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Abstract Taking into account the regularity properties of the solutions of fractional differential equations, we
develop a numerical method which is able to deal, with the same accuracy, with both smooth and nonsmooth
solutions of systems of fractional ordinary differential equations of the Caputo-type. We provide the error analysis
of the numerical method and we illustrate its feasibility and accuracy through some numerical examples. Finally,
we solve the time-fractional diffusion equation using a combination of the method of lines and the newly developed
hybrid method.
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1 Introduction

Nowadays, fractional differential equations are recognized as fundamental tools in themodeling ofmany phenomena
in science and engineering [29,30,33,36].
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Usually, analytical solutions for fractional differential equations are not available and, in the cases where these
can be obtained, they are given in terms of series representations, which makes them difficult to handle. Therefore,
numerical methods are crucial for this kind of problems.

Here, we are initially concerned with the numerical solution of systems of fractional ordinary differential equa-
tions of the Caputo type:

Dαy(t) = Ay(t) + F(t), t ∈ (0, T ] (1)

y(0) = y0, (2)

where A is a constant matrix A = [
ai j

]
i, j=1,...,n , y(t) = [y1(t) y2(t) . . . yn(t)]T , F(t) = [ f1(t) f2(t) . . . fn(t)]T

and y0 = [y01 y02 . . . y0n]T , where y0i = yi (0), i = 1, ..., n.

The theory and numerical analysis of this type of problems is well described in the literature [5,7–11], however,
we believe that due to the features of fractional calculus, there is still a lack of highly accurate and efficient numerical
methods for this kind of differential equations. First, because fractional differential operators are non-local and,
as a consequence, in order to compute the solution at a certain time, all the previous time levels must have been
computed and stored previously, a fact that results in a high computational effort. Second, because fractional
differential equations usually exhibit singularities at the origin in time, and therefore, the order of convergence of
the numerical schemes may decrease significantly whenever the unknown solution does not satisfy the demanded
regularity assumptions (see for Example [34] and the survey paper [13]).

Here, we will mainly focus on this second aspect, and we will present a numerical method which is able to attain
the same accuracy with both smooth and nonsmooth solutions. This follows the investigation initiated in [14]. In
that paper, the convergence analysis has not been provided, although the numerical examples confirm the expected
orders of convergence. Here, we will consider a modification of this algorithm. Because the potential singularities of
the solution arise at the origin, instead of using nonpolynomial approximation in all of the time domain, we consider
an ’hybrid’ collocation method, which consists of a nonpolynomial approximation near the origin, reflecting the
singular behavior of the solution near that point, and in the remaining domain, we use a polynomial approximation.
As it is natural and shown later, this reduces the computational effort.

The numerical technique used to solve these systems of fractional ordinary differential equations, can also be
used to solve the time-fractional diffusion equation, that have shown to be useful in the modeling of anomalous
diffusion processes, in which the classical (integer order) diffusion equations can not provide an accurate description
of such anomalous behaviors [32]. Time-fractional diffusion equations, with the order of the time derivative between
0 and 1, correspond to sub-diffusive models, in which, the mean square displacement of the diffusive particle is
proportional to tα , being α the order of the time derivative. In the case where α = 1, we recover the classical
diffusion equation, the case where it is assumed that the mean square displacement of a particle is proportional to
the time t [16,26–28].

Therefore, in this work we are also concerned with the numerical solution of the one-dimensional time-fractional
diffusion equation:

∂αu(x, t)

∂tα
= Dα

∂2u(x, t)

∂x2
+ f (x, t), t ∈ (0, T ], 0 < x < L , (3)

with initial condition:

u(x, 0) = g(x), (4)

and boundary conditions:

u(0, t) = u0, u(L , t) = uL , (5)

where we assume that Dα , u0 and uL are constants, the order of the fractional derivative satisfies 0 < α < 1, and the
fractional derivative is again given in the Caputo sense [6]. Note that Dα stands for a general diffusion coefficient
with dimensions [length]2/[time]α .

Finite difference methods are the most commonly found for the numerical solution of this kind of problems
(see for example [2–4,15,19–21,25,38–40]) although other numerical approaches have also appeared, such as, for
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example, finite element methods [35,37], meshless collocation methods [17] and collocation spectral methods [18].
Again, these methods are computationally demanding and they do not take into account the potential singularities
of the solution. Therefore, here we will use the method of lines (MOL) in combination with the ’hybrid’ method
for systems of ordinary differential equations.

The paper is organized in the followingway: in Sect. 2 we describe the numerical method for systems of fractional
ordinary differential equations and we present the error analysis. In Sect. 3 we present some numerical results, and
study the numerical solution of the time-fractional diffusion equation. We end with the main conclusions.

For details on the existence and uniqueness of solution for this type of equation please see [5,6,12,22–24].

2 A Hybrid Nonpolynomial Collocation Method for Fractional Ordinary Differential Systems

Let us first recall a well known result (see [6]) about the regularity properties of the solution of single order ordinary
differential equations of the form:

Dα y(t) = f (t, y(t)), t ∈ (0, T ], (6)

y(0) = y0, (7)

with α > 0.

Theorem 1 (Existence) Let K , g, α > 0 and y0 ∈ R. Define G := [0, g] × [y0 − K , y0 + K ] and let the function
f : G → R be continuous. Furthermore, define M := sup(x,z)∈G | f (x, z)| and

g∗ =
{

g

min{g, (K�(α + 1)/M)1/α}
i f M = 0

else.
(8)

Then, there exists a function y ∈ C[0, g∗] solving the initial value problem (6)–(7).

