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Antimicrobial mechanisms of ortho-phthalaldehyde action 

Manuel Simões, Lúcia C. Simões, Sara Cleto, Idalina Machado, Maria O. Pereira  
and Maria J. Vieira 

IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering,  
Universidade do Minho, Campus de Gualtar, Braga, Portugal 

Biocides generally have multiple biochemical targets. Such a feature easily entangles the 

analysis of the mechanisms of antimicrobial action. In this study, the action of the dialdehyde 

biocide ortho-phtalaldehyde (OPA), on bacteria, was investigated using the Gram-negative 

Pseudomonas fluorescens. The targets of the biocide action were studied using different bacterial 

physiological indices. The respiratory activity, membrane permeabilization, physico-chemical 

characterization of the bacterial surfaces, outer membrane proteins (OMP) expression, 

concomitant influence of pH, contact time and presence of bovine serum albumin (BSA) on 

respiratory activity, morphological changes and OPA-DNA interactions were assessed for 

different OPA concentrations. 

 With the process conditions used, the minimum inhibitory concentration was 1500 mg/l, the 

concentration to promote total loss of bacterial culturability was 65 mg/l and the concentration 

needed to inactivate respiratory activity was 80 mg/l. These data are evidence that culturability 

and respiratory activity were markedly affected by the biocide. OPA lead, moreover, to a 

significant change in cell surface hydrophobicity and induced propidium iodide uptake. Such 

results suggest cytoplasmic membrane damage, although no release of ATP was detected. At 

pH 5, the bactericidal action of OPA was stronger, though not influenced by BSA presence. 

Nevertheless, at pH 9, BSA noticeably (p < 0.05) impaired biocide action. A time-dependent effect 

in OPA action was evident when contemplating respiratory activity variation, mainly for the 

lower exposure times. Scanning electron microscopy allowed to detect bacterial morphological 

changes, translated on cellular elongation, for OPA concentrations higher than 100 mg/l. 

Interferences at DNA level were, however, restricted to extreme biocide concentrations. The 

overall bactericidal events occurred without detectable OMP expression changes. 

 In conclusion, the results indicated a sequence of events responsible for the antimicrobial 

action of OPA: it binds to membrane receptors due to cross-linkage; impairs the membrane 

functions allowing the biocide to enter through the permeabilized membrane; it interacts with 

intracellular reactive molecules, such as RNA, compromising the growth cycle of the cells and, 

at last, with DNA. 
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Introduction* 

Control of microbial growth is required in many micro-

biologically sensitive environments, particularly when 
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wet surfaces provide favourable conditions for prolifera-

tion of microorganisms (Simões et al. 2005a, 2006). An 

effective and wide spectrum disinfection strategy helps 

to overcome not only cross-resistance problems and 

existence of persister populations, but also the forma-

tion of recalcitrant and multi-resistant biofilms in disin-

fection dependent processes (Gilbert and McBain 2003; 

Simões et al. 2003a, 2003b, 2005a, 2006).  
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 Ortho-phtalaldehyde (OPA), an aromatic compound 

with two aldehyde groups, has been claimed to have an 

effective bactericidal character, having therefore been 

suggested as a replacement for glutaraldehyde, for 

high-level disinfection (Cabrera-Martinez et al. 2002, 

Mcdonnell and Russell 1999, Walsh et al. 1999a). This 

FDA (Food and Drug Administration) approved biocide 

has several potential advantages comparing to glutaral-

dehyde: it is virtually odourless, stable, effective over a 

wide 3–9 pH range, non-irritant to the eyes and nasal 

passages, and does not require activation before its use 

(Cabrera-Martinez et al. 2002, Rutala et al. 2001, Simões 

et al. 2006, Walsh et al. 1999a). Moreover, microorgan-

isms that have acquired resistance to glutaraldehyde 

have not yet gained cross-resistance to OPA (Cabrera-

Martinez et al. 2002, Simões et al. 2006, Walsh et al. 

1999a). So far, toxic effects associated with amino acids 

interaction, and cellular cross-link, have commonly 

been used to explain the antimicrobial action of OPA 

(Simons et al. 2000, Walsh et al. 1999a). However, spe-

cific mechanisms in the antimicrobial action of OPA, 

against Gram-negative bacteria, remain poorly charac-

terized. Some authors (Tomlinson and Palombo 2005, 

Russell 2003) have stated that there is an urgent need to 

deeper investigate the nature of the inhibitory and lethal 

effects of both biocides and disinfectants. This need 

emerges from the fact that the rise in the resistance to 

biocides might result in cross-resistance to other anti- 

microbial agents, especially at low concentrations. A 

wide range of possible multi-target cell sites would 

therefore constitute an important aspect of such studies. 

 Previous reports have recognized OPA as being a 

multi-target biocide (Cabrera-Martinez et al. 2002, 

Mcdonnell and Russell 1999, Rutala et al. 2001), Simons 

et al. 2000, Simões et al. 2003a, 2003b, Walsh et al. 1999a). 

Thus, the chance for most bacterial cells to develop resis-

tance to the in-use biocidal concentrations is unlikely. At 

high concentrations, the toxic agent induces rapid kill of 

bacterial cells, through the implication of multi-target 

sites (Champlin et al. 2005, Massi et al. 2003).  

 In order to ascertain the antimicrobial action 

mechanism of a common multi-target biocide, a point-

by-point analysis, from non-lethal to lethal concentra-

tions, must be performed. Such a need rises from the 

fact that the susceptibility of a particular target is likely 

to vary, being also dependent on the antimicrobial con-

centration (Russell 2003).  

