-
tures. Presenting counter-examples in a simple format
and supporting general tactics for proof are each more
complicated. The tools and techniques described in the
paper and their developments will only be valuable if
they can be used readily by developers, more specifically
those whose task it is to produce the documentation and
evidence that a design is such that risks associated with it
are as low as reasonably practicable. Experience of using



19

similar techniques with the IVY tool is described in [42].
This work involved a team of developers producing a
risk analysis for a dialysis machine. Requirements were
developed collaboratively and formulated by a member
of the team who was familiar with the IVY tool and
its modeling notations. It was possible to formulate
properties, based on requirements, attempt to prove
them, and make modifications if necessary within a risk
meeting without seriously disrupting the flow of the
meeting. Where more serious issues were found these
were analyzed outside the context of the meeting within
an hour. It is envisaged that a similar process is feasible
using the technologies described in this paper but further
evaluations are envisaged to assess the usability of these
tools and their developments.

7.4 Relevance to medical devices and certification
Certification authorities typically require that risk con-
trol measures are included as requirements (see ISO
62304 [43] for example), and that the identified control
measures are verified, and the verification documented.
Verification typically means that some form of systematic
testing has taken place. The document explaining the
verification should document a trace: from hazardous
situation to user interface behavior; from the user in-
terface behavior to the software feature causing the
problem; from the software cause to the risk control
measure, and to the verification of the risk control mea-
sure. Examples of use errors identified in the usability
standard ISO 62366 [29] for medical devices include er-
gonomic concerns (confusing buttons, cracking catheter
connectors) but also include the software issues relevant
to the present paper: over-reliance on the alarm system;
user enters incorrect sequence; user takes a short cut and
omits important steps, defeating software interlock. ISO
62366 argues that causes of use error include ambiguous
or unclear medical device state or controversial modes or
mappings. Here we have demonstrated that formal tech-
niques may be used to verify these risk control measures.
The process of proving regulatory requirements has been
discussed in more detail in [44], [45]. This process is
typically interactive and in principle involves discussion
with both human factors specialists, who are engaged in
checking the validity of the interpretation of the user-
related requirement, and regulator to check that the
property captures the spirit of the original requirement.
Templates can provide a source for the requirements
that form the software control measures. This approach
can be a key component of the broader safety analysis
process increasing the confidence provided by software
testing and trials, see [42].

8 RELATED WORK

Property templates have been studied extensively in
engineering practices. Most of the effort, however, has
been devoted to the control part of a system, rather than

the human-machine interface. For example, such anal-
ysis in relation to complex systems has been discussed
in [46] where verification patterns are introduced that
can be used for the analysis of safety interlock mecha-
nisms in interoperable medical devices. An example of
such a pattern as “When the laser scalpel emits laser, the
patient’s trachea oxygen level must not exceed a threshold
⇥O2”. Although, superficially, this property appears to
be use-related the aim of their patterns is to facilitate
the introduction of a model checker in the actual imple-
mentation of the safety interlock, rather than defining
property templates for the analysis of use-related aspects
of the safety interlock. Other similar work, e.g., [47]–
[49], also introduce mechanisms similar to templates for
the verification of safety interlocks, but the focus of
them is again on translating verified design models into
a concrete implementation – in [47], for example, the
automatic translation of hybrid automata models of a
safety interlock into a concrete implementation.

