
outubro de 2019

 Cristiano António Azevedo Rodrigues

 Heterogeneous Fault Tolerance
 Architecture based on Arm and
 RISC-V Processors

outubro de 2019

 Cristiano António Azevedo Rodrigues

 Heterogeneous Fault Tolerance
 Architecture based on Arm and
 RISC-V Processors

 Dissertação de Mestrado
 Mestrado em Engenharia Eletrónica Industrial e Computadores
 Sistemas Embebidos e Computadores

 Trabalho efetuado sob a orientação do
 Professor Doutor Adriano José Conceição Tavares
 Professor Doutor Sandro Emanuel Salgado Pinto

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras

e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos

conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não

previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da

Universidade do Minho.

Atribuição-NãoComercial-CompartilhaIgual
CC BY-NC-SA

https://creativecommons.org/licenses/by-nc-sa/4.0/

Agradecimentos

Em primeiro lugar, gostaria de expressar a minha mais profunda gratidão pelo o apoio e contínuo

suporte que o meu orientador e professor, doutor Adriano Tavares, me providenciou ao longo deste árduo

último ano. Todo o conhecimento passado e pensamento crítico por ele incutido, vieram-se a demonstrar

fulcrais ao longo de toda a dissertação. Ainda no âmbito de orientação académica, gostaria também de

agradecer toda a ajuda, apoio e críticas construtivas providenciadas pelos professores doutores Sandro

Pinto e Tiago Gomes assim como pelo aspirante a doutor, José Martins.

Não poderia deixar de agradecer aos meus colegas de laboratório, Afonso Santos, André Alves e

Ricardo Moreira assim como aos meus amigos mais chegados, que foram parte integrante desta minha

longa caminhada, tendo eles passando comigo todos os melhores “altos” e dando-me suporte nos meus

piores “baixos”. Um especial obrigado a todos os membros do “bando”: Daniel Barbosa, José Silva, José

Pedro, Ivo Marques e Valter Mário.

Por fim, endereço um especial agradecimento a toda a minha família. Família essa que fez e faz com

que tudo isto tenha um sentido e propósito. Por toda a crença, apoio e suporte incondicional um obrigado

para minha mãe, para o meu pai, para os meus irmãos, André e Sandrina, e para o meu cunhado, Senhor

Dr. João Ribeiro. Deixo aqui, para uma futura leitura, um agradecimento ao recém-nascido João Salvador,

pela inconsciente, mas poderosa extra motivação trazida para a “espinhosa” reta final.

A todos os que fizeram esta caminhada possível, um forte obrigado do fundo do meu coração.

iv

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

v

Resumo

Arquitetura Heterogénea de Tolerância a Falhas Baseada em processadores Arm e RISC-V

Quando sistemas críticos operam em ambientes hostis, estes necessitam de serviços de redundância

e de tolerância a falhas para continuarem em funcionamento mesmo na presença de faltas. Embora a

técnica de tolerância a falhas seja eficaz para mitigar faltas que ocorrem num único componente, ela

perde eficácia, quando múltiplas faltas acontecem simultaneamente em vários componentes. Estes tipos

de faltas, despoletam o mesmo erro em todos os componentes afetados, tornando-as indetectáveis. Para

solucionar este problema, usualmente, recorre-se a diversidade de desenho para mitigar as Falhas de

Modo Comum (FMC), construindo assim um sistema mais robusto e confiável. Várias arquiteturas de

tolerância a falhas, baseadas em Field-Programmable Gate Array (FPGA), têm sido descritas na literatura,

no entanto, pelas pesquisas efetuadas, nenhuma delas tem como objetivo proteger processadores het-

erogéneos e aplicar diversidade de desenho ao nível do processador.

Para resolver a supracitada falta de soluções, esta dissertação propõe uma nova arquitetura het-

erogénea de tolerância a falhas, Lock-V. O Lock-V promove diversidade de desenho, ao nível da arquitetura

do processador, assim como técnicas de tolerância a falhas para, respetivamente, mitigar FMC e detetar e

recuperar erros despoletados por causas externas, por exemplo, radiação. Para eliminar as FMC, o Lock-V

possuí duas unidades de processamento diferentes: um hard-core Arm Cortex-A9 e um soft-core baseado

em RISC-V. Desta forma é aplicada diversidade de desenho, usando heterogeneidade no Instruction Set

Architecture (ISA). Por outro lado, para implementar tolerância a falhas, o Lock-V propõe uma solução

híbrida de Dual-Core Lockstep (DCLS), onde a deteção de erros é feita em hardware, recorrendo a um

acelerador na FPGA, e a recuperação dos erros é suportado por software, usando técnicas de rollback.

Após o Lock-V ser implementado na Zynq-7000 System-on-Chip (SoC), mais de 45000 faltas foram

injetadas. Os resultados dessa injeção mostram que quando uma aplicação executa na arquitetura Lock-V,

para além de estar protegida contra FMC, devido à diversidade do desenho ao nível dos processadores,

também está protegida contra 97% dos erros ocorridos. No entanto, implementar o Lock-V acarreta alguns

tradeoffs. 79% das Look-Up Tables (LUT) e 34% dos Flip-Flops (FF) disponíveis na plataforma (Zedboard),

são usados. Ao nível do software, o Lock-V aumenta em 8% o consumo de memoria e, para o pior cenário

testando sem a ocorrência de erros, aumenta em 12% o overhead de execução. Tendo em conta que

toda a redundância tem o seu custo, o Lock-V provou ser capaz de dotar um sistema com diversidade de

desenho e capacidades de tolerância a falhas.

Palavras chave: diversidade de desenho, lockstep, redundância, tolerância a falhas.

vi

Abstract

Heterogeneous Fault Tolerance Architecture based on Arm and RISC-V Processors

Safety-critical systems deployed in harsh environments rely on fault tolerance and redundancy tech-

niques to keep them operating even in the presence of faults. Although there are effective techniques to

mitigate one side faults, they are not enough to protect the system against simultaneously multi side faults.

These kinds of faults trigger the same error in faulty redundant components, which makes resulting errors

invisible and undetectable for fault tolerant mechanisms. To overcome this problem, design diversity is

applied in fault tolerant system to mitigate the Common-Mode Failure (CMF) and build a more robust and

reliable system. Despite several fault tolerance architectures based on FPGA are available in the literature,

to the best of our knowledge, none of them aims both hardening of heterogeneous processors and applying

design diversity at processor level.

To address this lack of solutions in the current state of the art, this dissertation proposes a novel het-

erogeneous fault tolerance architecture, Lock-V, which enables design diversity at processors architecture

level. It deals with CMF, as well as both error detection and recovery fault tolerance techniques to mitigate

errors triggered by external environment interactions, e.g., radiation. To eliminate the CMF, Lock-V ex-

plores an implementation based on different processing units: a hard-core Arm Cortex-A9 and a soft-core

RISC-V-based processors, to leverage design diversity through ISA heterogeneity. To implement fault toler-

ance, Lock-V proposes a hybrid DCLS solution where the error detection is done by hardware, resorting to

a FPGA accelerator, while error recovery is performed by software using rollback technique.

After the deployment of Lock-V on a Zynq-7000 SoC, over 45000 faults were injected. The results taken

from such injection shows that when an application runs on the Lock-V architecture, besides its protection

against the CMF due to processors design diversity, it is also protected against 97% of the triggered errors.

Nevertheless implement Lock-V came up with some tradeoffs. It used 79% of the LUT and 34% of the FF

available on the Zedboard FPGA platform. Regarding the software part, implementing Lock-V leads to an

8% increase in memory footprint and also an increase in the execution overhead around 12%, mainly in

the worst case scenario as tested in the absence of errors. Knowing that all the redundancy has its cost,

Lock-V proved to be able to grant a system with design diversity and fault tolerance capabilities.

Keywords: design diversity, fault tolerance, lockstep, redundancy.

vii

Contents

List of Figures xi

List of Tables xii

List of Listings xiii

Acronyms xiv

1 Introduction 1

1.1 Motivation . 2

1.2 Goals . 2

1.3 Document Structure . 3

2 Background, Context and State of the Art 5

2.1 Dependability . 5

2.1.1 Dependability Attributes . 6

2.1.1.1 Reliability . 6

2.1.1.2 Availability . 6

2.1.1.3 Safety . 7

2.1.2 Dependability Threats . 8

2.1.2.1 Fault, Error, Failure . 8

2.1.2.2 Causes . 9

2.1.3 Dependability Means . 9

2.1.3.1 Fault tolerance . 11

2.2 Redundancy . 12

2.2.1 Hardware Redundancy . 13

2.2.2 Software Redundancy . 13

2.2.2.1 Time Redundancy . 13

2.2.2.2 Spatial Redundancy . 13

2.2.3 Information Redundancy . 14

viii

2.2.4 Redundancy Techniques . 14

2.2.4.1 Duplication With Comparison 14

2.2.4.2 Triple Modular Redundancy . 15

2.2.5 Redundancy to achieve Fault-Tolerance . 15

2.2.5.1 Design diversity . 17

2.3 Lockstep . 17

2.3.1 Design Diversity Applied To Lockstep . 19

2.3.2 Lockstep Implementations . 20

2.3.3 Discussion . 24

3 Platform 26

3.1 Processors . 26

3.1.1 The lowRISC . 28

3.2 ZedBoard . 30

4 Proposed Architecture (Lock-V) 32

4.1 Adding Lockstep Capabilities . 32

4.2 Architecture Overview . 34

4.3 The lowRISC Adaptations . 36

4.3.1 Adding A New Peripheral . 36

4.4 xLockstep . 37

4.4.1 Synchro . 38

4.4.2 LIFO . 40

4.4.3 Checker . 41

4.4.4 xLockstep AXI-aware Interface . 41

4.5 xLockstep deployment in Lock-V . 43

4.6 xLockstep API . 44

5 Lock-V Framework 48

5.1 Framework Overview . 48

5.2 Error Detection Capabilities . 50

5.2.1 Checkpoint . 50

5.3 Error Recovery Capabilities . 51

5.3.1 Save Processors’ Context . 52

5.3.2 Rollback Processors’ Context . 53

5.4 Framework Constraints . 54

ix

6 Evaluation and Results 57

6.1 Lock-V PL Resources Utilization . 57

6.2 Lock-V Framework Costs . 58

6.2.1 Memory Footprint . 58

6.2.2 Execution Footprint . 59

6.3 Case study . 62

6.3.1 Setup . 62

6.3.2 Fault Injection . 63

6.3.2.1 Results . 64

7 Conclusion 66

7.1 Future Work . 67

References 68

x

List of Figures

2.1 Fault tolerant system with error detection and error recovery. 11

2.2 Representation of a system with DWC, adapted [1]. 15

2.3 Representation of a system with TMR, adapted [1]. 16

2.4 Transaction Architecture block diagram [2]. 23

2.5 Proposed loosely DCLS architecture implemented in the Zynq-7000 APSoC [3]. 24

3.1 Tethered and untethered implementations based on the Rocket chip. 29

3.2 ZedBoard development board. 30

4.1 Design options for the lockstep architecture. 33

4.2 Proposed DCLS heterogeneous architecture. 34

4.3 Design of the xLockstep accelerator with its modules and sub-modules. 38

4.4 Main FSM of the xLockstep. 39

4.5 The xLockstep peripheral memory address space. 42

4.6 Lock-V design (Arm side). 44

4.7 Control register field. 47

4.8 Status register field. 47

5.1 Flow execution of an application running in Lock-V, coded using the Lock-V framework. . 49

5.2 Flow execution of the checkpoint tool. 50

5.3 Example of the Arm save processor’s context. Although the number of registers and

stack alignment are different, the logic in the RISC-V save processor’s context is the same. 53

5.4 Example of the Arm rollback processor’s context. Although the architecture is different,

the logic behind the RISC-V rollback processor’s context is the same. 55

6.1 Fault injection setup. 62

6.2 Fault injection mechanism. 63

6.3 SDC errors after the injection of faults with and without the Lock-V. 65

6.4 Hang errors after the injection of faults with and without the Lock-V. 65

xi

List of Tables

2.1 Dependability table of concepts. 6

2.2 Availability percentage corresponding to the different systems types. 7

2.3 Dependability means and their use cases during the lifetime of a system. 10

2.4 Gap analysis among Lockstep implementations. 25

3.1 Soft-Core Candidates Analysis. 27

6.1 Post-Implementation results obtained from Vivado 2016.2. 58

6.2 Arm memory footprint in bytes. 59

6.3 RISC-V memory footprint in bytes. 59

6.4 saveContext and rollback execution footprint. 60

6.5 Checkpoint execution footprint in clock cycles. 61

6.6 Lock-V execution footprint with and without an error in clock cycles. 61

6.7 Fault injections testes with and without Lock-V. 64

xii

List of Listings

4.1 New entry added into lowRISC address map, changing the chisel file $TOP/src/main/s-

cala/Configs.scala. 36

4.2 New NASTI-Lite interface added to the NASTI-Lite crossbar, changing the SystemVerilog

file $TOP/src/main/verilog/chip_top.sv. 36

4.3 LIFO Module interface, which was implemented in chisel. 40

4.4 Signals for restrict the access to the Arm registers bank. Two equal signals were used in

the RISCV Advanced Extensible Interface (AXI)-Lite interface. 43

4.5 Internal API function for read a MMIO peripheral register. 45

4.6 Internal API function for write in a MMIO peripheral register. 46

4.7 Internal API function for write in a bit of a MMIO peripheral register. 46

xiii

Acronyms

ABI Application Binary Interface

ADAS Advanced Driver-Assistance Systems

ALU Arithmetic Logic Unit

AMBA Advanced Microcontroller Bus Architecture

API Application Programming Interface

ASIC Application Specific Integrated Circuits

AXI Advanced Extensible Interface

BIST Built-In-Self-Test

BRAM Block Random Access Memory

CMF Common-Mode Failure

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

DCLS Dual-Core Lockstep

DDR Double Data Rate

DMR Dual-Modular Redundancy

DWC Duplication With Comparison

ECC Error Correcting Code

EDAC Error Detection And Correction

FF Flip-Flops

FIC Fabric Interrupt Controller

FIFO First In First Out

FMC Falhas de Modo Comum

FP Frame Pointer

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GP Global Pointer

GPIO General-Purpose Input/Output

I/O Input/Output

I2C Inter-Integrated Circuit

xiv

IoT Internet of Things

IP Intellectual Property

ISA Instruction Set Architecture

L2C Locked L2 Cache

LIFO Last In First Out

LR Link Register

LUT Look-Up Tables

MBU Multiple Bit Upset

MCU Microcontroller Unit

MMIO Memory-Mapped Input/Output

MMR Multiple-Modular Redundancy

MMUs Memory Management Units

MTBF Mean Time Between Failures

MTTF Mean Time To Failure

MTTR Mean Time To Repair

NASTI Not A Standard Interface

OCM On-Chip Memory

PC Program Counter

PL Programmable Logic

PR Partial Reconfiguration

PS Processing System

RA Return Address

RAM Random Access Memory

RCU Reconfigurable Computing Unit

RISC Reduced Instruction Set Computer

SBU Single Bit Upset

SCU Snoop Control Unit

SDC Silent Data Corruption

SEE Single Event Effect

SEFI Single Event Functional Interrupt

SEL Single Event Latch-up

SET Single Event Transient

SEU Single Event Upset

SHIFT Software-Implemented Hardware Fault Tolerance

SoC System-on-Chip

SP Stack Pointer

SPI Serial Peripheral Interface

xv

TMR Triple Modular Redundancy

TP Thread Pointer

UART Universal Asynchronous Receiver Transmitter

VP Verification Point

WFE Wait For Event

xvi

1. Introduction

Processors industry keeps moving fast towards reduced transistor’ size, higher clock frequencies, and

lower operating core voltages. However, many problems to digital systems have emerged due to such

progress, like system failures caused by bit-flipping induced by many possible sources, e.g., radiation.

These problems can result in critical issues, not only in aerospace applications, but also in daily basis

systems [4, 5, 6, 7, 8, 9]. This boosts research towards developing and deploying fault tolerance systems

in order to mitigate several failure situations, while keeping other important requirements such as system

robustness, reliability, performance and security.

One way to deploy reliable devices in mixed-critical applications, is to provide them with fault tolerance

techniques. Redundancy is one of the most used forms of fault tolerance mechanisms and several solu-

tions can be already found in the literature. While some techniques replicate processing units in a technique

called DCLS — implemented either loosely- or tightly-coupled to the processor — [10, 7, 11, 12, 13, 2],

others apply a Triple Modular Redundancy (TMR) mechanism, where the processing units are triplicated

and a voter module is added to the system [14]. Other techniques can be used in order to achieve fault tol-

erance systems, such as time redundancy applied to low-cost architectures [15], and virtualization-based

systems [16], [17], [18], [19], where several guests can virtually run over the same processing unit as if

they were individually running in one unique processor. This way, each guest operating system (OS) can

replicate the execution of the same software application, while another guest acts as the voter module.

These software-based systems can behave similar to a hardware-based TMR without the need of replicating

the hardware resources.

Fault tolerance has proven to be effective in the detection and recovery of errors due to physical

faults, e.g., bit-flips by radiation, however, it is vulnerable to either human-made design faults [20] or

external disturbances, that affects more then one redundant component at the same time [21]. This type

of system’s failures called CMF, e.g., power supply disturbances, manufacturer defects, software bugs in

tools/compilers, among others, can only be mitigated using design diversity. Design diversity was proposed

in [20] in order to protect fault tolerant systems against CMF and is described as ” the approach in which

the hardware and software elements that are to be used for multiple computations are not copies, but are

independently designed to meet a system’s requirements ”. Nowadays, safety critical systems are aware of

the need of design diversity to deal with CMF. To protect the processors against the common-mode failure

and build a high-reliability systems, several techniques have been proposed. The design diversity on these

1

Chapter 1. Introduction 2

systems is usually applied targeting time diversity — which introduce a execution cycle delay among the

processors [22] — but sometimes it can also be implemented with microarchitectural diversity [23] or even

ISA diversity [24].

Fault tolerance techniques can be performed both in software and/or hardware, according to the

available resources. With the ongoing technological trends, hybrid SoC solutions provide software pro-

grammability, available through the hard-core processors, and FPGA technology that can be resorted to

deploy soft-core processors or dedicated hardware accelerators in order to enhance the computation of

several types of algorithms in terms of speed and energy consumption [25, 26]. These heterogeneous

SoC, composed by a hard-core plus a soft-core, make easier the development of a fault tolerant reliable

system endowed with design diversity at the ISA level.

1.1 Motivation

Increasingly safety has become a must in the majority of the daily basis commercial systems which

consequently, leads to an increase in the demand for fault tolerance systems. This high demand will boost

the developing of new architectures and new systems with fault tolerant capability. This opens opportunities

to research new techniques and approaches for implementing high-reliable and safety systems, which

specially motivated me to jump in this research journey.

Another really interesting point is that, we are in the golden age of processors architectures with the

appearance of open-source ISAs like the RISC-V that gives a new level of software and hardware freedom

on architectures in an open extensible way, e.g., to develop custom instructions and tightly-coupled co-

processors. This, altogether with the high availability of hybrid SoC FPGA-based in the market, brings huge

architecture flexibility to explore, develop and delivery fail-functional systems. Despite several architectures

and techniques for fault tolerance being available in the literature, to the best of our knowledge, none of

them targets heterogeneous architectures that resort hybrid SoC solutions to implement different processor

architectures, either deployed in hard- or soft-cores. This is a a kind of ”blue ocean” waiting for being

explored.

1.2 Goals

The project developed on this thesis aims to provide an environment for a user to create and run its

application in a fault tolerant fashion. After a comprehensive literature review, as exposed in Section 2.3,

three main goals were established for this thesis:

1) Develop an architecture on which an application will run in a safety manner based on redundancy

techniques to implement fault tolerance;

2) Develop a framework that allows the use of the proposed architecture and recovery the system from

errors;

Chapter 1. Introduction 3

3) Develop a fault injection mechanism that will test the proposed architecture as well as its framework.

In order to achieve the three main goals, some more specific objectives were drawn. They are pre-

sented in the following topics.

To reach the first goal

It is necessary to harden the processors on the architecture using a technique called lockstep. This

technique should be deployed as a FPGA accelerator and process information in parallel as well as ac-

cessing the redundant cores simultaneously. This accelerator needs also to have synchronizations and

error detection capabilities, in order to compare at the same execution point the processors’ outputs and

detect errors (if they exist). The architecture should be also aware of the leveraged design diversity to

mitigate CMF.

To reach the second goal

First the framework should be agnostic to the processor’s architecture. This means that an application

written for the framework, can be compiled either for Arm or RISC-V processors without changing the

code. The framework needs to self adapt to the processor architecture. Second, the framework needs

to be developed towards a fail-function system, which still keeps delivering its services in the presence

of a fault. The system needs to implement techniques for fault resilience and recovering the system to

a healthy state when an error is active. To achieve this the the framework have to provide three main

functionalities:

• Allow the user (programmers) to choose verification’s points in the code where the architecture

error detection capabilities will be applied.

• Save a healthy system’s state;

• Perform a rollback, recovering the system from an erroneous state to the previous saved system

healthy state;

To reach the third goal

The fault injection mechanism should emulate harsh environments where the incidence of radiation

cause faults. For doing that, the mechanism must inject faults similar to those occurring in the harsh

environments.

1.3 Document Structure

The document of this thesis is structured as follows. Chapter 2 overviews the basic concepts around

fault tolerance. It starts to contextualize the fault tolerance and explaining why it is needed. Afterwards it

Chapter 1. Introduction 4

expose methods that can be used to achieve fault tolerance through redundancy techniques. At the end

of the chapter a survey is presented regarding the lockstep implementations in the current state of the art.

Chapter 3 presents some requirements that were followed to choose the soft-core as well as the platform

constraints imposed by the chosen soft-core. Finally, it presents the chosen platform to deploy the pro-

posed architecture. Chapter 4 proposes the Lock-V, a fault tolerance heterogeneous architecture exposing

its design and implementation. Chapter 5 addresses the design and implementation of the framework sup-

porting Lock-V through auxiliary tools for the development of application under the proposed architecture.

