The Group Inverse of the Nivellateur

R.E. Hartwig∗ P. Patrício†

Abstract

We shall derive necessary and sufficient conditions for the Nivellateur to have a group inverse over an algebraically closed field. We then extend these results to arbitrary fields.

Keywords: Nivellateur, group inverse, matrices over a field

AMS classification: 15A09, 15A21

1 The nivellateur

The matrix equation $AX - XB = C$ can be written in column form as $G\text{vec}(X) = \text{vec}(C)$, where $\text{vec}(Y) = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ when $Y = \begin{bmatrix} y_1 & \ldots & y_n \end{bmatrix}$, and

$$G = I \otimes A - B^T \otimes I$$

is the nivellateur of A and B.

∗Mathematics Department, N.C.S.U., Raleigh, NC 27695-8205, U.S.A. e-mail: hartwig@unity.ncsu.edu

†CMAT – Centro de Matemática and Departamento de Matemática e Aplicações, Universidade do Minho, 4710-057 Braga, Portugal. e-mail: pedro@math.uminho.pt

Partially supported by FCT-'Fundaçao para a Ciência e a Tecnologia’, within the project UID-MAT-00013/2013.

Corresponding author.
Our aim is to find necessary and sufficient conditions for the existence of the group inverse of this matrix in terms of A and B, and to provide expressions for this group inverse.

We shall use $r(X)$, $\nu(X)$, $R(X)$, $RS(X)$, $N(X)$ to denote rank, nullity, range, row-space, nullspace of X, respectively.

Throughout let A be $m \times m$ and B be $n \times n$.

A matrix A has a group inverse if there exists a solution to the equations

\[AXA = A, \quad XAX = X, \quad AX =XA, \]

in which case the solution is unique and is denoted by $A^\#$. We shall refer to this existence as “A is GP”.

We begin with the easiest case, which is that of a closed field.

\section{The closed field Case}

Consider the matrices A and B over a closed field F, with characteristic polynomials

\[\Delta_A(x) = |xI - A| = \prod_{k=1}^{s(A)} (x - \lambda_k)^{n_k(A)} = \prod_{i=1}^{n(A)} (x - \alpha_i) \]

and

\[\Delta_B(x) = |xI - B| = \prod_{k=1}^{s(B)} (x - \mu_k)^{n_k(B)} = \prod_{i=1}^{n(B)} (x - \beta_i). \]

Here the λ_k, μ_r are distinct and the α_i, β_i may be repeated. Further let $\sigma(A) = \{\lambda_1, \ldots, \lambda_s\}$ be the spectrum of distinct eigenvalues of A and let $\tau(A) = (\alpha_1, \ldots, \alpha_m)$ be the list of all of its m eigenvalues – repeated or not. Set $T = \sigma(A) \cap \sigma(B)$.

We denote the algebraic and geometric multiplicities of $\lambda_k(A)$ by $n_k(A)$ and $\nu_k(A) = \dim[N(A - \alpha_k I)]$ respectively.

It is clear that $\sum_{k=1}^{s(A)} n_k(A) = n(A) = m$ and $\sum_{j=1}^{s(B)} n_j(B) = n(B) = n$.

Furthermore, suppose that the minimal polynomial of A is given by

\[\psi_A(x) = \prod_{k=1}^{s(A)} (x - \lambda_k)^{m_k(A)} \]

with $m_k(A) \leq n_k(A)$. We shall refer to the exponent $m_k(A)$ as the index $\text{ind}(\lambda_k)$ of λ_k.

It is well known that the group inverse exists if and only if the geometric and algebraic multiplicities of the zero eigenvalue are equal.
We shall compute the algebraic multiplicity \(n_0(G) \) and the geometric multiplicity \(\nu_0(G) \) of the zero eigenvalue of \(G \).

From Stephanos’ theorem (see [6, Theorem 1, page 411]) we know that the eigenvalues of \(G \) have the form \(\lambda_{ij}(G) = \lambda_i(A) - \lambda_j(B) \) with \(i = 1, \ldots, m \) and \(j = 1, \ldots, n \), counted according to multiplicity. This immediately tell us that

\[
\nu_0(G) = \sum_{\gamma \in \sigma(A) \cap \sigma(B)} n_\gamma(A) n_\gamma(B).
\] (2)

To get more information about \(G \), we first reduce \(B \) to its Jordan form, via

\[
Q^{-1}BQ = J_B = \text{diag}(J_{q_1}^1(\beta_1), \ldots, J_{q_u}^u(\beta_u)),
\]

where \(J_k(a) = \begin{bmatrix} a & 1 & 0 \\ 0 & a & 1 \\ \vdots & \vdots & \ddots & \ddots \\ & & & 1 \\ & & & a \end{bmatrix} \) and \(Q \) is a suitable invertible matrix, made up of Jordan Chains of generalized e-vectors. The \(\beta_j \) may be repeated and \(u \) is the number of Jordan blocks. The associated elementary divisors of \(B \) are given by

\[
\mathcal{E}_B = \{(x - \beta_j)^{q_j}; j = 1, \ldots, u\}.
\]

Likewise the elementary divisors of \(A \) are given by \(\mathcal{E}_A = \{(x - \alpha_i)^{p_i}; i = 1, \ldots, t\} \).