 P. fluorescens was used as a representative, well stud-

ied, Gram-negative bacteria ubiquitous in nature, medi-

cal and industrial environments and has potential to 

cause serious problems in a wide range of areas in its 

planktonic and biofilm states (Hsueh et al. 1998, Simões 

et al. 2005a, 2005b, 2006, Tuttlebee et al. 2002). This bac-

terium has a strong ability to form disinfectant-resistant 

biofilms (Simões et al. 2003a, 2003b, 2005a, 2006). 

 The purpose of this study was to investigate, using 

different physiological indices, the mechanisms of an-

timicrobial action of OPA against the Gram-negative 

bacterium P. fluorescens. 

Materials and methods  

Microorganism and culture conditions 
Pseudomonas fluorescens ATCC 13525T was used through-

out this study.  

 A continuous pure culture of this bacterium was 

grown in an aerated (air flow rate = 0.425 min–1) 2 l 

glass chemostat (Pobel 2000, Portugal), at 27 °C, agi-

tated with a magnetic stirrer (Heidolph Mr 3001, Ger-

many), providing exponential-phase bacteria. The 

chemostat was continuously fed with 40 ml/h of sterile 

medium containing 5 g/l glucose, 2.5 g/l peptone and 

1.25 g/l yeast extract in 0.02 M phosphate buffer 

(KH2PO4; Na2HPO4) pH 7.0. 

Biocide 
The biocide used was ortho-phthalaldehyde (OPA) ob-

tained as powder from Sigma (P-1378), with a purity  

≥97%. Before each experiment, biocide solutions were 

prepared to the required concentration with sterile 

distilled water. 

Growth inhibitory activity – minimum inhibitory 
concentration 
To determine whether the presence of OPA had effect 

on the bacteria ability to grow in a liquid culture, the 

minimum inhibitory concentration was assessed, using 

the macrobroth dilution method (Champlin et al. 2005). 

Several bacterial cultures were prepared in sterile flasks, 

containing 200 ml of sterile growth medium (5 g/l glu-

cose, 2.5 g/l peptone and 1.25 g/l yeast extract in 0.02 M 

phosphate buffer) and a suitable volume of bacterial 

inoculum. The optical density, at 640 nm (OD640), was 

set to 0.2, corresponding approximately to 5 × 108 

cells/ml. In each of these bacterial cultures, a different 

concentration of OPA was established, followed by incu-

bation in an orbital shaker (120 rpm, 27 °C).  

 Sterile flasks containing growth medium, at a desired 

OPA concentration, were used to ascertain the interfer-

ence between the biocide and the growth media com-

ponents, on the final absorbance values (results not 

shown). Bacterial growth was measured at specific time 

points (0, 0.5, 2, 3, 5, 10, 11, 22, 23, 24, 26, 27, 28, 29, 
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34, 35, 46, 47 and 48 h) by aseptically sampling 1 ml 

from each flask and subsequently measuring the OD640 

(Spectronic 20 Genesys, Spectronic Instruments). The 

relevant OD640 value was obtained by subtracting, to the 

absorbance of the bacterial suspensions with OPA, the 

absorbance of growth media with OPA. These growth 

assays were performed in triplicate.  

 The minimum inhibitory concentration (MIC) was 

determined as the lowest concentration of biocide, where 

no growth was detected (Gilbert and McBain 2003).  

 At the end of the experiment, 30 µl of bacterial sus-

pension were streaked onto solid (12% v/v agar) growth 

medium. This step ensured the viability, as assessed by 

culturability, and the purity of the suspensions. 

Bacterial exposure to OPA 
A volume of 50 ± 5 ml of bacterial culture was har-

vested from the 2 l reactor, washed with saline (0.85% 

NaCl) phosphate buffer (0.02 M) by three consecutive 

steps of centrifugation (3777 g, 5 min), and resuspended 

in 0.02 M phosphate buffer pH 7, in order to obtain a 

bacterial suspension with an OD640 of 0.2. This bacterial 

suspension was then divided by several sterilised glass 

flasks of 100 ml (containing 50 ml of bacterial suspen-

sion), and put on an orbital shaker (120 rpm, 27 °C). 

After a 30 min standard OPA exposure time (Simões 

et al. 2003a, 2003b, 2005a, 2005b), the residual biocide 

was neutralized, as described below, and bacterial cul-

tures used for further testing. Three replicate experi-

ments, each with triplicate samples, were performed 

per condition tested. 

Biocide neutralization 
Sodium bisulphite (Aldrich), at a final concentration of 

0.5% (w/v), was added to the bacterial cultures and left 

to react for 10 min (at a proportion of 8 ml of neutral-

izer for 1 ml of bacterial suspension) immediately after 

the 30 min biocide contact time (Cabrera-Martinez et al. 

2002, Walsh et al. 1999a). Control experiments were 

performed, having been detected no interference 

(p > 0.1) between sodium bisulphite, at the concentra-

tion used, and P. fluorescens viability and respiratory 

activity (data not shown). 

Culturability method on Plate Count Agar – kill curve 
The selection of an adequate medium for heterotrophic 

microbial growth is an important factor to be taken 

into account, when using the plate count method. Be-

ing so, tests were carried out in order to choose the 

appropriate medium.  

 Plate Count Agar (PCA; Merck) was selected as it al-

lowed small colonies to grow, while preventing larger 

colonies from growing excessively, through medium 

components diffusion limitation. After biocide neu-

tralization, the bacterial samples were diluted to an 

adequate cellular concentration (from 106 to 100) in 

phosphate buffer. Then, a volume of 30 µl of each sus-

pension was transferred onto PCA plates and incubated 

at 27 °C. Colony enumeration was carried out after 48 h. 