Theorem 2 (Uniqueness) Let K , g, α > 0 and y0 ∈ R. Define G := [0, g] × [y0 − K , y0 + K ] and let the
function f : G → R be continuous and fulfil a Lipschitz condition with respect to the second variable, that is,
| f (x, y1) − f (x, y2)| ≤ L|y1 − y2|, with some constant L > 0 independent of x, y1 and y2. Then, denoting g∗
as in previous Theorem (1), there exists a uniquely defined function y ∈ C[0, g∗] solving the initial value problem
(6)–(7).

Lemma 1 Assume that the solution y of (6)–(7) exists and is unique on [0, T ], for a certain T > 0. Let α = p

q
,

where p ≥ 1 and q ≥ 2 are two relatively prime integers and let the right-hand side function f to be written in the
form f (t, y(t)) = f (t1/q , y(t)), where f is analytic in a neighborhood of (0, y(0)), then the unique solution of the
problem (6)–(7) can be represented in terms of powers of t1/q:

y(t) =
∞∑

k=0

akt
k/q , t ∈ [0, r), (9)

where r < T and ak, k ≥ 0, are constants.

Remark 1 1. First, it should be noted that we assume α to be rational. If not, we can chose a close rational
approximation and solve for that.

2. Second, from the above Lemma it follows that for m ∈ N fixed, the solution of (6)–(7) can be written in the
form y(t) = y(1)(t) + y(2)(t), where y(1) ∈ Cm ([0, T ]), for a certain m ≥ 1, and y(2) is the nonsmooth part of
y.
Obviously, this result also holds if instead of a single differential equation, we have a system of multiple
equations.
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Also, remember that assuming that the right hand-side function f (t, y) is continuous on [0, T ] × R, then the
differential equation (6)–(7) is equivalent to the singular Volterra integral equation [6]:

y(t) = y0 + 1

�(α)

∫ t

0
(t − s)α−1 f (s, y(s)) ds, t ∈ (0, T ]. (10)

Based on the previous equivalence and Lemma 1, we present a numerical method for linear systems of ordinary
differential equations (1)–(2).

In order to approximate the solution of (1)–(2) we consider a nonuniformmesh on [0, T ], as in [1]. Given N ∈ N,

let i0 be an integer such that
(
N
i0

)m
α ≤ N and

(
N

i0−1

)m
α

> N and let N ′ = N − i0 + 1. The partition on [0, T ] is
defined through the meshpoints:

t0 = 0, ti =
(
i0 + i − 1

N

)m
α

T, i = 1, 2, . . . , N ′ − 1, (11)

and the N ′ subintervals are given by:

σ0 = [0, t1], σi = (ti , ti+1], i = 1, 2, . . . , N ′ − 1, (12)

with lengths τi = ti+1 − ti , i = 0, 1, . . . , N ′ − 1. Define also τ = max
{
τi , i = 0, 1, . . . , N ′ − 1

}
.

Note that the integer i0 satisfies the condition

N 1−α/m ≤ i0 ≤ N (N − 1)−α/m,

and from this inequality we can prove that there exists a positive constant c such that [1]

τi ≤ c(i + i0 − 2)
m−α

α N−m
α ≤ cN−1, i = 0, 1, . . . , N ′ − 1. (13)

Consider the space

Vα
m = span

{
t i+ jα, i, j ∈ N0, i + jα < m

}
= span

{
tνk , k = 1, . . . , �

}
, � = #Vα

m .

Taking Lemma 1 into account, if near the origin we approximate the solution of (1)–(2) with a function spanned
by elements of space Vα

m , then it will reflect the potential nonsmooth properties of the solution near the singularity.
Therefore, for each m ∈ N, we define the space

Smτ ([0, T ]) =
{
u ∈ C([0, T ]) : u

∣∣
σ0

∈ Vα
m

∣∣
σ0

, u
∣∣
σl

∈ Pm−1
∣∣
σl

, l = 1, 2, . . . , N ′ − 1
}

,

where Pm−1 is the space of polynomials of degree less than or equal to m − 1 and σl , l = 0, 1, ...., N ′ − 1, are
defined by (12).

The idea of the method is to approximate the solution of (1)–(2) by a function v such that v ∈ Smτ ([0, T ]). In
order to define v we proceed as follows.

On the first interval of the partition, σ0, we define � collocation points t0 j = c jτ0, j = 1, . . . , �, c j ∈ [0, 1],
and on the remaining intervals σl , l = 1, . . . , N ′ − 1, we consider m collocation points tl j = tl + c jτl , j =
1, . . . ,m, c j ∈ [0, 1]. Noting that each equation of system (1) can be written as

yi (t) = y0i + 1

�(α)

∫ t

0
(t − s)α−1

(
n∑

k=1

aik yk(s) + fi (s)

)

ds, (14)

we will then seek for a function v(t) = [v1(t) v2(t) . . . vn(t)]T such that vi ∈ Smτ ([0, T ]), i = 1, 2, . . . , n, that
satisfies

vi (t0 j ) = y0i + 1

�(α)

∫ t0 j

0
(t0 j − s)α−1

(
n∑

k=1

aikvk(s) + fi (s)

)

ds, j = 1, . . . , �, (15)

vi (tpj ) = y0 + 1

�(α)

∫ tpj

0
(tpj − s)α−1

(
n∑

k=1

aikvk(s) + fi (s)

)

ds,

p = 1, . . . , N ′ − 1, j = 1, . . . ,m. (16)
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In order to obtain approximations for each vi (t0 j ), i = 1, . . . , n, j = 1, . . . , �, we define the Lagrange functions,
L0 j

∣∣
σ0

∈ Vα
m

∣∣
σ0

, j = 1, . . . , �, such that

L0 j (t0k) = δ jk, k = 1, . . . , �. (17)

Then, we can write

L0 j (t) =
�∑

i=1

β j i t
νi ,

where, for each j = 1, . . . , �, the coefficients β j i may be obtained by solving the linear system (17).
It will be convenient to introduce the following projection operator Pτ : C([0, T ]) → Vα

m

∣
∣
σ0
, defined by (see [1]):

(Pτ g) (s) =
�∑

k=1

L0k(s)g(t0k), s ∈ σ0 = [0, τ0].