Chapter 6 presents and discusses the system evaluation as well as the fault injection mechanism that was

designed and implemented. The last but not the least, Chapter 7 summarizes the thesis presenting its

constraints and limitations as well as the future improvements.

2. Background, Context and State

of the Art

As the main subject of this thesis is fault tolerance, this chapter will first contextualize the general

definition around fault tolerance and its purpose. After that, it will be explain how fault tolerance can be

implemented, followed by some work done in this area. Even though there are many types of redundancy

as well as implementations, the focus will be on architectures based in FPGA, using dual-core lockstep

for hardened the processors on the architecture, e.g., [3] and [2]. In the section about dependability and

redundancy the basic terminologies and concepts are explained for a better understanding of the fault

tolerance implementation in the thesis project as well as the need for design diversity in a fault tolerant

system. The chapter finishes with a comprehensive analyses of lockstep implementation in current sate

of the art as well as a literature gap analysis.

2.1 Dependability

The system dependability is defined as the system ability to avoid service failures that are more frequent

and more severe than is acceptable [27]. This concept describes the means used to deal with the threats

in order to do not compromise the system reliability. Table 2.1 represents the three basic notions inside

the dependability concept. In the first column the dependability attributes are depicted, which are defined

as the properties that a dependable system must own. In the next column the dependability threats

are represented, which are defined as the reasons for a system to spot performing its function. The

threats should be avoided or, in case of being unavoidable, it is needed to deal with them and minimize

their consequences. For that reason, it is necessary methods for dealing with the threats. This set of

techniques, as shown in the last column, are possible means or approaches for mitigating threats. The

approaches can be either preventive or curative. If they avoid the threat and act before they occur, then

they are preventive. If they deal with the threats after they occur, they are curative ones. In the following

topics 2.1.1, 2.1.2 and 2.1.3 this concept will be explained in more detail.

5

Chapter 2. Background, Context and State of the Art 6

Table 2.1: Dependability table of concepts.

Dependability

Attributes Threats Means

Availability Fault Fault Prevention
Reliability Error Fault Tolerance
Safety Failure Fault Removal
Integrity Fault Forecasting
Maintainability

2.1.1 Dependability Attributes

The dependability attributes define the properties that a system is expected to have [1]. The five

dependability attributes are defined by Avizienis et al. [27] as: (1) availability, readiness for correct service;

(2) reliability, the system’s ability to deliver a correct service in a continuous manner; (3) safety, absence of

catastrophic consequences to the system external environment, both for the user(s) and the environment;

(4) integrity, absence of improper system changes; and (5) maintainability, system’s ability to be repaired

and modified. Although dependability only makes sense when all attributes are part of system properties,

in most cases the first three attributes, availability, reliability, and safety have the primary focus. In the

following topics, each of these three attributes will be explained in more detail.

2.1.1.1 Reliability

Reliability is the probability of a system to perform without any failure for a given interval of time. Thus,

the reliability represents a measure of time between the instant zero, when the system is in a fully functional

state, and the next expected system failure [1]. This time is known as Mean Time To Failure (MTTF) [28].

In some situations (e.g, harsh environments, remote/inaccessible places) is required a high-reliability

system that has to operate in a non-stop fashion. Such systems has to ensure that the delivery service

is not degraded, even if some faults occurred. High-reliability systems, like power plants control system,

space missions, heart pacemakers, can have faults and still be reliable. Such systems must prevent fault

propagation, as they are always safe if no fault is propagated to a system failure. This is possible because

high-reliability systems own mechanism to avoid the propagation of the faults. Later in Section 2.1.3 these

mechanisms of fault mitigation will be addressed more in detail.

2.1.1.2 Availability

System availability is the probability that the system will function correctly at a given time or period [1].

In order to determine the system availability, it is necessary to know the Mean Time To Repair (MTTR),

which is the time since one fault was detected until its full mitigation [28]. Availability is the ratio of the time

Chapter 2. Background, Context and State of the Art 7

a system meets its specification and the elapsed time. Another important concept related to availability

is the downtime per year. This represents the time of system’s inoperability throughout one year for a

given percentage of availability. Based on it systems are classified according to their availability, from

unmanaged to ultra available. Systems are sometimes referred in terms of the number of nines that the

percentage of availability owns. Table 2.2 depicts the availability of one system for a continuous operation

during one year as well as its downtime, class (”class of nines”) and system rating.

Table 2.2: Availability percentage corresponding to the different systems types.

System Type Downtime Availability Class Rating
Unmanaged 35.53 days 90% 1
Managed 3.65 days 99% 2 Routine
Well Managed 8.77 hours 99.9% 3 Essential
Fault Tolerant 52.6 minutes 99.99% 4
High Availability 5.26 minutes 99.999% 5 Critical
Very High Availability 31.56 seconds 99.9999% 6
Ultra Availability 3.16 seconds 99.99999% 7 Safety-Critical

2.1.1.3 Safety

Safety is the absence of catastrophic consequences when one or more faults occur, preventing user

damage and environment disasters [27]. This is an important requirement for safety-critical systems. If

these systems fail they can either cause harm for the users, e.g., hearts stops beating if a pacemaker

fails, or for the surrounding environment, e.g., radiation release if a nuclear power plant had a failure.

Safety-critical systems need to have a safety failure mode. This failure mode must analyze, describe and

then prevent, in case of a severe failure has occurrence, any damage caused to other equipment, people

or to the environment. Despite this, a system can fail and stop its operations and still be safe. A safe

system not necessarily implies that the system will continue operating after a fail. If the system when

stops operating does not cause dangerous situations, it remains safe. However, if a system stop implies

safety issues, it must not stop working at all. For example, the flight control system onboard an F-16 is

only a safe system meanwhile the failure does not cause the loss of system functionalities. If the system

fails and stops operanting, the F-16 falls down. In terms of safety, a system can has one of the following

failure modes:

• fail-unsafe: a fail may cause safety hazards that may lead to user or environment harms;

• fail-safe: after a failure, the system switches to a safe operating mode with reduced functionality

(there are degradation of the delivered service). One example of this failure mode is an elevator.

If its cable breaks down, the brakes are applied and the elevator is stopped, avoiding that falling

down. The system stop delivery its function, transport people between floors, but remains in a safe

state being a safety system;

Chapter 2. Background, Context and State of the Art 8

• fail-functional or fail-operational: the system keeps fully functional without any degradation of

the delivered service for a certain number of faults. An example of a fail-operational system is the

flight control system on a F-16 board, that is quadruple redundant. This means that it owns four

fully functional replicas of the system that can start operating at any time, while only one would be

required. In this mode of failure, the system may fail and still continue to provide its functionality

safely.

2.1.2 Dependability Threats

The dependability threats are usually defined as fault, error, and failure. These threats are what

compromise the functionality of a system. This may cause the system to deviate the current service from

the previously specified service (its main purpose) preventing it from being delivered. This threats also

undermines the system dependability attributes (mentioned in Section 2.1.1.).

2.1.2.1 Fault, Error, Failure

It is important to understand the concepts of fault, error, and failures and how can they trigger a fault

tolerance system to recover successfully from failure situations caused by errors. A fault tolerance system

must continue to provide the specified service, even at the event of a fault, and should react to errors

caused by faults, preventing the error propagation to a state of system failure. In [27] Avizienis et al.

provides the main concepts and taxonomy for the dependability threats:

• Fault: is defined as a logical manifestation caused by one or more physical defects, which change

the normal operation of a component in a system;

• Error: is caused by one or more faults in a system when it transits into an internal state;

• Failure: occurs when some event deviates the delivered service from the specified service. A

specified service is defined as a previously agreed description of the system behavior.

Faults can be classified according to many criteria. Regarding the domain, there are hardware or

software faults. In terms of their causes, they can be divided into three groups [27]: (1) development

faults that include all the faults that are introduced in the system during the design time; (2) physical faults

that include all faults that affect hardware; and (3) interaction faults that include all external faults caused

by interaction with the environment and/or the user. The software faults are predominantly caused by

development faults. A software without development ”bug” works uninterruptible without gives an error

and has a software failure. The software can stop working, but just in the case of the hardware (i.e. the

memory, processors, etc) also stop working. The hardware fault can be due to a physical or an interaction

fault and indirectly tamper with the data or the program in execution. Therefore, the software faults

are always permanent, because they always result from development errors [29]. On the other hand,

hardware faults are predominantly affected by physical faults and interaction faults (may be affected as

well for development faults, but derived from the maturity of the hardware design this rarely happens).

Chapter 2. Background, Context and State of the Art 9

Hardware faults are classified according to their durations into three groups [1]: permanents, transitory

and intermittent. The permanent faults are caused by physical defects of the hardware. The transitory

faults are triggered by unique events that affect the hardware, known as Single Event Effect (SEE). This

can create hard- or soft-errors. In the case of a soft-error occurs, the SEE hit the hardware and just change

its state without permanently damaging it. The hardware can be recovered moving to a fully operational

state. In another case, when a hard-error occurs, the hardware stays damaged forever. This happens, for

example, when there is a bit-flip, and it is never possible to write again to the bit that has been hit. In

contrast, when a bit-flip happens due to a soft-error, the bit can be rewritten. The last-mentioned type of

faults, the intermittent ones are transitory faults that occur periodically.

2.1.2.2 Causes

The transitory faults can be caused by several reasons. One of them is through the incidence of

radiation. This radiation effects called SEEs can be either nondestructive or destructive [30]. SEEs can

originate four different types of effects: (1) Single Event Latch-up (SEL); (2) Single Event Transient (SET);

(3) Single Event Functional Interrupt (SEFI); and (4) Single Event Upset (SEU). What sets them apart is

their cause. Each is triggered when a specific system component is affected by radiation. The SEE can

cause permanent damage to the system, destructive SEE or hard SEE, or cause transitory damage that

can be recovered, nondestructive or soft SEE. Out of the four above mentioned SEE, one of them can

originate a hard SEE and three of them a soft one. The SEL is what causes the hard SEE. This happens

when a particle hits a MOSFET or transistor oxide, triggering their gates and hence activating the latch.

The three events that causes a soft SEE are the SET, SEFI and SEU. The SET is one of the three events

that can originate a soft SEE, and it is characterized by the changing of the expected logical/combinational

circuit behavior [31]. When a particle hits. the circuit may charge the P-N junction of the semiconductor

and generate current pulses that may affect the MOS transistors and later the circuit behavior. The SEFI

generates a system failure, e.g., when the particle hits a bit and generates an improper system interrupt or

when the particle hits a bit that triggers a system self-test. In this case, the system goes into an improper

self-test which is only solved by a system reboot. The last out of three soft SEE, the SEU, occurs when a

particle hits a memory region and changes the value of that location without damaging it. For example,

when a particle has flip a bit, a whole byte changes its value. The SEU is known in the literature as a soft

error [30] and can has two nuances: (1) it can be a Single Bit Upset (SBU) in case of the radiation just

hits a single bit; or (2) it can be a Multiple Bit Upset (MBU) when high energetic radiation hits a memory

region and occurs a bit-flip of two or more bits [30].

2.1.3 Dependability Means

Dependability means are methods and techniques for mitigating the threats (Section 2.1.2) and so,

delivering a dependable system. For building a dependable system two groups of techniques can be

used, the fault avoidance or fault acceptance. They aim for different purposes and deal with faults in a

Chapter 2. Background, Context and State of the Art 10

different manner. The first group of techniques, fault avoidance, tries to avoid the occurrence of a fault,

e.g., through preventive maintenance. In contrast, the second group of techniques, the fault acceptance,

does not prevent the faults, instead it accepts and isolates them. Thus, the faults are prevented from

reach the system boundaries and propagate to errors and, consequently, to failures. The two groups of

techniques deal with the threats in different manners. The techniques can be applied in pre-service, during

the design-, implement- and test-time, or in-service during the operational lifetime of the system. A system

can be made dependable endowing it with four types of techniques: fault preventing, fault removal, fault

forecasting, and fault tolerance. Table 2.3 presents those techniques as well as their uses cases according

to the phase in the system lifetime.

The Dependability means are described as follows:

• Fault preventing is composed by design techniques that can be used during the design-time

when the specification, implementation, and fabrication stages are planed;

• Fault Removal can be performed either throughout the pre-service or service time. In pre-service,

it is applied for testing and debugging the system in order to find faults in the system. This is

done using three steps: (1) verification if the system functionalities match its specifications; (2)

a diagnosis that comprises the identification of the faults and what cause those faults; and (3)

the correction (removal) of the faults. The second possible use case of fault removal technique is

during system service. It can be performed through preventive maintenance, where the systems’

components are replaced before they fail.

• Fault Forecasting aims the detection of present faults and predicting futures ones, to avoid their

consequences. Fault forecasting performs the evaluation of the system behavior, resorting to some

techniques like failure mode and effects analysis, Markov chains, stochastic Petri nets and fault-

trees [27].

• Fault tolerance is a technique that ensures the correct function of the system within the presence

of faults. This dependability approach will be used in this thesis, so it will be addressed in more

detail in the next topic 2.1.3.1.

Table 2.3: Dependability means and their use cases during the lifetime of a system.

System Lifetime Phases

Reliability Means Pre-Service (Development) In-Service

Fault Preventing Design and Implementation 7

Fault Removal Test and Debug Preventive Maintenance
Fault Forecasting ✓ ✓
Fault Tolerance 7 ✓

7 Not applied in this phase. ✓ Applied in this phase.

Chapter 2. Background, Context and State of the Art 11

2.1.3.1 Fault tolerance

According to the defined dependability threats in Section 2.1.2, a fault is a malfunction in one compo-

nent. That malfunction can lead the affected component to have an error that may propagate for a failure.

Putting it simply, the failure of a component may lead to a system failure that causes dangerous system’s

behavior. To avoid the occurrence of a system safety hazard, the chain of fault, error, and failure has to

be interrupted. The fault tolerance ensures that the system functionalities do not degrade in the presence

of active faults. Hence, fault tolerance techniques need to prevent the propagation of the fault to failures.

The fault tolerance mechanism has to detect the errors and recovery the system from them before they

reach the component boundaries. As depicted in Figure 2.1, the fault tolerance mechanism needs to

perform its functions of detecting and mitigating errors while being an insurmountable fortress to prevent

the error propagation. The barrier that prevents the error to be propagated is made up a mechanism in

the fault tolerance component. That mechanism transforms, through recovery methods, a system from an

error state to a state without detected errors. The fault tolerance mechanisms, as depicted in the Figure

2.1, need to own two functionalities, error detection and error recovery [27]. These functionalities may

follow several conceptual implementations to achieve a fault tolerance system that can detect errors and

recovery from them.

The first fault tolerance functionality, error detection, identifies the presence of an error in a system.

It can be split into two methods: (1) concurrent detection, an online detector that works at the same time

at the system delivers its service; and (2) the preemptive detection that is an offline detector, that works

when the system suspends its service delivery.

The other fault tolerance functionality, error recovery, is responsible for removing the error and restore

the system for one state without errors. This can be reached through two manners, error handling or

fault handling. The error handling eliminates the error from the system using one of the following three

techniques:

• Rollback: brings the system back to a fully functional state. The system is recovered through a

system’s backup that occurred before the error was triggered. Afterward, the system goes back to

Component Failure

Component

Fault ErrorState Without
Detected Errors

System Without FT Mechanism

System Failure

Failure

Component

Fault ErrorState Without
Detected Errors

System With FT Mechanism

FT Mechanism

Error Recovery

Error Dectetion

System Failure Hazard

Hazard

Environment/User

Environment/User

Figure 2.1: Fault tolerant system with error detection and error recovery.

Chapter 2. Background, Context and State of the Art 12

a state that owns no errors, and starts moving forward from there;

• Rollforward: changes the system from an erroneous state to a error-free state. This way, the

system’s errors are mitigated and the system can keep move forward;

• Compensation: the system owns several redundancy mechanisms that can be enabled, masking

errors when they occur.

The second error recovery technique, the fault handling, averts faults, which triggered errors, from

being activated again through four possible manners:

• Diagnosis identifies the errors and determines the cause of their occurrence. The errors are

cataloged in terms of ”where” they had occurred and ”how”, describing the type of error;

• Isolation: the faulty elements, which are responsible for triggering the error are excluded from the

system. This method of fault handling makes the fault dormant, excluding the defective component

from the system;

• Reconfiguration: either switches components from faulty to redundant ones or reassigns tasks

among healthy components;

• Reinitialization: updates the system state and its configurations. It is done either by resetting

the system to an initial state or just updating the system information/configuration without a reset.

The above fault tolerance techniques are implemented in the systems according to their type, the

needed degree of availability and the acceptable system downtime. The best-fit technique should be

cautiously chosen. The hardware designers need to make tradeoffs when designing the system with these

techniques. They have to have into account the level of the system dependability that is delivery versus

the cost of the silicon area and engineering efforts that the implementation of the techniques requires.

2.2 Redundancy

Redundancy is the all addition system capabilities that would be unnecessary in a fault-free environ-

ment. The main idea is to have extra components in the system, which are designed for doing the same

function like the original ones. A redundant system owns two or more copies (replicas) of the same in-

stance when just one is required. Redundancy improves the overall reliability of a system, ensuring that

if some part of the system fails, another one assumes the functions of the faulty ones. Thus the system

is able to keep its service delivery without having a failure. In the literature there are many concepts for

defining and categorizing all redundancy types that can be added to a system. In [1] the author splits the

redundancy into three big groups and defines them as: (1) hardware redundancy that will be addressed in

topic 2.2.1: (2) software redundancy that will be addressed in topic 2.2.2; and (3) information redundancy

that will be addressed in topic 2.2.3.

Chapter 2. Background, Context and State of the Art 13

2.2.1 Hardware Redundancy

Hardware redundancy comprises all the components that are added to the system to perform some

functions already provided by the original system. There are two approaches in hardware redundancy:

(1) addition of replicated modules; and (2) use of extra circuits for fault detection [1]. In the hardware

redundancy one or more redundant units, are added to the system, performing the same functions as the

original one. The redundant components can have an active, passive, or hybrid actuation in the system. If

they actuate to mask the fault, they are a passive redundant system. These kinds of redundant components

in the presence of a fault ensure that, just the correct values pass to the system. This way, it is avoided

through fault masking the error propagation and thus, they stay contained within the boundaries of the

components. In the opposite, if the redundant components react when a fault occurs, the redundant

mechanisms is an active redundant system. In the active redundant mechanism, the fault is detected,

and afterward, the system performs actions bring the system back to an operational state without faults.

In some cases, both types of actuation are combined, and a hybrid approach is used. Fault masking is

used for preventing the propagation of errors (passive approach), and fault detection and recovery is used

to detect and replace or reconfigure the erroneous component (active approach).

2.2.2 Software Redundancy

In software redundancy, there are three main techniques, the N-versions programming, the time re-

dundancy, and spatial redundancy. The first consists of writing the same program N times by N different

persons and preferably, developed and compiled under N different programming environments, promoting

this way diversity in the application development and the odds of the same error occurs in the N-versions

and does not be detected is fewer. The second re-execute the code and check its results. The third

technique makes replicas of the same code verifying the equality of the redundant code’s outputs.

2.2.2.1 Time Redundancy

This particular technique of software redundancy consumes additional time to get a correct and valid

result. In the time redundancy, one specific part of the code is re-executed more than once. Execution

results are stored, and at the end of all program’s executions, the stored results are compared. The outputs

are verified if they match, and if not is because an error has occurred. This kind of redundancy in software

is suitable to deal with transient faults since they do not occur (or is very unlikely to occur) in the same

location twice and cause the same error two times consecutively. So, the re-execution of the same code

should not produce the same transient fault, which will be mitigated.

2.2.2.2 Spatial Redundancy

This technique of software redundancy replicates the code to get a compiled redundant machine code

that owns different instruction for the same purpose. This software redundancy technique is also known

Chapter 2. Background, Context and State of the Art 14

as instruction redundancy. This named is attributed due to the additional instructions that are added to

the binary code whenever a spare code is added to the application code. In the spatial redundancy, one

particular part of the code is replicated, e.g., variables or functions. After the replicated code is executed

the replicas are compared and checked if they are all equals. If it is not the case then an error has occurred.

Like time redundancy, spatial redundancy is suitable to deal with transient faults since it is very unlikely to

occur in the same memory region twice. For example, if a variable is replicated when it is affected by an

error, it is possible through comparison with the others redundant variables, detect and correct it.

2.2.3 Information Redundancy

Information Redundancy is the encoding of the information the way that the errors are detected and

in some cases, corrected. Information redundancy is implemented by adding some additional redundant

bits to the original data bits. There are different forms of information redundancies like parity codes, linear

codes, cyclic codes, checksum [1], among others. One information redundancy form that is widely used

in applications for harsh environments is the Error Correcting Code (ECC). This technique protects the

memories from radiation that may cause bit-flips. Usually, the ECC maintains a stored data immune to

single-bit errors. It is used to ensure that the read data is equal to the data that had been written [32].

2.2.4 Redundancy Techniques

There are two widely used redundancies techniques, Duplication With Comparison (DWC) and TMR,

both having software- or hardware-based implementations. Several DWC- and TMR-based implementations

of redundant systems have been proposed like [33], [14], [34], [35] and [36]. Some hybrid applications

combine both techniques like the author in [37] propose. Some other techniques can be found in the

literature as the Software-Implemented Hardware Fault Tolerance (SHIFT) that implements copies of the

same code to introduce redundancy at the instruction level [38].

2.2.4.1 Duplication With Comparison

The DWC replicates the original module to have on the redundant system two instances of the same

component, which are operating in parallel. DWC solutions relies on the comparison of the outputs of each

module, as depicted in Figure 2.2. Both modules are two instantiations of the same component (e.g., a

processor, memory, busses, among others). The replicas outputs, have to match or otherwise, the system

is in an incorrect state. That state owns an error that will be signalized by the verification module. In this

technique, the error, which was indicated by the verification module, informs that a fault has triggered on

the system. The system composed by the two redundant modules are not able to identify if each of them

was hit and triggers the error. The only information is if there is a outputs’ mismatch or not. Using this

technique is impossible to know, which is the erroneous module. In the DWC there is another important

Chapter 2. Background, Context and State of the Art 15

concept, which is the active module and the passive one. This distinction is made because only one

module is used for output, the active one. The passive module is used for verification purposes only.