Assessment of the bacterial respiratory activity 
The respiratory activity (respirometry) of the bacterial 

samples was determined by measuring oxygen uptake 

rates in a Yellow Springs Instruments (Ohio, USA)  

BOM – biological oxygen monitor (Model 53), as previ-

ously described (Simões et al. 2005b). The samples were 

placed in the temperature-controlled BOM vessels 

(T = 27 ºC ± 1 °C), each containing a dissolved oxygen 

(DO) probe connected to a DO meter. Once inside the 

vessels, the samples were aerated for 30 min to ensure 

oxygen saturation ([O2] = 9.2 mg/l, 1 atm, 27 °C). The 

vessels were then closed and the decrease of the oxygen 

concentration monitored over time. The initial linear 

decrease corresponded to the endogenous respiration 

rate. To determine the oxygen uptake due to substrate 

oxidation, 50 µl of a glucose solution (100 mg/l) was in-

jected into each vessel. The slope of the initial linear 

decrease in the DO concentration, after glucose injection, 

corresponds to the total respiration rate. The difference 

between the two respiration rates discloses the oxygen 

uptake rate due to glucose oxidation. This respiratory 

activity was expressed in mg of oxygen per g of dry bac-

terial mass per min. The bacterial dry mass was assessed 

by the determination of the total volatile solids of the 

bacterial suspension, according to the 2540 A-D Standard 

Methods of Analysis (APHA, AWWA, WPCF 1989). 

Assessment of membrane integrity – propidium 
iodide uptake 
The Live/Dead® BacLight

TM
 kit (Molecular Probes,  

L-7012, Leiden, Netherlands) assesses membrane integ-

rity by selective stain exclusion (Simões et al. 2005b). 

After biocide treatment (30 min) and neutralization, 

the various bacterial suspensions were diluted 1:10. 

Three hundred microliters of each diluted suspension 

were filtered through a Nucleopore® (Whatman) black 

polycarbonate membrane (pore size 0.22 µm) and 

stained with 250 µl diluted component A (SYTO 9) and 

250 µl diluted component B (propidium iodide – PI). 

The dyes were left to react for 15 min in the dark, at  

27 ± 1 °C. The membrane was then mounted on 

BacLight mounting oil, as described in the instructions 

provided by the manufacturer. Solutions containing the 

dyes were previously prepared by dissolving 3 µl of each 
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component in 1 ml of sterile-filtered (pore size 0.22 µm) 

water. The observation of stained bacteria was per-

formed using a Zeiss (AXIOSKOP) microscope fitted 

with fluorescence illumination and a 100 × oil immer-

sion fluorescence objective. The optical filter combina-

tion for optimal viewing of stained mounts consisted of 

a 480 to 500 nm excitation filter in combination with a 

485 nm emission filter. Several microphotographs of 

the stained bacterial samples were obtained using a 

microscope camera (AxioCam HRC, Carl Zeiss) and a 

program path (AxioVision, Carl Zeiss Vision) involving 

image acquisition and image processing. A program 

path (Sigma Scan Pro 5) involving object measurement 

and data output was used to obtain the total number of 

cells (both stains) and the number of PI stained cells. 

Both the total number of cells and the number of PI 

stained cells on each membrane was estimated from 

counts of a minimum of 20 fields of view. The range of 

total cells per field was between 50–200 cells. 

Assessment of membrane integrity – adenosine 
triphosphate measurement 
The adenosine triphosphate (ATP) released from the 

cells was measured using the luciferase-luciferine Sys-

tem/Sigma FL-AAM. After the required contact time 

with OPA, 100 µl of each bacterial suspension was 

added to 100 µl of a 25-fold dilution mixture of luci-

ferine and luciferase. The light transmission was meas-

ured in a bioluminometer (Lumac, Biocounter M 25000) 

and the output values were recorded in Relative Light 

Units (RLU). In order to investigate possible interference 

between the biocide and the bioluminescent method, 

control experiments were conducted using phosphate 

buffer, in the presence and absence of OPA. The OPA 

effect on membrane integrity was evaluated in terms of 

RLU, as an estimate of the intracellular ATP content 

released. This methodology has already been success-

fully applied in the assessment of P. fluorescens mem-

brane integrity, after a 30 min contact with a cationic 

surfactant (Simões 2005; Simões et al. 2005a). The RLU 

was calculated according to Dalzell and Christofi (2002), 

using the following equation: 

Relative light units = (RLU1/RLU0) (1) 

with RLU0 standing for the relative light units of the 

control assay (bacteria without chemical addition) and 

RLU1 for the relative light units of the test sample. 

Physicochemical characterization  
of bacterial surfaces 
The physicochemical properties of the bacterial surface 

(exposed and not exposed to OPA) were determined by 

the sessile drop contact angle measurement on bacte-

rial lawns, prepared as described by Busscher et al. 

(1984). Determination of contact angles was performed 

automatically using an OCA 15 Plus (DATAPHYSICS, 

Germany) video based optical contact angle measure 

instrument, allowing image acquisition and data analy-

sis. Contact angle measurements (at least 25 per liquid 

and OPA concentration tested) were carried out accord-

ing to Simões et al. (2007). The liquids surface tension 

components reference values were obtained from lit-

erature (Janczuk et al. 1993). Hydrophobicity was evalu-

ated after contact angles measurements, following the 

van Oss et al. approach (1987, 1988, 1989), where the 

degree of hydrophobicity of a given surface (s) is  

expressed as the free energy of interaction between two 

entities of that surface, when immersed in water  

(w) – ∆GSWS (mJ/m2). If the interaction between the two 

entities is stronger than the interaction of each entity 

with water, ∆GSWS < 0, the material is considered hydro-

phobic. Conversely, if ∆GSWS > 0, the material is hydro-

philic. ∆GSWS can be calculated through the surface ten-

sion components of the interacting entities, according 

to:  

( )

( )

γ γ

γ γ γ γ γ γ γ γ
+ − − + + − + −

∆ = − −

+ + − −

2
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sws s w

s w s w s s w w
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G

  

where γ LW accounts for the Lifshitz-van der Waals com-

ponent of the surface free energy, and γ + and γ – are, 

respectively, the electron acceptor and electron donor 

parameters, of the Lewis acid-base component (γ AB), 

being γ γ γ
+ −

=

AB
2 . 