Proving requirements similar to the properties pro-
duced from our templates of this paper has been the
focus of the work of Atlee and Gannon [50] as well as
Heitmeyer’s team using SCR [51]. The latter approach
uses a tabular notation to describe requirements which
makes the technique relatively acceptable to developers.
Combining simulation with model checking has also
been a focus in, for example, [52]. Braderman and others
[53] focused on the role of scenarios in model checking
real-time properties of systems and Mori and others
[54] used task representations based on a LOTOS like
language to analyze user tasks by means of simulation.
Recent work concerned with simulations of PVS specifi-
cations provides valuable support to this complementar-
ity [35]. Had the specification been developed as part of
a design process then a tool such as Event B [55] might
have been used. Singh et al demonstrate a refinement
process from tabular expressions using Event B [56]. In
such an approach an initial model is first developed that
specifies the device characteristics and incorporates the
safety requirements. This model is gradually refined us-
ing details about how specific functionalities are imple-
mented. Several GUI testing tools have been developed
for Android Apps, Java, and Windows Applications
(see [57] for a recent overview). For example, van der
Merwe et al [58] use the Java PathFinder model checker
as a basis to discover design errors in the user interface
of Android Apps. These tools focus on implementation
errors such as unhandled exceptions, concurrency errors,
and null pointer dereferencing rather than properties
that would relate to use errors.

Bowen and Reeves [36] focus on design patterns for
creating user interface models, rather than verification of
use-related requirements. An example pattern is the call-
back pattern, representing the behavior of confirmation
dialogs used to confirm user operations. They are also
concerned with generating properties or obligations for
the proof of interactive systems, with a particular focus
on medical systems [59], [60]. Further relevant work by



20

them focuses on modeling user manuals [61].

9 CONCLUSIONS

We have argued that the formulation of use-related re-
quirements has the effect of improving usability and use-
related safety of interactive systems. The requirements
that have been described are related to the usability
heuristics often used in the informal analysis of inter-
active systems [62]. The model and theorems based on
the templates can be found in the repositories referred
to in Section 1. The model, as discussed, involves two
main theories describing 38 pump actions and 18 user
interface actions. The analysis involved 138 theorems
based on the templates. The theory files amount to
approximately 4000 lines including comments, and the
theorem files approximately 5000 lines. The run time for
each proof is indicated in the template files. Times range
from 1 hour 19 minutes to less than 1 second. The PVS
system was installed on an Apple Macbook Pro with a
2.9 GHz Intel Core i5.

The paper addresses two questions: how to support
the analyst in the process of identification and analysis of
properties of a user interface software design to improve
the clarity of the user interface; and how to structure the
specification of the design and formulate the properties
so that it is feasible to establish the practice as part of
the development of user interfaces.

While PVS is conceptually rich, the proposed style
of specification based, as it is, on state transitions is
amenable to development. The property templates aim
to provide clear guides to the developer as they consider
and then prove properties of the specification. The pro-
cess of developing the properties from the templates is
valuable in recognising areas where the properties fail,
and this triggers further consideration of the design of
the interface.

The examples illustrate the process, demonstrating
how the development of theorems becomes a systematic
process. The steps involved in the analysis process are
made clear. A further step in this process will be to
provide specialized tool support so that templates can
be offered to the analyst with the means to define
the guards, goals and filters that are relevant to the
device under consideration. The illustrated example is
realistic and the proofs demonstrate the feasibility of the
approach for a relatively large specification.

ACKNOWLEDGEMENT

This work has been funded by the EPSRC research grant
EP/G059063/1: CHI+MED (Computer–Human Interac-
tion for Medical Devices). We are grateful to Harold
Thimbleby’s team at Swansea University, part of the
CHI+MED project, and especially Patrick Oladimeji who
developed the infusion pump simulation that helped
us develop the models. We also thank the anonymous
reviewers for valuable feedback. José C. Campos and

Paolo Masci were funded by project NORTE-01-0145-
FEDER-000016, financed by the North Portugal Regional
Operational Programme (NORTE 2020), under the POR-
TUGAL 2020 Partnership Agreement, and through the
European Regional Development Fund (ERDF).

REFERENCES

[1] D. Arney, R. Jetley, P. Jones, I. Lee, O. Sokolsky, A. Ray, and
Y. Zhang, “Generic infusion pump hazard analysis and safety
requirements,” University of Pennsylvania, Tech. Rep. MS-CIS-
08-31, February 2009.