Hence, for t ∈ σ0, we use the following representation for vi ∈ Vα
m

∣
∣
σ0
, i = 1, . . . , n:

vi (t) =
�∑

k=1

vi (t0k)L0k(t). (18)

On the remaining subintervals of the partition, σ j , j = 1, . . . , N ′−1, each yi will be approximated by vi ∈ Pm−1:

vi (t) =
m∑

γ=1

L jγ (t)vi (t jγ ), t ∈ σ j , (19)

where L jγ , j = 1, . . . , N ′ − 1, γ = 1, . . . ,m, are the Lagrange polynomials associated with the collocations
points t jγ = t j + τ j cγ , defined by

L jγ (t) =
m∏

p=1
p 	=γ

t − t j p
t jγ − t j p

. (20)

We also define the operators Pj : C([0, T ]) → Pm−1 by

(
Pj g

)
(s) =

m∑

γ=1

L jγ g
(
t jγ

)
, s ∈ σ j , j = 1, ..., N ′ − 1. (21)

The values vi (t0k), k = 1, ..., � and vi (tlk), l = 1, ...N ′ − 1, k = 1, ...,m, with i = 1, . . . , n, are obtained by
imposing that the functions vi (t) at the collocation points satisfy the integral equations:

vi (t0 j ) = y0i + 1

�(α)

∫ t0 j

0
(t0 j − s)α−1

⎛

⎝
n∑

p=1

aip

�∑

γ=1

vp(t0γ )L0γ (s) + fi (s)

⎞

⎠ ds, j = 1, . . . , �,

vi (tlk) = y0i + 1

�(α)

∫ t1

0
(tlk − s)α−1

⎛

⎝
n∑

p=1

aip

�∑

γ=1

vp(t0γ )L0γ (s)

⎞

⎠ ds

+ 1

�(α)

l−1∑

j=1

∫ t j+1

t j
(tlk − s)α−1

⎛

⎝
n∑

p=1

aip

m∑

γ=1

L jγ (s)vp(t jγ )

⎞

⎠ ds

+ 1

�(α)

⎛

⎝
∫ tlk

tl
(tlk − s)α−1

⎛

⎝
n∑

p=1

aip

m∑

γ=1

L(k)
lγ (s)vp(tl + τckcγ )

⎞

⎠ ds +
∫ tlk

0
(tlk − s)α−1 fi (s)ds

⎞

⎠, (22)

l = 1, . . . , N ′ − 1, k = 1, . . . ,m, (23)



L. L. Ferrás et al.

where L(k)
lγ , l = 1, . . . , N ′ − 1, γ = 1, . . . ,m, are the Lagrange polynomials associated with the points tl + τl cγ ck

defined similarly to (20).
After solving (22) and (2), the approximate solution of system (1)–(2), v(t) = [vi (t)]ni=1 is given by:

vi (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�∑

k=1

vi (t0k)L0k(t), t ∈ σ0,

m∑

k=1

vi (t jk)L jk(t), t ∈ σ j , j = 1, . . . , N ′ − 1.

(24)

2.1 Convergence Analysis

In what follows, we present the convergence analysis of the hybrid method presented for ordinary fractional order
systems. In order to do that, we first introduce some notation and some useful lemmas.
For each vector x , and matrix A, we denote

‖x‖ = ‖x‖∞ = max
i

{|xi |} , ‖A‖ = ‖A‖∞ = max
i

⎧
⎨

⎩

∑

j

∣∣ai j
∣∣

⎫
⎬

⎭

and for f ∈ C([a, b]) we define the maximum norm of a continuous function defined by ‖ f ‖[a,b] = max
t∈[a,b] | f (t)|.

In the convergence analysis we shall need an auxiliary lemma from [1].

Theorem 3 Let L0k, k = 1, ..., �, be the Lagrange functions defined by (17) and σ0 = [0, t1] = [0, τ0]. There
exists a positive constant �0 such that

‖L0k‖σ0 ≤ �0, k = 1, . . . , �. (25)

Furthermore, given m ∈ N and f (t) = f1(t) + f2(t), where f1 ∈ Cm([0, T ]) and f2 ∈ V α
m , we have

‖ f − Pτ f ‖σ0
≤ c̄τm0

∥∥∥ f (m)
1

∥∥∥
σ0

, (26)

for some positive constant c̄.

We now provide an estimate for the error at the first subinterval of the mesh. For each j = 1, . . . , �, we analyse the
error at the collocation points t0 j :

e0 j =
[
e10 j e

2
0 j . . . en0 j

]T
,

where ei0 j = yi (t0 j ) − vi (t0 j ), i = 1, 2, . . . , n.

Lemma 2 Let y(t) = [yk(t)]nk=1 be the solution of (1)–(2), and v(t) = [vk(t)]nk=1 the approximate solution
obtained by the hybrid collocation method and defined by (24). On the subinterval σ0, we have

max
1≤k≤n

‖yk − vk‖σ0
≤ CN−m, (27)

where C is a positive constant that does not depend on N.

