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Abstract: Coastal defence works, such as breakwaters, are structures that aim to support the action
of waves and dissipate their energy. Therefore, they provide conditions for stabilizing the coast,
protecting ports, beaches and other coastal infrastructures and ecosystems. Semicircular breakwaters
have been applied in different locations around the world due to their aesthetic advantages and high
structural performance. Marine structures are subject to hydrodynamic actions normally estimated
through physical models. However, these models are complex to implement, involving high costs
and long experimental procedures. Thus, alternative methodologies for studying the hydrodynamic
performance of these structures are of great use. This work presents the results of the application of a
computational fluid dynamics (CFD) tool to study the stability of a perforated semicircular breakwater,
based on a rubble mound foundation. The model was validated against experimental results of the
critical weight necessary to resist sliding, taking into account the effects of water depth and different
characteristics of the waves. A comparison is made between the perforated and the non-perforated
solution in terms of the breakwater’s performance to dissipate wave energy. Dissipation conditions
of this energy, in the exposed face, are also evaluated in detail, in order to assess the potential of this
structure as a biological refuge for marine species. Both solutions show similar performance in terms
of results obtained for the wave reflectivity coefficient. The turbulence dissipation on the exposed
face of the perforated breakwater is limited to a region of restricted extension around it, which is
advantageous in terms of the passage of species into the breakwater.

Keywords: Semicircular breakwater; reef structure; numerical simulation; CFD; Flow-3D®

1. Introduction

Breakwaters are coastal protection structures generally built out into the sea to protect the
emerged beach, cliffs, dunes or harbours from the action of waves. In recent decades, semicircular
breakwaters have aroused interest in the scientific community, based on their advantages compared to
conventional breakwaters.

As reported by [1] and [2], the semicircular breakwater was developed in the early 90s of the
last century in Japan, and a 36 m prototype of this type of breakwater was built at the port of
Mayazaki between 1992 and 1993. As a rule, they are pre-fabricated reinforced concrete structures,
with semicircular hollow perforations on the exposed face, and are installed over a rubble mound
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foundation. They are more economical, stable and efficient than conventional breakwaters, being
suitable for installation over coastal stretches of low resistant capacity [3].

Previous studies of this type of coastal structures have concentrated essentially on the evaluation
of hydrodynamic parameters, such as pressure, reflection coefficients, runup, rundown and aspects
related to the dissipation of energy by the breakwater. Different semi-empirical design formulations
were proposed by [4]. Sasajima et al. [5] calculated pressures and loads on the semicircular breakwater
and concluded that the peak pressure towards the beach follows a Rayleigh distribution. The authors
in [6] and [7] developed methods to calculate the wave loads that act on the semicircular breakwater.
The authors in [8] and [9] performed an experimental verification of the pressure exerted on semicircular
breakwaters, comparing the results with those obtained through numerical models. Zhang et al.,
in [10], evaluated the loads acting on semicircular breakwaters, resulting from oblique waves. The
authors in [11–13] and [14] presented results of the hydrodynamic performance characteristics of
the breakwater, analyzing the influence of water depth, holes and the height of the rubble mound
foundation base. They concluded that a semicircular breakwater perforated in half a section dissipates
more energy, reflects less energy and is subject to lower dynamic pressures. Moreover, [13] also showed
that reflection coefficients decrease with the increase of porosity of the front wall (analyzing 0%, 7%
and 11% percentages of perforated front walls). Porosity of breakwaters has an important effect on
wave dynamics (eg., [15,16]).