[2] D. Drusinsky, J. Michael, and M.-T. Shing, “A visual tradeoff space
for formal verification and validation techniques,” Systems Journal,
IEEE, vol. 2, no. 4, pp. 513–519, Dec 2008.

[3] M. Ryan, J. Fiadeiro, and T. Maibaum, “Sharing actions and
attributes in modal action logic,” in Theoretical Aspects of Computer
Software, ser. Lecture Notes in Computer Science. Springer-
Verlag, 1991, vol. 526, pp. 569–593.

[4] J. C. Campos and M. D. Harrison, “Interaction engineering using
the IVY tool,” in Proceedings of the ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, G. Calvary, T. Graham,
and P. Gray, Eds. ACM Press, 2009, pp. 35–44.

[5] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An Open
Source Tool for Symbolic Model Checking,” in Computer-Aided
Verification (CAV ’02), ser. Lecture Notes in Computer Science,
K. G. Larsen and E. Brinksma, Eds. Springer-Verlag, 2002, vol.
2404.

[6] M. Harrison, J. Campos, and P. Masci, “Reusing models and prop-
erties in the analysis of similar interactive devices,” Innovations in
Systems and Software Engineering, vol. 11, no. 2, pp. 95–111, June
2015.

[7] M. L. Bolton and E. J. Bass, “Formally verifying human-
automation interaction as part of a system model: limitations and
tradeoffs,” Innovations in System and Software Engineering, vol. 6,
no. 3, pp. 219–231, 2010.

[8] S. Owre, J. Rushby, and N. Shankar, “PVS: A prototype verifi-
cation system,” in Eleventh International Conference on Automated
Deduction (CADE), ser. Lecture Notes in Artificial Intelligence,
D. Kapur, Ed., vol. 607. Springer-Verlag, 1992, pp. 748–752.

[9] P. Masci, P. Oladimeji, Y. Zhang, P. Jones, P. Curzon, and
H. Thimbleby, PVSio-web 2.0: Joining PVS to HCI. Cham:
Springer International Publishing, 2015, pp. 470–478. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-21690-4 30

[10] Food and Drug Administration (FDA), “Class 2 Device Recall
ACCUCHEK Connect Diabetes Management App,” 2015.
[Online]. Available: https://www.accessdata.fda.gov/scripts/
cdrh/cfdocs/cfRES/res.cfm?id=134687

[11] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff, “How Amazon web services use formal methods,”
Communications of the ACM, vol. 58, no. 4, pp. 66–73, April 2015.

[12] P. Masci, P. Mallozzi, F. Luca, D. Angelis, G. Di Marzo, and
P. Curzon, “Using PVSio-web and SAPERE for rapid prototyping
of user interfaces in integrated clinical environments,” in 3rd
Workshop on Verification and Assurance (Verisure 2015), at CAV-2015,
San Francisco, CA, USA, 2015.

[13] P. Masci, P. Oladimeji, P. Curzon, and H. Thimbleby, “Tool
demo: Using PVSio-web to demonstrate software issues in
medical user interfaces,” in Software Engineering in Health Care:
4th International Symposium, FHIES 2014, and 6th International
Workshop, SEHC 2014, Washington, DC, USA, July 17-18, 2014,
Revised Selected Papers. Cham: Springer International Publishing,
2017, pp. 214–221. [Online]. Available: https://doi.org/10.1007/
978-3-319-63194-3 14

[14] G. Mauro, H. Thimbleby, A. Domenici, and C. Bernardeschi,
“Extending a user interface prototyping tool with automatic
MISRA C code generation,” in Proceedings of the Third Workshop
on Formal Integrated Development Environment, F-IDE@FM 2016,
Limassol, Cyprus, November 8, 2016., 2016, pp. 53–66. [Online].
Available: https://doi.org/10.4204/EPTCS.240.4



21

[15] P. Masci, Y. Zhang, P. Jones, P. Curzon, and H. W. Thimbleby,
“Formal verification of medical device user interfaces using PVS,”
in ETAPS/FASE2014, 17th International Conference on Fundamental
Approaches to Software Engineering. Berlin, Heidelberg: Springer-
Verlag, 2014.