Transforming \(G \) we have

\[
(Q^T \otimes I)G[(Q^T)^{-1} \otimes I] = I \otimes A - J_B^T \otimes I = \text{diag}(G_1, \ldots, G_s),
\]

where

\[
G_i = I \otimes A - J_{q_i}^T(\beta_i) = \begin{bmatrix} A - \beta_i I & 0 \\ -I & A - \beta_i I \\ \vdots & \ddots & \ddots \\ 0 & \ldots & -I & A - \beta_i I \end{bmatrix}_{\text{of block size } q_i \times q_i}
\] (3)

which will also give (2).

We now observe that if \(Au = 0 \) and \(B^Tv = 0 \) then \(G(v \otimes u) = 0 \). This means that

\[
N(B^T) \otimes N(A) \subseteq N(G),
\] (4)
and hence on taking dimensions
\[\nu(A) \cdot \nu(B) \leq \nu(G). \]

Consequently we have (product rule)
\[\nu(G) = \nu(A) \cdot \nu(B) \iff N(G) = N(B^T) \otimes N(A). \]

Let us now refine the block form of (3) to obtain:

(i) an expression for \(\nu(G) \) in terms of \(A \) and \(B \),

(ii) conditions for \(G \) to have a group inverse, and

(iii) give a formula for \(G^\# \).

We shall then use the expression for \(\nu(G) \) to show when precisely the product rule holds and when \(\nu(G) = n_0(G) \), i.e. when \(G^\# \) exists.

We begin with

Lemma 2.1. Let \(R \) be a ring with unity \(1 \), and suppose that

\[
J_n(-a) = \begin{bmatrix} a & 0 \\ -1 & a \\ \vdots & \vdots \\ 0 & -1 & a \end{bmatrix} \quad \text{and} \quad K_n(a) = \begin{bmatrix} 1 \\ a \\ a^2 \\ \vdots \\ a^{n-1} & a \\ 0 \end{bmatrix}
\]

are over \(R \) with \(n \geq 2 \). Then

(i) \(K_n(a)^T J_n(-a) = \begin{bmatrix} 0 & a^n \\ I & b \end{bmatrix} \), where \(b^T = [a^{n-1}, a^2, a] \).

(ii) \(J_n(-a)^\# \) exists iff \(a^{-1} \) exists. In which case \(J_n(-a)^\# = J_n(-a)^{-1} = \begin{bmatrix} a^{-1} \\ a^{-2} & a^{-1} & 0 \\ \vdots \\ a^{-n} & \cdots & a^{-1} \end{bmatrix} \).

Proof. (i) Clear.

(ii) Equating (2,1) entries in \(J_n(-a)^2 X = J_n(-a) \) and \((n,n-1) \) entries in \(Y J_n(-a)^2 = J_n(-a) \) we see that \(a \) has both left and right inverses.
From (3) we know that $G^\#$ exists iff each of the blocks G_i has a group inverse. Now when β_i is not an eigenvalue of A then G_i is invertible and there is no contribution to $\nu(G)$. So we only need to consider a common eigenvalue $\gamma = \alpha_i = \beta_j$.

So let $\gamma \in T = \sigma(A) \cap \sigma(B)$ and assume that the associated elementary divisors are

$$\mathcal{E}_A = \{(x - \gamma)^{p_1(\gamma)}, \ldots, (x - \gamma)^{p_k(\gamma)}\}$$

and

$$\mathcal{E}_B = \{(x - \gamma)^{q_1(\gamma)}, \ldots, (x - \gamma)^{q_t(\gamma)}\},$$

respectively, where $p_1(\gamma) \geq p_2(\gamma) \geq \cdots \geq p_k(\gamma) \geq 1$ and $q_1(\gamma) \geq q_2(\gamma) \geq \cdots \geq q_t(\gamma) \geq 1$.

There are two cases that can happen.

(i) If $q_i > 1$ then by Lemma 2.1 we know that $G_i^\#$ exists iff $(A - \gamma I)^{-1}$ exists, that is, iff $\gamma \notin \sigma(A)$. So this case cannot occur.

(ii) If $q_i = 1$, i.e. when we have a linear elementary divisor $x - \gamma$ in \mathcal{E}_B, then $G_i^\#$ exists iff $(A - \gamma I)^\#$ exists. This happens exactly when γ is a simple root of $\psi_A(x)$.

Thus,

Theorem 2.1. $G^\#$ exists if and only if for every $\gamma \in \sigma(A) \cap \sigma(B)$ with $q_i = 1$ (a 1×1 Jordan block) we have $\text{ind}_A(\gamma) = 1$.

In other words, for a common eigenvalue all associated elementary divisors for A and B must be linear.