Nishnath [17] carried out studies on perforated and non-perforated emerged breakwater models
and showed that the reflection coefficient increases with an increase in the inclination and height of
the incident waves. Ganesh [18] studied semi-circular breakwater models perforated on the surface
exposed to waves, and perforated on both sides, by considering different wave heights and periods,
as well as different depths. The results obtained showed that as the percentage of perforations
increases or the relationship between spacing and diameter of perforation decreases, the value of the
reflection coefficient, the runup and rundown decrease, but the transmission coefficient increases. These
conclusions were also obtained by [19] for perforated models with different holes spacing/diameter
ratios. Zanuttigh et al. [20] studied the reflection coefficient and showed that this is an important
aspect in the assessment of the breakwater stability. Hodaei et al. [21] found that perforations in
semicircular breakwaters absorb wave energy better compared to vertical breakwaters and inclined
barriers, with a reduction in the reflection coefficient. More recently, [22] studied the variations in the
critical weight necessary for sliding stability, taking into account different parameters of depth and
wave characteristics, using a physical model of a semicircular breakwater emerged and perforated in
the face exposed to waves, for a relationship between spacing and hole diameter of 8. They concluded
that the stability parameter decreases as the slope of incident waves increases, for all ranges of depth
parameters. It was found that the stability increases with the increase in the depth parameter for the
adopted inclination of incident waves, that is, as the depth parameter increases, the critical weight
necessary for sliding stability also increases.

Almost all the previous works mentioned are based on physical models. However, this
methodology is subject to high costs and prolonged procedures. The CFD modelling tools, associated
with the increase in computational capacity, have been making it possible to analyse this type of structure,
based on numerical models. They allow numerical simulations of the interaction between fluids and
structures to be undertaken, allowing the estimation of wave loads on complex geometry structures.
The FLOW-3D®software [23] has a high capability to simulate fluid dynamics problems, including
the possibility to simulate different types of waves in complex geometry domains, which include
three-dimensional solid objects. It solves the Reynolds’ averaged Navier-Stokes equations (RANS)
with an efficient numerical method, considering different alternatives for turbulence closure models.

FLOW-3D®is being used in different studies of coastal structures. Najafi-Jilani et al. [24] applied
the software to analyze the performance of different breakwater armour arrangements, based on
antifer armour units, and concluded that the numerical method, based on VOF (Volume of Fluids)
algorithm outperforms other numerical codes. Nourani and Askar [25] applied Flow-3D®to study



J. Mar. Sci. Eng. 2020, 8, 226 3 of 16

the performance of different shapes of concrete armoured blocks to be used in a breakwater. Chen
et al. [26] studied a floating breakwater using a physical model and FLOW-3D®and evidenced the
software’s good ability to capture the hydrodynamic interaction effect with the analyzed structure.

This work presents results of the application of FLOW-3D®for the study of the sliding stability
of a perforated semicircular breakwater, based on a rubble mound foundation. Experimental results
of the critical weight necessary to resist sliding were used to validate the model, taking into account
the effects of water depth and different characteristics of the waves. Moreover, a comparison is made
between the perforated and the non-perforated solution, in terms of the breakwater’s performance to
dissipate wave energy. Interior conditions of the breakwater are evaluated in detail in order to assess
the potential of this structure as a biological refuge for marine species.

The following sections describe: methods (Section 2), results (Section 3), discussion (Section 4),
and conclusions (Section 5) of this research work.

2. Methods

2.1. Flow Model

The numerical simulations are performed based on Reynolds’ averaged Navier-Stokes equations
(RANS), used to describe the wave-induced fluid movement, assuming an incompressible fluid; the
model equations are,

∇u f = 0 (1)

∂u f

∂t
+ u f

(
∇u f
)
= −

1
ρ f
∇p f + g + (∇τ)T (2)

where ∇ =
[
∂
∂x , ∂

∂y , ∂∂z

]
, u f = [u, v, w]T is the velocity, t is time, ρ f is the fluid density, p f is pressure, g

is the gravitational force and τ is viscous stress tensor.
Fluid configurations are defined in terms of a VOF function F (x, y, z, t) [27], which represents the

fluid volume that occupies a portion of the unitary volume space. F satisfies the following transport
equation:

∂F
∂t

+ u
∂F
∂x

+ v
∂F
∂y

+ w
∂F
∂z

= 0. (3)

For a single incompressible fluid with a free surface, there is fluid where F = 1, while places
where F = 0 correspond to empty regions, in which a uniform pressure is applied. In the case of two
incompressible fluids without a free surface, F represents the volumetric fraction of fluid no. 1, while
the complementary region with volumetric fraction 1 - F represents the second fluid.