 The surface tension components, of a solid material, 

are obtained by measuring the contact angles of the 

three liquids (l), the apolar α-bromonaphtalene, and the 

polar formamide and water. All these three pure liq-

uids hold well known surface tension components. 

Once the values are obtained, three equations of the 

type below can be solved: 

( ) ( )θ γ γ γ γ γ γ γ+ − − +

+ = + +
Tot LW LW

1 s w s w s w
1 cos 2            (3) 

where θ is the contact angle and γ γ γ= +
TOT LW AB . 

Influence of pH, contact time and proteins  
in the biocide action 
To assess the influence of these parameters in OPA 

antimicrobial action, P. fluorescens suspended cultures 

were sampled from the 2 l reactor, centrifuged (3777 g, 

5 min) and washed three times with saline (NaCl 0.85%) 

phosphate buffer pH 7. Afterwards, the pellets were 

(2) 
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resuspended in different buffers at pH 5 (0.02 M citrate 

buffer), 7 (0.02 M phosphate buffer) and 9 (0.02 M bo-

rate buffer), to a final OD640 of 0.2, respecting the dif-

ferent initial pH values. Each of the bacterial cultures 

was then equally divided between several sterilised 

glass flasks, and exposed to a 10 mg/l sub-lethal OPA 

concentration for 5, 30 and 180 min, along with 

120 rpm shaking at 27 °C. In order to evaluate the in-

fluence of proteins, namely bovine serum albumin 

(BSA), in the biocide action, 0.72%, 0.36% and 0.18% 

(w/v) BSA was added to the bacterial suspensions buff-

ered at different pH, prior to OPA exposure (Simões 

et al. 2006). After the pre-determined contact time of 

5 min, 30 min and 180 min, the bacterial suspensions 

were put in contact with the neutralizer. The contact, 

at a proportion of 1:8 – volume of cells per volume of 

neutralizer, lasted for 10 min, being followed by a 

3777 g and 5 min centrifugation. The pellets were re-

suspended in buffer, to 0.2 (OD640). Samples were then 

submitted to the determination of bacterial respiratory 

activity. Three replicate experiments, of triplicate sam-

ples, were performed for each condition tested. The 

influence of pH was also assessed on cellular viability 

and respiratory activity, having been found no variabil-

ity (p > 0.1) on such parameters for the range of pH 

values (5–9) used (results not shown). 

Outer membrane protein isolation and analysis 
The outer membrane proteins (OMP) were isolated ac-

cording to the method described by Winder et al. (2000). 

The cells, before and after a 30 min 100 mg/l OPA 

treatment, were harvested by centrifugation (3777 g, 

5 min, 4 °C), according to the procedure described 

above. The pellet was resuspended in 25 mM Tris and 

1 mM MgCl2 buffer (pH = 7.4) and the resulting suspen-

sion sonicated for 2 min (Vibracell, 60 W) in ice, to 

promote cell lysis. Following sonication, the solution 

was centrifuged (7000 g, 10 min, 4 °C) to remove non-

lysed cells. The supernatant was collected and N-

lauroylsarcosine (Sigma) was added to achieve a final 

concentration of 2% (w/v), for inner membrane proteins 

solubilisation, and left on ice for 30 min. Afterwards, 

the solution was centrifuged (27000 g, 1 h, 4 °C) to re-

trieve the outer membrane proteins (OMP). The pellet 

containing the OMP was suspended in deionised water 

(1 ml) and stored at –20 °C until needed.  

 The protein content of the samples was determined 

using the Bicinchoninic Acid Protein Assay Kit (BCA – 

PIERCE Cat. No. 23225), with bovine serum albumin as 

standard. 

 The OMP fractions obtained were subjected to sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE), as described by Laemmli (1970), with 12% (w/v) 

acrylamide. Electrophoresis was performed at a constant 

current of 10 mA. After electrophoresis, the proteins 

were silver stained and the gels analyzed by Quantity 

One 4.3.1 software from BioRad (Simões et al. 2006). 

DNA isolation and analysis 
The DNA of P. fluorescens cells treated with 100 (a con-

centration where all the cells were PI stained), 500 and 

1500 mg/l of OPA (concentrations higher than needed 

to lyse all the bacteria), for 30 min, was isolated using 

the GenElute Bacterial Genomic DNA kit (Sigma Cat. 

No. NA 2110), according to the manufacturer’s proce-

dure. For further comparison, isolation of the DNA of 

untreated cells was also performed. Ensuing isolation, 

the four DNA isolated samples were subjec- 

ted to a 0.7% agarose gel electrophoresis, in 1 × TBE 

(40 mM Tris-acetate, 1 mM EDTA, pH 8), at 70 V. Fol-

lowing ethidium bromide staining (BioRad), DNA visu-

alization was performed using a UV transilluminator 

(Gel Doc 2000, BioRad, CA, USA). Quantity One 4.3.1 

software (BioRad) was used for result analyzes. 

Scanning electron microscopy 
During the experiments, both untreated and OPA 

treated cells were observed by scanning electron mi-

croscopy (SEM). Prior to SEM observations, bacterial 

cells were dehydrated by heat (60 ºC, 2 h) and stored in 

a desiccator for 3 d. The samples were sputter-coated 

with gold and examined with a Leica S360 scanning 

electron microscope at 10–15 kV. SEM observations 

were documented through the acquisition of at least 20 

representative microphotographs. 

