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A B S T R A C T

Industrialization increases use of dyes due to its high demand in paper, cosmetic, textile, leather and food
industries. This in turn would increase wastewater generation from dye industrial activities. Various dyes and its
structural compounds present in dye industrial wastewater have harmful effects on plants, animals and humans.
Synthetic dyes are more resistant than natural dyes to physical and chemical methods for remediation which
makes them more difficult to get decolorize. Microbial degradation has been researched and reviewed largely for
quicker dye degradation. Genetically engineered microorganisms (GEMs) play important role in achieving
complete dye degradation. This paper provides scientific and technical information about dyes & dye inter-
mediates and biodegradation of azo dye. It also compiles information about factors affecting dye(s) biode-
gradation, role of genetically modified organisms (GMOs) in process of dye(s) degradation and perspectives in
this field of research.

1. Introduction

Dyes are an important source in various industries such as textile,
leather, paint, food, cosmetic and paper industries. There are approxi-
mately twenty-five types of dye groups available based on their

chemical structure of chromophore (Sudha et al., 2014; Benkhaya et al.,
2020). More than thousand dyes have been classified as textile dyes
which are used to color variety of fabrics (Sponza, 2006; Abe et al.,
2019). Dye intermediates are precursors of dyes. They can be obtained
from raw constituents, such as naphthalene and benzene, with an aid of
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various chemical reactions (Gregory, 2000; Guo et al., 2018).
Disposal of municipal- and other industrial- effluents into water

bodies cause water pollution (Kunz et al., 2002; Varjani and Upasani,
2017b). Environment is adversely affected by pollution which may
cause indirect or direct health risks to all life forms on the earth
(Varjani, 2017; Bencheqroun et al., 2019). Dyes can be classified on the
base of their structure and application. Dyes have a great solubilizing
capability in water, which makes it difficult to be removed by tradi-
tional methods (Dong et al., 2019; Lellis et al., 2019). Textile dye
contains colors, which causes artistic damage as well as stops diffusion
of light in the water which leads to decrease in dissolved oxygen level
and affects photosynthesis rate of aquatic life (Ajaz et al., 2020).

Various methods can be used to remove dyes and other pollutants
from industrial effluent such as physico-chemical, biological, chemical
and physical (Xu et al., 2007; Cao et al., 2019; Varjani and Upasani,
2019b; Nakkeeran et al., 2020) Biological treatment has various ad-
vantages such as, it is a simple, cheap, environmental friendly process.
Also large number of microorganisms are available which are easy to
maintain and also require low preparation (Crini and Lichtfouse, 2018).
Apart from these dye degradation techniques periphyton biofilm or
periphytic biofilm system can be also used for degradation of dyes (Li
and Bishop 2004; Shabbir et al., 2017a; Shabbir et al., 2017b; Pandey
and Bergey, 2018; Dias et al., 2019; Shabbir et al., 2020). Among
various activities of dye industries, dye manufacturing is the main
source of environmental pollution due to release of hazardous dye in
water bodies. Numerous microorganisms such as algae, yeast, bacteria,
and fungi possess ability to mineralize and/or decolorize various dyes
(Roy et al., 2018; Tochhawng et al., 2019). Treatment of dye waste-
water can be performed using pure culture or mixed microbial culture.
Majorly mixed microbial culture has been reported to achieve efficient
dye degradation due to synergistic metabolic actions (Kalyani et al.,
2009; Mandal et al., 2010).

Genetic engineering has made a significant revolution in the field of
bioremediation (Varjani et al., 2017; Kumar et al., 2020). Removal of
acid red has been reported through the successful manipulation of
microorganism using genetically engineering in treatment system (Jin
et al., 2008). Factors like pH, temperature, structure of dye, soluble
salts, heavy metals, nutrients, etc., affect the degradation of dye (Al-
Amrani et al., 2014). There are various reports available which shows
degradation of different dyes using microorganisms (Mane et al., 2008;
Varjani and Upasani, 2016; Kiayi et al., 2019; Li et al., 2019; Pratiwi
et al., 2019).