2.2.4.2 Triple Modular Redundancy

The TMR technique triplicates the original module and adds one voter module to the system, as depicted

in Figure 2.3. The triplicate modules operate in parallel, and their outputs are used by the voter to check if

an error occurs or not. This is done by majority voting, which compares if the three redundant components

(e.g., processors, busses, memories, among others) are outputting the same object. If not, when one of

them has a different output, the voter signalizes an error. This error, in contrast with the given by the DWC

verification module, informs what is the erroneous module, due to the majority voting. If just one out of the

three outputs differ is because that output is wrong. In this case, the majority voter masks the fault and

recognize the correct value to output from the two fault-free modules. In some applications, instead of the

fault being masked, the faulty module is recovered and brought back to a fully operational state without

active faults. The TMR technique is used when a high-reliability system is required, e.g., in spacecraft, but

with the penalty of more silicon area, in hardware-based TMR, or more code footprint and time spent, in

software-based TMR.

2.2.5 Redundancy to achieve Fault-Tolerance

When a system needs to own fault tolerant services and be free from failures, mitigation mechanisms

based on redundancy are used. These kind of mechanisms resort to hardware-, software- or hybrid-based

Module 2Module 1

Checker

Input 2Input 1

Output Error

Figure 2.2: Representation of a system with DWC, adapted [1].

Chapter 2. Background, Context and State of the Art 16

Module 2Module 1

Voter

input 2Input 1

output

Module 3

input 3

Figure 2.3: Representation of a system with TMR, adapted [1].

redundancy to implement fault tolerance. When a fault occurs in one component, which represents the

system’s basic unit, the following redundant approaches can be adopted: (1) if the fault is permanent, the

component needs to be replaced; and (2) if the fault is transient, the component needs to be recovered.

When a redundant system is used for mitigate permanent faults, the faulty component is a substitute for a

healthy replica of the component. This substitution is a kind of pseudo-substitution as long as the redundant

component does not physically replace the erroneous original component. Instead, the component’s

functions are reassigned to a redundant component for correcting the faults. When a redundant system is

used for mitigate transients faults, it is recovered from an erroneous state to a state without errors. This is

possible by applying one of the following redundancy approaches: (1) redundancy that owns two instances

of the same component, e.g., DWC implemented in hardware; (2) redundancy that owns more than two

instances of the same component, e.g., TMR implemented in hardware; or (3) redundancy that has one

instances of the component, but its functionalities are replicated, , e.g., DWC or TMR implemented in

software;

In the first redundancy approach, the two components replicas outputs are compared. When these

outputs are different, means that an error has occurred. After the error is detected, it needs to be corrected.

However it is impossible to know in which component the fault has occurred, since the only information that

the fault tolerance system has is that a mismatch in the components’ outputs was detected. So, for correct

the error, both components need to be recovery. In the second redundancy approach, the fault tolerance

mechanism receives information about three or more components. When one of these component’s

outputs are different, an error in one component is detected. In contrast with the first redundancy type,

the fault tolerance system is able to detect the source of the error. So, after the erroneous component

is detected, it is recovered. In the third redundancy approach, the component’s functionality is replicated

instead of the component itself. This means that the component repeats its functions two or more times.

Chapter 2. Background, Context and State of the Art 17

Afterward the results of each execution are compared. This is called time redundancy [1]. Like the other

two redundancy approaches, if execution is performed twice, a fault can be detected, if it is performed

three or more times the fault location is identified.

In short, according with the type of fault, a redundant system can follow different redundancy ap-

proaches to be fault tolerant. For mitigating permanent faults the replacement approach is used. To

mitigate the transients ones, is used the recovery approach. This approach can be implemented following

one or a combining the above mentioned approaches. Therefore, a system can have only hardware- or

software-based redundancy technique, or a hybrid technique when both are used at the same time. It is

very usual the use of hardware redundancy with recovery in software, or the use of hardware redundancy

to protect the system’s hardware and software redundancy to protect the system’s software.

2.2.5.1 Design diversity

Although the redundancies techniques can mitigate a wide range of errors, they do not make a system

free from them. Some faults can affect the redundant components at the same time [39] and cause the

same error in all the redundant systems. This is a false positive of correctness, since the system has an

active fault, and hence an active error. In this situation the fault tolerance system is unable to detect it.

This is called CMF, which is a fault that simultaneously occurs in two or more redundant modules. CMF

are caused by some phenomena that create dependencies among the redundant components and makes

them vulnerable to the same faults [40], e.g., single power source, same input/output bus. The shared

of resources, design, or architectures makes that the redundant components fail at the same time. This

occurs because the same issue are presented in all redundant units, since they have identical operational

conditions that triggers a fault in all redundant components. The only fault tolerance approach to deal

and mitigate CMF is the design diversity [1]. Design diversity, as the name suggests, explores diversity

in the redundant components. The principle is to have components with redundant functions and not

just redundant instantiation of the same component. A component A can delivery the same function of

component B and have a different implementation. They can rely upon different development algorithms

and programming languages under different architectures and designs. They also can be implemented

by different teams that following different rules while using different software tools and having a different

background (i.e., developed by different professional from different companies and/or universities). The

design diversity is an important feature that a mechanism of fault tolerance should be aware of and do

something towards it.

2.3 Lockstep

Lockstep is a fault tolerance technique that uses hardware redundancy at the processor level. The

lockstep uses a dual- or multi-redundant instances of the main processor. Those redundant processors

run at the same time, the same copy of the program and compare their outputs in order to detect a

Chapter 2. Background, Context and State of the Art 18

mismatch among them (signal of an error). The lockstep may use either a Dual-Modular Redundancy

(DMR) also known as DCLS, similar to the DWC, or a Multiple-Modular Redundancy (MMR), e.g. TMR.

Both techniques have error detection and recovery phases. There are some differences between DMR and

MMR as will be explained in the next paragraphs.

Error Detection Phase

At this stage, when using DMR, it is impossible to know on which copy of the processor, the error has

occurred. So, the execution of both redundant processors are stopped, and the DMR signalize an error

to the system. In the TMR, due to the majority vote, it is possible to know which one was the affected

processor by the error. When this occurs, the TMR mechanisms signalized an error sending information

to the system identifying the processor where the error occurred.

At this moment, when an error is signalized either by DMR or TMR, the checker does not know if the

error is either a soft or a hard one. So, it is necessary to analyze the error and what is its type. If the error is

soft, it is possible to recover the system from it. If the error is a hard one, the system cannot be recovered

at all. Whenever an error is detected and for it to be classified, it is necessary to run a Built-In-Self-Test

(BIST) to analyze the system by searching for a hard error. If the BIST does not find any hard error, it

means that the error is a soft one.

Error Recovery Phase

In this phase, depending on the outcome of BIST, some action for recovery or containing the error is

taken. In the DMR, if a hard error has occurred, the processors are stopped, a fatal error is signalized, and

recovering the system from it is impossible. So, the system stops working and switches to a safe state.

When a hard error occurs in a system with MMR redundancy, the erroneous processor is disabled, and the

other health processors keep their execution as long as do not occur another hard error in the remaining

executing processors. After a hard error, if the MMR was composed of three redundant instances (TMR),

the MMR start working like a DMR redundant system. In the case the BIST does not detect any hard

error, it means that a soft error has occurred. So, in the system with DMR technique, both processors are

recovery to a state without any error, since it is unknown what is the erroneous processor. In the opposite

side, in the MMR technique, the recovery is made to the erroneous processor only. The system keeps

executing with the remained health processors, and when the erroneous processors are recovered, the

MMR change to its fully functional state without had any execution interruption.

Types of Lockstep

Chapter 2. Background, Context and State of the Art 19

Regarding the types of lockstep, it can have a loosely- or tightly-coupled implementation. In the tightly-

coupled hardware lockstep, two or more processors are running synchronously, and the outputs are com-

pared at every clock cycle. The comparisons are continuously being made. An error is detected before

it propagates to the outside of the system. This type of lockstep is more robust as the granularity is

small however it is expensive to implement [41]. In the loosely-coupled hardware lockstep, the outputs

are compared periodically. In this type of lockstep, the granularity is higher, so the implementation cost is

smaller. However, the error detection is weaker since now the error is only detected after it is propagated.

The loosely-coupled lockstep needs less computation once fewer comparisons are performed. Hence,

it uses fewer resources compared to the tightly-coupled lockstep, that has to perform comparisons ate

every clock cycle. This introduces higher time and space overhead. The type of the lockstep should be

chosen according with the type of application, its safety-critical requirements and the hardware systems

constraints.

2.3.1 Design Diversity Applied To Lockstep

Lockstep is an appropriate solution for redundancy, but diversity is also needed [42]. Lockstep by its

own, cannot detect errors that occur at the same time in the redundant cores since the error does not

cause any difference in their outputs. For preventing the system from the CMF, it is necessary to combine

the fault tolerance techniques with design diversity.

The lockstep can be implemented at three different design diversity levels:

• ISA level, the processors use in lockstep are different once the processors’ ISA are different. More-

over, once shuch difference exists, although the same application code may be in execution, the

binary code is different. So, never two equal instructions are in execution because the ISAs are

not the same. In the worst case scenario, the processors can execute two instructions with similar

behaviours, but even in that case, it is almost impossible that CMF happen, since the instructions

have similar functions but different implementations. Another advantage of use different ISAs is

the delay, which exists by nature, between the executions of the binary code. This happens be-

cause different ISAs have different time execution for each instruction when the application code

is traduced to binary code and the outcome number of instructions are also different among pro-

cessors. This also increases the diversity among the different ISAs codes. When the lockstep uses

this diversity approach, the processors’ CMF are more unlikely to occur and affect the system.

• Microarchitectural level [23], in this design diversity level redundant processors have the

same ISA, but different microarchitecture. For example, different teams can design and implement

different Arithmetic Logic Unit (ALU) upon the same ISA. The engineering effort to implement this

diversity is very high since every microarchitecture component must be implemented differently.

• Temporal diversity [23], in this design diversity level identically instances of the processors,

with the same ISA and microarchitecture, are used. The copies of the processors are delayed by

some cycles to detect possible CMF. For example, the transient pulse in the energy can trigger

Chapter 2. Background, Context and State of the Art 20

the same error if the processors are simultaneously executing the same instructions. However, it

is unlikely that the same error would be triggered if the execution of the processors are delayed

for few cycles since it is unlikely that the same instructions are being performed at the same time

[22]. This kind of diversity is the most used out of the three kinds because the engineering and

implementation cost (silicon area) is the smallest.

2.3.2 Lockstep Implementations

A plethora of possible implementations of the lockstep either software-, hybrid- or hardware-based can

be found in the literature. The software-based lockstep can use spatial redundancy (replicating the instruc-

tions), temporal redundancy (replicating the execution), or both. For example, in the [43] virtual-lockstep,

the authors propose a software lockstep hypervisor-based, that executes the code replicas in an n-modular

redundant fashion. Despite the software-based lockstep implementations are effective in delivering a low

area overhead and low implementations cost, they fail in to provide a robust, safety-critical and reliable

device. They are exposed to the very usual software errors (as known as bugs), which when the system is

in operation makes it permanently and unrecoverable. The software lockstep has low scalability, because

every time that is done one application, the redundant mechanisms need to be introduced in the code. The

software-based lockstep is also more exposed to the software and hardware CMF since hardware diversity

does not exist, and software diversity is difficult and expensive to achieve. So, they are considered out of

the scope of this thesis. The hardware- and hybrid-based lockstep implementations, found in the available

literature and in the current state of the art, are closely related with the hard-core of this thesis and it can

be divided into two groups: built-in lockstep implementations and non-native lockstep implementations.

Built-in Lockstep

Due to the industrial demand for safety-critical and reliable systems, Central Processing Unit (CPU)

manufacturers were pushed to develop safety processors with built-in lockstep, ready for commercial use.

This ”Plug-and-Play” processors delivery a reliable solution for a system that needs fault tolerant with a

reduced engineering cost. The major players in the processors’ industry have launched their solutions to

the market. Infineon from the first processor family, AUDO, to the most recent family, AURIX, has been

releasing processors for automotive applications compliant to ISO 26262, ISO 25119 and IEC 61508.

These processors are based on a 32-bit TriCore microcontroller [44] that owns three processors, two of

them running in lockstep. The NXP has launched two processors solutions, the Arm Based Processors

and the Power Architecture Processors based in its Microcontroller Unit (MCU)s. Both target ASIL-D and

ISO 26262 compliant applications, but one has focus on high-performance computation, for autonomous

vehicles applications [45], e.g., active suspension braking and stability control, and the other one low

performance needed like chassis applications [46], e.g., gasoline engine management and hybrid and

electric vehicle power inverter.

Chapter 2. Background, Context and State of the Art 21

Arm has also been providing a wide range of solutions for a safety-critical system in all three processors

groups Cortex-M, Cortex-R, and Cortex-A. In the processors targeting high performance and hard real-time

applications, (Cortex-R) Arm offers the Cortex-R4, Cortex-R5, Cortex-R52, Cortex-R7 and Cortex-R8 [47],

[48], [49], [50] and [51] with a built-in DCLS that support dual- (Cortex-Cortex-R5, Cortex-R52, Cortex-R7

and Cortex-R8), triple- (Cortex-R52, Cortex-R8) or quad-core (Cortex-R52, Cortex-R8) configuration (up to

eight cores by processor, four main processors plus four redundant processors). In processors for high-

end application (Cortex-A), Arm offers the Cortex-A65AE and Cortex-A76AE [52]. In low end processors’

family (Cortex-M), Arm added the native support for lockstep at the processors Cortex-M23, Cortex-M33

and Cortex-M7 for later use in lockstep mode by the designers as the authors in [22] and [53] have done.

New solutions has arisen based on the existing built-in lockstep processors [54], [55]. These works use a

DCLS Arm Cortex-R5 processor that has already been verified and certified accelerating the design of the

system and thus reducing the costs associated with developing the new architecture.

Some academic solutions have also emerged as proposed in [35]. Han et al. create a processing

platform that implements in Application Specific Integrated Circuits (ASIC) a built-in dual core dynamic

lockstep with time diversity for Advanced Driver-Assistance Systems (ADAS) applications. Despite built-in

solutions are well suitable for safety-critical applications, they have a static implementation, what fails in

delivery a dynamic and reconfigurable FPGA-based system.

Non-Native Lockstep Implementations

Increasingly, the FPGA have been used in harsh environments and safety-critical applications that require

high dependability. For ensuring this, it is necessary that the FPGA owns fault tolerant mechanism for

protecting the embedded processors on it. For hardening the processors, an architecture with lockstep is

needed.

There are some lockstep implementations [56], [57] and [58] in FPGA-based that use only soft-cores.

In [56] and [58] are used two Microblaze soft-cores in lockstep with a partial or full reconfiguration to

mitigate any transient or permanent hardware faults. In [58] the authors added a third soft-core processor,

a PicoBlaze to identify the faulty core, through a TMR technique. This way, the error location can be

determined and correct and afterward mitigated using Partial Reconfiguration (PR) combined with rollback

recovery. The lockstep implementation in [56] uses an output comparator to detect an error, and it cannot

figure out its location. In [57] the authors implement a DCLS to protect the systems based in soft-core

processors against SEU in data and configuration memories. That implementation intended to reduce the

context processors saving and its recovery latency.

In [59], [60], [2], [3], [61] and [62] are proposed a loosely-coupled DCLS based in two hard-cores

embedded in a SoC FPGA-based. In [60] it is implemented non-invasive lockstep with checkpoint and

rollback recovery approach for Commercial Off-The-Shelf (COTS) processors. This implementation is

transparent to the processor and software application, once that it does not require modifications either to

the processors’ architecture or software application. The authors use a checkpoint and rollback to mitigate

Chapter 2. Background, Context and State of the Art 22

SEU. In this implementation the program has been executing and frequently, in some predefined points,

it is stopped, and a consistency check is done. If the check passes, the context of the processor is stored

in a soft error tolerant memory. If the check fails, a rollback is done, and the system is recovered from the

last checkpoint (last processor state without errors).

In [2] is proposed the Transaction Checker Architecture. An architecture based on a DCLS that uses a

transition checker (in the Programmable Logic (PL)) combined with some specific processor configuration

and interrupt handling to implement a loosely-coupled Lockstep. The Transaction architecture, depicted in

Figure 2.4, is composed of two Arm Cortex-A9 processors that execute the same copy of code in parallel.

Each processors’ code is stored in two different memories. One in a Locked L2 Cache (L2C) and another

in an On-Chip Memory (OCM). The processors’ memories are isolated from each other since the Memory

Management Units (MMUs) and Snoop Control Unit (SCU) limit the range addresses. The processors use

shadow registers to communicate with the Transaction checker. It has a set of 20 shadow registers for each

processor. However, these two banks of registers are seen as one by the processors, due to a physical to

virtual address mapping. Both processors access the same virtual address, but different physical address

(different banks of shadow registers). The Transaction Architecture provides a processor event bus that is

responsible for the lockstep services. This bus owns a set of signals that informs the transaction checker

when it has to read the shadow registers to perform the comparisons of processors’ outputs. When the

processors perform a transaction, after the shadow registers have been configured, the Wait For Event

(WFE) signal is used to inform the checker that the data is ready for being read. When the WFE is low,

the processors are executing, when is high, the processor is waiting for an event. The processors stay

waiting for an event until the transaction checker toggled the event input signal. When this occurred,

the processors resume their executions. The transaction checker controls the reading and writing in the

Input/Output (I/O) and the interruptions. When the processors want to access to the I/O they send that

information to the transaction checker and, if the data is equal, the checker writes or read the I/O. The

interrupts are also controlled by the checker. It is connected to a Fabric Interrupt Controller (FIC) that it

is connected to both processors, so when an interrupt is triggered both processors receive that interrupt

signal equally and at the same time. The Transaction Architecture is composed by hardware-based loosely-

coupled lockstep that in the presence of an error, reports it and cause an alarm and afterward, to prevent

the error propagation, the system is halted or reset.

In [3], [61] and [62] Oliveira et al. proposed a loosely DCLS depicted in Figure 2.5, that own one

Double Data Rate (DDR) memory, two Block Random Access Memory (BRAM) memories, one for each

processor and a checker module. The DDR memory, which is used by the two Arm Cortex-A9 processors,

stores the program that will be executed and is used as an alternative safe memory for storing the check-

point, once that the checkpoint stored memory used by default is BRAM-based. Although is protected

by a Error Detection And Correction (EDAC), it is vulnerable to radiation. The BRAM memories are con-

nected to each own processors by an AXI interconnect and are used either for all the application data or

for saving the processors’ context at the checkpoint time (writing the context) or rollback time (read the

Chapter 2. Background, Context and State of the Art 23

Figure 2.4: Transaction Architecture block diagram [2].

context). The checker module is responsible for verifying the processors’ consistency and for performing

the lockstep services. The application is executed simultaneously in both processors. In order to perform

the consistency checking, the application is divided into blocks, and at the end of each block, a Verification

Point (VP) is added. When a VP is performed, the processors’ status are stored in their BRAM memories,

and the execution is locked. Afterward, the checker triggers an interrupt to read the processors’ registers

and to compare the outputs of each unit of processing. If they are equal, the processor is considered in a

safe state, and the execution is resumed, by a new CPU interruption, and the context of the processors’

are saved. Otherwise, if a mismatch has occurred, it is generated an interrupt to perform the rollback.

After that, the checker gives a signal to unlock the processors. The rollback can be done by two different

manners. The first one, accessing the BRAM memory for saving processors’ context (checkpoint) and later

recovering to a safe processor´s state, read from BRAM (rollback). This first approach can be done by

another way if more reliability in the rollback is needed. Since the context processors data saved can also

be affected by an error, accessing the BRAM and DDR memories for saving and recovering the processor

context is more reliable than just using the BRAM. In this second checkpoint/rollback setup, the context

is stored in both BRAM and DDR memories. The default recovery memory still is the BRAM, although if

after the rollback from BRAM the error in the block code persists, another rollback is performed, but this

time from the external DDR memory. When this situation occurs, the previously checkpoint data, which is

corrupted, is overwritten by the DDR data. The checker can have one of the following two approaches to

detect errors. First, in each VP comparing all the outputs position of the BRAM0 and BRAM1 memories.

Using this approach requires no added code to the application. Second, generate a signature from the out-

puts before the VP that choose just some outputs to be compared for the checker, i.e., the signature ones.

Chapter 2. Background, Context and State of the Art 24

Figure 2.5: Proposed loosely DCLS architecture implemented in the Zynq-7000 APSoC [3].

This has less overhead, once that fewer comparisons are performed, but could mask an error because

the outputs were not fully verified.

In [59] is proposed a DCLS based in [3], [61] and [62] implementations, with small architectural

variations, it is used two individual DDR memories, rather than one shared DDR, while targeting a different

processor, Arm Cortex-A53. It seems to be a porting of Oliveira et al. lockstep implementations for a

new board and a new processor. The main contribution of this paper relies on heavy reliability analyses

that prove, through Markov model and Matlab testing, that the DCLS architecture proposed in [59], [3],

[61] and [62] is suitable for microsatellites applications, once that it meets the operational requirements

of them. Sun et al. determine that the proposed DCLS has a Mean Time Between Failures (MTBF) at

approximately 9.55 years, what it is bigger than the average life span of microsatellites, 5-8 years.

2.3.3 Discussion

Table 2.4 summarizes the gap analysis targeting commercial or academical lockstep implementations

compared with the envisioned solution in this thesis. The lockstep implementations have been compared

based on the type of lockstep, the processors’ lockstep support, its diversity (time, microarchitectural and

ISA) and relation at its architecture components, if it has hard-cores, sofcores or FPGA.

Although several FPGA- and ASIC-based lockstep mechanisms have been proposed in the literature for

protecting the processors, they fail into providing a robust solution in terms of design diversity. After some

literature research, it is possible to see two types of scenarios. On one hand, the FPGA-based lockstep

solutions, just ensure redundancy capabilities to the system, but they do not leverage any design diversity.

On the other hand, the ASIC-based lockstep solutions protect the system against CMF, but only using time

diversity. This happens because implementing design diversity entails more engineering cost and silicon

area overhead. For that reason, the processors’ designers choose to use only time diversity since it is the

cheapest solution in terms of implementation and developed costs. However, time diversity in some cases

Chapter 2. Background, Context and State of the Art 25

is not enough because the outputs are just delayed few clock cycles, typically 2 cycles and some CMF

(e.g., power source and clock tree issues) may last too longer than that clock offset.