Proof Taking (14) and (15) into account, we have, for i = 1, . . . , n and j = 1, . . . , l,
∣∣∣ei0 j

∣∣∣ = ∣∣yi (t0 j ) − vi (t0, j )
∣∣ ≤ 1

�(α)

∫ t0 j

0

(
t0 j − s

)α−1
n∑

k=1

|aik | |yk(s) − vk(s)| ds

≤ 1

�(α)

n∑

k=1

|aik | ‖yk − vk‖σ0

∫ t0 j

0

(
t0 j − s

)α−1
ds

≤ tα0 j
�(α + 1)

n∑

k=1

|aik | ‖yk − vk‖σ0
(28)
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Let us now analyse ‖yk − vk‖σ0
, k = 1, . . . , n. First, note that

‖yk − vk‖σ0
≤ ‖yk − Pτ yk‖σ0

+ ‖Pτ yk − vk‖σ0
. (29)

Becausewe are assuming that yk , k = 1, . . . , n, is of the form yk(t) = y(1)
k (t)+y(2)

k (t), where y(1)
k (t) ∈ C (m)([0, T ])

and y(2)
k (t) ∈ Vα

m , from Lemma 3 we obtain

‖yk − Pτ yk‖σ0
≤ c1τ

m
0

∥∥∥
∥
dm

dtm
y(1)
k

∥∥∥
∥

σ0

. (30)

On the other hand, since vk ∈ Vα
m , then vk = Pτ vk , and therefore, from Lemma 3, we have

‖Pτ yk − vk‖σ0
≤ max

j=1,...,�

∥∥L0 j
∥∥

σ0

�∑

j=1

∣∣yk(t0 j ) − vk(t0 j )
∣∣

≤ �0

�∑

j=1

∣∣yk(t0 j ) − vk(t0 j )
∣∣ , (31)

with �0 given by (25). Using (31) and (30) in (29), we obtain

‖yk − vk‖σ0
≤ c1τ

m
0 Cd + �0

�∑

j=1

∣
∣yk(t0 j ) − vk(t0 j )

∣
∣ , k = 1, ..., n, (32)

where Cd is a positive constant defined by Cd = max
1≤k≤n

∥∥∥∥
dm

dtm
y(1)
k

∥∥∥∥
σ0

.

Substituting in (28), we have, for i = 1, . . . , n and j = 1, . . . , �,

∣∣∣ei0 j
∣∣∣ ≤ tα0 j

�(α + 1)

⎛

⎝c1Cdτ
m
0

n∑

k=1

|aik | + �0

n∑

k=1

|aik |
�∑

j=1

∣∣∣ek0 j
∣∣∣

⎞

⎠ .

Then, from the last inequality and from the fact that τ0 ≤ cN−1, where c is a positive constant that does not depend
on N (see [1]), we have

max
1≤i≤n

∣∣∣ei0 j
∣∣∣ ≤ C1N

−m + C2

�∑

j=1

max
1≤k≤n

∣∣∣ek0 j
∣∣∣ ,

where C1 and C2 are positive constants does not depend on N . Hence it follows

max
1≤ j≤�

max
1≤i≤n

∣∣∣ei0 j
∣∣∣ ≤ C1N

−m + C3 max
1≤ j≤�

max
1≤k≤n

∣∣∣ek0 j
∣∣∣ ,

where C3 = �C2.

Hence, for sufficiently large N , there exists a positive constant C4 such that

max
1≤ j≤�

max
1≤i≤n

∣∣∣ei0 j
∣∣∣ ≤ C4N

−m,

and therefore, from (32) we thus obtain

max
1≤k≤n

‖yk − vk‖σ0
≤ C5 N

−m,

where C5 is a positive constant does not depend on N , and the result is proved . ��
Let us now analyse the error at the remaining subintervals of the mesh.
For each j = 1, . . . ,m and k = 1, . . . , N ′ − 1, we analyse the error at the collocation points tk j :

ek j =
[
e1k j e

2
k j . . . enk j

]T
,

where eik j = yi (tk j ) − vi (tk j ), i = 1, 2, . . . , n.
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Lemma 3 Let y(t) = [yk(t)]nk=1 be the solution of (1)–(2), and v(t) = [vk(t)]nk=1 the approximate solution obtained
by the hybrid collocation method and defined by (24). On each subinterval σk , k = 1, . . . , N ′ − 1, we have

max
1≤i≤n

‖yi − vi‖σk
≤ CN−m, (33)

where C is a positive constant that does not depend on N.

Proof From (14) and (16) we have, for j = 1, . . . ,m, k = 1, . . . , N ′ − 1 and i = 1, . . . , n :

eik j = yi
(
tk j
) − vi

(
tk j
) = 1

�(α)

∫ t1

0
(tk j − s)α−1

n∑

l=1

ail (yl(s) − vl(s)) ds

+ 1

�(α)

k−1∑

γ=1

∫ tγ+1

tγ
(tk j − s)α−1

n∑

l=1

ail
(
yl(s) − Pγ (yl)(s) + Pγ (yl)(s) − vl(s)

)
ds +

+ 1

�(α)

∫ tk j

tk
(tk j − s)α−1

n∑

l=1

ail (yl(s) − Pk(yl)(s) + Pk(yl)(s) − vl(s)) ds,

where Pγ , γ = 1, ...N ′ − 1, is the interpolation operator defined by (21).
Since τi ≤ c N−1 (see (13)) we have, for k = 1, ..., N ′ − 1,
∫ tγ+1

tγ
(tk j − s)α−1ds ≤ c̄ τα(k − γ )α−1 ≤ c̄1 N

−α(k − γ )α−1, γ = 1, ..., k − 1,

∫ tk j

tk
(tk j − s)α−1ds ≤ c̄ τα ≤ c̄1 N

−α, j = 1, ...,m,

where c̄1 is a positive constant does not depend on N . On the other hand, since vl ∈ Pm−1 then Pγ (vl)(s) =
vl(s), s ∈ τσ , σ = 1, ..., N ′ − 1, and hence for s ∈ σγ , γ = 1, 2, ..., N ′ − 1 we have

Pσ (yl)(s) − vl(s) =
m∑

j=1

Lγ j (s)
(
yl(tγ j ) − vl(tγ j )

)
, σ = 1, ..., N ′ − 1.