In addition to gravity, two additional physical processes were considered in this work: (a) a
turbulence model based on the well-known two-equation model k-ε and (b) a generalized moving
object (GMO) model. This allows quantifying the resulting forces and torques exerted by the fluid on
the breakwater that is assumed to be a GMO. In this way, it allows obtaining the weights necessary
to guaranty sliding stability of the structure. It was assumed a friction coefficient, µ, between the
breakwater base (concrete) and the foundation base. The critical weights (W) associated with the
maximum horizontal force (Fymax), are obtained by:

W = Fymax/µ. (4)

According to [28], the friction coefficient between the concrete and the rubble mound foundation
is normally considered equal to 0.6. This value was adopted in this study.

Turbulence was modelled using two transport equations for the turbulent kinetic energy k
and its dissipation ε (the standard k-ε model). This model has been shown to provide reasonable
approximations to many types of flows [29]. At all boundaries, except for rigid no-slip boundaries,
the two-equation turbulence model is used to compute the energy and dissipation functions. A
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non-slip or partial-slip condition was adopted for wall boundary conditions. At these boundaries,
the FLOW-3D®adopts a simplified turbulence model, based on the assumption of the Prandtl mixing
length model, which assumes that turbulence production and dissipation are in balance everywhere in
the flow. This is because the numerical resolution is usually too coarse to resolve details of a laminar
boundary layer region. For wave generation, FLOW-3D®has the ability to simulate surface waves of
regular linear and non-linear propagation, as well as irregular waves. Although linear wave theory [30]
has been used in many applications, non-linear wave theories generally offer a significant improvement
in accuracy over linear wave theory for greater wave amplitudes [31]. In FLOW-3D®, three theories
of non-linear waves are used to generate non-linear waves: (a) Stokes 5th order wave theory [32],
(b) Fourier series method for Stokes and cnoidal waves [33] and (c) McCowan’s theory for solitary
waves [34]. For each of the simulated scenarios, wave generation was defined according to its specific
validity characteristics and the water depth.

2.2. Breakwater Geometry

Hegde et al. [22] built a physical model to assess the stability of a perforated semicircular
breakwater with the dimensions shown in Figure 1. A set of experiments were carried out in that work
in order to estimate the critical weight of the breakwater needed to resist sliding, taking into account
the effects of water depth, wave height and period. The laboratory channel was equipped with a
wave-maker and pressure probes. The physical model consisted of a semicircular caisson with a 0.6 m
radius fixed to a base, both made of galvanized iron plate with dimensions of 1.3 m × 0.73 m × 0.002 m
(Length ×Width × Thickness), weighing 372.78 N and covered with a thin layer of cement mortar to
simulate the concrete surface of a real model. The semicircular breakwater was positioned on a rubble
mound foundation base, with a thickness of 0.05 m. The holes spacing (S)/diameter (D) ratio was equal
to 8, with the hole diameter equal to 0.016 m.
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Figure 1. Cross-section of the semicircular breakwater model with a rubble mound foundation (data
from [22]).

In the experimental work, for the different wave parameters, weights were added to the model so
that it was possible to find the critical weight necessary to resist sliding.