Table 2.4: Gap analysis among Lockstep implementations.

Arch. Components Diversity Lockstep
Hard-core Soft-core FPGA Time Micro. ISA Type Support

Hanafi et al. [56] ✓(2) 7 ✓ 7 7 7 L NN

Sun et al. [59] 7 ✓(2) ✓ 7 7 7 T NN

Pham et al. [58] 7 ✓(3) ✓ 7 7 7 T NN

Cornejo et al. [57] 7 ✓(2) ✓ 7 7 7 T NN

Han et al. [35] ✓(2) 7 7 ✓ 7 7 T B

Abate et al. [60] ✓(2) 7 ✓ 7 7 7 L NN

Kral et al. [2] ✓(2) 7 ✓ 7 7 7 L NN

Oliveira et al. [3] ✓(2) 7 ✓ 7 7 7 L NN

Iturbe et al. [54] ✓(6) 7 7 ✓ 7 7 T B

Yiu [42] ✓(2) 7 7 ✓ 7 7 T N
(L) Loosely-Coupled (T) Tighly-Coupled (B) Built-in (N) Native (NN) Non-Native

3. Platform

The choice of a platform that supports the architectures developed by the systems’ designers, take an

important role in a project. This chapter will explain the criteria used for choosing the platform that will

support this thesis. A key demand for the thesis architecture is the deployment of RISC-V processor. In

the first section, the demand for choosing a RISC-V processor is discussed, as well as it will be exposed

a candidate analyses for the RISC-V processor. In the second and last section, it will be addressed the

choice of the platform according with the constraints imposed by the chosen RISC-V processor.

3.1 Processors

Due to the demand for design diversity, addressed in Subsection 2.2.5.1, it was used two different

processors, to ensure diversity at time, microarchitecture and ISA level. The selected architectures for

the processors were the Arm and RISC-V. The first was chosen because it represents one of the most

used processors’ architecture for embedded systems applications. According to the Arm media fact sheet

(Sept. 1, 2016) [63] at the time, more than 86 billion Arm-based chips had been shipped, 42% of them

for the embedded space. Arm processors are becoming widespread in embedded space due to their well-

balanced capabilities since they combine performance with low cost while offering wide processors’ family

portfolio. The RISC-V processor was chosen because it is a novel open-source ISA [64] based on a Reduced

Instruction Set Computer (RISC) architecture. It was designed with a focus on embedded systems, Internet

of Things (IoT), and other modern devices. RISC-V allows a new level of software and hardware freedom

on architectures in an open extensible way. This ISA allows the implementation of RISC-V ISA-based cores

and adapts them to, for example, fault tolerance techniques like DCLS or TMR. It is possible to create

new instruction due to architecture freedom and focus them for a specific purpose. Because the RISC-V

is a very recent ISA (the RISC-V Foundation was founded just 4 years ago), at the time of the starting of

this thesis (autumn 2018) for the best of my knowledge, none FPGA own hard-core Arm alongside a soft-

core RISC-V. So, it is necessary to use different core implementations, using one hard-core Arm (already

deployed at Processing System (PS)-side) plus one soft-core RISC-V (to be deployed in PL-side).

Some of the freely available RISC-V soft-core implementations, requires host environment features,

both for the booting process and for the processor to run and execute the application. Such implemen-

tations are called tethered processors [65], as they require a host processor to start up and to interact

26

Chapter 3. Platform 27

with the environment. For this reason, be untethered becomes an important requirement for the soft-core.

The soft-core must provide too, an open implementation that makes it flexible, adaptable and scalable for

allowing the deployment of the lockstep, and for futures implementations of new features. To be easily

scalable for new features, the soft-core must also be developed through a high abstraction level using

one hardware construction language (like Chisel). This kind of soft-cores implementation allows faster

hardware development since it abstracts the designer from the specification of the basics hardware units

which the most of the time cause design and implementations errors. The soft-core must also be a

general-purpose processor (RV64GC) to be similar to Arm’s general-purpose hard-core and thus, it should

be programmed for a wide variety of applications. Due to the time shortage, in this case is the time to

finish the thesis, once processor’ design is not the scope of this thesis (they just are a component of the

architecture), the soft-core must support a heterogeneous platform with an Arm hard-core plus a FPGA

part. This is an important requirement because doing a soft-core porting for a new platform that is not

supported, may last some time. For summarizing, the soft-core must fulfill the following requirements: (1)

be untethered; (2) be flexible, adaptable and scalable; (3) be implemented in a high abstraction language;

(4) be a general-purpose processor; and (5) has support for a heterogeneous board. These requirements

were used to do a comprehensive analysis of the soft-core candidates, compiled in table 3.1. There are

several processors that are good candidates for be used as soft-core such as the Ibex (Zero-riscy) [66],

Pulpino [67], picoRV32 [68], Ariane [69], Orca [70], Mi-V_RV32 cores [71], BOOM [72], Freedom [73],

Rocket [74], lowRISC [75], among others. However, not all of them fulfill the requirements specified above.

The Ibex, Pulpino, picoRV32, Orca, and Mi-V_RV32 are not general-purpose processors, and they are

not programmed in a high abstract language hence the scalability is medium or low (Mi-V_RV32 is not

open-source because is a Microsemi proprietary implementation of RISC-V ISA). For these reasons, these

Table 3.1: Soft-Core Candidates Analysis.

Untethered Scalability Language Board Support∗ ISA

Ibex Yes Medium SystemVerilog No support RV32IMC

Pulpino Yes Medium SystemVerilog ZedBoard RV32IMF

picoRV32 Yes Medium Verilog No support RV32IMC

Ariane No Medium SystemVerilog No support RV64GC

Orca Yes Medium VHDL ZedBoard RV32IM

Mi-V_RV32 Yes Low Verilog No support RV32IMAF

BOOM No High Chisel ZedBoard, ZC706 RV64G

Freedom Yes High Chisel No support RV64GC

Rocket No High Chisel Zybo, ZedBoard, ZC706 RV64GC

lowRISC Yes High Chisel ZedBoard∗∗ RV64GC

∗ Just was considered boards that support the implementation of a heterogeneous architecture composed by one hard-core
plus a soft-core (hybrid SoC). If the cores just support boards with FPGA, that soft-core is considered that has no support.
∗∗ For the lowRISC version 0.3

Chapter 3. Platform 28

processors were excluded from the soft-core candidate list. Although the Ariane, BOOM, and Rocket be

general-purpose processors, they fail into providing an untethered implementation, since they rely on a

host environment to start-up, run programs and interact with the surrounding. So, they are excluded too.

Only two candidates remain on the list, Freedom, and lowRISC. They are very closed candidates. However,

Freedom does not provide support for a heterogeneous board. Therefore, the only soft-core on the list that

meets the requirements is lowRISC.

The lowRISC processor fits in all essential characteristics that soft-core need to own: (1) it is an

untethered soft-core processor, which is a crucial aspect for the implementation of the lockstep mechanism

since each processor (Arm and RISC-V) have to execute their binary machine code independently; (2) it

has high scalability once it is a customizable core, enabling the refactoring of the lowRISC processor to the

project requirements, such as adding a master/slave Not A Standard Interface (NASTI) bus, which is similar

to AXI, for connecting the core to loosely-coupled accelerators or for adding tightly-coupled accelerators

that can work as co-processors; (3) it is coded in a high abstraction language, chisel; (4) it has support for

a heterogeneous board, ZedBoard; and (5) it is a general-purpose processor, RV64GC ISA. In the following

topic, it will be addressed and explained in more detail.

3.1.1 The lowRISC

The lowRISC is a 64-bit SoC platform based on the Rocket Chip RISC-V ISA implementation. The

lowRISC aims bringing the benefits of the open-source development to hardware world and being ”The

Linux of the hardware world”. In doing so, it allows the design of more custom hardware to endow the

next generation of computing of personalizing, secure and safety hardware.

The lowRISC has been releasing several version of the lowRISC. So far, there are six releases:

• version 0.1: tagged memory (04-2015). The lowRISC first code release that is built upon the

Rocket RISC-V implementation offers support for tagged memory;

• version 0.2: untethered lowRISC (12-2015). This lowRISC version has a standalone implemen-

tation achieved through untethering the Rocket Chip. The support previously developed in version

0.1 for tagged memory was not added;

• version 0.3: trace debugger lowRISC (07-2016). In this code release, lowRISC gained its first

debug infrastructure. This is an extended untethered implementation of lowRISC (version 0.2) to

which debug support has added;

• version 0.4: minion tag cache lowRISC (06-2017). This release provides a more complete proto-

type of tagged memory implementation. A ”minion” core was also added for delivery an SD-card

interface. The support for keyboard and VGA compatible text display was added too;

• version 0.5: ethernet multiuser lowRISC (12-2017). This release provides a complete Ethernet

reference design. The SD-card interface is now a Rocket peripheral for having more performance.

The keyboard and VGA compatible text display were set as the default Rocket console;

Chapter 3. Platform 29

• version 0.6: technical refresh lowRISC (06-2018). In the last release, the Rocket core updated to

the March 2018 Rocket version and was added JTAG debugging conforming to the RISC-V specifi-

cation and this version now has also support to Debian Linux.

The chosen release is the lowRISC version 0.3 due to two reasons. First, it fits the thesis soft-core

requirement since it is an untethered standalone processor built upon the Rocket Chip implementation

of the RISC-V ISA. It eliminates the need for a companion core, which is replaced with FPGA peripherals.

Second, it is the only version that has support for a heterogeneous board (ZedBoard), which is crucial for

deploying a DCLS with different processors, that have both to run independent binary code.

A high-level view of the previous version of the tethered Rocket chip is shown below Figure 3.1a and in

Figure 3.1b it is shown the untethered version of Rocket chip that lowRISC was generated. The Rocket chip

needs a companion core to initialize the state of memory, execute programs, and interact with the external

world. The Rocket chip is connected through a host interface to an Arm processor (the companion core),

which is connected to its L2 bus. In this processor, it is run a Linux that uses a RISC-V frontend server

to interact with the Rocket core, e.g., execute binaries code or start up a Linux in the Rocket Core. The

booting of the rocket chip is not standalone, i.e., it is dependent on the Arm processor. In the lowRISC

there is no such processor, so it is easier to boot from a boot loader code. The lowRISC removed the

Arm companion core and remapped the peripherals for FPGA. Furthermore, the Universal Asynchronous

Receiver Transmitter (UART) and SD peripherals were connected to the lowRISC through the FPGA and the

boot is done either through an on-FPGA Random Access Memory (RAM) (the method used by the lowRISC

in the ZedBoard) or through a DDR3 RAM. For connecting the Rocket tiles to the peripherals, lowRISC

implemented two NASTI/NASTI-Lite interfaces, that is a limited subset implementation of the AXI/AXI-

Lite bus functions. The NASTI interface is used by the L2 cache to read and write in memory, and the

NASTI-Lite interface is used by the I/O bus to access the peripheral. This way the Rocket chip was made

(a) Tethered Rocket chip, [76].
(b) Untethered lowRISC built upon the rocket chip RISC-V

ISA implementation, [77].

Figure 3.1: Tethered and untethered implementations based on the Rocket chip.

Chapter 3. Platform 30

untethered and can be used as a standalone processor. Now it is possible adding more custom Memory-

Mapped Input/Output (MMIO) peripherals through more NASTI-Lite interfaces, which enables the use of

this upgrade version of rocket chip in a wide range of applications. It is also possible a direct bootload

while working with the lowRISC in a standalone manner.

3.2 ZedBoard

Regarding the hardware platform, according to imposed requirements for the soft-core, the chosen

one, lowRISC, restricts the possible range of FPGA solution to a ZedBoard (as we saw in Section 3.1). The

ZedBoard Figure 3.2 is a low-cost, flexible, and scalable development board that features an XC7Z020 Zynq

device. This integrates a dual-core Arm Cortex A9 in its PS side and PL in a single device. The Arm Cortex

A9 is the heart of the PS which also include caches, OCM, external memory interfaces, DMA controller and

several I/O peripherals and interfaces, e.g., General-Purpose Input/Output (GPIO) with four 32-bit banks,

high-speed UART, master and slave Inter-Integrated Circuit (I2C) interfaces, full-duplex Serial Peripheral

Interface (SPI) ports, among others. Many different resources compose the PL as 85K programmable

logic cells, 53.2K LUTs, 106.4K FF, 400 DSP slices and 140 Block RAM of 36 KB, making it very suitable

for a wide range of FPGA-based applications. The dual-core Arm Cortex A9 in the PS always boot first,

Figure 3.2: ZedBoard development board.

Chapter 3. Platform 31

allowing a software centric approach for PL system boot and PL configuration. The PL can be configured

in the boot process or in the runtime of the system. Using this feature, the PL can be reconfigured either

for full or partial configuration. PR allows configuration of a portion of the PL. This enables optional design

changes such as updating coefficients or correct an error when the FPGA is hit by radiation. PR capability

is analogous to the dynamic loading of software modules, offering several useful applications.

4. Proposed Architecture (Lock-V)

This chapter presents the Lock-V, a heterogeneous architecture that explores a DCLS fault tolerance

technique in two different processing units: a hard-core Arm Cortex-A9 and a soft-core RISC-V-based

processor, lowRISC. At the beginning of the chapter is discusses the best lockstep technique to be applied

to the Lock-V architecture. Afterward, Lock-V architecture design and implementation are explained. The

next section describes the adaption done to the lowRISC soft-core in order to fit it in the lock-V requirements.

Furthermore, the xLockstep is introduced, and its functionalities are detailed. Next, it is shown how the

accelerator was implemented to be suitable to connect two different processors. Near the end of the

chapter, it is described how the xLockstep was deployed in the proposed fault tolerance architecture.

Lastly, in the final section, it is presented the xLockstep Application Programming Interface (API), a bunch

of functions that allow the external world access and use the lockstep capabilities of the Lock-V.

4.1 Adding Lockstep Capabilities

The ideal redundant system has 100% availability, ensuring this way that the system never fails. Despite

that some system can achieve availability closely of 100%, they require a lot of resources, either physical

(silicon area) or design ones (engineering costs). So, it is necessary to make some tradeoffs in order

to chose the redundancy level that best fits the system requirements, having into account the imposed

constraints. Once the main goal of this thesis is developing a redundant system that leverages design

diversity, having a high-availability system, for now, it is not a concern.

The first initial step was to choose which lockstep technique and redundancy level would be used. As

we saw in sections 2.3, there are two main techniques that a lockstep system can implement, a DCLS

or a TMR lockstep. Thus, to develop such systems, some aspects must be considered, such as area

overhead, implementation and design costs and system effectiveness to meet the project requirements

(in this case, design diversity). Figure 4.1 depicts the three main design scenarios for deploying a fault

tolerance heterogeneous architecture in the heterogeneous board selected in Section 3.2, with the soft-

core that was chosen in Section 3.1, lowRISC, and onboard Arm Cortex A9 processor. In all alternatives

of heterogeneous design there are the chosen RISC-V soft-core (lowRISC), the dual-core processor that

integrates the Zedboard, a lockstep accelerator and in some design options it is considered using an extra

soft-core. According to the type of lockstep applied to the architecture, the configurations of the design

32

Chapter 4. Proposed Architecture (Lock-V) 33

may vary between the following combinations: (1) a TMR, depicted in Figure 4.1a, with one soft-core,

two hard-core Arm Cortex A9 plus one lockstep accelerator; (2) a TMR, depicted in Figure 4.1b, with two

soft-cores, one hard-core plus one lockstep accelerator; or (3) a DCLS, depicted in Figure 4.1c, with one

soft-core, one hard-core plus one lockstep accelerator.

Figure 4.1a illustrates a possible design option leveraging a TMR-based lockstep solution. This so-

lution is composed by one soft-core lowRISC, in the PL, alongside with one accelerator lockstep, which

implements a voting mechanism for detecting which is the erroneous processor when an error occurs.

The other two processors are the hard-core Arm Cortex A9 integrated in the chosen board. Once that two

out of the three processors are identical, i.e., they have the same ISA, the system will have less design

diversity. If a CMF hits the two Arm processor, the voter does not detect it. However, a mismatch will

emerge because the output of the two Arm processor would be different from the lowRISC processor. The

voter will try to recover the lowRISC processor because the majority voting and the system will start working

in an erroneous state that may cause a safety hazard. So, this design solution should be avoided.

The design solution illustrated in Figure 4.1b, is similar to the previously mentioned design, but instead

of using the two Arm Cortex A9 it is added an extra soft-core. This solution is composed of two soft-cores

lowRISC plus another like for example, Microblaze plus one hard-core Arm Cortex A9. This way, the design

diversity requirements are accomplished since all three processors have different ISAs. Yet, this would

take too long to develop and implement the system. Additionally, it would require a significant amount of

programmable logic, that may be a limiting factor for futures improvements to the project.

Figure 4.1c illustrates a different solution from the previous ones which instead of implementing a

TMR-based lockstep mechanism, it uses a DCLS mechanism. This solution is composed in the PS side by

Programmable Logic

Processing System

Arm
Cortex A9

Arm
Cortex A9

lowRISC

Accelerator Lockstep
Voter

(a) TMR, 2 hard-cores.

Programmable Logic

Processing System

Arm
Cortex A9

lowRISC

Accelerator Lockstep
Voter

Softcore

(b) TMR, 2 soft-cores.

Programmable Logic

Processing System

Arm
Cortex A9

lowRISC

Accelerator Lockstep
Checker

(c) DCLS.

Figure 4.1: Design options for the lockstep architecture.

Chapter 4. Proposed Architecture (Lock-V) 34

a hard-core Arm A9 processor, and in the PL side by the lowRISC soft-core beside a lockstep accelerator

with checker capabilities. In spite of a DCLS solution has less fault coverage and is slower in error recovery

than the other two TMR-based design alternatives, it promotes design diversity in the whole system. Such

capability is not offered by the design in Figure 4.1a, while it requires less area overhead and development

time than the TMR in Figure 4.1b. The DCLS design is the chosen one, once it has well-balanced tradeoffs

between the system design diversity and the resources spent either regarding development time or needed

area. Of the 3 designs, this one is the best suited for use in Lock-V architecture.

4.2 Architecture Overview

Lock-V is a heterogeneous architecture that explores a DCLS fault tolerance technique in two different

processing units: a hard-core Arm Cortex-A9 and a soft-core RISC-V-based processor. The system, de-

picted by Figure 4.2, can be split into two main components: the software block and the hardware block.

Application

Compiler

Application for
Arm

Application for
RISC-V

Soft-Core

RISC-V

Processing System Programmable Logic

Hard-Core

Arm

Output 2Output 1

Target Hardware

So
ftw

ar
e

H
ar
dw

ar
e

Synchro

 Checker
xLockstep

Lockstep
Framework

AXI4-Lite AXI4-Lite

AXI4-LiteAXI4-Lite

Figure 4.2: Proposed DCLS heterogeneous architecture.

Chapter 4. Proposed Architecture (Lock-V) 35

Regarding the software, the Lockstep framework is responsible to generate the final machine binary code

for a given application. The inputted software block, compiled for the two target architectures (Arm and

RISC-V), was accordingly generated and patched from the same source code application. The framework

also provides a set of functionalities in order to allow users to insert and configure execution checkpoints

in the source code. The checkpoints are predefined verification points, introduced prior the compilation

time, in order to endow the system with lockstep functionalities. Such checkpoints are essential for the

auxiliary mechanisms of the DCLS architecture, the Synchro and Checker blocks. Their main tasks are,

respectively, the synchronization of both cores and the verification of the processors’ output in order to

detect data integrity problems during code execution.

Regarding the hardware part, the Lock-V is divided into two main areas, the PS and the PL. The PS is

mainly composed by a hard-core Arm Cortex-A9 processing unit and the associated software application.

By its turn, the PL hosts a soft-core RISC-V processor (where the same software application also runs),

and the hardware accelerators, which are responsible for deploying the lockstep functionalities performed

by the Synchro and Checker sub-modules. The PS and PL execute concurrently and are both con-

nected through a standard Advanced Microcontroller Bus Architecture (AMBA) protocol, the AXI, in order

to exchange information among all hardware modules. The main hardware components of the Lock-V

architecture are detailed as follows:

• Arm Cortex-A9 processor: a 32-bit processor that follows the ARMv7-A architecture and avail-

able in the PS as a hard-core processor. It runs the application machine binary code, in parallel

with the soft-core processor.

• RISC-V processor: a soft-core processor deployed in the FPGA fabric of the PL and it also runs

the application code. This 64-bit processor is based on the lowRISC, an untethered implementation

of the RISC-V ISA based on the Rocket Chip.

• Lockstep accelerator (xLockstep): a hardware accelerator deployed in the PL following a

loosely-coupled approach, which was developed under the specification of the Chisel hardware

construction language [78]. Such approach provides several advantages when compared with

the tightly-coupled design, such as hardware customization, flexibility and portability for using the

xLockstep in other SoC and processor architectures. The xLockstep is responsible for the auxiliary

lockstep mechanisms and its main tasks are: (1) the synchronization of the code execution on both

cores; (2) the comparison and verification of the outputs from each processor; (3) the control on

the code execution when the compared outputs are validated and coherent; and (4) the ability to

suspend the processors’ execution when an error is found, until the error is processed and marked

as solved.

Chapter 4. Proposed Architecture (Lock-V) 36

4.3 The lowRISC Adaptations

The lowRISC was adapted to fit in the specification of Lock-V architecture. The lowRISC has a NASTI

and NASTI-Lite crossbar that is implemented in SystemVerilog. This crossbar was implemented by the

promoters of lowRISC, to access MMIO peripherals, in order to make the lowRISC untethered. Although

there is a NASTI-Lite crossbar, it has no extra interface instantiated that can be used for connecting the

lockstep accelerator to the processor. For that reason, it was necessary to change the source code of the

lowRISC to add a NASTI-Lite slave interface.

4.3.1 Adding A New Peripheral

With the purpose of adding a MMIO peripheral, two files were changed, one chisel file, which is part

of the source code lowRISC processor, and one SystemVerilog file, which is part of the source code of the

lowRISC NASTI-Lite crossbar. The chisel file was changed to offer a new entry into the address map and

the second file was changed to add the new NASTI-Lite interface to the NASTI-Lite crossbar. Listing 4.1

contains the added code to the chisel file under the configurations of the lowRISC processor.