Then, taking modulus and using the above bounds we obtain

∣∣
∣eik j

∣∣
∣ ≤ 1

�(α)

n∑

l=1

|ail | ‖yl − vl‖σ0

∫ t1

0
(tk j − s)α−1ds

+ 1

�(α)

n∑

l=1

|ail |
k−1∑

γ=1

∥∥yl − Pγ (yl)
∥∥

σγ

∫ tγ+1

tγ
(tk j − s)α−1ds

+ 1

�(α)

n∑

l=1

|ail | ‖yl − Pk(yl)‖σk

∫ tk j

tk
(tk j − s)α−1ds

+m�mc̄1
�(α)

N−α
n∑

l=1

|ail |
k−1∑

γ=1

(k − γ )α−1 max
p=1,...,m

∣∣
∣elγ p

∣∣
∣

+ m�mτα

�(α + 1)

n∑

l=1

|ail | max
p=1,...,m

∣∣∣elkp
∣∣∣ , (34)

where �m is the Lebesgue constant associated with the collocation parameters c1, ..., cm .
From Theorem 3 follows ‖yl − vl‖σ0

≤ C N−m , l = 1, . . . , n. Let us now investigate what happens with∥∥yl − Pγ (yl)
∥∥

σγ
, l = 1, . . . , n, γ = 1, . . . , N ′ − 1.
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From the classical interpolation theory and because, as mentioned earlier, τi ≤ c N−1, i = 1, . . . , N ′ − 1, we have

∥∥yl − Pγ (yl)
∥∥

σγ
≤ d1τ

m
γ max

t∈σγ

∣∣∣∣
dm y(t)

dtm

∣∣∣∣ ≤ d2τ
m
γ max

t∈σγ

∣∣tα−m
∣∣ ≤ d2τ

m
γ tα−m

γ = d2τ
m
γ

(
i0 + γ − 1

N

)m
α

(α−m)

,

where we have also used the argument in [31] that says that if a certain function f for which f (t) = f1(t) + f2(t),
where f1 ∈ Cm([0, T ]) and f2 ∈ V α

m , then
∣
∣ f (m)(t)

∣
∣ ≤ c tα−m for t ≥ t1.

Using estimate (13) stating that τi ≤ c (i + i0 − 2)
m
α

−1N−m
α , we easily achieve the estimate

∥∥yl − Pγ (yl)
∥∥

σγ
≤ c̄2 N

−m, γ = 1, ..., N ′ − 1, (35)

for some positive constant c̄2 that does not depend on N .
Using the results (2) and (35) in (34), for N sufficiently large, follows

max
i=1,...,n

max
p=1,...,m

∣∣∣eikp
∣∣∣ ≤ C̄2N

−m + C̄3N
−α

k−1∑

γ=1

(k − γ )α−1 max
i=1,...,n

max
p=1,...,m

∣∣∣elγ p
∣∣∣ , (36)

where C̄2 and C̄3 are positive constants. Applying a standard weakly singular discrete Gronwall inequality, leads
to the following result

max
i=1,...,n

max
p=1,...,m

∣∣∣eikp
∣∣∣ ≤ C̄4 N

−m . (37)

On the other hand, using the interpolation error (35) and definition of the interpolation operator Pγ we obtain, for
γ = 1, . . . , N ′ − 1,

max
k=1,...,n

‖yk − vk‖σγ
≤ c̄2N

−m + m�m max
k=1,...,n

max
j=1,...,m

∣∣∣ekγ j

∣∣∣ , (38)

and therefore, from (37) we thus obtain for k = 1, . . . , n

‖yk − vk‖σγ
≤ C̄5N

−m, γ = 1, ..., N ′, (39)

where C̄5 is a positive constant does not depend on N , and the result is proved.
��

3 Numerical Results

3.1 Fractional Differential Equations

In order to illustrate the feasibility of the method, some examples for which the analytical solution is known are
presented together with a comparison with the hereafter designated by nonpolynomial method presented in [12].
The numerical error is measured by determining the maximum error at the mesh points t j :

ετ = max
i=1,...,n

max
p=1,...,N ′

∣∣yi (tp) − vi (tp)
∣∣ (40)

where vi is the approximate solution, for the i-th spatial function, obtained by the hybrid method.

Example 1
{
D

1
2 y(t) = 1

2 y(t), t > 0
y(0) = 1,

whose analytical solution is y(t) = E1/2(0.5
√
t), and
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Example 2
{
Dα y1(t) = y2(t)

Dα y2(t) = −y1(t) − y2(t) + tα+1 + π csc(πα)t1−α

�(−α−1)�(2−α)
+ π t csc(πα)

�(−α−1) ,
(41)

y1(0) = 0, y2(0) = 0. The analytical solution is given by y1(t) = t1+α and y2(t) = πα(α+1)t csc(πα)/�(1−α).

For the numerical solution of Example 1 we consider the spaces Vα
2 , Vα

3 , Vα
4 , Vα

5 , Vα
6 .

From Table 1 we observe that the nonpolynomial method provides a better convergence rate for smaller stepsizes,
but, the speed-up (SU—ratio between the nonpolynomial and hybrid computational times) obtained with the hybrid
method is really high (upt to 450×). Note also that the maximum and minimum condition number of the matrices
involved (κ(A) = ‖A‖∞

∥∥A−1
∥∥∞) obtained for each simulation show that the hybrid method provides better

conditioned matrices. Although the κ(A)max looks similar for both methods, it should be remarked that right after
the first time-step we obtain the value of κ(A)min for the hybrid method, while for the nonpolynomial method the
κ(A) is slowly decreasing along time-steps. For m = 4 it was impossible to obtain convergence for certain values
of N in the nonpolynomial method. The number of significant digits lost along the iterative procedure lead to badly
conditioned matrices. For the hybrid method that problem could be solved by increasing the number of significant
digits (Table 2).

We were able to perform computations up to m = 6 by using the hybrid method. The simulations were fast and
the new method proved to be robust.