Statistical analysis 
The data were analysed using the statistical program 

SPSS version 14.0 (Statistical Package for the Social Sci-

ences). Both mean and standard deviation, within sam-

ples, were calculated for all cases. Paired t-test analyses 

were performed for data assuming a normal distribu-

tion. Other data were statistically analyzed by the non-

parametric Wilcoxon test. Statistical calculations were 

based on a confidence level equal or higher than 95% 

(p < 0.05 was considered statistically significant).  

Results 

Growth inhibition studies – MIC determination 
In order to assess which OPA concentration inhibits the 

planktonic growth of P. fluorescens and thus, to establish 

the MIC, the bacterial growth in the presence of several  
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Figure 1. Growth curves of P. fluorescens in the absence (  control) and presence of several OPA concentrations:  10 mg/l, 
20 mg/l,  50 mg/l,  100 mg/l,  200 mg/l,  500 mg/l,  1000 mg/l,  1500 mg/l. The means 

± SDs for at least three replicates are illustrated. 

 

 

OPA concentrations was followed over time (Fig. 1). 

Some considerations needed to be taken into account in 

this experiment, as OPA increases the optical density of 

bacterial cell suspension. Furthermore, it also reacts 

with the growth medium proteins (Walsh et al. 1999b). 

So, in order to minimize interferences, the final OD640 

values corresponded to the difference between the val-

ues recorded for the bacterial suspension exposed to 

OPA, and the growth medium in the presence of OPA. 

 The observation of the P. fluorescens growth curves 

revealed that complete growth inhibition was only 

detected for an OPA concentration of 1500 mg/l 

(MIC = 1500 mg/l). OPA concentrations lower than 

100 mg/l did not cause any disturbance in bacteria 

growth, as the resulting growth curves have profiles 

similar to that of the control test (p > 0.1). All these 

curves presented a very short lag period (lesser than 

1 h) followed by a 10 h exponential growth phase. For 

OPA concentrations equal or higher than 100 mg/l, 

bacterial growth seems to be affected in a concentra-

tion-dependent way. For OPA doses between 100 and 

500 mg/l, bacterial growth curves patterns, though 

similar in between (p > 0.05), are significantly different 

from the control (p < 0.05). The growth curves of 

treated samples display a lag phase of around 10 h. 

Once the bacteria begin to grow, they reach OD640 val-

ues equivalent to those of the control. This lag phase, 

either allowed the bacterial adaptation to the stress 

conditions imposed by the very high OPA concentra-

tions, or was associated with the population recovery 

from a decreased number following the lethal activity 

of OPA. 

OPA effect on culturability and respiratory activity 
The influence of OPA concentration in the culturability 

and respiratory activity (oxygen uptake ability) of 

P. fluorescens cells are presented in Fig. 2. 
 

 

0

2

4

6

8

10

0 20 40 60 80

OPA concentration (mg/l)

Lo
g

C
F

U
/m

l

0

0.2

0.4

0.6

R
es

pi
ra

to
ry

ac
tiv

ity
(m

g
O

2
/ g

ba
ct

er
ia

m
in

)

 

Figure 2. Bacterial culturability (  colony forming units – 
CFU), and respiratory activity ( ) as a function of OPA 
concentration. The means ± SDs for at least three replicates are 
illustrated. 
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 OPA induced a sharp decrease in culturability (CFU 

counts) where 65 mg/l of OPA promoted total loss of 

bacterial culturability on PCA. For concentrations of 

7 mg/l, the decrease of bacterial culturability corre-

sponded to a log reduction of 1.4, value that rose to 5 

for concentrations higher than 25 mg/l. Fig. 2 also 

showed that the increase of OPA concentration pro-

moted the decrease of the bacterial oxygen uptake rate, 

therefore reducing the respiratory activity. As an in-

crease in OPA concentration promoted a decrease in the 

oxygen uptake rate, it can be said that this effect was 

concentration dependent. For concentrations equal and 

higher than 80 mg/l, the bacteria were completely inac-

tivated, as evidenced by the null oxygen uptake rate. 

The linear adjustment between loss of respiratory activ-

ity and loss of culturability are only correlated by a 

factor of 0.549 (p < 0.02). Further comparisons between 

culturability and respiratory activity results (Fig. 2) 

show that bacteria can retain respiratory activity after 

an OPA treatment ranging from 65 to 80 mg/l, even 

though most of them could not form colonies on con-

ventional medium. This loss of culturability led to the 

assumption that bacterial cells, when exposed to OPA 

concentrations higher than 65 mg/l, could be in a viable 

but not culturable (VBNC) state.  

Effect of OPA on the membrane integrity, physico-
chemical surface properties and OMP expression 
Propidium iodide (PI) is commonly used as an indicator 

of cytoplasmic membrane permeability. Once inside the 

cytoplasm, it binds to single- and double-stranded nu-

cleic acids, yielding fluorescence in the red wavelength 

region. Data related with PI uptake by OPA-treated cells 

are shown in Fig. 3. 

 OPA promoted significant damage (30 min exposure) 

to the cytoplasmic membrane as suggested by the PI 

uptake results (Fig. 3). Furthermore, the PI uptake was 

OPA concentration dependent (p < 0.05), with a loga-

rithmic distribution of data (R2 = 0.962). For an OPA 

concentration of 2 mg/l, about 20% of the cells pre-

sented a damaged cytoplamic membrane, value that 

rose to 100% for 100 mg/l. For concentrations higher 

than 20 mg/l, more than 80% of cells evidenced already 

damages in the cytoplasmic membrane. 

 The ATP bioluminescent assay (Fig. 4), carried out to 

assess whether OPA could have some effect on the ex-

clusion of intracellular molecules, revealed that no 

significant amount of ATP was released from the bacte-

rial cells treated with OPA.  