Listing 4.1: New entry added into lowRISC address map, changing the chisel file $TOP/src/-

main/scala/Configs.scala.

1

2 // address for the lockstep accelerator
3 entries += AddrMapEntry("xLockstep", MemSize(1<<16, 1<<30, MemAttr(AddrMapProt.RW)))

The previous code, assigns an address for the lockstep accelerator peripheral with 16 bits of size

and 30 bits of alignment. The address was configured to be readable and writable through the MemAttr

parameter AddrMapProt.RW. After the address for the new MMIO peripheral has been set in lowRISC,

it was necessary to add a NASTI-Lite interface to the NASTI-Lite crossbar, as shown in Listing 4.2. The

NASTI-Lite crossbar supports up to 8 interfaces, however, in the original lowRISC, only three interfaces

were used, with five dummy interfaces free to futher usage.

Listing 4.2: New NASTI-Lite interface added to the NASTI-Lite crossbar, changing the SystemVer-

ilog file $TOP/src/main/verilog/chip_top.sv.

1

2 //connecting the lockstep accelerator
3 nasti_channel
4 #(
5 .ADDR_WIDTH (`ROCKET_PADDR_WIDTH),
6 .DATA_WIDTH (`LOWRISC_IO_DAT_WIDTH))
7 io_xLockstep_lite();
8

9 // IO crossbar
10 localparam NUM_DEVICE = 4;

Chapter 4. Proposed Architecture (Lock-V) 37

11

12 // dummy channels
13 nasti_channel ios_dmm4(), ios_dmm5(), ios_dmm6(), ios_dmm7();
14

15 nasti_channel_slicer #(NUM_DEVICE)
16 io_slicer (
17 .master (io_cbo_lite),
18 .slave_0 (io_host_lite),
19 .slave_1 (io_uart_lite),
20 .slave_2 (io_spi_lite),
21 .slave_3 (io_xLockstep_lite),
22 .slave_4 (ios_dmm4),
23 .slave_5 (ios_dmm5),
24 .slave_6 (ios_dmm6),
25 .slave_7 (ios_dmm7)
26);
27

28 defparam io_crossbar.BASE3 = `DEV_MAP__io_ext_xLockstep__BASE;
29 defparam io_crossbar.MASK3 = `DEV_MAP__io_ext_xLockstep__MASK;

So, one of the five free interfaces was used to create a NASTI-Lite interface for connecting the lock-

step accelerator. That was done in five steps: (1) a new device was instantiated through nasti_channel

(io_xLockstep_lite) and the clock and reset signal were connected to it; (2) the number of devices con-

nected to the NASTI-Lite crossbar was updated to four. They were three; (3) the used channel is no

longer a dummy one, therefore it was removed from the list of dummy channels; (4) the previously created

nasti_channel was added to the io_slicer in the channel four of the slave NASTI-Lite interfaces; and (5)

the peripheral base address and mask were assigned to the labels that are used to, accordingly to the

already used range of address, automatically generating an address. As a result of these steps, lowRISC

was connected to a new peripheral, the lockstep accelerator, which can be accessed as a MMIO peripheral

through its base address.

4.4 xLockstep

The xLockstep accelerator, depicted in Figure 4.3, is a memory-mapped AXI-compliant peripheral de-

ployed in the PL, which implements auxiliary lockstep mechanisms. It has two slave AXI-Lite interfaces,

one for each processor and an exclusive bank of registers dedicated for each processor, being their ac-

cess restricted by hardware. Therefore, each processor can only access their register bank. This logic,

composed of two slave AXI-Lite interfaces and the hardware to restrict the access to the register banks,

is implemented in the top module of the xLockstep xLockstep_AXI. This top module is responsible for

connecting the xLockstep accelerator to the processors and converting it into a MMIO peripheral. Between

the xLockstep_AXI and xLockstep modules lies the TopXLockstep that convert the information in

registers that comes from the processors into signals and data for being processed by the xLockstep. The

accelerator has more three sub-modules, which are the building blocks of the xLockstep, i.e., two instances

Chapter 4. Proposed Architecture (Lock-V) 38

xLockstep_AXI

TopXLockstep

xLockstep

Synchro

SynchroResume

Checker

LIFO_Riscv LIFO_Arm

Ba
nk

 o
f R

eg
is

te
rs

 1
Ba

nk
 o

f R
eg

is
te

rs
 2

Core 1

Core 2

Figure 4.3: Design of the xLockstep accelerator with its modules and sub-modules.

of the Synchro and one of the Checker modules. The Synchro, SynchroResume and Checker modules are

responsible for ensuring that both processors are synchronized, resuming the processors’ execution after

the end of xLockstep execution and comparing the outputs of both processors, respectively. The Checker

owns another two sub-modules, two instantiations of the Last In First Out (LIFO) module, the LIFO_Arm

and LIFO_Riscv, that are responsible, respectively, for storing Arm and lowRISC processors’ data.

Figure 4.4 depicts the control logic of the Finite State Machine (FSM) of the xLockstep accelerator,

which is composed by five states: Idle, Synchro, Checker, Resume, and Error. The FSM stays in the

Idle state until the first checkpoint (from Arm or RISC-V processor) is reached. When this event occurs,

the FSM changes the state to Synchro and waits for the second checkpoint of the second processor to

be reached, until a programmer-defined timeout occurs. If that time is exceeded, an error by timeout in

synchronizations is signalized and the FSM changes to the Error state. If the timeout is not exceeded, the

FSM changes to Checker state. In the Checker state, a vector of processors’ outputs are compared and

if they are different, the FSM changes its state to Error. Otherwise, if the outputs are the same, then the

FSM moves to the Resume state in order to resume the processors execution. When reaching the Error

state, the xLockstep stays in that state until both processors signalize that the error will be corrected. After

this, the system will be ready to resume its execution from a recovered health state.

4.4.1 Synchro

Due to the difference in clock domains and architectures between the soft-core and hard-core proces-

sors, the program execution between them is asynchronous, demanding for the synchronization of both

Chapter 4. Proposed Architecture (Lock-V) 39

Idle

Checker

Error

sync

Synchro

first_checkpoint

recovered_error

resumes_execution

Resume

! error

! sync

error

Figure 4.4: Main FSM of the xLockstep.

processors. For this purpose, it was created the Synchro module, which is used in two different scenarios.

First, to synchronize the processors when a checkpoint is achieved, and second, to simultaneously return

the code execution after the verification mechanisms of the lockstep have actuated. In both system opera-

tion scenarios, the xLockstep has to wait for both processors to indicate that they are ready to synchronize.

This is achieved when: (1) the program reaches the checkpoint, and (2) both processors are ready to

resume the execution. Therefore, to achieve those functionalities, the Synchro module implements a FSM

with three states: Idle, Ready, and Sync. In the Ready state, the Synchro module expects both proces-

sors to enable the b_ready_to_sync bit, and afterwards, the Synchro gives feedback to both cores and

enables the b_ready bit. Then, the state of the FSM changes to the state Sync. At this moment, the Syn-

chro module is waiting for the synchronization’s acknowledgment from both processors, which consists

in disabling the b_ready_to_sync bit. As a result, the processors’ synchronization ends and both cores

are synchronized.

Chapter 4. Proposed Architecture (Lock-V) 40

4.4.2 LIFO

For the Checker to perform the comparisons of the processors’ data, they have to be stored. Therefore,

a storage and data flow control method, which manages the writing and reading of data vectors, has been

implemented. The most often used methods are the First In First Out (FIFO), that is like a queue, and

the LIFO, that is like a stack. The first needs two pointers, one for reading data and another for writing

data, while the second only needs one, that points to the top of the stack. The LIFO was the chosen

method to store and control data flow because it fits in the Checker data requirements while using only

one pointer which makes its implementation simpler. For the Checker, the data comparison order does

not matter. The only concern is that each equivalent element of each LIFO must be compared at the same

time. However, it does not matter, if the first comparisons are made with the last or the first stored data,

once that all the data must be compared. When a LIFO is used, if for any reason the numbers of stored

data are different, e.g., if one core sent five units of data and another core just sent four, an error is given

in the first comparisons because the fifth element is different from the fourth one. This avoids all data

from being compared. If a FIFO approach is used, the error would be detected only in the comparison of

the last FIFO elements.

Listing 4.3 contains the interface of the module LIFO, which was implemented in chisel. The LIFO has

a data width of 32 bits and owns, beyond the data I/O ports, 4 input signals and 2 output signals. The

input signals, iPop, iPush, iFlush and iEn are responsible for controls the module operational mode.

When the signal associated with pop is high1, the last element of the LIFO is removed from it and putted in

the output data port. In contrast, when it is needed stored data, the the signal associated with the push is

set to high and the value in input data port is stored in the top of the stack. When all the stored data must

be removed, the signal associated to the push is set to high, and the LIFO will be cleared. Enabling or

disabling the LIFO through the enable signal, just must be done after changing the other input signals. This

signal is needed because once the LIFO is a pure combinational circuit, if the module is always-on, then

the push, pop or flush will always occur and the data is not stored. For correct working, the enable signal

should not be high more than 1 clock cycle. If this is not respected, the LIFO performs more then one

push, pop or flush (one for every clock cycle that the enable signal is high). The output signals, oEmpty

and oFull, carry information about the module, as the names suggest, when the LIFO has all the storage

capacity used, the full signal stays high, and when the LIFO has no data, the empty signal stays high.

Listing 4.3: LIFO Module interface, which was implemented in chisel.

1

2 class LIFO extends Module {
3 val io = IO(new Bundle {
4 //Inputs
5 val iData = Input(UInt(32.W))
6 val iEn = Input(Bool())
7 val iPop = Input(Bool())

1Every time that is used the term high, that means the bit has the logical value of 1.

Chapter 4. Proposed Architecture (Lock-V) 41

8 val iPush = Input(Bool())
9 val iFlush = Input(Bool())
10 //Outputs
11 val oData = Output(UInt(32.W))
12 val oEmpty = Output(Bool())
13 val oFull = Output(Bool())
14

15 })
16 ...
17 }

4.4.3 Checker

For implementing the lockstep mechanism, the processors’ output have to be compared. For that

purpose, each core sends its output vector to the Checker module in order to perform their verification.

The received outputs are stored in two different memory regions (one for each processor) by the Checker

using a LIFO approach. Because both parts are involved in the data transfer process (processors and

Checker), both of them need to know the state of each other. For that, the Checker uses a control bit,

b_Tx, to coordinate the data transfer, working in the following ways. Firstly, when the Checker is available

to receive and store an output, it puts its b_Tx bit to 0, signalizing the processor that it is available to

perform the transaction. Next, it waits for the processor to signalize its availability to initialize a data

transfer. After the data transfer, the Checkermodule clears the b_Tx bit and it becomes ready for another

transaction. Secondly after the data is received from both processors, at a given checkpoint, the Checker

performs the comparison of the entire LIFO contents, checking for data integrity errors. There are two

possible error cases that can be detected and signalized by the Checker to both processors. The first case

occurs when an element from LIFO 1 is different from the respective element from LIFO 2. The second

case results when the number of written outputs in both LIFO memories are different. The Checker LIFOs

work as a circular buffer with limited size. Therefore, if one processors’ output vector size can not be

accommodated by its respective LIFO, the Checker signalizes to the processor a busy state. This way, the

Checker module is unaware of the data size and content, being the main concern only its storage and

comparison. While the data is being processed, the processor waits for the Checker confirmation to allow

new data to be transferred (for the next checkpoint or for repeating the previous one).

4.4.4 xLockstep AXI-aware Interface

To enable the connection of the xLockstep to the processors, two slave AXI-Lite interfaces were used,

each of them with a set of eight 32bits registers. In order to keep the integrity of the system and prevent

processors from accessing the registers that do not belong to them, the access to the bank of registers has

been restricted. To achieve this, xLockstep registers have been replicated, and now each processor has

its unique bank of registers. Each slave AXI-Lite interface was mapped in a different region of memory.

Chapter 4. Proposed Architecture (Lock-V) 42

Although the xLockstep is the same for both cores, they see it as a different MMIO peripheral, since each

AXI-Lite interface is mapped in one unique memory region. Figure 4.5 depicts the bank register associated

with the Arm and RISC-V processors, on base addresses 0x83C0_0000 and 0x8000_0000, respec-

tively. The set of registers are made of eight registers, although four are unused. The minimum number

of registers needed is four (4 address bits), but in order to have a margin for future improvements, it was

used 5 bits for the register’s address (8 registers of 32 bits), justifying the four unused registers. The other

registers are:

• x_DATA_REG [offset 00] - is used to send data of 32 bits from the processors to the xLockstep.

It is through this register that the processors send, for being compared, their outputs’ vector;

• x_CONTROL_REG [offset 04] - is used to send control signals to the xLockstep, in order to: (1)

enable the use of the lockstep accelerator; (2) synchronize the processors; (3) control the data flow

between processor and accelerator; (4) resume the processor execution after the auxiliary lockstep

mechanisms execution; and (5) recover the processor from an error.

• x_TIMEOUT_REG [offset 08] - is used to configure the maximum time between processors check-

points, i.e., if processor A reaches the checkpoint, the processor B has the maximum time defined

by this register to achieve its checkpoint, otherwise, if the timeout is exceeded, an error is signal-

ized. Just exists one value for the timeout, but to be consistent in design, both register banks have

a replica of the timeout register, allowing each individual processor to set the timeout. In case of

both processors tries to configure the register and the values are not equal, the timeout used is the

one with the smallest value.

• x_STATUS_REG [offset 1C] - is from this register that the processors receive all the feedback

given by the xLockstep for example, if the accelerator is busy or if an error had occurred either in

83C0001C ARM_STATUS_REG 8000001C RISCV_STATUS_REG

83C00018 UNUSED 80000018 UNUSED

83C00014 UNUSED 80000014 UNUSED

83C00010 UNUSED 80000010 UNUSED

83C0000C UNUSED 8000000C UNUSED

83C00008 ARM_TIMEOUT_REG 80000008 RISCV_TIMEOUT_REG

83C00004 ARM_CONTROL_REG 80000004 RISCV_CONTROL_REG

83C00000 ARM_DATA_REG 80000000 RISCV_DATA_REG

Figure 4.5: The xLockstep peripheral memory address space.

Chapter 4. Proposed Architecture (Lock-V) 43

the process of synchronization or when the Checker verifies the processors’ outputs.

After xLockstep registers were replicated, access to them was restricted by hardware to ensure that

only the respective processor in each registers bank has access to them. For doing this, the two AXI-Lite in-

terfaces generated by Vivado had to be changed. Two signals wValidWriteAddr and wValidReadAddr,

illustrated in Listing 4.4, were added for restricted the access.

Listing 4.4: Signals for restrict the access to the Arm registers bank. Two equal signals were used

in the RISCV AXI-Lite interface.

1 assign wValidWriteAddr = (S_AXI_AWADDR[31:5] == ARM_BASEADDR[31:5]) ? 1'b1 : 1'b0;
2 assign wValidReadAddr = (S_AXI_ARADDR[31:5] == ARM_BASEADDR[31:5]) ? 1'b1 : 1'b0;

These signals are needed because, by default, the AXI-Lite interfaces just check the lower bits of the

read or write address (the register offset), in this case, the lower 5 bits, while the upper bits are ignored.

Regardless of the base address, the AXI-Lite interface always takes the offset of the register from the

address lower bits, reading or writing on it. The new signals are in a high state when the base address of

the AXI-Lite interface matches with the base address that is used by the processor to access the xLockstep.

Each AXI-Lite interface has a parameter, x_BASEADDR, that allows the user to change the base address

of each AXI-Lite interface. So despite on this thesis the used base addresses are 0x8000_0000 and

0x83C0_0000, for futures designs, any base address can be used. Either wValidWriteAddr and

wValidReadAddr, are used throughout the AXI-Lite interface source code for enable or disable the reads

and writes in the registers, depending on whether the base address is correct or not. If one processor tries

to access a registers bank that does not belong to it, a DECERR error is generated, which is a decode

error to indicate that there is no slave at the transaction address.

4.5 xLockstep deployment in Lock-V

For adding the xLockstep peripheral to the Lock-V each processor must have a free AXI interface

to be connected to the peripheral. As described in Section 4.3, the original lowRISC was adapted to

incorporate an extra NASTI-lite interface, which is compliant with the AXI-lite interface. For the Arm to

be connected to the accelerator, it was configured to use the free AXI high performance slave interface.

After the configuration of these two interfaces in both cores, they become connected to xLockstep and the

Lock-V architecture is now completed. It features a lowRISC and an Arm Cortex A9 processors in lockstep,

which is guaranteed by the xLockstep accelerator. The Figure 4.6 depicts a part of Lock-V design without

the lowRISC, because this processor does not own an Intellectual Property (IP) interface and so it is used

in the design as a verilog file. This is the setup used by the lowRISC, one core in verilog plus a logic

that interact with the Arm processor, but does not interact with the lowRISC. The lowRISC implemented its

design this way, because it was not projected to work in lockstep, so the core does not need to interact with

the Arm side once their executions are independently from each other. The Arm side Lock-V design has the

Chapter 4. Proposed Architecture (Lock-V) 44

Figure 4.6: Lock-V design (Arm side).

connection to the PS (Arm processor) and the lockstep accelerator as well as an input bus that is connected

to the lowRISC interface, which is reserved for the xLockstep. It is through this bus that both sides of the

Lock-V designs are connected. This connection is made in one wrapper that has instantiated the lowRISC

and the Arm side design. The NASTI-Lite interface is passed, through the axi_lowrisc interface, from the

lowRISC to the Arm side, where is used as an AXI-Lite interface.

4.6 xLockstep API

The xLockstep API is a tool that will help programmers to easily configure and interact with the xLock-

step accelerator in order to deploy its application in the Lock-V architecture and running it in a lockstep

fashion. This API is processor-agnostic, and it can be used either in the Arm processor or the RISC-V

processor. The only change needed in the use of the API between the cores is the macro that defines

which processor is using the API. Two macros, __ARM and __RISCV are used to specify the processor

targeted by the written code. This is required to change the base address used by the API, because each

processor sees the xLockstep as a different peripheral, once it is mapped in different memory region for

each processor. So, each core must define its base address that is associated with its xLockstep AXI

interface in order to access its unique bank of registers. The xLockstep API is composed of the following

four functions, which are used to interact with the xLockstep:

• initXLockstep() is responsible to setup and initialize the xLockstep, as well as all the memory

address space registers for each processor (Figure 4.5). This function also sets the timeout value

for the next checkpoint.

Chapter 4. Proposed Architecture (Lock-V) 45

• sync() is used for processors’ synchronization. The sync function starts to verify two things: (1)

if the xLockstep is busy to perform the cores’ synchronization or not; and (2) if there is an error.

After these verifications, if any error had occurred and the xLockstep is not busy, the sync set the

checkpoint bit to high, informing this way the xLockstep that the code reached one checkpoint. At

this moment, the cores’ synchronization starts, and the sync waits for the end of it. When the

cores are synchronized, the bit checkpoint is clear, and the synchronization process ends. In case

of failed synchronization, an error is returned.

• checker() function is responsible for handling the Checker functionalities, returning an error if

the processors’ output, reported by the Checker module, are different. The checker function owns

two input parameters, a data vector to be compared, and the size of that data vector. First, the

checker informs the xLockstep that it wants to start new writing of data, setting the bitStart to

high. After this, the checker waits for the xLockstep acknowledgment in order to start the writing.

When this confirmation is given, the checker sends all the data vector to the xLockstep. At the

end of the writing, the bitStart is clear, and the checker is ready to resume the code execution.

At this moment the checker waits for the xLockstep confirmation that everything went well for the

execution to be returned. If the data vector that each processor sent to xLockstep is different, an

error is returned by the checker API function.

• errorFixed() is used to inform the xLockstep, before the error recovery processing, that the

system will be changed for a state without errors. When an error occurs, the programmer should

define the desired behaviour, according to the application needs and call this function before the

error recovery for signalizing the xLockstep accelerator that the error will be processed.

The xLockstep hardware accelerator is a memory mapped peripheral, consequently, for the API func-

tions to be implemented, they must access to the xLockstep registers. That xLockstep registers access

was implemented through three internal functions that feature all the needed registers operations: read a

register, write in a register and write in one bit of a register. For read a register, the API offers the internal

function read() shown in Listing 4.5. It has one input parameter that is the address of the register to be

read. The function points to the address passed into the parameter and returns its value.

Listing 4.5: Internal API function for read a MMIO peripheral register.

1 static unsigned int read(unsigned int addr){
2 unsigned int *ptr = addr;
3 return *ptr;
4 }

To write a 32 bit data in one xLockstep register, the internal API function, write() shown in Listing 4.6 is

used. It requires two input parameters that is the address to be written and its respectively value. This

function does the opposite of the previous one. It points to the address passed into the first parameter but

instead read, it writes a value on it.

Chapter 4. Proposed Architecture (Lock-V) 46

Listing 4.6: Internal API function for write in a MMIO peripheral register.

1 static void writeData(unsigned int addr, unsigned int value){
2 unsigned int *ptr = addr;
3 *ptr = value;
4 return;
5 }

To write an isolated bit of a register, e.g., when it is needed to manipulate a control register, the internal

API function writeBit() shown in Listing 4.7 is used. It has three input parameters, the mask for the bit

to be written, the address of the register and the value to be written in the bit. The function points to the

address, and for writing ”1” in the bit, it is performed a bitwise OR with the mask and for writing ”0” in

the bit, it is performed a bitwise AND with the complemented mask.

Listing 4.7: Internal API function for write in a bit of a MMIO peripheral register.

1 static void writeBit(unsigned int addr, unsigned int mask, int value){
2 unsigned int *ptr = addr;
3 if(value)
4 *ptr |= mask; // write 1
5 else
6 *ptr &= ~mask; // write 0
7 return;
8 }

These three functions are responsible for the interaction with the xLockstep, at a more low level.