In order to optimize the computation time of the FLOW-3D®model, it was necessary to scale the
dimensions of the physical model. The numerical model of the corresponding perforated semicircular
breakwater was five times larger than that used in the experimental work. However, all simulation
parameters involved were defined with respect to the range of dimensionless parameters obtained in
the experimental work of [22].
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2.3. Numerical Model

The three-dimensional geometry of the breakwater model was defined in a CAD tool and exported
into a stereo lithographic format (STL) to be used in FLOW-3D®. The dimension of the breakwater
holes conditioned the minimum cell size of the 3D grid. The accuracy of the results and the simulation
time depend on the size and number of the cubic cells. It is important to minimize the total number of
cells, but at the same time it is necessary to consider a sufficiently high spatial resolution to be able
to simulate all the relevant flow patterns and all the details of the geometry. Thus, three blocks with
different cell sizes were adopted throughout the domain (Figure 2).
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The total number of cells used to discretize the domain was 1901659. The first block presented
80676 cells of 0.12 m in size, the second block, which comprises the breakwater, presented 1804000 cells
of 0.04 m in size and the third block presented 16983 cells of 0.12 m in size. Several initial simulations
were defined using different grid resolutions in order to achieve an adequate solution in terms of
capturing the relevant flow details with acceptable computational CPU (central process unit) times.
On average, each simulation lasted 12 hours (CPU—4 Intel Core™ i7-6700k @ 4.0 GHz) to simulate
20 seconds of wave hydrodynamics.

At the left open boundary, the incident wave conditions were imposed. At the right boundary an
absorption boundary was adopted to avoid or mitigate the effects of wave reflection. In all other open
boundaries, symmetry conditions were defined. The type of incident wave was defined according to
the wave height (Hi), period (T), water depth (d) and wavelength (L) for the case of cnoidal waves. As
initial conditions, a fluid region was considered along the simulated channel. The fluid used in the
simulations was water at 20◦ with null salinity.

2.4. Simulated Scenarios

Simulated scenarios considered several water depths and different characteristics of the incident
waves. For each scenario, the adopted wave characteristics are shown in Table 1, namely the wavelength,
significant wave height, wave period and average water depth; the adopted wave type at the boundary
was defined according to [35]. For model validation, five simulations were performed (scenarios
1, 2, 3, 4 and 5), considering a dimensionless depth range between 0.005 to 0.0216, for posterior
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comparison with the experimental results. For assessment of the hydrodynamic conditions in the
semicircular perforated breakwater, scenarios 2 and 5 were taken in intermediate water conditions
(0.05 < d/L < 0.50) and scenarios 6 and 7 were added as representative of shallow water conditions (d/L
< 0.05). For comparison with a non-perforated semicircular breakwater, scenarios 8 to 11 were set up.

Table 1. Simulated scenarios.

Type of
Breakwater Scenarios d (m) L (m) Hi (m) T (s) Boundary

Wave Type (d/L)

Perforated

1 1.75 13.5 0.3 3.58 Stokes Intermediate
2 2.00 18.7 0.6 4.52 Stokes Intermediate
3 2.00 12.3 0.6 3.19 Stokes Intermediate
4 2.00 15.8 0.6 3.91 Stokes Intermediate
5 1.75 12.7 0.8 3.41 Stokes Intermediate
6 1.20 24.30 0.5 7.20 Solitary Shallow
7 1.00 24.0 0.3 7.60 Cnoidal Shallow

Non perforated

8 2.00 18.7 0.6 4.52 Stokes Intermediate
9 1.75 12.7 0.8 3.41 Stokes Intermediate

10 1.20 24.3 0.5 7.20 Solitary Shallow
11 1.00 24.0 0.3 7.60 Cnoidal Shallow

3. Results

Three-dimensional (3D) results for free surface elevation and pressure are presented for relevant
scenarios. Also, the results of the horizontal pressure forces are shown for the five scenarios used to
validate the model (scenario 1, 2, 3, 4 and 5). Finally, the turbulent kinetic energy, together with the
respective dissipation rate, are compared for both simulated breakwater types.

The three-dimensional wave dynamics for scenario 2 is presented in Figure 3. Surface elevation
and pressure are shown at five different instants along one wave period (4.52 s). The fluid-structure
interaction is simulated with sufficient detail as demonstrated by the water flowing throughout the
breakwater holes.