Present review intends to expand biodegradation scope of dyes. It
includes types of dyes, dye intermediates and impact of dyes. It also
narrates types of dye degradation techniques and through light on
factors affecting biodegradation of dyes. Direct Black 38 is majorly used
azo dye, hence microbial degradation pathway for Direct Black 38 has
been discussed. It also provides an overview about role of genetically
modified organisms (GMOs) in dye(s) biodegradation.

2. Types of dyes

There are more than three thousand azo dyes among which
Sandolan Yellow, Maxilon Blue GRL and Astrazon Red GTLN are
broadly applied in leather, textile, paper, food coloring and cosmetic
manufacture industries (Sudha et al., 2014). From centuries fabric dyes
have been used to color fabrics. More than thousand dyes are classified
as textile dyes which are used to color variety of different fabrics.
Nowadays most of clothes are colored with manmade or synthetic dyes.
Dyes contain at least one chromophore and can absorb light in visible
spectrum (400–700 nm).

Classification of dyes are carried out on the basis of their structure
and application. Azo dye, nitro dye, phthalein dye, Triphenyl methane
dye, indigoid dye and anthraquinone dye are classified on the basis of
their structure. Whereas, acid dye, basic dye, direct dye, ingrain dye,
disperse dye, moderate dye, vat dye and reactive dyes are classified on

the base of their application. In this paper azo- and anthraquinone- dyes
have been explained in detail.

2.1. Azo dyes

Azo dyes contain azo bond (–N]N–) and belong to class of het-
erocyclic and aromatic compounds, they have been reported as caci-
nogenic compounds (Sen et al., 2016; Yamjala et al., 2016). Maximum
azo dyes are synthesized by diazotization of an aromatic primary amine
and followed by coupling with one or more electron rich nucleophiles
(hydroxy and amino). Several other methods are also available for
synthesis of azo dyes such as oxidation of primary amines by lead tetra-
acetate or permanganate potassium, reduction of nitroso compounds by
AlLiH4, condonation of quinone and hydrazine, etc. (Benkhaya et al.,
2020). These dyes are recorded for industrial applications and only azo
dye forms 60% ratio as compared to all other types of dyes (Shah, 2014;
Iark et al., 2019). Azo dyes are group of food and drug administration
(FDA) certified colorants which make them safe for use in foods, cos-
metics and drugs (Chung, 2016). Examples of azo dyes are Acid orange
5, Acid red 88, Methyl orange, Congo red and Direct Black 38.

2.2. Anthraquinone dyes

Second most widely used dyes after azo dyes are anthraquinone
dyes, due to their good dyeing performance, easy accessibility and low
price they are preferred for industrial processes. However they are
highly toxic to humans and microorganisms than azo dyes.
Anthraquinone dyes contain anthraquinone chromophore groups which
includes benzene ring with two carbonyl group on both sides. They
contain both stable as well as complex structure. Color of the dye may
be influenced by different effects of substituents such as electron ac-
cepting and electron donating substituents. Common natural red col-
orants comprise presence of anthraquinones which are highly used in
textile industries (Shahid et al., 2019). Anthraquinone dyes have been
reported as the oldest dyes because they have been found thousands
years back and were used in wrapping mummies. Naturally occurring
anthraquinone establish the major group of natural quinoids. Several
scale insects and plant roots are responsible for production of natural
anthraquinones. Plants such as chai root, madder and Indian mulberry
(from Rubiaceae family) and scale insects like lac, kermes and cochineal
produce beautiful color palettes of red hues on different types of fibre.
Color of palette is dependent on the metallic salt used for the mordant
with limited color range of purple, brown and orange. Anthraquenone
dyes have been divided into four categories: i) Heterocyclic Anthra-
quinone dyes, ii) Heterocyclic anthrone dyes, iii) Anthraquinone deri-
vations, vi) Fused ring anthrone dyes (Li et al., 2019). Examples of
Anthraquinone dyes are C.I. Reactive Blue 19, Alizarin and C.I. Acid
Blue 45.