Whenever one of the four functions provided by the API is used to read or write to the accelerator, the

previous internal functions are used to interact with the xLockstep, and pass information or read information

from it. This information flow is performed using four 32 bit data registers depicted in Figure 4.5. Two

registers the x_Control_reg and the x_status_reg have their information encoded in their bit-field. The

first aforementioned register has five bits, depicted in Figure 4.7, to control the accelerator actions and

second one has ten bits, depicted in Figure 4.8 to provide information about it. Whenever the xLockstep API

functions want to trigger an action in the accelerator, they have to write in the bit-fields of REG_CONTROL.

The bCheckpoint bit-field is used to indicate that a checkpoint was reached. The bStart bit-field is used

to indicate that the processor wants to send a data vector. The third bit is used to control the flow of data.

Whenever it sends a 32 bit data the bTx bit-field is set to high. The bReady2Resume bit-field is used

to inform that the processors has sent all the data and is ready for resuming its execution, if no error had

happened. The bErrorFixed bit-field allows the processors to inform the xLockstep that the error was

recovered and this way the accelerator can keep going with its lockstep functions.

Whenever the xLockstep API functions want to get the feedback of its action and the status of the

accelerator, they have to read the register REG_STATUS and decode its bit-fields. The bSynchroBusy

bit-field is set when the xLockstep is performing another action, like checking the outputs or resuming

the cores’ execution and is busy doing the synchronization. The bSynchroBusy bit-field is cleared when

Chapter 4. Proposed Architecture (Lock-V) 47

REG_CONTROL

01234567

bC
he
ck
po
int

bS
tar
t

bT
x

bR
ea
dy
2R
es
um
e

bE
rro
rFi
xe
d

Re
se
rve
d

Re
se
rve
d

Re
se
rve
d

31
Re
se
rve
d

Figure 4.7: Control register field.

the synchronization ends and both cores are in sync. The bArmTx and bRiscvTx bit-fields are set

when the xLockstep receive and store a 32 bit data from the processor Arm or from the lowRISC. The

bCheckerBusy bit-field is set when the Checker is comparing the stored data of the Arm_LIFO and

RISCV_LIFO or when the LIFOs are full. The bReady2Write bit-field is set when the Checker is ready

to receive data from the Arm or RISC-V processor. The bArmBusy2Write and bRiscvBusy2Write bit-

fields are set when the Arm or RISC-V processor are not writing data, means that the other processor is

writing data or the Checker is compared outputs. The first processor to write wins the writing access,

so the other need to wait for the end of the data writing. The bResumeExecution bit-field is set when,

after the checker compares the processors’ data and detects an error, both processors are synchronized

for returning at the same time the code execution. The last used bit-field, bError, as the name indicates

is set when an error is detected either by the Checker, reporting divergent outputs, or by the Synchro,

reporting inability to synchronize the cores. All the registers as well as their bit-fields are defined in the

regxLockstep.h file for being used by the xLockstep API.

REG_STATUS

01234567
bS
yn
ch
roB

us
y

bR
ea
dy

bA
rm
Tx

bR
isc
vT
x

bC
he
ck
erB

us
y

bR
ea
dy
2W
rite

bA
rm
Bu
sy
2W
rite

bR
isc
vB
us
y2
Wr
ite

31
Re
se
rve
d

89
bR
es
um
eE
xe
cu
tio
n

bE
rro
r

Figure 4.8: Status register field.

5. Lock-V Framework

This chapter addresses the framework for the proposed fault tolerance architecture, Lock-V. This thesis

has as main goal the development of a heterogeneous fault tolerance lockstep-based architecture. This

is split into two parts, the implementation of hardware for error detection, addressed in the previous

Chapter 4, and the implementation of a framework that leverages software-based system recovery, after

error detection. This chapter presents the lock-V framework, a toolchain that supports the development

of an application, running in lockstep, in the Lock-V architecture. At the beginning of the chapter, it is

explained how the framework works and how it should be used. In the next section, it is explained how

the framework uses the xLockstep API in order to detect an error. Afterward, it is present how the error

recovery is performed through saving the processor context and rollback technique. In the last section, it

is detailed the constraints to use the Lock-V framework.

5.1 Framework Overview

As it was explained in 2.1.3.1 a fault tolerance system must provide two main services. It detects

an error and recover from it by changing the system from an erroneous state to a error-free state. The

chosen technique for the Lock-V, DCLS, typically uses as error recovery the rollback technique. This

technique is responsible to correct an error avoiding its propagation to a system failure. With this in mind,

it was developed a framework that model, through three C functions, the behavior of a system with error

detection and error recovery. In order to detect an error, the framework uses the xLockstep. For recovery

from an error, the framework uses software techniques. Both error detection and recovery are addressed

respectively in Section 5.2 and 5.3. Figure 5.1 depict the execution flow of an application running in

DCLS-fashion in the Lock-V architecture using the Lock-V framework. The framework offers three main

tools, providing services with the same names of tools:

• checkpoint, which is responsible for verifying the integrity of the code execution;

• saveContext, which is responsible for saving the processor’s context. This tool should be used

when the previous one verifies that the system is in an integrity state;

• rollback, which is responsible for restoring the processor’s context to the last known integrity state.

It should be used when the checkpoint tool confirms an error occurrence in the system.

48

Chapter 5. Lock-V Framework 49

Arm

Checkpoint

Comparasion

Save Context

LockV Init

Comparasion

Application Code

Save Context

Application Code

RISC-V

Application Code

Checkpoint

Application Code

Checkpoint

RollbackRollback

LockV Init

Save Context

Checkpoint

Save Context

FAULT

Er
ro

ne
ou

s
St

at
e

Er
ro

r-
fr

ee
 S

ta
te

Error-free State

Figure 5.1: Flow execution of an application running in Lock-V, coded using the Lock-V framework.

First of all, the framework needs to be initialized using the initLockV() function, and soon after that,

the function of the saveContext tool must be used. The application code can only be written after

doing this initial configuration. To ensure the system integrity under rollback capability, it is important

to make the initialization code the entry-point of the system execution. Putting it simply, the application

code must be executed only after or patched after it at design time. The checkpoint tool must be always

used when programmers want to verify the code integrity. Checkpoints should be patched at critical code

points. For example, when is sent a command message to another component or when the application

interacts with the external world (surrounding environment). Although the framework’s tools can be used

separately, they are designed to work together. In doing so, the application code must be accordingly

patched under the framework control to instantiate calls to appropriate tools’ services. For instance, when

the checkpoint detects an error, the rollback function should be invoked, and when no error is detected,

the saveContext service should be invoked. This ensures that in each verification block, the integrity

is checked. If the system has no errors, its state is saved. Otherwise, when there is an error, a system

recovery, is performed. Afterward, the system change to a error-free state, which was previously saved.

Lock-V framework enables fault tolerance capability to applications built upon a mechanism in hardware

for error detection (DCLS-based) and another mechanism in software for error recovery (rollback-based).

Chapter 5. Lock-V Framework 50

5.2 Error Detection Capabilities

As said above, to verify the integrity of the system, the Lock-V framework provides a tool for error

detection. This tool is called checkpoint and resort to the xLockstep accelerator, presented in the previous

Chapter 4, to perform the error detection. This is done through the use of the xLockstep API that allows

synchronizing both processors, comparison of their outputs, and simultaneous error recovering in both

processors. The processors’ outputs are compared, and if any data integrity faults are detected, the

system stops working to enter into an error recovery state.

5.2.1 Checkpoint

The checkpoint execution flow is depicted in Figure 5.2, which details how the checkpoint is performed.

The checkpoint tool is built upon the xLockstep API. It starts to synchronize both cores and checking for a

timeout error. If this error occurs, it means that the code was stuck at some execution point. For preventing

the system from crashing or entering in an infinite loop, an error is signalized by the checkpoint. On the

other hand, if the synchronization succeeded, the checkpoint execution will proceed. At this point, the

Checkpoint Core 1 Checkpoint Core 2

Sync

SyncSynchronization

Checker

ErrorNo

checker

No

Error

Sucess Sucess

NoNo

Error Fixed Error Fixed

Error Error

Figure 5.2: Flow execution of the checkpoint tool.

Chapter 5. Lock-V Framework 51

xLockstep’s checker module will start sending the programmer’s chosen data to the verification module. If

no error in the data is detected, the checkpoint will return with a success signal. Otherwise, an error due to

data’ mismatch is signalized. When an error is signalized, either by the synchronization or the verification

phase, the errorFixed() function will be invoked. When both processors reach this stage, the checkpoint

returns an error.

5.3 Error Recovery Capabilities

On concluding the error detection phase with an error, the system must be recovered by bringing it

to an error-free state to operate normally. To achieve that goal, the system needs to have some kind of

error recovery capabilities. The Lock-V framework has implemented that through rollback technique. This

brought some challenges as:

1. How should the system be backed up? It must save a system state that has no active errors;

2. How and what data should be stored? If the amount of data is very high, the fault tolerance system

overhead can increase drastically;

3. What is the minimum amount of data needed for ensuring the system can be restored?

For a fully and integral rollback, all the application code and data should be saved. However, this

requires a lot of redundant memory as well as increases the silicon overhead of the redundant system.

Furthermore, the time wasted to perform a fully context save and rollback is high. Furthermore, this

thesis assumes that memory is safe and protected through possibly one of the well-known and effective

techniques, such as, ECC or TMR-based memories, among others [79, 30]. For this reason, protect

memories errors is out of the scope of the Lock-V rollback. Having excluded memories from the possible

causes of lock-V errors, the most likely source of errors are the processors’ register files. Those errors may

occur due to SEU that origin bit-flips in the registers of the processor. The register file have been identified

as one of the most critical part of the processor [80, 81, 82, 83, 84]. So to protect the Lock-V registers’

files, was implemented a rollback mechanism. Doing only the protection of the register file rather than all

memory, presents two main benefits: (1) one of the most critical part of the processors, register file, is

protected. When a fault is triggered in the register file and causes an error in the system, the register file is

restored to a fault-free backup; and (2) save and restore the register file requires few saved data amounts.

and hence the save context and rollback will be faster and lightweight.

Although the memory can be protected from external faults, e.g., with ECC memories, they can be

affected by the propagation of the faults that appear in the register file [84]. This can be worst in the

Lock-V architecture because both processors are load/store architectures. All the instructions are between

registers or register and memory. This means that in all the instructions that involve memory, the registers

are used. So, the memory can be affected by faults in registers. To avoid the error propagation from the

registers to the rest of the memory, the use of memory was restricted. Just the memory directly used by

the registers can be used. This means that the programmers only can use local variables. This type of

Chapter 5. Lock-V Framework 52

variables are stored either in registers or in the stack. So, beyond the protection of the register file, the

rollback also needs to protect the stack. Performing stack and register file backup is the least amount

of saved memory that ensures the operation of a rollback. This prevents those register file faults from

propagating to the memory and a lightweight rollback implementations can be achieved.

5.3.1 Save Processors’ Context

As mentioned above, the saving of processors’ context is done by backing up the processors’ register

file and stack. Although the logic behind saving the processors’ context are the same for both cores, the

registers file are different. While the Arm processor has a register file of sixteen registers, RISC-V processor

has one with thirty-two. The Arm own twelve general-purpose registers, r0-r12, plus three special registers,

the r13 is the Stack Pointer (SP), the r14 is the Link Register (LR), and the r15 is the Program Counter

(PC). The general purpose r11 register is usually used as a Frame Pointer (FP). The RISC-V processor has

thirty-two registers in the integer register Application Binary Interface (ABI) convection. The x0 register is

hardwired zero, so it does not need to be saved. The x1-x4 are special registers: x1 is the Return Address

(RA), x2 is the SP, x3 is the Global Pointer (GP) and x4 is the Thread Pointer (TP). The other registers are

all general-purpose registers. The presence of a FP is optional, however, if it exist then it must be mapped

in x8 register. In the RISC-V register file, there is no PC. The PC is an extra register that can not be directly

accessed. So, for the rollback to be done successfully, r0 to r15 registers in Arm processor and x1 to

x31 plus the PC registers in RISC-V processor need to be saved. In addition, the stack of each processor

must be saved. The Arm processor stack is implemented as full descending stack aligned at 4 bytes. This

means that in each push for stack, the SP decrements 4 bytes. In a full descending stack first the SP is

decremented and after that the data is stored (push). The RISC-V processor stack is also implemented

in a full descending but instead of being aligned to 4 bytes is aligned at 16 bytes. This stack alignment

is used because the RISC-V ISA supports word-width up to 128 bits. Although the lowRISC is a 64-bits

processor, the alignment of 16 bytes has to be maintained in order to make context saving and rollback

compliant with the RISC-V ABI. This means that in each load to the stack, SP is decremented 16 bytes and

after that, the data is stored. Doing a copy of the RISC-V stack, for the same amount of stack data, is four

times more costly. This means that if the stack has for example 10 data units, it is needed 40 bytes for

saving the Arm stack and 160 bytes for the RISC-V stack. So, for saving the registers’ files and stacks two

hardware IPs were created. The IP for saving the Arm context is by default 464 bytes of storage (16 × 4
bytes for saving the 32-bit register file plus 100 × 4 bytes for the stack). The IP for saving the RISC-V

context is by default 1728 bytes of storage (32 × 8 bytes for saving the 64-bit register file plus 100 × 16
bytes for the stack).

Figure 5.3 depicts the procedures for the context saving. First, when the saveContext service is

invoked, the main FP and the LR are saved on the function stack. This is done in any function call and

is introduced by the compiler when it translates the C code for assembly. Afterward, a register file copy

is carried out and the LR and the FP is copy from the function stack to the saved register file. After that,

Chapter 5. Lock-V Framework 53

this saved register file is stored in the ContextSave_Arm IP. Now, a full copy of the register file is already

stored. The next step is to make a copy of the stack. For this to be done, the main FP and SP were used.

In order to copy all the stack data, a pointer is assigned with the value of the base of the stack (hold by

the FP). After that, another pointer is assigned with the top of the stack (hold by the SP). Afterward, a third

pointer is assigned with the base address of the saved stack. When these pointers are set, the stack is

then copied byte to byte to the saved stack until the base pointer (r1) be equal to the top pointer (r0). Now

there is a copy of the register file and the main() stack. These allow a future rollback for this safe point

of the program execution.

5.3.2 Rollback Processors’ Context

In order to perform the processors’ rollback, the stack and register file need to be restored. These are

done by copying the stored stack and register file that were previously saved by the saveContext service

or function. First of all, the stack needs to be restored, and just after that, the register file. Contrarily

main()

saveContext()

saveContext()

rollback instruction

PC

LR

main FP
LR

saveContext() stack

r0

r15
Saved Register File

r1
r0

r15
Register File

r1

word0

wordn
Saved Stack

word1
word0

wordn
Main Stack

word1

r0 = main SP; r1 = main FP; r2 = saved satck

r0

r1 r2

push {FP, LR}

Copy Registers

Copy LR, FP

Continues the
Code Execution

pop {FP, PC}

Copy Stack

Figure 5.3: Example of the Arm save processor’s context. Although the number of registers and
stack alignment are different, the logic in the RISC-V save processor’s context is the same.

Chapter 5. Lock-V Framework 54

to the saveContext service or function, to perform the rollback service or function correctly, the stack

must be restored first. This should be done in this order (restore stack and after restore the registers),

because to restore the stack it is needed to use some register for copying the data from the storage unit to

the memory allocated to the processor stack. If the register file is restored first, some registers would be

corrupted with improper data. Regarding the type of error, two different types of rollback can be performed.

One that is performed when the xLockstep detects an error an another when the processor detects an

incorrect operation like, execution of undefined instructions, load or store data at illegal address, among

others. The first rollback is performed when a bit-flip occurs in the register file and affects the processor

outputs. This means that when the bit-flip occurs, the execution or data flow of a program is changed,

and its outputs are different from the expected. When this occurs, a mismatch between the processors’

outputs is detected by the xLockstep and a rollback is performed. This rollback occurs due to the lockstep

mechanism. The second rollback, which we named rollbackAbort, is performed when a bit-flip change

some special registers, like SP or PC. These bit-flips may cause the processor to read a wrong data, tries

to access nonexistent memory, or execute wrong instructions. When these faults occur, the processor

goes to an exception (in Arm) or a trap (in RISC-V). When an error is detected by the xLockstep, a rollback

needs to be performed in both cores because it is impossible to know each of them is the source of the

error. However, when an exception occurs, the rollback just needs to be performed in the erroneous core,

once is known which core triggered the exception.

Figure 5.4 depicts the steps to rollback the processors’ context to a safe state. At the beginning, after

the rollback service or function be invoked, the FP and the LR are load to the stack. The rollback function

for the stack is created to follow the calling convection, but these values will not be used. Nevertheless,

this stack will be harnessed to restore the FP and the PC. That will be done by overwriting the FP and LR

with the saved FP and LR. After the rollback private stack be created, the main stack is restored using a

similar process to the way that it was saved. A pointer is assigned with the value of the base of the stack

(saved FP), other is assign with the top of the stack (saved SP), and another is assign with the base address

of the saved stack. After that, the stack is restored copying all the bytes of the saved stack until the base

stack pointer (r1) is equal to the top stack pointer (r0). Next, the register file is restored from the saved

register file. Afterward, it is performed a pop instruction that restores the FP and put the PC pointing to the

saved LR, i.e., the rollback instruction. The rollback instruction is the first instruction to be executed after

the rollback is performed and is the first instruction that immediately follows the saveContext() function.

After the PC is pointing to the rollback instruction, the code keeps with its normal execution. At this point,

the system is recovered from the error, and it is in a safe state without errors.

5.4 Framework Constraints

Due to the complexity of implementing a rollback mechanism, some tradeoffs had to be done. These

tradeoffs led the lock-V framework to have some constraints to its use. While the rollback tool can be

Chapter 5. Lock-V Framework 55

main()

saveContext()

rollback()

rollback instructionnew PC

main FP
LR

rollback() stack

word0

wordn
Saved Stack

word1
word0

wordn
Main Stack

word1

r0 = saved SP; r1 = saved FP; r2 = saved satck

r0

r1 r2

push {FP, LR}

Restore LR, FP

Continues the
Code Execution

pop {FP, PC}

Restore Stack

rollback()

error

r0

r15
Saved Register File

r1
r0

r15
Register File

r1

Restore Registers

old PC

Figure 5.4: Example of the Arm rollback processor’s context. Although the architecture is different,
the logic behind the RISC-V rollback processor’s context is the same.

used anywhere, the saveContext tool and its service just can be used in the main(). These constraints

exist because of two reasons: (1) the way that the saveContext() and rollback() it is being performed,

the LR is lost; and (2) if the context saving is done inside a function, the stack saved is the stack of that

function and never the full stack of the program. However, saving the main() stack represents saving all

the program stack at that point.

The checkpoint tool can be used anywhere, but it always needs to return to themain() in case of error

or not. Whenever the checkpoint is performed, if there is no error, the context of the processor must be

saved at that point of the program. Once the context saving can only be used in the main(), when there

is no errors, then that information has to be passed to the main().

The rollbacks due to lockstep errors are implemented in both cores, but the rollbackAbort, once that

can be used alone, was only implemented in the Arm processor, for proof of concept. So, the fault-injection

for testing the system can only be applied to the Arm processor. What is enough to prove that when errors

that trigger exception occurs the proposed rollback mechanism may work perfectly.

The last constraint is about which applications are appropriate for deployment under Lock-V framework.

Since the only memory protected beyond the register file is the memory allocated for the program stack,

Chapter 5. Lock-V Framework 56

the other has to be carefully used. To prevent errors in the register from propagating to the non-protected

memory, all the variable that access memory out of the stack should be ”read-only”. This means that

global variables can only be used as constants or variables initialized before the runtime (design time).

So, for coding or writing an application compliant with Lock-V framework: (1) only local variables must be

used; (2) global variable cannot be written, just read; (3) static variables cannot be used, since they are

like a global variable; (4) the heap cannot be used because is not protected too.

6. Evaluation and Results

This chapter evaluates the proposed fault tolerance architecture, Lock-V, as well as its framework. Al-

though endowing a system with Lock-V capabilities increases its reliability and safety, it does incur some

overheads. The amount of hardware resources spent, the application code size and execution time are

affected by the use of the Lock-V and its framework. In the first and second section, the resources used

to implement the Lock-V as well as the Lock-V framework costs are exposed.

A case study is presented in the last section of this chapter. In that case study, a algorithm is im-

plemented in the Lock-V and executed in an simulated harsh environment. This harsh environment will

represent a real operational case where a system is susceptible to SEU. These SEU are emulated through a

fault injection technique that causes some random bit-flips in the system. In this section, the effectiveness

of the Lock-V will be tested. A side by side comparison between a hardened system with Lock-V and an

unhardened without Lock-V is performed.

The Lock-V architecture, and its main components, was deployed and tested on a Zynq-7000 SoC,

featuring a dual-core Arm Cortex-A9 and FPGA fabric used to host the RISC-V soft-core processor. In

this implementation, the Arm Cortex-A9 is running at the frequency of 666 MHz and the lowRISC at the

frequency of 25 MHz.

6.1 Lock-V PL Resources Utilization

Table 6.1 shows the hardware resources needed, after implementation, for the lowRISC soft-core, the

xLockstep modules and the context saving IP. The results are expressed in terms of LUT and FF. The

lowRISC module is the most costly in terms of needed hardware, representing around 81% (34138 out of

42124) of LUT and nearly 46% (16324 out of 35850) of FF. This is due to the deployment of a soft-core

RISC-V processor, rather than a hard-core implementation, which is one of the tradeoffs of the proposed

solution. The solution provides flexibility and the possibility to customize the RISC-V architecture, but it

comes with the cost of FPGA resources. Regarding the needed resources by the xLockstep accelerator

(441 LUT and 672 FF), it is possible to conclude that the xLockstep has a lightweight implementation.

It is only responsible for 1% of the used LUT and around 2% of the used FF. Despite the error detection

(xLockstep) requires fewer resources, in contrast to the error recovery logic which consumes a lot of the

FPGA fabrics. The ContextSave IP is very costly, consuming 18% of the used LUT and around 53% of used

57

Chapter 6. Evaluation and Results 58

Table 6.1: Post-Implementation results obtained from Vivado 2016.2.