J. Mar. Sci. Eng. 2020, 8, 226 7 of 16J. Mar. Sci. Eng. 2019, 7, x  7 of 16 

 

 
Figure 3. Results of pressure and free surface elevation at different instants for scenario 2. 

It is also possible to observe the evolution of the wave as it travels until reaching the perforated 
face of the semicircular breakwater. The waves that reach the semicircular breakwater are partially 
reflected, with simultaneous water entering the breakwater through the perforations, dissipating 
energy, and thus, reducing wave reflections. 

Wave loads, acting on the breakwater, vary depending on the water depth and the wave 
parameters, such as the significant wave height and the wave period. With model implementation of 
the breakwater as GMO on the foundation base, it was possible to obtain the resultant of the pressure 
forces along the x, y and z directions. Figure 4 presents the maximum horizontal component of the 
pressure force (Fymax) for five modelled scenarios (1 to 5, Table 1). The images on the left side show 
the pressure as well as the free surface in a two-dimensional (2D) view (y-z) at the instant when the 
force is maximum. The graphs on right show variations of the forces over the simulation time. 

 

Figure 3. Results of pressure and free surface elevation at different instants for scenario 2.

It is also possible to observe the evolution of the wave as it travels until reaching the perforated
face of the semicircular breakwater. The waves that reach the semicircular breakwater are partially
reflected, with simultaneous water entering the breakwater through the perforations, dissipating
energy, and thus, reducing wave reflections.

Wave loads, acting on the breakwater, vary depending on the water depth and the wave parameters,
such as the significant wave height and the wave period. With model implementation of the breakwater
as GMO on the foundation base, it was possible to obtain the resultant of the pressure forces along
the x, y and z directions. Figure 4 presents the maximum horizontal component of the pressure force
(Fymax) for five modelled scenarios (1 to 5, Table 1). The images on the left side show the pressure as
well as the free surface in a two-dimensional (2D) view (y-z) at the instant when the force is maximum.
The graphs on right show variations of the forces over the simulation time.
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Figure 4. Results of pressure and dimensionless free surface elevation (Z*) along the dimensionless
channel length (Y*) at the instant when the horizontal component of the pressure force is maximum
(left) and variation of the horizontal pressure force over the simulation time (right).
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It is noted that the horizontal pressure force increases with wave height, as expected, since the
associated wave periods have similar values (ranging from 3.19 s to 4.52 s), and the maximum force
acts in the direction of wave propagation in all simulations. However, pressure forces of almost
equal magnitudes act in the opposite direction. These results will be used to estimate the required
breakwater weight and compare them with experimental results, in order to validate the model later in
the discussion section.

For scenarios 8 and 9 with waves and water depths identical to those assumed in scenarios 2 and 5
and considering a non-perforated breakwater, the maximum horizontal pressure forces were 38904 N,
and 38423 N, respectively. This corresponds to an increase of 14% (scenario 8) and 7% (scenario 9) in
the maximum pressure forces for the scenarios involving a non-perforated breakwater.

Figures 5 and 6 present the generated turbulent kinetic energy (TKE), and its dissipation (DTKE),
around the breakwater module, respectively. The results shown correspond to the maximum TKE and
DTKE instants in the perforated breakwater scenarios. TKE is distributed along the surface holes and
at the breakwater extremities for the case of the perforated breakwater. In the non-perforated case, the
TKE is concentrated at the breakwater extremities for all scenarios.
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4. Discussion

The monogram presented by [22], provides the critical weight (W) necessary to assure the sliding
stability for the emerged perforated breakwater obtained from experimental results. The simulated
numerical scenarios 1 to 5 are in the range of these experimental results. The corresponding stability
parameters (W/γHi

2, where γ is the fluid specific weight), and the dimensionless incident wave
parameter (Hi/gT2) were inserted (red dots) in the monogram (Figure 7).