 Table 1 presents the hydrophobicity, and the apolar 

and polar components of the surface tension of P. fluo-

rescens, without OPA treatment and when exposed to 

several concentrations of the biocide. P. fluorescens cells 

present hydrophilic properties as suggested by Table 1 

( ∆
Tot

swsG  > 0 mJ/m2). The application of OPA promoted the 

decrease of their hydrophilic characteristics, this de-

crease being more evident for the lower concentration 

tested (20 mg/l). These results appear to suggest that 

OPA, at low concentrations, promote the complete satu-

ration of the OPA-surface reactive sites of cells, allowing 

further biocidal events. For the other concentrations 

tested, the OPA-induced surface properties were not 

concentration dependent (p > 0.1). The values of the sur-

face tension components demonstrated that cells ac-

quired polar properties after OPA treatment, translated 

by the increase in the γAB values. The apolar component 

(γLW) was almost unaffected by the OPA treatment, ex-

cept for the treatment with 20 mg/l (p > 0.05).  
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Figure 3. Permeability of OPA treated cells to propidium iodide. The means ± SDs for at least three replicates are illustrated. 
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Figure 4. Relative ATP content released from the bacterial cells 
after treatment with several concentrations of OPA. The means  
± SDs for at least three replicates are illustrated. 
 

 The OMP profile, assessed after bacterial treatment 

with 100 mg/l of OPA (100% of the cells stained with PI), 

was performed in order to inspect the possible effect of 

the aldehyde biocide on the expression of outer mem-

brane proteins. 

 Fig. 5 shows that no significant difference was evi-

dent between the OMP profile of the OPA-treated bacte-

ria, and the one of untreated cells. This phenomenon 

was reinforced when comparing the number and mo-

lecular weight of the profiles obtained using Quantity 

One 4.3.1 software.  

Effect of pH, proteins and contact time  
in the OPA action 
The effect of pH, presence of proteins and contact time, 

on OPA action, was evaluated by measuring the bacte-

rial respiratory activity of suspended cultures. As 

shown by Table 2, the measurement was conducted 

before and after exposure to 10 mg/l of OPA, for several 

contact times, and cultures with different initial pH 

values and BSA concentrations. 

 A 10 mg/l application of OPA demonstrated to pro-

mote a 30% respiratory inactivation and a 3 log loss in 

culturability (Fig. 2). The use of sub-lethally injured or 

stressed cells is a warranty of the existence of a behav-

ioural bacterial response, like respiratory activity varia-

tion, when bacteria face other stress conditions. 

a b

 

Figure 5. OMP profiles of P. fluorescens cells without biocide 
treatment (a) and after treatment with 100 mg/l of OPA (b). Numbers 
on the left represent molecular weights in kDa. 

 

 The analysis of data from Table 2 demonstrated that 

the variation of respiratory activity, due to OPA appli-

cation, in the absence of BSA, is pH dependent 

(p < 0.05). In fact, for every OPA contact time and pH 

value, the application of the biocide caused the de-

crease of the respiratory activity. However, such a de-

crease was more pronounced when cells were sus-

pended at pH 5 and 9.  

 Concerning OPA contact time, its influence is only 

noticeable when comparing the results 5 and 30 min 

after exposure (p < 0.05). The comparison of the data 

obtained 30 and 180 min after OPA exposure revealed 

no significant differences (p > 0.1).  

 The analysis of the respiratory activity variation, due 

to OPA application, in the presence of BSA, demon-

strated that the synergistic association of BSA and pH 

change has a pronounced effect on respiratory activity. 

In fact, the application of OPA to the bacterial cells 

suspended in the pH 9 buffered medium, supplemented 

with BSA, did not cause any respiratory inactivation. 

Conversely, the cellular respiratory activity even in-

creases (p < 0.05), being an undeniable sign of OPA  

antimicrobial action quenching. This effect was re-

vealed to be BSA-concentration dependent, as an  

 
Table 1. Hydrophobicity ( ∆ Tot

sws
G ), and apolar (γLW) and polar (γAB) components of the surface tension of untreated and OPA treated 

cells. Values are means ± SDs 

[OPA] mg/l  Without treatment 

20 50 100 

∆
Tot

sws
G  (mJ/m2) 65.7 ± 4.8 6.08 ± 1.3 19.8 ± 2.1 23.4 ± 0.79 

γ
LW (mJ/m2) 24.1 ± 1.1 11.7 ± 1.2 23.4 ± 1.7 24.4 ± 1.1 
γ

AB (mJ/m2) 7.20 ± 0.78 52.3 ± 2.1 33.1 ± 2.4 31.4 ± 3.2 
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increase in its concentration augments in 43% the bac-

terial respiratory activity measured for untreated cells 

(p < 0.05). At pH 5, the variation in the respiratory activ-

ity, for every exposure time, did not suffer any signifi-

cant influence due to BSA (p > 0.05). Concerning the 

experiments at pH 7, the optimal pH for P. fluorescens 

growth, BSA also impaired OPA antimicrobial action. 

This effect was exposed by the lower respiratory activ-

ity resulting from biocide combination with BSA 

(p < 0.05). However, that effect was not so marked as for 

experiments at pH 9.  

Bacterial structure 
The influence of OPA on the bacterial structure was 

assessed by SEM, through the morphological com- 

parison between untreated cells and cells exposed to 

100 mg/l of OPA (Fig. 6). 

 These SEM inspections revealed a morphological 

alteration induced by the biocide, where the treated 

cells seem to present a higher length (Fig. 6). The septa-

tion of cells seems to have been blocked, thus cells 

appear to be elongated. 

 

 

DNA analysis 
From Fig. 7 it can be concluded that OPA interacted 

with P. fluorescens DNA, when cells were exposed to 

biocidal concentrations equal or higher than 500 mg/l. 

