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Abstract. Let R be an associative ring with unity 1 and let a, d ∈ R. An element a ∈ R is called invertible
along d if there exists unique a‖d such that a‖dad = d = daa‖d and a‖d ∈ dR ∩ Rd (see [7, Definition 4]). In this
note, we present new characterizations for the existence of a‖d by a clean decomposition of ad and da. As
applications, existence criteria for the Drazin inverse and the group inverse are given. Also, we show that
ad and da are uniquely strongly clean, provided that a‖d exists and ad = da.

1. Introduction

Throughout this paper, all rings R considered are assumed to be an associative ring with unity 1. We
say that a ∈ R is regular if there exists x ∈ R such that a = axa. Such x is called an inner inverse of a, and is
denoted by a−. An element a ∈ R is said to be group invertible if there exists b ∈ R such that ab = ba, aba = a
and bab = b. Such a b is called a group inverse of a, it is unique if it exists, and is denoted by a#. It is known
that a# exists if and only if there exist x, y ∈ R such that a = a2x = ya2. In this case, a# = yax = y2a = ax2.

Let R be a ring with involution ∗, i.e., ∗ satisfying (a∗)∗ = a , (ab)∗ = b∗a∗ and (a + b)∗ = a∗ + b∗ for all
a, b ∈ R. An element a ∈ R (with involution) is Moore-Penrose invertible [14] if there exists x ∈ R such that
axa = a, xax = x, (ax)∗ = ax and (xa)∗ = xa. Such x is called a Moore-Penrose inverse of a, it is unique if it
exists, and is denoted by a†. The standard notions of Drazin inverses can found in mathematical literature
[5]. The symbols R−1, R#, RD and R† denote the sets of all invertible, group invertible, Drazin invertible and
Moore-Penrose invertible elements in R, respectively.

Green’s preorders (see [6]) in a ring R are defined by: (i) a ≤L b denotes a ∈ Rb; (ii) a ≤R b denotes
a ∈ bR; (iii) a ≤H b denotes a ∈ bR ∩ Rb. Given a, d ∈ R, an element b ∈ R is called the inverse along d [7] if
bad = d = dab and b ≤H d. Such b is unique if it exists, it is called the inverse of a along d, and is denoted by
a‖d. Furthermore, Mary [7] showed that (i) a ∈ R# if and only if it is invertible along a; (ii) a ∈ RD if and only
if it is invertible along am, for some positive integer m; (iii) a ∈ R† if and only if it is invertible along a∗. In
these cases, a# = a‖a, aD = a‖am

and a† = a‖a∗ . More results on the inverse along an element can be referred to
[2, 8]. It follows from [7] that if a‖d exists then 1 − aa‖d and 1 − a‖da are idempotents. Also, by [8], we know
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that a‖d exists implies da + 1 − dd− ∈ R−1 and ad + 1 − d−d ∈ R−1, where the regularity of d is ensured by the
existence of a‖d ([7, Theorem 7]).

Recall that an element of a ring R is called clean if it can be written as the sum of an idempotent e and
a unit u. A clean ring is one whose each element is clean, which dates back to the paper of Nicholson [9].
Given a clean decomposition a = e + u, it is called special clean [1] if aR ∩ eR = 0, and is strongly clean [10]
if it is a clean decomposition and eu = ue. Later, Chen et al. [3] called a ∈ R uniquely strongly clean [3] if
it has a uniquely strongly clean decomposition. Several scholars [4, 11, 15] paid attention to the cleanness
of elements in rings. Since clean elements can be written as the sum of an idempotent and a unit, they has
close relations with the inverse along an element (idempotents and units can be constructed by this types
of generalized inverses). However, few articles are presented about the connections between the cleanness
of elements and their generalized inverses.

It should be noted that the classical invertibility constructed by generalized inverses is usually the form
ek + 1 − e, where e is an idempotent. In particular, for the case of the inverse of a along d, taking e = dd−

and k = da. For the group inverse of regular elements d, setting e = dd− and k = d. However, a key issue for
investigating the clean decomposition of the inverse along an element is that we need the unit of the form
ek − 1 + e. So, at the beginning of Section 2, we illustrate that ek − 1 + e is a unit if and only if ek + 1 − e is a
unit.

In this note, we give an existence criterion for the inverse along an element, which slightly differs from
the result of Mary and Patrı́cio [12]. We then characterize the inverse of the product of triple elements along
an element by using one-sided inverse along an element. Moreover, the formulae relating them are given.
New characterizations for the inverse of a along d are obtained by clean decompositions of ad and da. As
special cases, existence criteria for the group inverse and the Drazin inverse are given. Finally, we show
that both da and ad are also uniquely strongly clean, provided that a‖d exists and ad = da.