[16] N. Shankar, S. Owre, J. M. Rushby, and D. Stringer-Calvert,
“PVS System Guide, PVS Language Reference, PVS Prover Guide,
PVS Prelude Library, Abstract Datatypes in PVS, and Theory
Interpretations in PVS,” Computer Science Laboratory, SRI In-
ternational, Menlo Park, CA, 1999, available at http://pvs.csl.sri.
com/documentation.shtml.

[17] Cardinal Health Inc, “Alaris GP volumetric pump: directions for
use,” Cardinal Health, 1180 Rolle, Switzerland, Tech. Rep., 2006.

[18] US Food and Drug Administration, “Infusion pump improvement
initiative,” Center for Devices and Radiological Health, Tech.
Rep., April 2010. [Online]. Available: http://www.fda.gov/
MedicalDevices

[19] J. T. James, “A new, evidence-based estimate of patient harms
associated with hospital care,” Journal of Patient Safety, vol. 9, no. 3,
pp. 122–128, 2013.

[20] AAMI, “Infusing patients safely: priority issues from the
AAMI/FDA infusion device summit,” AAMI/FDA Infusion Device
Summit Proceedings, pp. 5–6, 2010.

[21] ——, “AAMI/FDA summit on ventilation technology,”
AAMI/FDA Infusion Device Summit Proceedings, 2015.

[22] Y. Zhang, P. Jones, and R. Jetley, “A hazard analysis for a generic
insulin infusion pump,” Journal of diabetes science and technology,
vol. 4, no. 2, p. 263, 2010.

[23] J. Rushby, “Using model checking to help discover mode confu-
sions and other automation surprises,” Reliability Engineering and
System Safety, vol. 75, no. 2, pp. 167–177, Feb. 2002.

[24] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,”
in ACM CHI Proceedings CHI ’90: Empowering People, J. Chew and
J. Whiteside, Eds., 1990, pp. 249–256.

[25] A. Dix, J. Finlay, G. Abowd, and R. Beale, Human Computer
Interaction (2nd edition). Prentice Hall Europe, 1998.

[26] H. Thimbleby, “Safer user interfaces: A case study in improving
number entry,” IEEE Transactions on Software Engineering, vol. 41,
no. 7, pp. 711–729, 2015.

[27] J. C. Campos and M. D. Harrison, “Systematic analysis of control
panel interfaces using formal tools,” in Interactive systems: Design,
Specification and Verification, DSVIS ’08, ser. Lecture Notes in
Computer Science, N. Graham and P. Palanque, Eds., no. 5136.
Springer-Verlag, 2008, pp. 72–85.

[28] Z. Manna and A. Pnueli, The temporal logic of reactive and concurrent
systems-specification. New York: Springer-Verlag, 1992.

[29] AAMI, “Medical devices - application of usability engineering to
medical devices,” Association for the Advancement of Medical
Instrumentation, 4301 N Fairfax Drive, Suite 301, Arlington VA
22203-1633, Tech. Rep. ANSI AMI IEC 62366:2007, 2010.

[30] M. D. Harrison, P. M. Masci, J. C. Campos, and
P. Curzon, “The specification and analysis of use properties
of a nuclear control system,” in The Handbook of
Formal Methods in Human-Computer Interaction, B. Weyers,
J. Bowen, A. Dix, and P. Palanque, Eds. Cham: Springer
International Publishing, 2017, pp. 379–403. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-51838-1 14

[31] C. Fayollas, C. Martinie, P. Palanque, P. Masci, M. D. Harrison,
J. C. Campos, and S. R. e Silva, “Evaluation of formal IDEs for
human-machine interface design and analysis: the case of CIRCUS
and PVSio-web,” EPTCS: arXiv preprint arXiv:1701.08465, 2017.