This result suggests that other events, before OPA-DNA 

interactions, may play a determinant role in the OPA 

biocidal properties, as for 100 mg/l (all bacteria are PI 

stained) the DNA profile is similar to the one observed 

for untreated cells. 

Discussion 

OPA is a relatively new aromatic dialdehyde antimicro-

bial agent. Assumptions regarding its action mecha-

nism, little studied so far, have been based on its 

chemical nature and its amino acids cross-linking prop-

erties (Cabrera-Martinez et al. 2002, Simões et al. 2003a, 

Walsh et al. 1999). The present study gives additional 

enlightenment on OPA mechanisms of action, against 

Gram-negative bacteria, going beyond the single OPA-

amino acids interactions. 

 In this work, through growth inhibition studies, the 

MIC was determined to be 1500 mg/l (Fig. 1). This value 

 

Table 2. Variation of the bacterial respiratory activity of P. fluorescens, in different environmental conditions, after treatment with 
10 mg/l of OPA for several contact times. Values are means ± SDs. 

Variation of respiratory activity (% of control) Time pH 

OPA OPA + 0.18 % BSA OPA + 0.36 % BSA OPA + 0.72 %BSA 

5 –74.3 –71.7 –69.1 –67.1 
7 –26.2 –  4.0 +  6.8 –15.7 

5 min 

9 –60.4 +20.8 +28.3 +31.1 

5 –86.8 –78.9 –82.5 –77.2 
7 –31.8 +  4.7 –  7.2 –11.3 

30 min 

9 –79.5 +22.7 +25.0 +30.7 

5 –85.6 –80.8 –86.5 –76.0 
7 –38.3 –12.8 –22.5 –24.5 

180 min 

9 –79.2 +19.5 +35.1 +42.9 

(+) Increase in the respiratory activity  (–) Decrease in the respiratory activity 

 

 

Figure 6. SEM photomicrographs of P. fluorescens cells before (a) and after (b) treatment with 100 mg/l of OPA. ×10000 magnification,  
bar = 2 µm. 
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Figure 7. DNA profile of P. fluorescens without OPA treatment (a) 
and after treatment with 100 mg/l (b), 500 mg/l (c) and 1500 mg/l (d) 
of OPA, for 30 min. 

 

is about four times smaller than the in-use concentra-

tion (5.5 g/l) for high-level disinfection (Rutala et al. 

2001, Walsh et al. 1999a). OPA doses between 100 and 

500 mg/l seemed to induce a physiological stress adap-

tation, as indicated by the prolonged lag phase in 

growth patterns. This phenomenon is probably related 

with bacterial recovery from a decrease in number of 

viable cells, following the lethal activity of OPA. At 

concentrations higher than 500 mg/l, and below the 

MIC, it is evident a stress adaptation emphasized by the 

depressed growth rate. Reductions in the growth rate, 

acknowledged after OPA-induced bacteriostasis, most 

likely reflect irreversible cell damage.  

 The total loss of bacterial culturability was detected 

for an OPA concentration of 65 mg/l, while respiratory 

inactivation was detected for 80 mg/l. The discrepancy 

between the MIC and the OPA concentration needed to 

promote total loss of culturability is probably related 

with the methodologies used as the MIC was assessed 

using cells in growth medium while total bacterial 

counts (kill curve) was performed using bacterial sus-

pensions in phosphate buffer. If the kill curve assays 

(Fig. 2) would have been carried out under the same 

conditions as the MIC (Fig. 1), the OPA concentration 

would clearly have been much higher. Furthermore, a 

MIC of 1500 mg/l is only an indicative value, influenced 

by the fact that protein coagulation, the microbial sur-

face or other changes in the opacity of the bacterial 

constituents will increase the optical density of bacte-

rial suspensions (Walsh et al. 1999b). 

 Increased uptake of the PI, a nucleic acid stain to 

which cell membrane is normally impermeable, was 

observed (Fig. 3), revealing cytoplasmic membrane 

permeabilization. This result was strongly correlated 

with the inhibition of respiration, following a similar 

trend (linear correlation –R2 = 0.982; p > 0.1). Several 

authors (Glover et al. 1999, Massi et al. 2003) have dem-

onstrated that cytoplasmic membrane disturbance may 

not be immediately responsible for biocidal efficacy of 

chemicals. According to Maillard (2002), one of the 

noticeable effects of biocidal interaction with bacterial 

cells is a change in hydrophobicity. In fact, in this 

study, the OPA action resulted in a change of cellular 

hydrophobic interactions (Table 1), suggesting the pos-

sible existence of OPA-membrane binding receptors. 

Such results might indeed be the cause of membrane 

function impairment, arguably related with cross-

linking events. The physico-chemical alterations at cell 

surface level, and subsequent PI uptake, probably pre-

cede OPA uptake. As a result of the uptake and interac-

tion with reactive sites, a respiratory activity inhibition 

and consequent loss of ability to grow on PCA were 

recorded (Fig. 2). The indication that OPA might di-

rectly inhibit a specific respiration enzyme, involved in 

glucose consumption, or in the overall bacterial meta-

bolic event, can not be eliminated (Fig. 2). This bacteri-

cidal action occurred without any evident OMP break 

up, as ascertained by comparative OMP analysis of un-

treated cells and cells exposed to 100 mg/l of OPA 

(Fig. 5). At this concentration, all cells were PI stained 

(Fig. 3). In fact, functional membrane proteins are gen-

erally supposed to be one of the potential targets of 

aldehyde-based biocide compounds (Trombetta  et al. 

2002, Walsh et al. 1999a). However, the major OMP 

expressed by untreated cells are similar to those ex-

pressed by OPA-treated cells. Furthermore, it was seen 

that neither the number of low molecular weight bands 

decreased, nor the number of high molecular weight 

bands increased, as might be expected from cross-

linking events. Such an observation can be an indica-

tion of an apparent lack of strong cross-linking interac-

tion between OPA and the OMP.  