Table 1 Hybrid and nonpolynomial collocation methods for Example 1 with three different values of m: values of the maximum of
the absolute errors at the mesh points, the experimental orders of convergence p and speed-up (SU)

Stepsizes Hybrid (m = 2) Nonpolynomial (m = 2)

N N ′ ετ p SU κ(A)min κ(A)max ετ p κ(A)min κ(A)max

10 5 1.47 · 10−3 – 10.2 1.19 16.9 5.70 · 10−5 – 4.92 26.87

20 11 4.45 · 10−4 1.72 52.5 1.09 9.58 1.42 · 10−5 2.00 3.56 16.84

40 25 1.21 · 10−4 1.88 114.9 1.04 5.33 3.56 · 10−6 2.00 2.70 10.71

80 54 3.15 · 10−5 1.94 175.7 1.02 3.69 8.90 · 10−7 2.00 2.14 7.01

160 116 8.05 · 10−6 1.97 156.5 1.01 2.67 2.23 · 10−7 2.00 1.78 4.78

Stepsizes Hybrid (m = 3) Nonpolynomial (m = 3)

N N’ ετ p SU κ(A)min κ(A)max ετ p κ(A)min κ(A)max

10 4 5.01 · 10−4 – 39.9 1.47 135.5 1.50 · 10−9 – 3.36 115.52

20 8 7.65 · 10−5 2.71 270.3 1.23 88.04 1.50 · 10−10 3.33 2.44 59.97

40 19 1.05 · 10−5 2.86 363.0 1.10 35.42 1.60 · 10−11 3.23 1.93 32.45

80 42 1.39 · 10−6 2.92 450.7 1.05 19.43 1.80 · 10−12 3.16 1.62 18.37

160 92 1.78 · 10−7 2.96 406.4 1.02 11.15 2.07 · 10−13 3.12 1.42 10.93

Stepsizes Hybrid (m = 4) Nonpolynomial (m = 4)

N N ′ ετ p SU κ(A)min κ(A)max ετ p κ(A)min κ(A)max

10 3 2.23 · 10−4 – 67.0 2.14 426.1 3.83 · 10−13 – 1.48 253.57

20 7 1.77 · 10−5 3.65 122.2 1.38 148.5 1.64 · 10−14 4.54 1.31 129.68

40 15 1.23 · 10−6 3.84 – 1.18 85.18 – – – –

80 34 8.14 · 10−8 3.92 – 1.08 41.44 – – – –

160 76 5.23 · 10−9 3.96 – 1.04 21.26 – – – –
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Table 2 Hybrid collocation method for Example 1 with two different values of m: values of the maximum of the absolute errors at the
mesh points and the experimental orders of convergence p

Stepsizes Hybrid (m = 5)

N N ′ ετ p κ(A)min κ(A)max

10 3 2.13 · 10−5 – 3.35 1.05 · 106
20 6 8.51 · 10−7 4.65 1.85 5.36 · 105
40 13 2.96 · 10−8 4.85 1.37 2.63 · 105
80 29 9.78 · 10−10 4.92 1.17 1.23 · 105
160 64 3.16 · 10−11 4.95 1.08 6.10 · 104
Stepsizes Hybrid (m = 6)

N N ′ ετ p κ(A)min κ(A)max

10 2 1.38 · 10−5 – 128.46 4.81 · 108
20 5 3.72 · 10−7 5.21 14.95 1.07 · 108
40 11 6.66 · 10−9 5.80 2.48 4.79 · 107
80 25 1.16 · 10−10 5.84 1.63 2.05 · 107

Table 3 Error, speed-up (SU) and convergence order (p) obtained for the numerical solution of Example 2 using the Hybrid and
nonpolynomial collocation methods, for α = 1/4, 1/2, 2/3

Stepsizes Hybrid (α = 1/4) Hybrid (α = 1/2) Hybrid (α = 2/3)

N N ′ ετ p N ′ ετ p SU N ′ ετ p SU

64 15 2.11 · 10−6 3.70 26 1.94 · 10−7 3.86 56.6 32 5.53 · 10−8 3.90 142.2

128 34 1.45 · 10−7 3.86 59 1.27 · 10−8 3.93 51.0 71 3.58 · 10−9 3.95 162.4

256 75 9.43 · 10−9 3.94 128 8.13 · 10−10 3.97 52.2 155 2.28 · 10−10 3.97 170.2

512 166 6.00 · 10−10 3.97 278 5.14 · 10−11 3.98 60.0 331 1.44 · 10−11 3.99 173.4

Next we consider the second example where a systems of equations is considered.
The numerical method was used to solve Example 2 with m = 4 by considering α = 1/4, 1/2, 2/3. The error

and the experimental convergence order are listed in Table 3. As expected we have obtained an optimal convergence
order that is independent of α.

We obtained speed-ups that go up to 173×. Note that SU is not provided for the case α = 1/4 because the
simulation time for the nonpolynomial method became really high.

Now that we have shown the feasibility of using the hybrid method for the solution of systems of ordinary
fractional differential equations, we will analise its application to time-fractional diffusion equations.

3.2 Case Study: The Time-Fractional Diffusion Equation

We will now apply the hybrid method in the numerical solution of the time fractional diffusion equation given by
Eq. (3) together with the initial and boundary conditions given by Eqs. (4) and (5). In order to do that, we use the
method of lines to convert (3)–(5) into a system of fractional ordinary differential equations.
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We consider a uniform space mesh on the interval [0, L], defined by the gridpoints xi = ih, i = 0, . . . , n, where
h = L

n , and we approximate the space derivative by the second order finite difference:

∂2u(xi , t)

∂x2
= u(xi+1, t) − 2u(xi , t) + u(xi−1, t)

h2
+ O(h2), i = 1, . . . , n − 1. (42)

Neglecting the O(h2) terms, we then obtain the following system of n − 1 fractional differential equations:

∂α yi (t)

∂tα
= Dα

yi+1(t) − 2yi (t) + yi−1(t)

h2
+ f (xi , t), i = 1, . . . , n − 1, (43)

where yi (t) ≈ u(xi , t).
Note that from the boundary conditions (5), we have y0(t) = u0, yn(t) = uL and from the initial condition (4), we
obtain:

yi (0) = g(xi ), i = 1, . . . , n − 1, (44)

and therefore, the solution of the n − 1 initial value problems (43)–(44) may be determined by using any initial
value problem solver. The problem to solve may be outlined as follows.