J. Mar. Sci. Eng. 2020, 8, 226 12 of 16J. Mar. Sci. Eng. 2019, 7, x  12 of 16 

 

 

Figure 7. Monogram of experimental results (data from [22])—gray dots) and results obtained from 
numerical simulations of scenarios 1 to 5 (red dots). 

As can be observed, numerical results have a rather good approximation, compared to the 
experimental results, which prove the excellent performance of the computational model in the 
simulation of this complex fluid-structure interaction problem. It should be noted that as the 
dimensionless incident wave parameter (Hi/gT2) increases, the stability parameter (W/γHi2) 
decreases. This behaviour can be explained by the fact that the longer period waves exert greater 
forces on the structure, when compared to short waves period. This was already concluded by [22]. 

The hydrodynamic performance of breakwaters is usually assessed by different coefficients. One 
of those coefficients is the reflection coefficient, which is the ratio between the heights of the incident 
and the reflected waves. Several methods for computation of this coefficient are proposed in the 
literature (eg., [36]). More recently [37] proposed a method to quantify this coefficient using the 
measurement of the velocity at a single point. Based on this method, we estimate for scenario 2 a 
value of 0.65 and for scenario 8 a value of 0.67. This means that both solutions of the breakwater 
present the same wave reflection behaviour, despite the existence or not of the adopted perforations. 

Wave energy transmission conditions are showed by water surface elevation results presented 
in Figure 8. Both perforated (2, 5 and 7) and non-perforated (8, 9 and 11) breakwater scenarios have 
similar wave transmission conditions, since the surface elevation at probe 6 (lee side of the 
breakwater) is identical. However, the transmitted wave energy differs according to the incident 
wave characteristics. Indeed, for intermediate water and for scenarios 5 and 9 (short wave period and 
very high H/d ratio -H/d = 0.46 - which means greater importance of the non-linear effects) the 
maximum wave heights in the protected region (probe 6) are of an identical magnitude to those of 
the incident waves. This reveals a limited protection for these conditions at the lee side of the 
breakwater. For shallow water scenarios 7 and 11, the wave heights at probe 6 are significantly lower 
than the wave heights at the exposed breakwater face. 

Figure 7. Monogram of experimental results (data from [22])—gray dots) and results obtained from
numerical simulations of scenarios 1 to 5 (red dots).

As can be observed, numerical results have a rather good approximation, compared to the
experimental results, which prove the excellent performance of the computational model in the
simulation of this complex fluid-structure interaction problem. It should be noted that as the
dimensionless incident wave parameter (Hi/gT2) increases, the stability parameter (W/γHi

2) decreases.
This behaviour can be explained by the fact that the longer period waves exert greater forces on the
structure, when compared to short waves period. This was already concluded by [22].

The hydrodynamic performance of breakwaters is usually assessed by different coefficients. One
of those coefficients is the reflection coefficient, which is the ratio between the heights of the incident
and the reflected waves. Several methods for computation of this coefficient are proposed in the
literature (eg., [36]). More recently [37] proposed a method to quantify this coefficient using the
measurement of the velocity at a single point. Based on this method, we estimate for scenario 2 a value
of 0.65 and for scenario 8 a value of 0.67. This means that both solutions of the breakwater present the
same wave reflection behaviour, despite the existence or not of the adopted perforations.

Wave energy transmission conditions are showed by water surface elevation results presented in
Figure 8. Both perforated (2, 5 and 7) and non-perforated (8, 9 and 11) breakwater scenarios have similar
wave transmission conditions, since the surface elevation at probe 6 (lee side of the breakwater) is
identical. However, the transmitted wave energy differs according to the incident wave characteristics.
Indeed, for intermediate water and for scenarios 5 and 9 (short wave period and very high H/d ratio
-H/d = 0.46 - which means greater importance of the non-linear effects) the maximum wave heights
in the protected region (probe 6) are of an identical magnitude to those of the incident waves. This
reveals a limited protection for these conditions at the lee side of the breakwater. For shallow water
scenarios 7 and 11, the wave heights at probe 6 are significantly lower than the wave heights at the
exposed breakwater face.
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Figure 8. Water surface elevation at different probes for scenarios 2, 5, 7, 8, 9 and 11 (the elevations
were dimensioned using the maximum value at probe 1 for scenario 2).