[32] J. Hatcliff, E. Vasserman, S. Weininger, and J. Goldman, “An
overview of regulatory and trust issues for the integrated clinical
environment,” Proceedings of HCMDSS, vol. 2011, pp. 23–34, 2011.

[33] G. J. Holzmann, “Trends in software verification,” in FME 2003:
Formal Methods, ser. Lecture Notes in Computer Science, K. Araki,
S. Gnesi, and D. Mandrioli, Eds. Springer-Verlag, 2003, vol. 2805,
pp. 40–50.

[34] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby,
and H. Zheng, “Bandera: extracting finite-state models from java
source code,” in Software Engineering, 2000. Proceedings of the 2000
International Conference on, 2000, pp. 439–448.

[35] P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, and H. Thim-
bleby, “Model-based development of the generic PCA infusion
pump user interface prototype in PVS,” in Computer Safety, Re-
liability, and Security, ser. Lecture Notes in Computer Science,

F. Bitsch, J. Guiochet, and M. Kaâniche, Eds. Springer-Verlag,
2013, vol. 8153, pp. 228–240.

[36] J. Bowen and S. Reeves, “Design patterns for models of interactive
systems,” in Software Engineering Conference (ASWEC), 2015 24th
Australasian. IEEE, 2015, pp. 223–232.

[37] M. Dwyer, G. Avrunin, and J. Corbett, “Patterns in property
specifications for finite-state verification,” in 21st International
Conference on Software Engineering, Los Angeles, California, May
1999, pp. 411–420.

[38] K. Loer and M. Harrison, “An integrated framework for the anal-
ysis of dependable interactive systems (IFADIS): its tool support
and evaluation,” Automated Software Engineering, vol. 13, no. 4, pp.
469–496, 2006.

[39] M. Archer, “TAME: Using PVS strategies for special-purpose
theorem proving,” Annals of Mathematics and Artificial Intelligence,
vol. 29, pp. 139–181, 2000.

[40] A. Degani, Taming HAL: designing interfaces beyond 2001. Palgrave,
Macmillan, 2003.

[41] J. Berstel, S. Reghizzi, G. Rouseel, and P. Pietro, “A scalable formal
method for the design and automatic checking of user interfaces,”
ACM Transactions on Software Engineering and Methodology, vol. 14,
no. 2, pp. 124–167, 2005.

[42] M. Harrison, M. Drinnan, J. C. Campos, P. Masci, L. Freitas,
C. di Maria, and M. Whitaker, “Safety analysis of software compo-
nents of a dialysis machine using model checking,” in Proceedings
of Formal Aspects of Component Software (FACS 2017), ser. Lecture
Notes in Computer Science, J. Proença and M. Lumpe, Eds., no.
10487. Springer-Verlag, 2017, pp. 137–154.

[43] BSI, “Medical device software - software life cycle processes,”
British Standards Institution, CENELEC, Avenue Marnix 17, B-
1000 Brussels, Tech. Rep. BS EN 62304:2006, 2008.

[44] P. Masci, A. Ayoub, P. Curzon, M. Harrison, I. Lee, O. Sokol-
sky, and H. Thimbleby, “Verification of interactive software for
medical devices: PCA infusion pumps and FDA regulation as an
example,” in Proceedings ACM Symposium Engineering Interactive
Systems (EICS 2013). ACM Press, 2013, pp. 81–90.

[45] M. D. Harrison, P. Masci, J. C. Campos, and P. Curzon, “Ver-
ification of user interface software: the example of use-related
safety requirements and programmable medical devices,” IEEE
Transactions on Human Machine Systems, vol. 47, no. 6, pp. 834–
846, 2017.

[46] T. Li, F. Tan, Q. Wang, L. Bu, J. Cao, and X. Liu, “From offline
toward real time: A hybrid systems model checking and CPS
codesign approach for medical device plug-and-play collabo-
rations,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 25, no. 3, pp. 642–652, 2014.