HW module LUT FF
lowRISC 34 138 16 324

AXI_RISCV_Slave 135 267
AXI_ARM_Slave 122 269
TopxLockstep 25 40
Checker 148 90
Synchro 6 3

Synchro_to_Resume 5 3
Subtotal 441 672

ContextSave_Arm 1 513 3 799
ContextSave_RISCV 6 032 15 055

Subtotal 7 545 18 854
Total 42124 (79.2%) 35850 (33,7%)

FF. These number are huge and not so far from the resources consumed by the lowRISC soft-core. A future

solution for this context saving IP that uses less resources should be explored. In short, if both processors

were available in the SoC in a hard-core implementation and the context saving logic is implemented in

external memories, the solution could resort a FPGA with less resources, once the xLockstep has a very

lightweight implementation.

6.2 Lock-V Framework Costs

In order to estimate the impact in using the Lock-V framework, its execution and memory footprint

is measured. In doing so, an application is written for running in both cores. The memory footprint

was measured with the application executing with and without Lock-V services. The chosen application

implements a Fibonacci function because its execution time is easily scalable. The scalability aspect is

very important to test the execution overhead of the Lock-V regarding the number of checkpoints used and

the overhead added to a system with different application execution sizes.

6.2.1 Memory Footprint

In order to get the information about the memory footprint two tools were used. To measure the memory

footprint of Arm and RISC-V applications, arm-none-eabi-size and riscv64-unknown-elf-size were

used, respectively. These tools are similar in their functionality. Both give information about an .elf file in

terms of: (1) number of code bytes (.text); (2) number of bytes allocated to the initialized global variables

(.data); and (3) number of bytes allocated to the uninitialized global variables (.bss). Tables 6.2 and 6.3

presents the memory footprint of an application used in four different scenarios as well as the overhead in

using the Lock-V framework. The scenarios taken in consideration for measuring the application size are

Chapter 6. Evaluation and Results 59

Table 6.2: Arm memory footprint in bytes.

Arm .text .data .bss total
Application without Lock-V 19552 1152 22580 43284
Application with Lock-V 22096 1216 22580 45892
Lock-V Overhead 2544 64 0 2608 (6%)

Table 6.3: RISC-V memory footprint in bytes.

RISC-V .text .data .bss total
Application without Lock-V 45864 97 647 46608
Application with Lock-V 49212 616 660 50488
Lock-V Overhead 3348 519 13 3880 (8.3%)

the following: (1) the application compiled targeting the Arm processor without using the Lock-V framework;

(2) the application compiled targeting the RISC-V processor also without using the Lock-V framework; (3)

the application compiled targeting the Arm processor, but this time using the Lock-V framework; and (4)

the application compiled targeting the RISC-V processor also using the Lock-V framework.

Having the application without Lock-V as a baseline benchmark, it is possible to see, as expected,

an increase in the memory footprint. Adding Lock-V capabilities to the application, increases its memory

footprint in nearly 6% in Arm and 8.3% in RISC-V. The Arm and RISC-V Lock-V framework are practically

the same. Therefore, the difference in the Arm and RISC-V Lock-V overhead are due to the difference in

processors’ ISAs. The final machine code are different, because the Arm and RISC-V compilers generate

different amounts of instructions for the same C function. Additional factors that increases RISC-V Lock-V

overhead are the higher number of registers (32) and the bigger word (the RISC-V is a 64 bits processor,

8 bytes word, and the Arm is a 32 bits one, 4 bytes word). The rollback mechanism in Arm uses 64 bytes

(16×4) while the same rollback mechanism in RISC-V needs 256 bytes (32×8). Despite the differences
between the used processors the measured overhead is not significantly. To endow an application with

Lock-V fault tolerance capabilities, it is necessary to do some tradeoffs. The Lock-V memory print overhead

is one of them.

6.2.2 Execution Footprint

The execution overhead was performed only in one processor. The RISC-V processor was the chosen

one because of two reasons. First, it is the bottleneck of the Lock-V architecture. The lowRISC soft-core

runs at 25 MHz while the Arm runs at 666 MHz. Second, the lowRISC is the main core while the Arm is

the checker core. As said in 2.2.4.1, a dual redundant system must have a component that outputs an

result and another redundant one that checks if that output is correct. This means that the Arm is used

for checking the integrity of the application that runs in the lowRISC processor. The output of the system

comes from the lowRISC processor. To measure the latency of a specific function or program, the rdcycle

Chapter 6. Evaluation and Results 60

RISC-V instruction is used. This instruction returns the current number of elapsed cycles. Measuring the

cycles in two points of the program execution and subtracting the first from the second gives the latency

in executing a certain piece of code. All the taken results presented in this topic, are the mean value of a

hundred samples.

In first step, the latency of the three Lock-V functions were measure. Table 6.4 presents the latency

in executing the services or functions of saveContext and rollback Lock-V tools. The Lock-V framework

takes around 125 microseconds for saving the processor context and around 114 microseconds to restore

all the processor context and stack, when a rollback it is performed. The processor context saving takes

more 10 microseconds than its restoring pair. Afterward, the latency of the checkpoint service was

measured in two different scenarios. When has occurred an error and when the system operates in a

normal state without errors. The measured results are presented in Table 6.5. For testing the impact of

different outputs’ vector sizes, 11 testes/measures were performed. The number of data was varied from

1 to 100 units. Because lowRISC is a 64-bit processor, its word is 8 bytes. Therefore, the amount of data

vary between 8 bytes until 800 bytes. Each test uses more 10 units of data (80 bytes) than the previous

one. From the measures it is possible to see that when an error is active, the checkpoint takes in average

more 49 microseconds that when the system is free from errors. This happens because the checkpoint

has to inform the system that an error was detected. It is also possible to see that each extra 10 units of

data verified by the checkpoint increases the overhead in 987 microseconds.

In the second step of the execution footprint measurement, the latency of an application was calculated

without Lock-V, i.e., the application running in a normal environment, and with Lock-V. When the Lock-V

was used three scenarios were tested and measured:

• the application runs once with one 1 checkpoint and another with N checkpoints, but in absence

of errors;

• the application runs once with one 1 checkpoint and another with N checkpoints, but this time in

the presence of an error in the first compared element;

• the application runs first with one 1 checkpoint and another with N checkpoints, in the presence

of an error in the last compared element.

The results presented in Table 6.6 are taken running the application in order to calculate the Fibonacci

of 10, 15 and 20. When the system has no errors, in the worst case scenario (N checkpoints), the overhead

passes from 112,7% to 1.8%. When the system has an error and the error is in the last element, the

overhead goes from 324,8% to 103.6%. With the increase of the application execution times, the overhead

of the Lock-V framework reduces drastically, demonstrating that the Lock-V is suitable for application with

Table 6.4: saveContext and rollback execution footprint.

Latency @25MHz
saveContext() 3 128 125.1 µs
rollback() 2 852 114.1 µs

Chapter 6. Evaluation and Results 61

Table 6.5: Checkpoint execution footprint in clock cycles.

Nº Data Checkpoint
Integers Normal @25MHz W/ Error @25MHz Overhead @25MHz

1 10 420 416.8 µs 11 698 467.9 µs 1 278 51.1 µs
10 32 851 1314.0 µs 34 118 1364.7 µs 1 267 50.7 µs
20 57 508 2300.3 µs 58 783 2351.3 µs 1 275 51.0 µs
30 82 206 3288.2 µs 83 494 3339.8 µs 1 288 51.5 µs
40 106 906 4276.2 µs 108 098 4323.9 µs 1 192 47.7 µs
50 131 552 5262.1 µs 132 763 5310.5 µs 1 210 48.4 µs
60 156 229 6249.2 µs 157 423 6296.9 µs 1 194 47.8 µs
70 180 901 7236.0 µs 182 203 7288.1 µs 1 302 52.1 µs
80 205 573 8222.9 µs 206 743 8269.7 µs 1 170 46.9 µs
90 230 250 9210.0 µs 231 398 9255.9 µs 1 148 45.9 µs
100 254 921 10196.8 µs 256 079 10243.2 µs 1 158 46.3 µs

Avg. Increment 24 675 987.0 µs Avg. Overhead 1 226 49.0 µs

high execution time. Another curiously fact happens when the error occurs in the first elements. The

overhead in using the Lock-V with N checkpoints is fewer then when just one checkpoint it is used. This

phenomenon occurs because the execution granularity of the error detection is smaller. So when an error

occurs it is faster detected and processed. When just one checkpoint is used, the verification can only

be done at the end of the program. So, if an error occurs, the system can only be rollbacked when the

program finishes its execution, resulting always in an overhead greater than 100%. In contrast, when N

checkpoints are used, the error can be detected faster and the system is recovered earlier.

Table 6.6: Lock-V execution footprint with and without an error in clock cycles.

Application Fibonacci(10) Fibonacci(15) Fibonacci(20)
Without Lock-V 95 121 1 063 543 11 782 912
No Errors
a With Lock-V [1 checkpoint] 108 543 12.4% 1 074 376 1.0% 11 805 556 0.2%
b With Lock-V [N checkpoints]∗ 202 283 112.7% 1 216 577 14.4% 11 999 361 1.8%
Difference b - a +100.3% +13,4% +1.6%
Error in 1st element
a With Lock-V [1 checkpoint] 218 026 129.2% 2 152 372 102.4% 23 582 287 100.1%
b With Lock-V [N checkpoints]∗ 236 280 148.4% 1 254 465 18.0% 12 028 680 2.1%
Difference b - a +19.2% -84.4% -98%
Error in last element
a With Lock-V [1 checkpoint] 218 336 129.5% 2 152 372 102.4% 23 582 277 100.1%
b With Lock-V [N checkpoints]∗ 404 044 324.8% 2 434 529 129.0% 23 988 473 103.6%
Difference b - a +195.3% +26.6% +3.5%

∗ Application running with 10,15 or 20 checkpoints [nº checkpoints = N, Fibonacci(N)].

Chapter 6. Evaluation and Results 62

6.3 Case study

In this section it is presented a case study that was made in order to test and evaluated the Lock-V

capabilities (error detection and error recovery). An application was executed with and without the Lock-V.

This application was chosen to be easily scalable in terms of used data. The application is a calculation

of prime numbers under a specify number. For example, if the application calculates primes number of

100, a vector with all these numbers is generated. After the applications is developed, a fault injection

mechanism, based on the previously proposed in [85], was performed to test the Lock-V architecture.

This fault injection aims to emulate bit-flips that occur in harsh environments due to SEU. First, the test

setup will be explained, then the fault injection mechanism will addressed and at the end the results will

be presented.

6.3.1 Setup

Figure 6.1 depicts the setup used for evaluating the system. The setup is composed by three main

parts: (1) the processor that read the stats of the fault injection; (2) the extra hardware used for the fault

injection, a hardware timer; and (3) the host environment to where is sent the data of the tests. The

hardware timer is used to count the time to inject a fault. It is set with time to inject, and when the timer

expired an interrupt is generate and a fault is injected. This injected faults can result in three different

things: (1) in one ineffective fault. The injected fault does not provoke any error; (2) in one Silent Data

Corruption (SDC). The injected fault provokes an error in the outputs; and (3) in one hang. This occurs

when a fault originates a system crash or an infinite loop. Three unused and reserved register of the

xLockstep are used for collect data of the fault injection. Whenever that a fault is injected a counter of

faults is incremented. If that fault originates an SDC or a hang, a specific register for each type of error

Soft-Core

RISC-V

Processing System Programmable Logic

Hard-Core

Arm CP0

Output 2Output 1

AXI4-Lite AXI4-Lite

Hard-Core

Arm CP1 Timer

AXI4-Lite

AXI4-Lite

xLockstep

Host Environment

Host

Computer

Figure 6.1: Fault injection setup.

Chapter 6. Evaluation and Results 63

is incremented. This information stored in the xLockstep is later read by the second Arm processor. After

reading the statistics, the processor sends them to the host computer.

6.3.2 Fault Injection

The fault was injected in register file randomly in terms of time and location. The injection was done

in the Arm processor, because it is the faster Lock-V processors and so the overhead to perform the fault

injection have almost no impact in the application performs. The fault injection mechanism works the

following way. In each time the application is executed, a timer is started with a random value. This

random value contains an interval of time between zero and the time of the application execution. Each

time the timer expires, it is reloaded with another random time value. This time is called the time to inject.

After the time to inject elapses, an interruption is triggered and the fault is injected. Figure 6.2 depicts

the mechanism behind that injection. First, the register and bit of the register to be flipped are randomly

chosen. So, one out of the 16 Arm registers and one out of its 32 bits will be flipped. The faults are injected

following three steps: (1) the register file is copied; (2) the fault is injected in the replicated register file

performing an XOR with the register and bit to flip; and (3) the register file is restored with the fault already

injected. This loop of events for injecting faults are continuously done until a system crash occurs.

application

interrupt()

interrupt()

Fault injected

PC

LR

r0

r15
Replicated RF

r1
r0

r15
Register File

r1

Copy Registers

Continues the
Code Execution

subs pc, lr, #4

XOR

r0

r15
Replicated RF

r1
r0

r15
Faulty Register File

r1

Restore Registers

Figure 6.2: Fault injection mechanism.

Chapter 6. Evaluation and Results 64

6.3.2.1 Results

The fault injection was performed in two scenarios. In an application without Lock-V and with the Lock-V.

The aiming of these tests is measuring the percentage of faults that is detected and corrected by the Lock-V

mechanism. The faults were injected in two different manners, full time injection and half time injection.

In the first manner, just one fault is injected during each application execution. This emulates a real harsh

environment, where is unlikely that more than one faults hits the registers during the execution. In the

second manner, more than one faults are injected during the application execution, what leads to more

errors. This heavy fault injection is more unrealistic but still useful for the Lock-V error recovery capabilities

testing purposes. Figure 6.3 and 6.4 depicts the errors detected in the application when it runs in a normal

fashion or with Lock-V. Looking at the graphs is possible to see an huge difference between using a system

hardened by the Lock-V and one that has no fault tolerant mechanism. It is also possible to see that

the half time injection test generates as expected, more errors both SDC and hang ones. However, the

effectiveness of the Lock-V is not affected by the increase of faults during the application execution. This

makes the Lock-V architecture well suitable for being used in harsh environments.

Table 6.7 summarizes all the tests done to the system. It was injected in total 45543 faults. Among

those injected faults 137 of them generate a hang and 796 a SDC. When the Lock-V is applied to the

application, the number of errors reduces drastically, around 97%. Out of the 933 faults, only 31 of them

were undetected by the Lock-V mechanism. The Lock-V has proved to be an effective option and a suitable

solution for endow a system with fault tolerant capabilities.

Table 6.7: Fault injections testes with and without Lock-V.

Tested Application Faults Without Lock-V With Lock-V Error Correction
Hang SDC Hang SDC Percentage

Primes under 100∗ 18 312 16 164 7 1 95.6%
Primes under 300∗ 13 416 18 109 3 1 96.9%
Primes under 1000∗ 14 158 13 193 6 1 96.6%
Primes under 100∗∗ 13 815 90 330 12 0 97.1%

Total 45 543 933 31 96.7%
∗ Application tested with the maximum time equal to the application execution time.
∗∗ Application tested with the maximum time equal to half of the application execution time.

Chapter 6. Evaluation and Results 65

164

109

193

1 1 1

330

0
0

50

100

150

200

250

300

350

Primes under 100 Primes under 300 Primes under 1000 Primes under 100

N
u

m
b

er
 o

f
Er

ro
rs

SDC Errors

SDC without Lock-V

SDC with Lock-V

SDC without Lock-V Half time injection

SDC with Lock-V Half time injection

Figure 6.3: SDC errors after the injection of faults with and without the Lock-V.

16
18

13

7

3

6

90

12

0

10

20

30

40

50

60

70

80

90

100

Primes under 100 Primes under 300 Primes under 1000 Primes under 100

N
u

m
b

er
 o

f
Er

ro
rs

Hang Errors

Hang without Lock-V

Hang with Lock-V

Hang without Lock-V Half time injection

Hang with Lock-V Half time injection

Figure 6.4: Hang errors after the injection of faults with and without the Lock-V.

7. Conclusion

The evolution of the processors technologies has been push the operations boundaries forward towards

low power consumption, higher transistors’ density as well as better performance. This comes up with

some new challenges and some drawbacks. Computing systems have been becoming more vulnerable

and susceptible to faults and consequently to system failures.

To mitigate this problem, the concept of fault tolerant was created. This concept can be implemented

by applying redundancy and many other different techniques. The fault tolerance has two phases, the

error detection phase and the system error recovery phase. The first phase detects an active error and

the second one eliminates them. Another concern that the fault tolerant system designers have been

aware of is protecting the fault tolerant systems against the CMF using design diversity. Although several

implementations of fault tolerant have been proposed in the academics, they do not apply of design diversity

to protect redundant processors. In opposite side, commercial processors for safety-critical applications

implement time diversity, however, they do not promote design diversity at ISA level.

This thesis proposes the Lock-V, a heterogeneous fault tolerance architecture using DCLS built upon

an Arm Cortex-A9 and the lowRISC processors. This architecture beyond the fault tolerance capability —

that applies redundancy at the processor level — it also applies design diversity at the ISA level. Lock-V is

composed by three main components. A hard-core with Arm ISA plus a soft-core with RISC-V ISA which

are running in an lockstep fashion. Moreover, there is an hardware accelerator, xLockstep that implements

the lockstep mechanism. The xLockstep offers two main services. The first is responsible to synchronize

the processors and the second is responsible for comparing their outputs to detect errors. The xLockstep

proves that is possible to successfully implement the lockstep detecting errors either by synchronization

timeout or mismatching in the processors’ outputs.

Built upon the Lock-V architecture, a framework was developed to allow an easy use of the whole

architecture as well as to implement error recovery by software. The framework provides three tools that

give some freedom to the user choice in terms of the lockstep granularity to be applied. To increase

the error detection rate, the user should identify more critical code points while using the checkpoint tool

more often. This tool is responsible to perform the lockstep in cooperation with the xLockstep module for

error detection purpose. When an error is detected it must be mitigated. For this purpose, the framework

provides two tools. One for saving a safe and healthy system state and another for recovering the system

from an error to the previously saved state. The framework working alongside with the Lock-V has proved

66

Chapter 7. Conclusion 67

to be efficient in detecting and fixing errors.

Summing up, by developing an application which adopts the proposed framework while targeting the

deployment in the Lock-v architecture, the application is able to safely perform its intent operations. An

application running in a Lock-V fashion owns fault tolerance and design diversity capabilities that protect

it against SEU faults and the CMF. This thesis hardened two different processors and gave error recovery

capabilities to a system, which owns a high error coverage.

7.1 Future Work

This thesis applies lockstep mechanism to two different processors architectures, Arm and RISC-V

proposing a new architecture, Lock-V. This provides to an application fault tolerance capabilities while

enabling design diversity. However, since it is in an initial developing phase, the Lock-V and its framework

can be improved in terms of design and implementation as well as adding extra functionalities. The

following topics addresses possible improvements in a future work:

FPGA partial reconfiguration The FPGA is vulnerable to SEU, once it is configured through a bit-

stream file that is stored in memory. In harsh environments, the Reconfigurable Computing Unit (RCU) can

be hit by radiation and suffer from bit-flips. Under such occurrence, both xLockstep and lowRISC soft-core

can be affected and their functionalities changed. These kind of faults can trigger a system failure, which

in the current Lock-V implementation is unrecoverable. For the RCU to be tolerant to faults, a mechanism

of PR needs to be implemented. This mechanism in the presence of a fault in the FPGA allows dynamically

changing of faulty design modules to a configuration without faults.

Protect all the memory Due to the tradeoffs made in the implementation of the error recovery pre-

sented in Section 5.3, the hardened memory in the Lock-V is only on registers and the stack. It will

be interesting an extension of the protection memory from register and stack to the whole memory and

compare the gain in performance (better error recovery) versus the increase in the resources usage. The

protection of the .text, .rodata, .data and .bss could be done by implementing a redundant copy of that

memory sections in an extra memory.

Implement system soft reset When an application executes in the Lock-V architecture, it is protected

against the majority of the errors that are triggered, i.e., around 97% as presented in Section 6.3. However,

in some cases (3% of the triggered errors) the Lock-V recovery mechanisms are ineffective. Under such

scenarios, the system crash and only with human intervention, e.g., performing a hard reset, the system

can be recovery. The current implementation is not the most desired. So, in a future iteration of Lock-V a

soft reset should be implemented to recover the system when the whole other Lock-V mechanism fails.

Chapter 7. Conclusion 68

Refactoring the save context The RCU resources used, presented in Section 6.1, show that the

technique implemented for the processor context saving is not the most suitable. It requires a lot of LUT

and FF, when compared with the xLockstep, i.e., it demands for huge hardware resource footprint. To

decrease this footprint, the context saving has to resort to external memory to store the context data while

reducing its introduced huge overhead.

Implement rollbackAbort() in RISC-V For prof of concept and due to the time constraints and cho-

sen setup to perform the fault injection, the rollback executed after an internal processor’s exception was

implemented only in the Arm processor, as was addressed in Section 5.4. This one side rollbackAbort()

implementation was enough to prove that the system can recovery from processors’ exception success-

fully. However, for real-world deployment, the system is incomplete, lacking exception errors recovery

capabilities in the lowRISC core. Since the logic behind the response at exceptions and the execution

of the rollbackAbort() are the same for both cores, in a future refactoring of Lock-V framework, the

rollbackAbort() should be also implemented in the RISC-V processor.

DCLS with Arm The Lock-V architecture uses the xLockstep for implementing the lockstep mechanism,

which is loosely-coupled to the processors. That implementation allows its use in other architectures with

fewer changes. Despite the implementation of Lock-V uses Arm Cortex A9 and lowRISC, it can be imple-

mented with other processors. It will be interesting to implement Lock-V on another set of processors for

comparing with the actual solution and for validating the portability of the xLockstep regarding processors

used in Lock-V. This new DCLS is not very difficult to achieve, once that the used platform, ZedBoard,

has a dual core Arm cortex A9. The second Arm processor can substitute the lowRISC in a new Lock-V

architecture version.

Automate the Lock-V Framework Currently, the code regarding the framework has to manually be

inserted in the application source code by the programmers. This can overwhelm the developers when they

are adding Lock-V capabilities to the application. So, the framework can be optimized in order to provide

code injection capabilities. This feature will allow the application code to be automatically analyzed by the

framework, which will choose the best places to deploy the Lock-V checkpoints, and later generate the

data to configure the chosen Lock-V architecture.