3. Intermediates of dyes

Conversion of commercial dyes with simple transformation from
compounds prepared from the coal tar elements with the use of dif-
ferent chemical reactions are known as intermediates. Sabnis (2017),
have reported dye intermediates as the raw materials used in the
synthesis of organic dyes/manufacturing dye stuff. They are nearly
colorless and vary in the complexity. Three types of reactions used for
the production of intermediates of dyes: a) Electrophilic substitution, b)
Nucleophilic substitution and c) Unit processes (Sabnis, 2017; Yu et al.,
2019)

3.1. Electrophilic substitution

This reaction is used to give tetrahedral carbon atom as an inter-
mediate, in this the initial attack of an electrophile E+ is involved by
aromatic system. However, for final product, loss of Y+ (usually
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proton) from intermediate is necessary. Mono-substitution products can
be achieved by attack at an unsubstituted benzene ring. In this reaction
three possible sites are available for attack (Ortho, Para and Meta po-
sition), when benzene ring contained a group during electrophilic at-
tack (Gregory, 2000).

3.2. Nucleophilic substitution

Nucleophilic reagent has an individual electron pair. They are either
a neutral particle or a charged particle e.g. ammonia. This reaction
includes group replacement which is activated by other substitutions
within aromatic nucleus (Sabnis, 2017).

3.3. Unit processes

Unit process can be defined as production stage which requires
chemical reactions. Dyes and dye intermediates are produced using a
reactor followed by filtration. Then they are dried and mixed with other
additives for final product manufacturing. The synthesis involves many
unit processes like reduction, oxidation, nitration, sulfonation, hydro-
xylation, amination, alkylation, halogenation, hydrolysis, condensa-
tion, alkoxylation, esterification, carboxylation, acylation, phosgena-
tion, diazotization and coupling. In this section we have discussed few
unit processes (Gregory, 2000; Freeman and Mock, 2007; Sabnis,
2016).

3.3.1. Oxidation
Oxidation is the process which involves introduction of oxygen or

removal of hydrogen from a molecule, mostly arises at an early stage of
synthesis. Highly substituted particles are less responsive to oxidation
(Gregory, 2000; Huang et al., 2019). Conversion of phthalic anhydride
from naphthalene can be done by oxidation reaction with the use of hot
V2O5 or KMnO4. e.g. Hypochlorite oxidation is the production of an-
thranilic acid by Hofmann process (Gregory, 2000; Freeman and Mock,
2007).

3.3.2. Reduction
In reduction process conversion of compounds into an arylene dia-

mine or arylamine from an aromatic dinitro or nitro takes place.
Reduction processes such as sulphide reduction, catalytic hydrogena-
tion and iron reduction are widely used in industrial production of dyes.
eg. In preparation of indoles and pyrazolones, arylhydrazines have been
used as intermediates (Gregory, 2000).

3.3.3. Nitration
Nitration is the process which introduce one or more nitro groups

(serve as chromophores) into aromatic ring system and they are meta-
directing groups. Nitration reaction involves chemical agents sus as
Nitric acid (HNO3). Nitration is frequently directed by using mixed acid
or nitrating mixture which is a combination of sulphuric acid (H2SO4)
and nitric acid (HNO3) (Freeman and Mock, 2007).

4. Impact of dyes and dye intermediates

Approximately from all color additives 50% azo dyes are extensively
used as coloring substances in cosmetic, drug and food industries. This
increases concern related to health and safety. Global usage of azo dye
as food additive is being regulated (Jiang et al., 2020). Azo dye toxicity
is based on benzidine and its counterpart like dimethoxy- and dimethyl-
benzidine. It may show mutagenic effect on monkeys, humans, dogs,
and rodents which lead to disease like cancer (Suryavathi et al., 2005;
Bencheqroun et al., 2019). Several dyes are reported to have adverse
effect on ecosystem as described in table 1. Dye industrial activity ne-
gatively affects human health and environmental condition through
large amount of waste discharged into open water sources (Chung,
2016; Bencheqroun et al., 2019). Use of azo dye shows undesirable

effect in soil microbial populations and affects plant growth and ger-
mination (Lellis et al., 2019). De Jong et al. (2016), have used Hydra
attenuata as a model to study ecotoxicological impact of mix pollutants
in marine environment. They have reported that presence of Disperse
Red 1 into fresh water affects biological functions, morphology, neu-
rotransmitter distribution and feeding behavior of Hydra attenuata.
Hydra attenuata contain antioxidant defense mechanism but at high
concentration of dye morphological healthy appearance of this or-
ganism was affected, as result asexual reproduction was reduced and
feeding behavior was also inhibited (De Jong et al., 2016).