 In previous studies, Walsh et al. (1999a, 1999b) stated 

that the glutaraldehyde treatment resulted in a 

strengthening of the outer envelope, thereby protecting 

the cell from lysis. Thus, it is not surprising that ATP 

release was not observed, as its release requires outer 

membrane destabilization (Simões et al. 2005a). In this 

study, OPA seems to act as a structure stabilizer (Figs. 4 

and 6), as reinforced by SEM inspections. The ATP re-

lease data, together with the OMP expression results, 

suggest that the cell structure was not markedly dam-

aged, and that a gradient of intracellular uptake argua-

bly predominated, by a pore-forming system where the 

membrane stills there, although leaky (Butko 2003). 

This result is in agreement with a previous OPA chemi-

cal study by Zhu et al. (2005), where OPA cell penetra-

tion was mediated by the medium-induced molecular 

switching between OPA and 1,3-phthalandiol, and cell-

wall penetration via this mechanism. This suggests the 

existence of different biocidal mechanism operating 
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versus that of glutaraldehyde (mainly related with cross-

linking effects).  

 In Gram-negative bacteria, the passage across the 

outer membrane depends on the chemical nature of the 

antimicrobial agent, with hydrophilic agents utilizing 

the porin channels – hydrophilic route – and hydropho-

bic agents entering via the hydrophobic route. This oc-

curs probably due to the disturbance of the lipidic frac-

tion of the outer membrane, as the lipophilic nature of 

OPA will play a key role in the diffusion through the 

outer membrane (Jarlier and Nikaido 1990). In previous 

studies (Carson et al. 2002), where the mechanisms of 

action of lipophilic biocides have been examined, effects 

on the cytoplasmic membrane, and/or on enzymes em-

bedded in it, have been demonstrated.  

 The results obtained show that OPA could react with 

BSA and thus, decrease the biocide concentration avail-

able to promote respiratory activity inhibition. This phe-

nomenon was strongly dependent on the BSA concentra-

tion, as a function of time and pH (Table 2). The pH of a 

solution determines the charge of a molecule. Conse-

quently, in the presence of BSA, the respiratory activity 

variation seems to be controlled by the charge associated 

with the amino acids, due to the number of protonated 

and unprotonated species. This phenomenon is mainly 

noticeable at pH 9. According to several authors (Or et al. 

1998, Simões et al. 2006, Singh et al. 1998, Walsh et al. 

1999a), OPA promotes protein cross-linking by reacting 

with thiols, primary amines and nucleophilic centers of 

amino acids. In fact, it is known that BSA contains gly-

cine, which can react with OPA, neutralizing it (Rutala 

et al. 2001). This biocide’s cross-link with proteins is un-

stable under acidic conditions (Or et al. 1998, Singh et al. 

1998), leading to the supposition that antimicrobial ac-

tion, at pH 5, is related with OPA-induced intracellular 

events. Several authors (Simons et al. 2000, Walsh et al. 

1999) also proposed that OPA interacts strongly with 

amino acids, mainly at alkaline pH. This fact suggests 

that protein related interactions are not the key event of 

biocidal action, as indicated by respiratory activity re-

sults variation (Table 2). 

 Regarding SEM microphotographs of P. fluorescens cells, 

it can be seen that, for OPA concentrations higher than 

100 mg/l, cell division is compromised as the cellular 

septation seems not to occur. A cellular elongation takes 

then place (Fig. 6). Therefore, it can be said that an inter-

ference on bacterial cell cycle occurs at high OPA con-

centrations. It is already documented an E. coli elongation 

phenomenon after treatment with antibiotics (Garcia 

and Servais 2004, Goodell et al. 1976), with consequent 

interference with the synthesis of cell wall peptidogly-

can. This results in an incapacity of cells to divide with-

out, nevertheless, provoking death. Also, E. coli cells ex-

posed to UV, or other SOS-inducing treatments, continue 

to elongate but fail to septate, thus growing as filaments. 

It can be argued that nucleic acid damage occurred, 

probably impairing the synthesis of a specific protein 

(Böddeker et al. 2002). This lack of protein synthesis may 

be related with RNA damage which, as a single stranded 

molecule, may be more prone to chemical attack than 

DNA. Prütz (1998) reported that RNA degradation by 

hypochlorite is 10 times faster than that of the double 

stranded DNA. However, if OPA concentration increases, 

reaction with DNA can also occur. In fact, the analysis  

of DNA after cell exposure to OPA revealed that, for  

OPA concentrations higher than 500 mg/l, DNA damage 

seemed to occur (Fig. 7). This phenomenon is concentra-

tion dependent and reinforces the existence of a se-

quence of events, probably culminating in DNA interfer-

ence. Moreover, the DNA interactions hinder the 

protection from further recovery and resistance events, 

reflecting the strong antibacterial efficacy of OPA.  

 On the basis of the results presented, it can be said 

that the antimicrobial action of OPA, on P. fluorescens, is a 

result of a cascade of events, time and concentration 

dependent. In addition to pH-dependent cross-linking 

effects, as already stated by several authors (Simons et al. 

2000, Walsh et al. 1999a), the antimicrobial effect of OPA 

may be due to chemical interactions with membrane 

molecules, promoting a structural cellular stabilization 

and alteration of surface hydrophobicity and membrane 

permeability. Additionally, for the higher concentrations 

tested, the biocide might cross the cell membranes and 

interact with intracellular sites, critical for antibacterial 

activity. For higher OPA concentrations, the growth cycle 

is compromised provoking cell elongation due to the 

lack of septation. Bacterial reproduction disability was 

only detected for concentrations higher than 500 mg/l. 
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