2. The cleanness of elements and the inverse along an element

We first begin with the following lemmas, which play an important role in the sequel.

Lemma 2.1. [8, Theorem 2.1] Let a, d ∈ R. Then the following conditions are equivalent:
(i) a‖d exists.
(ii) d ≤R da and (da) ∈ R#.
(iii) d ≤L ad and (ad) ∈ R#.
In this case, a‖d = d(ad)# = (da)#d.

Lemma 2.2. (Jacobson’s Lemma) Let a, b ∈ R. Then
(i) If (1 − ab) ∈ R−1, then (1 − ba) ∈ R−1 and (1 − ba)−1 = 1 + b(1 − ab)−1a.
(ii) If (ab − 1) ∈ R−1, then (ba − 1) ∈ R−1 and (ba − 1)−1 = b(ab − 1)−1a − 1.

Mary and Patrı́cio [8] presented the existence criterion for the inverse along an element by units in a
ring, i.e., the equivalences (i)⇔ (iv)⇔ (v) in Proposition 2.3 below. We next show that da + (1 − dd−) ∈ R−1

is equivalent to da − (1 − dd−) ∈ R−1.
Let e, k ∈ R with e idempotent. Assume that ek + 1 − e is a unit in R. Then, by Lemma 2.2, u = eke + 1 − e

is also a unit in R. Consequently, eke = eue is a unit in eRe, which gives that e(−k)e is a unit, and then
e(−k)e + 1− e is a unit in R. Therefore, −eke + 1− e is a unit, which implies that eke− 1 + e is a unit and hence
ek − 1 + e is a unit by Lemma 2.2. Dually, if ek − 1 + e is a unit then so is ek + 1 − e. More details on corner
rings can be referred to [13].

We remind the reader that there must be a connection with k and e in the first summand x, that is, e
must be somehow in x. If it contains no e, then x + (1 − e) ∈ R−1 does not imply x − (1 − e) ∈ R−1 in general.

Such as, let R = R2×2 be the ring of all 2 by 2 real matrices. Suppose x =

[
1 1
0 1

]
and e =

[
0 0
0 1

]
. Then

x + (1 − e) =

[
2 1
0 1

]
∈ R−1. But x − (1 − e) =

[
0 1
0 1

]
< R−1.
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Let d ∈ R be regular. If e = dd− and k = da, then ek + 1 − e = da + 1 − dd− ∈ R−1 if and only if
ek− 1 + e = da− 1 + dd− ∈ R−1. Dually, setting f = d−d and h = ad, then h f + 1− f = ad + 1− d−d ∈ R−1 if and
only if h f − 1 + f = ad− 1 + d−d ∈ R−1. We hence add two characterizations for the inverse along an element.

Proposition 2.3. Let a, d ∈ R with d regular. Then the following conditions are equivalent:
(i) a‖d exists.
(ii) u = da − 1 + dd− ∈ R−1.
(iii) v = ad − 1 + d−d ∈ R−1.
(iv) u′ = da + 1 − dd− ∈ R−1.
(v) v′ = ad + 1 − d−d ∈ R−1.
In this case, a‖d = u−1d = dv−1 = (u′)−1d = d(v′)−1.

Proof. By a direct check, we know that u−1a = av−1 is the inverse of a along d.

It follows from [18, p.168] that a ∈ R# if and only if 1 is invertible along a. Hence, it follows an existence
criterion for the group inverse of a regular element.

Corollary 2.4. Let a ∈ R be regular. Then the following conditions are equivalent:
(i) a ∈ R#.
(ii) u = a − 1 + aa− ∈ R−1.
(iii) v = a − 1 + a−a ∈ R−1.
(iv) u′ = a + 1 − aa− ∈ R−1.
(v) v′ = a + 1 − a−a ∈ R−1.
In this case, a# = u−1a = av−1 = (u′)−1a = a(v′)−1.

Let us recall that [18] a ∈ R† if and only if a∗ is invertible along a. Hence, we get the following result
concerning the existence criterion of the Moore-Penrose inverse.

Corollary 2.5. Let R be a ring with involution and let a ∈ R be regular. Then the following conditions are equivalent:
(i) a ∈ R†.
(ii) u = aa∗ − 1 + aa− ∈ R−1.
(iii) v = a∗a − 1 + a−a ∈ R−1.
(iv) u′ = aa∗ + 1 − aa− ∈ R−1.
(v) v′ = a∗a + 1 − a−a ∈ R−1.
In this case, a† = (u−1a)∗ = (av−1)∗ = ((u′)−1a)∗ = (a(v′)−1)∗.