5. Degradation of dyes

Complexity of dye structure (crystal ponceau 6R (502.4 g/mol
molecular weight), reactive green 19 (1418.94 g/mol molecular
weight), remazol red (560.5 g/mol molecular weight), Direct Blue 71
(1029.87 g/mol molecular weight)) make its degradation difficult (Ajaz
et al., 2020). Removal of dye industry effluent without proper treat-
ment is harmful for environment and human health (Oon et al., 2020).
Several methods are available to treat dye effluent(s). Physical, che-
mical and biological treatment ((either individually or in combination)
have been reported to be widely used for degradation of dyes (Lua
et al., 2019; Lan et al., 2019).

5.1. Physico-chemical degradation:

Physico-Chemical degradation is a combination of chemical and
physical techniques (Kumar et al., 2020). Physico-chemical treatment is
the process in which physical changes are constantly present, while
chemical changes in the process at different phases may or may not take
place (Karimifard and Alavi Moghaddam, 2018). In this process che-
micals such as Lime, Ferric chloride (FeCl3), Ferrous sulphate
(FeSO4·7H2O) and Alum ((Al2SO4)3·18H2O) are widely used to alter
physical state of dye molecules (Ayed et al., 2020). Treatments such as
flocculation, wet oxidation, membrane separations, adsorption and
precipitation are examples of physico-chemical treatment (Wang et al.,
2020; Kumar et al., 2020). The disadvantages of this methods are high
chemical requirement, high maintenance, costly and large amount of
sludge is generated which requires safe dumping (Ajaz et al., 2020).

5.2. Biological degradation

Biological degradation of pollutants is eco-friendly, shows complete
mineralization of organic compounds with low sludge generation. This
method has been reported as most effective method (Varjani et al.,
2015; Bhatia et al., 2017; Varjani et al., 2019; Kumar et al., 2020).
Biological degradation can be conducted under aerobic or anaerobic
conditions (Khan et al., 2012; Bhatia et al., 2017). Various micro-
organisms such as bacteria, fungi, yeast and algae were used for dye
degradation and decolorization (Ali, 2010; Ajaz et al., 2020). Difference
in growth conditions and different metabolic mechanism of micro-
organisms affects degradation of dyes (Gao et al., 2018). Shabbir et al.,
(2017a) and Shabbir et al., (2017b), reported degradation of dyes with
use of locally available biomaterial (periphyton). Reports have de-
monstrated importance of enzyme in degradation of dyes such as,
azoreductase, laccase, peroxidase and exo-enzymes. E. gallinarum and
Streptomyces S27 has been reported for degradation of azo dyes with use
of azoreductase enzyme (Bafana et al., 2009; Dong et al., 2019). Laccase
have great degradation potential for many aromatic compounds (Bhatia
et al., 2017). Shanmugam et al. (2017), have reported maximum bio-
degradation of Malachite Green by Trichoderma asperellum laccase ac-
tivity which converted benzaldehyde from Malachite Green via the
Michler's ketone pathway. Immobilization of laccase on Glutar-
aldehyde-crosslinked Chitosan Beads (GA-CBs) has been reported by
Nguyen et al. (2016), provided reusability and high catalytic ability
which helped in degradation of sulfur dyes when concentration of
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laccase was low. Enzymatic degradation of crystal ponceau 6R (CP6R)
with the help of Brassica rapa peroxidase has been studied which shows
catalytic activity of peroxidase during dye degradation (Almaguer et al.,
2018).

5.2.1. Microbial degradation
For degradation of various dyes different microbes can be used, they

have different mechanisms and pathways for degradation of dyes (Cao
et al., 2019; Ebrahimi et al., 2019).