Behind the coastal protection that can justify the installation of a semicircular breakwater,
other potential benefits should be taken into account. The interior environment of a perforated
semicircular breakwater presents a considerable volume with relatively calm hydrodynamic conditions
(Figures 5 and 6) and considerable surfaces for biological species fixation [38]. Light availability
limitations, imposed by a continuous structure, could be diminished if new modular arrangements
for the installation of the breakwater are considered. These arrangements could also benefit from the
considerable energy dissipation that takes place at the breakwater extremities, as noted before.

Acting as physical barriers in coastal areas, this type of structure (artificial reef) can also induce
changes in the intensity and direction of the bottom current, water flow and turbulence patterns,
contributing to the nutrients enrichment of the water column and thus attracting biological species
([39–41]). In fact, turbulence promotes oxygenation of water to plants and animals that flourish and
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live or are attracted to inside, and to the area located at the leeward of the breakwater. In addition,
those enhanced vertical induced currents, like in the case of the upwelling, brings benthic waters from
a nutrient-rich bottom to the water column, thereby enhancing biological production ([39]). This effect
is clearly identified by the increases in the wave height in front of the breakwater. In such conditions,
several fish species can benefit from the ecological functions provided by the presence of the reef, as
spawning structures, feed, and possible mating areas. Such a structure can also provide shelter for
some fish species and serve as a refuge against currents, waves, and predators ([40,41]).

In recent years several works were dedicated to the application of CFD to the study of different
coastal structures (eg., [42], [24], [25] and [26]). This work presents one of the first applications of
a three-dimensional CFD approach to simulate a semicircular breakwater, which is validated with
experimental data. Simulated pressure forces were obtained considering the breakwater as a GMO.
Energy dissipation reveals a three-dimensional nature of this fluid-structure interaction problem
that requires further validation based on measurement data. Most of the available experimental
results are related to traditional hydrodynamic performance coefficients of breakwaters like reflection,
transmission, and energy dissipation. These are derived from point measurements and do not allow
to characterize the three-dimensional features of the wave hydrodynamics. Thus, new experiments
involving detailed measurements will be required to further validate three-dimensional models.

Numerical experiments are still vey computing demand, even when the model is scaled. Prototype
simulation requires HPC facilities that are now available for FLOW-3D®.

5. Conclusions

Adopted methodology for the quantification of the pressure loads on an emerged semicircular
breakwater, considering the breakwater as a GMO proved to be efficient, as evidenced by the obtained
results when compared with experimental ones. It shows the effectiveness of the computational model
in solving this complex fluid-structure interaction problem. A detailed characterization of the turbulent
energy and the respective dissipation rate was presented, revealing a considerable dissipation at the
breakwater extremities. This feature can be explored to propose new solutions, involving more complex
arrangements of perforated breakwater module arrangements, instead of using a continuous solution.

Comparing the perforated and non-perforated solutions show similar hydrodynamic performance
in terms of the wave reflectivity coefficient and transmission characteristics. This result is in line with
the adopted permeability of the perforated breakwater.

The turbulence dissipation on the exposed face of the perforated breakwater occurs in a limited
interior region, which is advantageous, since relatively calm conditions are felt inside the breakwater,
creating an adequate environment for biological activity.

Future research should pay more attention to aspects related to the location of the structure
(submerged and in transition waters), the interaction between structure and biology, and the possible
upwelling generation, thus, contributing to improve biological production and attract fish species.
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