Let R be a ring with involution and let a, x ∈ R. If x satisfies axa = a and (ax)∗ = ax, then x is a {1,3}-inverse
of a, and is denoted by a(1,3). If x satisfies axa = a and (xa)∗ = xa, then x is a {1,4}-inverse of a, and is denoted
by a(1,4). It is well known that a is Moore-Penrose invertible if and only if it is both {1,3}-invertible and
{1,4}-invertible. Moreover, a† = a(1,4)aa(1,3).

Suppose we are given any p, a, q in involutory rings R, the present author Patrı́cio [12] illustrated that
paq is Moore-Penrose invertible if and only if pa is {1,3}-invertible and aq is {1,4}-invertible, provided that
p′pa = a = aqq′ for some p′, q′ ∈ R. In this case, (paq)† = (aq)(1,4)a(pa)(1,3).

Inspired by the above mentioned author’s work, we consider the relations between the inverse of paq
along d and left inverses of aq and right inverse of pa along certain element.

Let us now recall some definitions and properties of one-sided inverse along an element.

Lemma 2.6. [17] Let a, d ∈ R.
(i) An element b ∈ R is called a left inverse of a along d if bad = d and b ≤L d. Moreover, a is left invertible along

d if and only if d ≤L dad.
(ii) An element b ∈ R is called a right inverse of a along d if dab = d and b ≤R d. Moreover, a is right invertible

along d if and only if d ≤R dad.
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Our notation follows [17, 18]. For instance, the symbol a‖dl (resp., a‖dr ) denotes a left (resp., right) inverse
of a along d.

It follows from [17, Corollary 2.5] that a is invertible along d if and only if it is both left and right
invertible along d. In particular, by Lemma 2.6, a is invertible along d if and only if d ≤H dad. However,
the present authors [17] did not present the formula between the inverse along an element and one-sided
inverse along an element.

Theorem 2.7. Let p, a, q, d ∈ R. If there exist p′, q′ ∈ R such that dpp′ = d = q′qd, then the following conditions are
equivalent:

(i) paq is invertible along d.
(ii) aq is left invertible along dp and pa is right invertible along qd.
In this case, (paq)‖d = (aq)‖dp

l a(pa)‖qd
r .

Proof. (i) ⇒ (ii) Since paq is invertible along d, by Lemma 2.6, we have d ≤L dpaqd and d ≤R dpaqd, and
consequently dp ≤L dpaqdp and qd ≤R qdpaqd. Again, from Lemma 2.6, it follows that aq is left invertible
along dp and pa is right invertible along qd.

(ii) ⇒ (i) As aq is left invertible along dp, then there is x ∈ R such that (aq)‖dp
l = xdp. Hence,

(aq)‖dp
l a(pa)‖qd

r = xdpa(pa)‖qd
r = xq′qdpa(pa)‖qd

r = xq′qd = xd, which implies (aq)‖dp
l a(pa)‖qd

r paqd = xdpaqd =

(aq)‖dp
l aqd = (aq)‖dp

l aqdpp′ = dpp′ = d.

Since pa is right invertible along qd, we have (pa)‖qd
r = qdy for some y ∈ R. A straightforward calculation

gives (aq)‖dp
l a(pa)‖qd

r = dy, we hence get dpaq(aq)‖dp
l a(pa)‖qd

r = dpaqdy = dpa(pa)‖qd
r = d.

Finally, (aq)‖dp
l a(pa)‖qd

r = xd = dy ≤H d.

Therefore, paq is invertible along d and (paq)‖d = (aq)‖dp
l a(pa)‖qd

r .

Taking p = q = 1 in Theorem 2.7, it follows that

Corollary 2.8. [19, Proposition 2.3] Let a, d ∈ R. Then the following conditions are equivalent:
(i) a is invertible along d.
(ii) a is both left and right invertible along d.
In this case, a‖d = a‖dl = a‖dr = a‖dl aa‖dr .

Next, we give another existence criterion of the inverse along an element by the cleanness of elements.

Theorem 2.9. Let a, d ∈ R with ad = da. Then the following conditions are equivalent:
(i) a‖d exists.
(ii) d ≤R da, there exist e2 = e ∈ R and u ∈ R−1 such that da = e + u is both a strongly clean decomposition and a

special clean decomposition.
(iii) d ≤L ad, there exist f 2 = f ∈ R and v ∈ R−1 such that ad = f + v is both a strongly clean decomposition and

a special clean decomposition.
In this case, a‖d = u−2dad = dadv−2.