Azo dyes are useful class of dyes with highest diversity of colors.
Under anaerobic condition and with help of azoreductase, micro-
organisms degrade azo dyes and as end product they form colorless
aromatic amines (Ali, 2010; Ajaz et al., 2020; Dong et al., 2019).
Benzidine is generally used in construction of direct azo dyes and has
been reported as potential carcinogen (Dewan et al., 1988; Ali, 2010;
Sen et al., 2016). Direct dyes are inexpensive and used to dye fibers,
leathers or papers without any pre-treatment. Among benzidine based
azo dyes most generally used dye is Direct Black 38. Degradation of
Direct Black 38 dye can be achieved using Enterococcus gallinarum
(Bafana et al., 2008; Bafana et al., 2009). Direct Black 38 has three azo
bonds in its structure which are the active sites for azoreductase. Direct
Black 38 through metabolic reactions is converted to benzidine which
upon deamination results in 4-amion phenyl. It has been reported that
dyes which have benzidine as a base is highly carcinogenic as compared
to the dyes without Benzidine (Yamjala et al., 2016). This is due to
existence of pollutant(s) like 4-amino biphenyl and 2–4, diaminoazo-
benzene, which have been reported as carcinogens (Dewan et al., 1988;
Ali, 2010; Bencheqroun et al., 2019).

6. Factor affecting biodegradation of dyes

Microbe based treatments for degradation of toxic environmental
pollutants are economically viable, cost effective and also helps to
manage environmental contaminants (Varjani and Upasani, 2017a:
Rodrigues de Almeida et al., 2019; Do et al., 2020; Mishra et al., 2020).
Dye industrial wastewater holds variability of azo dyes along with other
dye stuff which are structurally different. It has been reported that
metals, salts and other compounds make degradation of dyes more
difficult and it is toxic for bacterial growth too (Ghosh et al., 2020).
Factors like temperature, pH, dissolved oxygen, nutrients, dissolved
organic matter, metals and organic pollutants influence water quality
(Al-Amrani et al., 2014). Organic contaminants such as 2-napthole,
Chloroaniline, Benzene, P-aminobenzoicacid, Ethylenedibromide,
Pyrene, P-nitrophenol, etc. are commonly used in dye manufacturing
and highly present in dye industry wastewater and affects growth of
bacteria during wastewater treatment (Awad et al., 2019). The factors
affecting dye degradation are mainly divided into two categories. i)
Environmental factors, ii) Nutritional factors.

6.1. Environmental factors

6.1.1. pH
pH is important factor for growth of bacteria and also an essential

characteristic for effluent treatment (Varjani and Upasani, 2017b). pH
can be acidic, alkaline or neutral based on type of dyes and salts used.
Rate of dye degradation in dye containing effluent may change through
its pH. The problem can be solved by (a) adjusting pH of effluent to
support the growth of dye degrading bacteria or (b) selecting the mi-
crobial sp. which can grow at effluent pH (Al-Amrani et al., 2014).
Basutkar and Shivannavar (2019), reported maximum dye degradation
at pH range of 8–10 by using Lysinibacillus boronitolerans CMGS-2. 98%
degradation of malachite green was achieved RuO2–TiO2 and Pt coated
Ti mesh electrodes at pH 4.5 (Singh et al., 2016).

6.1.2. Temperature
Water temperature affects activities prevailing in water such as

mineralization, diffusion, chemical process which increases pH of water
(Delpla et al., 2009; Varjani and Upasani, 2019b). Extreme tempera-
tures can kill bacteria/affect the growth, if bacteria present in waste-
water (Al-Amrani et al., 2014; Varjani and Upasani, 2017b). Faster rate
in degradation of dye can be achieved by giving bacterial culture an
optimum temperature which is generally reported as 30–40 °C for most
bacteria. Das and Mishra (2017), have used bacterial consortium of
Bacillus pumilus HKG212 and Zobellella taiwanensis AT 1–3 for de-
gradation of reactive green 19 and reported highest degradation at
32.04 °C. However, few thermophilic bacteria are reported for de-
gradation of azo dye at high temperature. Gursahani and Gupta (2011),
reported 75% degradation of effluent at 60 °C by using Anoxybacillus
rupiensis. It has been reported that decolorization rate decreases as
temperature increases (Imran et al., 2015).