[47] F. Tan, Y. Wang, Q. Wang, L. Bu, and N. Suri, “A lease based
hybrid design pattern for proper-temporal-embedding of wireless
CPS interlocking,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 26, no. 10, pp. 2630–2642, 2015.

[48] A. L. King, S. Procter, D. Andresen, J. Hatcliff, S. Warren, W. Spees,
R. Jetley, P. Raoul, P. Jones, and S. Weininger, “An open test bed for
medical device integration and coordination.” in ICSE Companion,
2009, pp. 141–151.

[49] B. Larson, J. Hatcliff, S. Procter, and P. Chalin, “Requirements
specification for apps in medical application platforms,” in Pro-
ceedings of the 4th International Workshop on Software Engineering in
Health Care. IEEE Press, 2012, pp. 26–32.

[50] J. M. Atlee and J. Gannon, “State-based model checking of event-
driven system requirements,” IEEE Transactions on Software Engi-
neering, vol. 19, no. 1, pp. 24–40, 1993.

[51] C. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj, “SCR: A
toolset for specifying and analyzing software requirements,” in
Computer Aided Verification. Springer, 1998, pp. 526–531.

[52] G. Gelman, K. Feigh, and J. Rushby, “Example of a comple-
mentary use of model checking and agent-based simulation,”
in Systems, Man, and Cybernetics (SMC), 2013 IEEE International
Conference on, Oct 2013, pp. 900–905.

[53] V. Braberman, N. Kicillof, and A. Olivero, “A scenario-matching
approach to the description and model checking of real-time
properties,” IEEE Transactions on Software Engineering, vol. 31,
no. 12, pp. 1028–1041, 2005.

[54] G. Mori, F. Paternò, and C. Santoro, “CTTE: Support for devel-
oping and analyzing task models for interactive system design,”
IEEE Transactions on Software Engineering, vol. 28, no. 8, pp. 797–
813, 2002.



22

[55] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[56] N. K. Singh, M. Lawford, T. S. E. Maibaum, and A. Wassyng,
“Use of tabular expressions for refinement automation,” in Model
and Data Engineering: 7th International Conference, MEDI 2017,
Barcelona, Spain, October 4–6, 2017, Proceedings, Y. Ouhammou,
M. Ivanovic, A. Abelló, and L. Bellatreche, Eds. Cham: Springer
International Publishing, 2017, pp. 167–182. [Online]. Available:
https://doi.org/10.1007/978-3-319-66854-3 13

[57] V. Lelli, A. Blouin, B. Baudry, and F. Coulon, “On model-based
testing advanced guis,” in 2015 IEEE Eighth International Con-
ference on Software Testing, Verification and Validation Workshops
(ICSTW), April 2015, pp. 1–10.

[58] H. van der Merwe, B. van der Merwe, and W. Visser, “Verify-
ing android applications using java pathfinder,” ACM SIGSOFT
Software Engineering Notes, vol. 37, no. 6, pp. 1–5, 2012.

[59] J. Bowen and S. Reeves, “Modelling safety properties of inter-
active medical systems,” in Proceedings of the 5th ACM SIGCHI
symposium on Engineering interactive computing systems. ACM,
2013, pp. 91–100.

[60] ——, “Generating obligations, assertions and tests from UI mod-
els,” Proceedings of the ACM on Human-Computer Interaction, vol. 1,
no. 1, p. 5, 2017.

[61] ——, “Modelling user manuals of modal medical devices and
learning from the experience,” in Proceedings of the 4th ACM
SIGCHI symposium on Engineering interactive computing systems.
ACM, 2012, pp. 121–130.

[62] J. Nielsen, “Heuristic Evaluation,” in Usability Inspection Methods,
J. Nielsen and R. Mack, Eds. John Wiley & Sons, Inc., 1994, ch. 2.