For each n ∈ N and t ≥ 0 we define

y(t) = [
y0(t) y1(t) y2(t) . . . yn−1(t) yn(t)

] = [
u0 y1(t) y2(t) . . . yn−1(t) uL

]
.

Thus, the system (43), (44) can be rewritten as follows
⎧
⎨

⎩

∂α yi (t)

∂tα
= Fi (t, y(t)), i = 1, . . . , n − 1,

yi (0) = g(xi ), i = 1, . . . , n − 1,
(45)

where each function Fi is defined by

Fi (t, y(t)) = Dα

yi+1(t) − 2yi (t) + yi−1(t)

h2
+ f (xi , t), i = 1, . . . , n − 1, t > 0. (46)

Hence, we end up with a system of (n − 1) fractional ordinary differential equations which is solved by using the
hybrid collocation method presented before.

In order to illustrate the feasibility and performance of the method we will now compare the results obtained
with this method with the ones obtained with the method in [14]. The numerical error is measured by determining
the maximum error at the mesh points (xi , t j ):

εh,τ = max
i=1,...,n, j=1,...,N ′

∣∣u(xi , t j ) − yi
(
t j
)∣∣ , n = L

h
(47)

where yi is the numerical solution obtained for the i-th spatial function and u(xi , t j ) is the exact solution evaluated
at points (xi , t j ). We consider the following examples:

Example 3
⎧
⎪⎪⎨

⎪⎪⎩

∂αu(x, t)

∂tα
= ∂2u(x, t)

∂x2
+ �(4 + α)

6
x4(2 − x)t3 − 4x2(6 − 5x)t3+α, t > 0, 0 ≤ x ≤ 2,

u(x, 0) = 0,
u(0, t) = u(2, t) = 0,

whose analytical solution is u(x, t) = x4(2 − x)t3+α .

Example 4
⎧
⎪⎪⎨

⎪⎪⎩

∂αu(x, t)

∂tα
= ∂2u(x, t)

∂x2
+ 4tαx2(5x − 3) + π(x − 1)x4 csc(πα)

�(−α)
, t > 0, 0 ≤ x ≤ 1,

u(x, 0) = 0,
u(0, t) = u(1, t) = 0,

whose analytical solution is u(x, t) = x4(1 − x)tα .
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Table 4 Hybrid and nonpolynomial collocation methods on the space V α
2 for Example 3: values of the maximum of the absolute errors

at the mesh points and experimental orders of convergence

Stepsizes Hybrid (α = 2/3)

N N ′ h εh,τ p = q SU κ(A)min κ(A)max dim(A)

8 4 0.125 3.17 · 10−1 – 45.4 86.7 1.14 · 10+4 75/30

16 10 0.0625 9.59 · 10−2 1.73 42.8 151.7 2.60 · 10+4 155/62

32 22 0.0313 2.53 · 10−2 1.92 247.4 281.1 6.57 · 10+4 315/126

64 48 0.0156 6.21 · 10−3 2.02 142.1 494.8 1.73 · 10+5 635/254

Nonpolynomial (α = 2/3)

N εh,τ p = q κ(A)min

8 2.61 · 10−2 1.97 2.93 · 10+2

16 6.54 · 10−3 2.00 8.19 · 10+2

32 1.64 · 10−3 2.00 2.20 · 10+3

64 4.09 · 10−4 2.00 6.64 · 10+3

Stepsizes Hybrid (α = 1/2)

N N ′ h εh,τ p = q SU κ(A)min κ(A)max dim(A)

8 4 0.125 4.16 · 10−1 – 30.1 101.2 744.3 60/30

16 8 0.0625 1.39 · 10−1 1.58 32.2 251.1 2.36 · 10+2 124/62

32 19 0.0313 3.95 · 10−2 1.81 54.5 529.1 5.88 · 10+3 252/126

64 42 0.0156 1.03 · 10−2 1.94 167.8 1144 1.67 · 10+4 508/254

Nonpolynomial (α = 1/2)

N εh,τ p = q κ(A)min

8 2.92 · 10−2 1.99 2.27 · 10+2

16 7.31 · 10−3 2.00 6.84 · 10+3

32 1.83 · 10−3 2.00 2.04 · 10+3

64 4.57 · 10−4 2.00 6.08 · 10+3

Stepsizes Hybrid (α = 1/3)

N N ′ h εh,τ p = q SU κ(A)min κ(A)max dim(A)

8 3 0.125 5.75 · 10−1 – 116 125.1 3.26 · 10+6 90/30

16 6 0.0625 2.21 · 10−1 1.38 173 372.6 1.10 · 10+7 186/62

32 15 0.0313 6.90 · 10−2 1.68 629.4 934.0 2.72 · 10+7 378/126

64 32 0.0156 1.92 · 10−2 1.85 198.2 2699 8.88 · 10+7 762/254

128 71 0.0078 5.00 · 10−3 1.94 - 7278 2.86 · 10+8 1530/510

Nonpolynomial (α = 1/3)

N εh,τ p = q κ(A)min

8 3.18 · 10−2 1.99 5.81 · 10+3

16 8.00 · 10−3 1.99 1.66 · 10+4

32 2.00 · 10−3 2.00 5.07 · 10+4

64 5.00 · 10−4 2.00 1.67 · 10+5
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The numerical results obtained for Example 3 on the spaces V α
2,τ and V α