6.1.3. Oxygen and agitation
Environmental conditions directly affect degradation/decoloriza-

tion of dye. Literature is available stating that microbial metabolism is
influenced by oxygen and agitation (Varjani and Upasani, 2017a).
Different microorganisms require different conditions such as aerobic
condition, anaerobic and semi anaerobic. Shaking play role in aeration/
oxygen supply. Oxygenation can be improved by shaking. It is supposed
that reductive enzyme activities can be increased under anaerobic
condition. However, for aerobic dye degradation oxidative enzymes
play important role which require presence of oxygen (Khan et al.,
2012). Gonzalez-Gutierrez-de-Lara and Gonzalez-Martinez (2017),
studied Direct Blue 2 dye degradation under different oxygen con-
centration.

6.2. Nutritional factors

6.2.1. Soluble salts
Wastewater from dye industry contains high electric conductivity

due to use of high salt concentration in dying process which can be
detected using conductivity meter. To increase ionic strength and

Table 1
Dyes and their impacts on environment and human health.

Sr. No. Name of the dye Effects Reference

1 Disperse Red −1 and Disperse
Orange −1

Increases human lymphocytes frequency of micronuclei Ferraz et al., 2013

2 Reactive Brilliant Red Affects activity of human proteins Wang et al., 2008
3 Reactive Black 5 Lowers activity of urease as well as decreases rate of ammonification in earth environment Wielewski et al., 2020
4 Direct Black 38 Causes cancer in humans such as urinary bladder. Dewan et al., 1988
5 Direct Blue 15 Causes mutation Zamora and Jeronimo, 2019
6 Disperse Blue 291 Casues Mutation, affects genetic structure, cellular toxins, denaturation of DNA in human cells,

chromosomal instability.
Fernandes et al., 2019

7 Acid Violet 7 Causes degradation of lipid, chromosomal abnormality, breakdown of acetylcholine in mice Mansour et al., 2010
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development of dye fixation on fabrics salts like Na2SO4, NaCl and
NaNO3 are usually added in the dye bath. Hence, with release of dye
pollutants, salts are also released in industrial wastewater. Dyes con-
taining high salt concentration may decrease biodegradation rate by
reducing biological movement (Basutkar and Shivannavar, 2019).

6.2.1.1. Carbon and nitrogen supplements. Microorganisms require
nutrient supplements for quick degradation of pollutants (Varjani and
Upasani, 2019a). Organic sources like peptone, yeast extract or
combination of carbohydrates and complex organic sources have been
reported to obtain high and quick dye degradation rate by both pure
cultures and mixed cultures. Dye degradation efficiency can be
increased by addition of glucose. Glucose has been reported as most
effective and easily available carbon source for microbial metabolism of
dyes or dye intermediates (Khan et al., 2012). Phosphorus has been
reported as very important factor for growth of microorganism (Kisand
et al., 2001; Varjani, and Upasani, 2019a).

6.2.1.2. Dye concentration and dye structure. Dye concentration and dye
structure influence degradation/decolorization of dye. Low dye
concentration may not have identified by enzymes which are secreted
from dye degrading bacteria. On the other hand, high dye concentration
is toxic to bacteria and also effect degradation of dye by blocking
enzyme active sites. Likewise, low molecular weight and simple
structure containing dyes are easy to decolorize. Whereas, high
molecular weight and complex structure containing dyes have low
decolorization rate (Li et al., 2019). Increased dye concentration
decreases dye decolorization and/or degradation (Liu et al., 2016).