Proof. (i)⇒ (ii) Suppose that a‖d exists. Then d ≤R da by Lemma 2.1. As a‖d exists and ad = da, then d ∈ R#

(see [18, p.170]). Set e = 1 − dd# and u = da − 1 + dd#. Then e2 = e, and u ∈ R−1 from Proposition 2.3. We
compute eu = −e = ue and hence da = e + u is a strongly clean decomposition. Let b ∈ daR ∩ eR. Then there
are x, y ∈ R such that b = dax = ey = edax = (1 − dd#)dax = 0. So, da = e + u is a special clean decomposition.

(ii)⇒ (i) Since da = e + u is both a strongly clean decomposition and a special clean decomposition, it
follows dae = eda ∈ daR ∩ eR = 0. Multiplying by da on both left and right sides gives (da)2 = uda = dau,
hence da = u−1(da)2 = (da)2u−1. So, da ∈ R# and (da)# = u−2da, which together with Lemma 2.1 ensures that
a‖d exists since d ≤R da. Moreover, a‖d = (da)#d = u−2dad.

(i)⇔ (iii) is similar to the proof of (i)⇔ (ii).
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It is known that a ∈ RD if and only if a is invertible along am for some positive integer m. Hence, in the
characterization of Drazin inverses, the condition d ≤R da of Theorem 2.9 can be reduced to an−1

≤R an for
some positive integer n. We claim that the condition an−1

≤R an can be dropped. Indeed, if an = e + u is
both a strongly clean decomposition and a special clean decomposition for some positive integer n, then
ean = ane ∈ eR ∩ anR = 0. Hence, an = u−1a2n = a2nu−1, which implies an

∈ an+1R ∩ Ran+1.
The following result characterizes the existence criterion of the Drazin inverse by clean decompositions

of certain element.

Corollary 2.10. Let a ∈ R. Then the following conditions are equivalent:
(i) a ∈ RD.
(ii) There exist e2 = e ∈ R and u ∈ R−1 such that an = e + u is both a strongly clean decomposition and a special

clean decomposition, for some positive integer n.
In this case, aD = u−2a2n−1 = a2n−1u−2.

By substituting “a projection (p2 = p = p∗)” for “an idempotent” in the appropriate concepts, it follows
notions of the strongly ∗-clean decomposition and special ∗-clean decomposition in ∗-ring (see [16]).

It follows from (see e.g. [20, Lemma 2.2]) that a(1,3) exists if and only if a ≤L a∗a, and a(1,4) exists if and
only if a ≤R aa∗. We next give characterizations for the Moore-Penrose inverse by ∗-clean properties.

Corollary 2.11. Let R be a ring with involution and let a ∈ R with aa∗ = a∗a. Then the following conditions are
equivalent:

(i) a ∈ R†.
(ii) a(1,3) exists, there exist p2 = p = p∗ ∈ R and u ∈ R−1 such that a∗a = p + u is both a strongly ∗-clean

decomposition and a special ∗-clean decomposition.
(iii) a(1,4) exists, there exist q2 = q = q∗ ∈ R and v ∈ R−1 such that aa∗ = q + v is both a strongly ∗-clean

decomposition and a special ∗-clean decomposition.
In this case, a† = u−2a∗aa∗ = a∗aa∗v−2.

It follows from Theorem 2.9 that da and ad have strongly clean decompositions, under certain assump-
tions. It is of interest to consider whether such strongly clean decomposition is unique? Finally, we illustrate
this fact.

Theorem 2.12. Let a, d ∈ R with ad = da. If a‖d exists, then
(i) da is uniquely strongly clean.
(ii) ad is uniquely strongly clean.

Proof. (i) It follows from Theorem 2.9 that da has a strongly clean decomposition da = e + u, where e2 = e,
u ∈ R−1 and dae = eda = 0.

Suppose that da = f +v is another strongly clean decomposition, where f 2 = f , v ∈ R−1 and f da = da f = 0.
To prove da is uniquely strongly clean, it is sufficient to prove e = f .

As eda = 0, then da = (1− e)da = (1− e)(e + u) = (1− e)u, and consequently 1− e = dau−1. Multiplying the
equality above by f on the left concludes f (1 − e) = f dau−1 = 0. Hence, f = f e.

Also, from da f = 0, it follows da = v(1 − f ) and 1 − f = v−1da. Multiplying by e on the right yields
(1 − f )e = v−1dae = 0. Thus, e = f e.

Therefore, e = f and da is uniquely strongly clean.
(ii) can be proved by a similar way of (i).

As special results of Theorem 2.12, we have

Corollary 2.13. Let a ∈ RD. Then an is uniquely strongly clean, for some positive integer n.

Corollary 2.14. Let a ∈ R#. Then a is uniquely strongly clean.
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