3,τ are now presented.
For each case, the estimates for the time and space rates of convergence were computed and denoted by p and

q, respectively.
In Table 4we show the numerical results obtained by the described hybridmethod and the nonpolynomial method

on the space V α
2 considering three different values of α. As expected we have determined experimentally p ∼ 2

(not dependent on the order of the fractional derivative) and q ∼ 2.
We also present the speed-up, and the maximum and minimum condition number (κ(A) = ‖A‖∞

∥∥A−1
∥∥∞)

obtained for each simulation.We observe that the hybrid method allows one to obtain the same order of convergence
with a less computational effort, with the speed-up increasing with the mesh refinement. Note that in some cases
we managed to obtain speed-ups of 173x. We may also conclude that SU increases with the dimension of the space
V α
m . Regarding the condition number, we have that κ(A)max is the same for both the methods, and, this value is

obtained only for the first iteration in time. For the hybrid method the value of κ(A) for the remaining iterations
remains constant, and is given by κ(A)min . For the nonpolynomial method the κ(A) decreases along iterations,
being its minimum value achieved only in the last iteration. Note the difference of the value of κ(A)min in the two
methods, being the condition number really low for the hybrid method. This makes this method more robust, since
less significant digits will be lost along the numerical procedure. We also present in this table the dimension of
the matrices obtained for the first and remaining time intervals (dim(A)). This is denoted by a/b with a × a the
dimension of the matrix for the first time interval and b× b the dimension of the matrix for the remaining intervals
(for the hybrid method). It should be remarked that dim(A) = a × a for the nonpolynomial method (in all time
intervals), making this method significantly slower when compared to hybrid method.

We have tested higher orders of convergence by considering the space V 1/2
3 for Example 3. The results are shown

in Table 5.
It is expected that as we refine further the mesh in time, the influence of the singularity at t = 0 may be felt in

other intervals adjacent to the first interval, where the polynomials may not capture well the behavior of the solution.
Therefore, we have considered a new example (Example 4) where the singularity is stronger than in the previous
case (Example 3).

Table 5 Hybrid and nonpolynomial collocation methods on the space V 1/2
3 for Example 3: values of the maximum of the absolute

errors at the mesh points and the experimental order of convergence p related with the stepsizes τ = (h)2/3 (m=3), and h

Stepsizes Hybrid (α = 1/2) − V 1/2
3

N N ′ h εh,τ p

16 6 0.0156 2.13 · 10−2 –

25 11 0.0078 6.58 · 10−3 2.55

40 19 0.0039 1.78 · 10−3 2.83

64 32 0.00195 4.60 · 10−4 2.93

Table 6 Hybrid collocation method on the space V 1/3
1 for Example 4: values of the maximum of the absolute errors at the mesh points

and the experimental orders of convergence p and q related with the stepsizes τ = (h)2 and h

Stepsizes Space V 1/3
1

N N ′ h εh,τ p q

16 10 0.1 2.25 · 102 – –

64 48 0.0208 6.15 · 10−3 0.93 1.87

256 216 0.0046 1.55 · 10−3 1.00 2.00

512 448 0.0022 4.20 · 10−4 1.00 2.00
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Table 7 Hybrid collocation method on the spaces V 1/3
2 , V 1/4

2 and V 1/6
2 for Example 4: values of the maximum of the absolute errors

at the mesh points and the experimental orders of convergence p and q related with the stepsizes τ and h

Stepsizes Space V 1/3
2 Space V 1/4

2 Space V 1/6
2

N N ′
1/3 N ′

1/4 N ′
1/6 h εh,τ p = q εh,τ p = q εh,τ p = q

8 3 2 2 0.125 5.46 · 10−3 – 5.49 · 10−3 – 4.93 · 10−3 –

16 6 5 4 0.063 1.40 · 10−3 2.02 1.40 · 10−3 2.03 1.17 · 10−3 2.07

32 15 12 9 0.031 3.55 · 10−4 2.01 3.55 · 10−4 2.02 2.85 · 10−4 2.04

64 32 26 19 0.016 8.93 · 10−5 2.00 9.00 · 10−5 2.00 7.04 · 10−5 2.02

We have considered the spaces V α
1 and V α

2 with α = 1/3, 1/4, 1/6.
Table 6 shows the absolute errors at the mesh points and convergence rates for both time and space. It can be seen

that as we increase the time mesh refinement the method can still deal with the singularity, presenting us with the
expected convergence rates. In order to further validate the numerical method we have also considered the spaces
V 1/3
2 , V 1/4

2 and V 1/6
2 . These results are shown in Table 7. Again, the hybrid method could accurately deal with the

low values of α, providing the expected convergence rates. We observe that the singularity could not affect other
intervals besides the first, at least for the examples considered in this work.

4 Conclusions

In this work we have derived a hybrid collocation method that can deal with both smooth and nonsmooth solutions
of systems of fractional differential equations. In this hybrid collocation method we combine a nonpolynomial
collocation method used near the singular point, the origin, and a graded piecewise polynomial collocation method
used for the rest of the domain. We prove the optimal order of global convergence, not depending on α, for this
method applied to a system of fractional differential equations of order α, 0 < α < 1. Several numerical examples
are presented to demonstrate the effectiveness of the proposed method and to compare it with the nonpolynomial
collocation method. We conclude that the proposed method is much less time consuming than the nonpolynomial
collocation method in [12,14]. The numerical technique can also be used to solve the time fractional diffusion
equation, using the method of lines. For this type of fractional partial differential equation the numerical results
suggest that we obtain an optimal order of convergence in time corresponding to the order of the time integrator
solver and second order convergence in space, which corresponds to the order of the discretization of the space
derivative.
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