6.3. Role of genetically modified organisms

Addition of desired gene into the organism for any particular pur-
pose (i.e. foreign gene), which is not generally part of the host system,
produces genetically modified organism (GMO). Nature has self-
cleaning process under environmental condition, but literature is
available stating that it is insufficient and slow to remove pollutants
(Peter et al., 2011; Mishra et al., 2019). Several physical, chemical and
biological treatments have been reported for the degradation of ha-
zardous pollutants such as dyes which can be used as individually or in
combination (Li et al., 2019; Wang et al., 2019; Varjani et al., 2020).
Nowadays, synthetic dyes are produced in such a way that they resist
degradation and because of this degradation of dye by traditional
techniques is becoming time and efforts consuming (Saxena et al.,
2019). Each microorganism has different capability of dye degradation,
detoxification and decolorization. Bacteria are most widely used for
bioremediation (Kumar et al., 2020). Genetic engineering has made a
significant revolution in field of bioremediation (Mishra et al., 2020).
Dye degradation/decolorization can be improved using genetically
modified organisms under environmental conditions. GMOs can be
produced by transferring gene from one species to another species or by
gene modification (Peter et al., 2011; Tahri et al., 2013; Saxena et al.,
2019; Kumar et al., 2020). To design GMO, functional gene of various
bacterial strains has been used such as Sphingomonas desiccabilis, Es-
cherichia coli, Bacillus idriensis, Pseudomonas putida, Mycobacterium
marinum, Ralstonia eutropha, etc. and transferred into other species
(Saxena et al., 2019). Various genetic tools and techniques are available
to identify expression of microbial genome such as single-stranded
conformation polymorphism, randomly amplified polymorphic DNA,
Polymerase chain reaction (PCR), 16S rDNA sequencing and other new
sequencing technologies (Urgun-Demirtas et al., 2006; Holst-Jensen
et al., 2016; Mishra et al., 2020). Sandhya (2008), produced Escherichia
coli SS125 for degradation of Remazol red dye by transferring azor-
eductase gene form Bacillus latrosporus RRK1 to Escherichia coli DH5a
and Plasmid pAZR-SS125. Jin et al. (2009), have constructed geneti-
cally modified E. coli JM109 (pGEX-AZR) in laboratory which shows
decolorization of direct blue 71. It was achieved by insertingTa
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azoreductase gene in expression vector pGEX4T-1. Vector was than
expressed and transformed in E. coli JM109 under control of a lac op-
eron. Ajaz et al. (2020), reported degradation of Remazol red in pre-
sence of 0.8 mg/L dissolve oxygen with help of azoreductase gene
which was replicated from Bacillus latrosporus RRK1 and integrated in
Escherichia coli. Degradation of various dyes using genetically modified
microorganisms including details of host microorganism, donor mi-
croorganism, desired gene and vector used has been shown in Table 2

6.4. Microbial degradation of dyes: Gaps and future needs

To achieve better results in biodegradation of dyes, further research
work is necessary such as (a) responsible micro-organisms, (b) limita-
tion of experimental factors, (c) site for bioremediation and (d) de-
gradation pathways before applying micro-organisms in the field. It
would be of utmost importance to determine the nature of the de-
gradation products and to establish their (non) toxicity to aquatic or
plant life. Many microbial degradation techniques have been resisted by
dyes, there is a new way to degrade dyes through genetic engineering,
which opens a new arena for researchers working in this field. With the
use of advanced molecular biology tools responsible genes/enzymes for
dye degradation can be studied. Dye degradation may produce by-
products, nutrients and energy which can be used as resources.
Complete dye degradation is a challenge for researchers. Successful
application of biodegradation of dye wastewater requires a number of
research studies that need to be pursued.

• Future studies on dye degradation should be aimed to reduce lim-
itation of factors upon microbial activities.

• Re-examination of recent and early successful studies is required to
improve them for enhanced efficiency.

• Effective biodegradation process should consider degradation
pathways, environmental factors, degradation rate and degradation
mechanisms that affect removal of pollutants. It would be highly
imperative to ensure that the degraded products have no toxicity on
aquatic life or plants.

• Integration of treatment technologies for dye pollutants is highly
desirable for effective translation to industries.

• Study of mechanisms and theories for bacterial degradation of dye
wastewater would help to explore bacterial degradation kinetics.

7. Conclusions

Disposal of wastewater generated by dye industries into environ-
ment without proper treatment impacts harmfully the soil and water
environment. This demands to invent sustainable green processes to r-
emediate the hazardous chemical compounds present in the effluent.
Biological treatments offer potential benefits compared to physical and
chemical treatment methods. Biological wastewater treatments have
been demonstrated using microbial consortia or single microbial strain
having capabilities for dye degradation. In this regard, use of geneti-
cally modified organisms could be of added advantage to enhance the
process efficiency of degradation. Integration of technologies is yet
another important aspect, which could bring potential benefits.
Advanced technologies and materials need to be developed for effective
degradation of dyes in industrial wastewater.
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