Implement a BIST To detect if an error is a hard or soft one, as was addressed in 2.1.2.2, a BIST must

be implemented, as we saw in Section 2.3. Lock-V for now only provides protection against soft SEEs, but

hard SEEs, i.e, SELs, can also be triggered when high energetic particles hit the system. The system can

have errors due to different sources, which must be first identified and then properly fixed. In doing so, an

identified error must be clearly associated to its root cause event, i.e., to a destructive or nondestructive

kind of event. According to this classification, done by the BIST, some different actions should be taken.

References

[1] E. Dubrova, Fault-tolerant design. Springer, 2013.

[2] R. D. Kral, J. S. M. Chong, and A. L. Schreiber, “Implementation of a Loosely-Coupled Lockstep
Approach in the Xilinx Zynq-7000 All Programmable SoC for High Consequence Applications,” Sandia
National Lab.(SNL-NM), Albuquerque, NM (United States), Tech. Rep., 2017.

[3] A. B. de Oliveira, G. S. Rodrigues, F. L. Kastensmidt, N. Added, E. L. A. Macchione, V. A. P. Aguiar,
N. H. Medina, and M. A. G. Silveira, “Lockstep dual-core arm a9: Implementation and resilience
analysis under heavy ion-induced soft errors,” IEEE Transactions on Nuclear Science, vol. 65, no. 8,
pp. 1783–1790, Aug 2018.

[4] R. C. Baumann, “Radiation-induced soft errors in advanced semiconductor technologies,” IEEE Trans-
actions on Device and Materials Reliability, vol. 5, no. 3, pp. 305–316, Sep. 2005.

[5] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A Survey of Fault Detection, Isolation, and Reconfiguration
Methods,” IEEE Transactions on Control Systems Technology, vol. 18, no. 3, pp. 636–653, May 2010.

[6] F. Abate, L. Sterpone, C. A. Lisboa, L. Carro, and M. Violante, “New Techniques for Improving the
Performance of the Lockstep Architecture for SEEs Mitigation in FPGA Embedded Processors,” IEEE
Transactions on Nuclear Science, vol. 56, no. 4, pp. 1992–2000, Aug. 2009.

[7] Á. B. de Oliveira, G. S. Rodrigues, and F. L. Kastensmidt, “Analyzing Lockstep Dual-Core ARM Cortex-
A9 Soft Error Mitigation in freeRTOS Applications,” in Proceedings of the 30th Symposium on Inte-
grated Circuits and Systems Design Chip on the Sands - SBCCI ’17. Fortaleza, Ceará, Brazil: ACM
Press, 2017, pp. 84–89.

[8] E. Ozer, B. Venu, X. Iturbe, S. Das, S. Lyberis, J. Biggs, P. Harrod, and J. Penton, “Error Correla-
tion Prediction in Lockstep Processors for Safety-Critical Systems,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). Fukuoka: IEEE, Oct. 2018, pp. 737–748.

[9] J. Han, Y. Kwon, Y. C. P. Cho, and H.-J. Yoo, “A 1GHz Fault Tolerant Processor with Dynamic Lockstep
and Self-Recovering Cache for ADAS SoC Complying with ISO26262 in Automotive Electronics,” in
2017 IEEE Asian Solid-State Circuits Conference (A-SSCC). Seoul: IEEE, Nov. 2017, pp. 313–316.

[10] J. S. Klecka, W. F. Bruckert, and R. L. Jardine, “Error self-checking and recovery using lock-step
processor pair architecture,” May 21 2002, uS Patent 6,393,582.

[11] A. B. de Oliveira, G. S. Rodrigues, F. L. Kastensmidt, N. Added, E. L. A. Macchione, V. A. P. Aguiar,
N. H. Medina, and M. A. G. Silveira, “Lockstep Dual-Core ARM A9: Implementation and Resilience
Analysis Under Heavy Ion-Induced Soft Errors,” IEEE Transactions on Nuclear Science, vol. 65, no. 8,
pp. 1783–1790, Aug. 2018.

[12] A. Hanafi, M. Karim, and A. E. Hammami, “Dual-lockstep microblaze-based embedded system for
error detection and recovery with reconfiguration technique,” in 2015 Third World Conference on
Complex Systems (WCCS). Marrakech: IEEE, Nov. 2015, pp. 1–6.

69

REFERENCES 70

[13] H.-M. Pham, S. Pillement, and S. J. Piestrak, “Low-Overhead Fault-Tolerance Technique for a Dy-
namically Reconfigurable Softcore Processor,” IEEE Transactions on Computers, vol. 62, no. 6, pp.
1179–1192, Jun. 2013.

[14] P. Garcia, T. Gomes, F. Salgado, J. Cabral, P. Cardoso, M. Ekpanyapong, and A. Tavares, “A Fault
Tolerant Design Methodology for a FPGA-based Softcore Processor,” IFAC Proceedings Volumes,
vol. 45, no. 4, pp. 145–150, 2012.

[15] M. Pignol, “DMT and DT2: Two Fault-Tolerant Architectures developed by CNES for COTs-based
Spacecraft Supercomputers,” in 12th IEEE International On-Line Testing Symposium (IOLTS’06).
Como, Italy: IEEE, 2006, pp. 203–212.

[16] S. Pinto, A. Tavares, and S. Montenegro, “Space and time partitioning with hardware support for
space applications,” Data Systems In Aerospace, European Space Agency, ESA SP 736, 2016.

[17] S. Pinto, A. Oliveira, J. Pereira, J. Cabral, J. Monteiro, and A. Tavares, “Lightweight multicore virtual-
ization architecture exploiting arm trustzone,” in IECON 2017 - 43rd Annual Conference of the IEEE
Industrial Electronics Society, Oct 2017, pp. 3562–3567.

[18] S. Pinto, J. Pereira, T. Gomes, M. Ekpanyapong, and A. Tavares, “Towards a trustzone-assisted
hypervisor for real-time embedded systems,” IEEE Computer Architecture Letters, vol. 16, no. 2, pp.
158–161, July 2017.

[19] S. Pinto, H. Araujo, D. Oliveira, J. Martins, and A. Tavares, “Virtualization on trustzone-enabled micro-
controllers? voilà!” in 2019 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), April 2019, pp. 293–304.

[20] Avizienis and Kelly, “Fault tolerance by design diversity: Concepts and experiments,” Computer,
vol. 17, no. 8, pp. 67–80, Aug 1984.

[21] S. Mitra, N. R. Saxena, and E. J. McCluskey, “Common-mode failures in redundant vlsi systems: a
survey,” IEEE Transactions on Reliability, vol. 49, no. 3, pp. 285–295, Sep. 2000.

[22] J. Yiu, “Design of SoC for High Reliability Systems with Embedded Processors,” p. 8, 2015.

[23] ARM, “Cortex-M33 Dual Core Lockstep,” ARM Limited., Tech. Rep., 2017.

[24] S. Mitra, N. R. Saxena, and E. J. McCluskey, “A design diversity metric and reliability analysis for re-
dundant systems,” in International Test Conference 1999. Proceedings (IEEE Cat. No.99CH37034),
Sep. 1999, pp. 662–671.

[25] M. Berg and C. Michael, “FPGA Mitigation Strategies for Critical Applications, support of
NASA/GSFC,” Sep. 2018.

[26] T. Gomes, F. Salgado, A. Tavares, and J. Cabral, “CUTE Mote, A Customizable and Trustable End-
Device for the Internet of Things,” IEEE Sensors Journal, vol. 17, no. 20, pp. 6816–6824, Oct. 2017.

[27] A. Avizienis, J. . Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of dependable
and secure computing,” IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
11–33, Jan 2004.

[28] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications. Kluwer
Academic Publishers, 1997.

[29] F. Afonso, “Operating system fault tolerance support for real-time embedded applications,” Ph.D.
dissertation, University of Minho, 2009.

[30] R. C. Baumann, “Radiation-induced soft errors in advanced semiconductor technologies,” IEEE
Transactions on Device and Materials Reliability, vol. 5, no. 3, pp. 305–316, Sep. 2005.

REFERENCES 71

[31] A. J. C. Lanot and T. R. Balen, “Fault mitigation strategies for single event transients on sar convert-
ers,” in 19th Annual International Mixed-Signals, Sensors, and Systems Test Workshop Proceedings,
Sep. 2014, pp. 1–6.

[32] S. Mittal and M. S. Inukonda, “A survey of techniques for improving error-resilience of
DRAM,” Journal of Systems Architecture, vol. 91, pp. 11–40, Nov. 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1383762118301693

[33] H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp, and G. Duran, “Software resilience and the effectiveness
of software mitigation in microcontrollers,” IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp.
2532–2538, Dec 2015.

[34] J. Gomez-Cornejo, A. Zuloaga, U. Kretzschmar, U. Bidarte, and J. Jimenez, “Fast context reloading
lockstep approach for seus mitigation in a fpga soft core processor,” in IECON 2013 - 39th Annual
Conference of the IEEE Industrial Electronics Society, Nov 2013, pp. 2261–2266.

[35] J. Han, Y. Kwon, Y. C. P. Cho, and H. Yoo, “A 1ghz fault tolerant processor with dynamic lockstep
and self-recovering cache for adas soc complying with iso26262 in automotive electronics,” in 2017
IEEE Asian Solid-State Circuits Conference (A-SSCC), Nov 2017, pp. 313–316.

[36] A. Serrano-Cases, F. Restrepo-Calle, S. Cuenca-Asensi, and A. Martínez-Álvarez, “Softerror mitigation
for multi-core processors based on thread replication,” in 2019 IEEE Latin American Test Symposium
(LATS), March 2019, pp. 1–5.

[37] H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp, and G. Duran, “Robust duplication with comparison
methods in microcontrollers,” IEEE Transactions on Nuclear Science, vol. 64, no. 1, pp. 338–345,
Jan 2017.

[38] E. Chielle, B. Du, F. L. Kastensmidt, S. Cuenca-Asensi, L. Sterpone, and M. S. Reorda, “Hybrid soft
error mitigation techniques for cots processor-based systems,” in 2016 17th Latin-American Test
Symposium (LATS), April 2016, pp. 99–104.

[39] S. Mitra and E. J. McCluskey, “Design of redundant systems protected against common-mode fail-
ures,” in Proceedings 19th IEEE VLSI Test Symposium. VTS 2001, April 2001, pp. 190–195.

[40] L. M. Kaufman, S. Bhide, and B. W. Johnson, “Modeling of common-mode failures in digital embed-
ded systems,” in Annual Reliability and Maintainability Symposium. 2000 Proceedings. International
Symposium on Product Quality and Integrity (Cat. No.00CH37055), Jan 2000, pp. 350–357.

[41] C. Hernandez and J. Abella, “Live: Timely error detection in light-lockstep safety critical systems,” in
2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), June 2014, pp. 1–6.

[42] S. Alcaide, L. Kosmidis, C. Hernandez, and J. Abella, “High-integrity gpu designs for critical real-
time automotive systems,” in 2019 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2019, pp. 824–829.

[43] C. M. Jeffery and R. J. O. Figueiredo, “A flexible approach to improving system reliability with virtual
lockstep,” IEEE Transactions on Dependable and Secure Computing, vol. 9, no. 1, pp. 2–15, Jan
2012.

[44] Infineon, “Highly integrated and performance optimized 32-bit microcontrollers for automotive and
industrial applications,” Infineon Technologies AG, Tech. Rep., 2017.

[45] “S32s24: Safety microcontroller for automotive applications,” https://www.nxp.com/products/
processors-and-microcontrollers/arm-processors/s32-automotive-platform, accessed: 2019-08-21.

[46] “Ultra-reliable mpc57xx 32-bit automotive and industrial microcontrollers (mcus),”

https://linkinghub.elsevier.com/retrieve/pii/S1383762118301693
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32-automotive-platform
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32-automotive-platform

REFERENCES 72

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/
mpc5xxx-55xx-32-bit-mcus/ultra-reliable-mpc57xx-32-bit-automotive, accessed: 2019-08-21.

[47] ARM, “Cortex-R4 and Cortex-R4f Technical Reference Manual,” ARM Limited, Tech. Rep., 2011.

[48] ARM, “Cortex-R5 Technical Reference Manual,” ARM Limited, Tech. Rep., 2011.

[49] ARM, “Arm® Cortex®-R52 Processor Technical Reference Manual,” ARM Limited, Tech. Rep., 2018.

[50] ARM, “ARM Cortex-R7 MPCore Technical Reference Manual,” ARM Limited, Tech. Rep., 2012.

[51] ARM, “Arm® Cortex®�R8 MPCore Processor Technical Reference Manual,” ARM Limited, Tech. Rep.,
2018.

[52] ARM, “Arm® Cortex®�A76ae Core Technical Reference Manual,” ARM Limited, Tech. Rep., 2018.

[53] F. ARM, “Exploring the ARM® Cortex®-M7 Core: Providing Adaptability for the Internet of Tomorrow,”
ARM Limited, Freescale, Tech. Rep., 2018.

[54] X. Iturbe, B. Venu, E. Ozer, and S. Das, “A triple core lock-step (tcls) arm® cortex®-r5 processor for
safety-critical and ultra-reliable applications,” in 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshop (DSN-W), June 2016, pp. 246–249.

[55] X. Iturbe, B. Venu, J. Jagst, E. Ozer, P. Harrod, C. Turner, and J. Penton, “Addressing functional safety
challenges in autonomous vehicles with the arm tcl s architecture,” IEEE Design Test, vol. 35, no. 3,
pp. 7–14, June 2018.

[56] A. Hanafi, M. Karim, and A. E. Hammami, “Dual-lockstep microblaze-based embedded system for
error detection and recovery with reconfiguration technique,” in 2015 Third World Conference on
Complex Systems (WCCS), Nov 2015, pp. 1–6.

[57] J. Gomez-Cornejo, A. Zuloaga, U. Kretzschmar, U. Bidarte, and J. Jimenez, “Fast context reloading
lockstep approach for seus mitigation in a fpga soft core processor,” in IECON 2013 - 39th Annual
Conference of the IEEE Industrial Electronics Society, Nov 2013, pp. 2261–2266.

[58] H. Pham, S. Pillement, and S. J. Piestrak, “Low-overhead fault-tolerance technique for a dynamically
reconfigurable softcore processor,” IEEE Transactions on Computers, vol. 62, no. 6, pp. 1179–1192,
June 2013.

[59] Y. Sun, P.-f. Wu, J. Li, and Z.-f. Ma, “Research on dual-core lock step mechanism and its application
for commercial high performance apsoc,” Advances in Astronautics Science and Technology, pp.
1–5, 06 2019.

[60] F. Abate, L. Sterpone, C. A. Lisboa, L. Carro, and M. Violante, “New techniques for improving the
performance of the lockstep architecture for sees mitigation in fpga embedded processors,” IEEE
Transactions on Nuclear Science, vol. 56, no. 4, pp. 1992–2000, Aug 2009.

[61] A. B. de Oliveira, L. A. Tambara, and F. L. Kastensmidt, “Applying lockstep in dual-core arm cortex-a9
to mitigate radiation-induced soft errors,” in 2017 IEEE 8th Latin American Symposium on Circuits
Systems (LASCAS), Feb 2017, pp. 1–4.

[62] A. B. de Oliveira, G. S. Rodrigues, and F. L. Kastensmidt, “Analyzing lockstep dual-core arm cortex-a9
soft error mitigation in freertos applications,” in 2017 30th Symposium on Integrated Circuits and
Systems Design (SBCCI), Aug 2017, pp. 84–89.

[63] ARM, “ARM: Media fact sheet (Sept. 1, 2016),” ARM Limited., Tech. Rep., 2016.

[64] D. Patterson and A. Waterman, The RISC-V Reader: An Open Architecture Atlas, 1st ed. Strawberry
Canyon, Nov. 2017.

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/mpc5xxx-55xx-32-bit-mcus/ultra-reliable-mpc57xx-32-bit-automotive
https://www.nxp.com/products/processors-and-microcontrollers/power-architecture-processors/mpc5xxx-55xx-32-bit-mcus/ultra-reliable-mpc57xx-32-bit-automotive

REFERENCES 73

[65] M. Nöltner-Augustin, “RISC-V — Architecture and Interfaces The RocketChip,” COMPUTER ENGI-
NEERING, p. 6, 2016.

[66] lowRISC, “Ibex: a 32 bit risc-v cpu core,” https://github.com/lowRISC/ibex, accessed: 2019-08-22.

[67] U. d. B. ETH Zurich, “Pulpino: An open-source microcontroller system based on risc-v,” https://
github.com/pulp-platform/pulpino, accessed: 2019-08-22.

[68] C. Wolf, “Picorv32 - a size-optimized risc-v cpu,” https://github.com/cliffordwolf/picorv32, ac-
cessed: 2019-08-22.

[69] U. d. B. ETH Zurich, “Ariane, a 6-stage RISC-V CPU capable of booting Linux,” https://github.com/
pulp-platform/ariane, accessed: 2019-08-22.

[70] VectorBlox, “Orca: Risc-v by vectorblox,” https://github.com/vectorblox/orca, accessed: 2019-08-
22.

[71] Microsemi, “Mi-v risc-v ecosystem,” https://www.microsemi.com/product-directory/fpga-soc/
5210-mi-v-embedded-ecosystem, accessed: 2019-08-22.

[72] U. B. Esperanto, “Boom: Berkeley out-of-order machine,” https://github.com/riscv-boom/
riscv-boom, accessed: 2019-08-22.

[73] SiFive, “Sifive’s freedom,” https://github.com/sifive/freedom, accessed: 2019-08-22.

[74] U. B. SiFive, “Rocket chip generator,” https://github.com/chipsalliance/rocket-chip, accessed:
2019-08-22.

[75] lowRISC, “lowrisc project,” https://github.com/lowRISC/lowrisc-chip, accessed: 2019-08-22.

[76] lowRISC, “Untethered lowrisc, memory mapped io and tilelink/axi,” https://wsong83.github.io/
presentation/lowRISC20150727.pdf, accessed: 2019-07-15.

[77] lowRISC, “Overview of the rocket chip,” https://www.lowrisc.org/docs/untether-v0.2/overview/, ac-
cessed: 2019-07-15.

[78] J. W. Jonathan Bachrach, Krste Asanović, “Chisel 3.0 Tutorial,” EECS Department, UC Berkeley,
Tech. Rep., 2017.

[79] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Modeling the effect of technology
trends on the soft error rate of combinational logic,” in Proceedings International Conference on
Dependable Systems and Networks, June 2002, pp. 389–398.

[80] F. M. Lins, L. A. Tambara, F. L. Kastensmidt, and P. Rech, “Register file criticality and compiler
optimization effects on embedded microprocessor reliability,” IEEE Transactions on Nuclear Science,
vol. 64, no. 8, pp. 2179–2187, Aug 2017.

[81] M. A. Abazari, M. Fazeli, A. Patooghy, and S. G. Miremadi, “An efficient technique to tolerate mbu
faults in register file of embedded processors,” in The 16th CSI International Symposium on Computer
Architecture and Digital Systems (CADS 2012), May 2012, pp. 115–120.

[82] A. Ramos, A. Ullah, P. Reviriego, and J. A. Maestro, “Efficient protection of the register file in soft-
processors implemented on xilinx fpgas,” IEEE Transactions on Computers, vol. 67, no. 2, pp. 299–
304, Feb 2018.

[83] G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and R. K. Iyer, “An experimental study of soft
errors in microprocessors,” IEEE Micro, vol. 25, no. 6, pp. 30–39, Nov 2005.

[84] G. Memik, M. T. Kandemir, and O. Ozturk, “Increasing register file immunity to transient errors,” in
Design, Automation and Test in Europe, March 2005, pp. 586–591 Vol. 1.

https://github.com/lowRISC/ibex
https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulpino
https://github.com/cliffordwolf/picorv32
https://github.com/pulp-platform/ariane
https://github.com/pulp-platform/ariane
https://github.com/vectorblox/orca
https://www.microsemi.com/product-directory/fpga-soc/5210-mi-v-embedded-ecosystem
https://www.microsemi.com/product-directory/fpga-soc/5210-mi-v-embedded-ecosystem
https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://github.com/sifive/freedom
https://github.com/chipsalliance/rocket-chip
https://github.com/lowRISC/lowrisc-chip
https://wsong83.github.io/presentation/lowRISC20150727.pdf
https://wsong83.github.io/presentation/lowRISC20150727.pdf
https://www.lowrisc.org/docs/untether-v0.2/overview/

REFERENCES 74

[85] R. Velazco, S. Rezgui, and R. Ecoffet, “Predicting error rate for microprocessor-based digital archi-
tectures through c.e.u. (code emulating upsets) injection,” IEEE Transactions on Nuclear Science,
vol. 47, no. 6, pp. 2405–2411, Dec 2000.

	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Introduction
	Motivation
	Goals
	Document Structure

	Background, Context and State of the Art
	Dependability
	Dependability Attributes
	Reliability
	Availability
	Safety

	Dependability Threats
	Fault, Error, Failure
	Causes

	Dependability Means
	Fault tolerance

	Redundancy
	Hardware Redundancy
	Software Redundancy
	Time Redundancy
	Spatial Redundancy

	Information Redundancy
	Redundancy Techniques
	Duplication With Comparison
	Triple Modular Redundancy

	Redundancy to achieve Fault-Tolerance
	Design diversity

	Lockstep
	Design Diversity Applied To Lockstep
	Lockstep Implementations
	Discussion

	Platform
	Processors
	The lowRISC

	ZedBoard

	Proposed Architecture (Lock-V)
	Adding Lockstep Capabilities
	Architecture Overview
	The lowRISC Adaptations
	Adding A New Peripheral

	xLockstep
	Synchro
	LIFO
	Checker
	xLockstep AXI-aware Interface

	xLockstep deployment in Lock-V
	xLockstep API

	Lock-V Framework
	Framework Overview
	Error Detection Capabilities
	Checkpoint

	Error Recovery Capabilities
	Save Processors' Context
	Rollback Processors' Context

	Framework Constraints

	Evaluation and Results
	Lock-V PL Resources Utilization
	Lock-V Framework Costs
	Memory Footprint
	Execution Footprint

	Case study
	Setup
	Fault Injection
	Results

	Conclusion
	Future Work

	References