As a by-product we can compute the nullity of G [5]. Indeed, suppose that A is in Jordan form, say $A = A_\gamma \oplus X$, where $A_\gamma = \text{diag}(J_{p_1(\gamma)}, \ldots, J_{p_k(\gamma)})$, and X contains Jordan blocks with non common eigenvalues. Note that $\nu(A_\gamma) = r$. Then $I \otimes A_\gamma - J_{q_j(\gamma)} \otimes I$ takes the form

$$G_{i,j} = \begin{bmatrix} J_{p_1(\gamma)}(0) & \cdots & 0 \\ -I & J_{p_2(\gamma)}(0) & \cdots \\ \vdots & \ddots & \ddots \\ 0 & \cdots & -I & J_{p_r(\gamma)}(0) \end{bmatrix}_{q_j \text{ blocks}}$$

(6)

Now because $\nu[J_n(0)]^k = \min(n, k)$ we see that

$$\nu(G_{ij}) = \sum_{i=1}^r \min\{p_i, q_j\}$$

(7)

Repeating this for all common eigenvalues we arrive at, c.f. [5],
\[\nu(G) = \sum_{\gamma \in T} \sum_{j=1}^{r} \sum_{i=1}^{r} \min\{p_i, q_j\}. \] (8)

Let us now use this result to derive a couple of special cases.

If \(T = \emptyset \), there are no common eigenvalues and \(\nu(G) = 0 \). In particular \(0 \notin T \) and either \(A \) or \(B \) is invertible. Hence \(\nu(A) \cdot \nu(B) = 0 \) and the product rule holds.

If there are common eigenvalues, but 0 is not one of them, then \(\nu(A) \cdot \nu(B) = 0 < \nu(G) \).

Lastly, if 0 is a common eigenvalue, then separating off the common zero eigenvalue we get

\[\nu(G) = \sum_{0 \neq \alpha \in T} \sum_{i=1}^{k(\alpha)} \sum_{j=1}^{t(\alpha)} \min\{p_i(\alpha), q_j(\alpha)\} \geq \nu(A) \cdot \nu(B). \]

This we rewrite as

\[\nu(G) - \nu(A) \nu(B) = \sum_{i=1}^{k(\alpha)} \sum_{j=1}^{t(\alpha)} \min\{p_i(\alpha), q_j(\alpha)\} - 1 \] \[\sum_{0 \neq \alpha \in T} \sum_{i=1}^{k(\alpha)} \sum_{j=1}^{t(\alpha)} \min\{p_i(\alpha), q_j(\alpha)\} \geq 0. \] (9)

Since all terms are non-negative, we see that \(\nu(G) = \nu(A) \cdot \nu(B) \) if and only if there are no common eigenvalues besides zero and for the zero eigenvalue

\[\sum_{i=1}^{k(\alpha)} \sum_{j=1}^{t(\alpha)} [\min\{p_i(0), q_j(0)\} - 1]. \]

That is, \(\min(p_i, q_j) = 1 \) for all \(i = 1, \ldots, k \), \(j = 1, \ldots, t \). Hence if some \(p_i(0) > 1 \) then all \(q_j(0) > 1 \) or if some \(q_j(0) = 1 \) then all \(p_i(0) = 1 \). That is, either all elementary divisors of \(A \) associated with zero are linear or all those of \(B \) are. Thus the product rule holds if and only if either \(\psi_B(x) = xf(x) \) or \(\psi_B(x) = xg(x) \), where \((x,f) = 1 = (x,g) \). In other words, the product rule holds if and only if \(A \) and \(B \) have at most the zero eigenvalue in common and either \(A^\# \) or \(B^\# \) or both, exist.

Next we consider

\[n_0(G) - \nu(G) = \sum_{\alpha \in T} \sum_{i=1}^{k(\alpha)} \sum_{j=1}^{t(\alpha)} [p_i q_j - \min(p_i, q_j)] \geq 0. \]

It thus follows that \(n_0(G) = \nu(G) \), i.e. \(G^\# \) exists, if and only if for each common eigenvalue \(\gamma \), \(p_i q_j = \min(p_i, q_j) \geq 1 \), for all \(i = 1, \ldots, k \), \(j = 1, \ldots, t \). Next we note that if \(r, s \geq 1 \), then

\[rs = \min\{r, s\} \text{ if and only if } r = s = 1 \] (10)
and conclude that $G^\#$ exists if and only if for each common eigenvalue α, the elementary divisors are linear. In other words, if and only if $\gamma \in T \Rightarrow \psi_A(x) = (x - \gamma)f(x)$ and $\psi_B(x) = (x - \gamma)g(x)$, where γ is not a root of $f(x)$ or $g(x)$.

Remarks

(i) If $G^\#$ exists then $\gamma \in T$ implies $(A - \gamma I)^\#$ and $(B - \gamma I)^\#$ both exist, yet $A^\#$ and/or $B^\#$ may not exist. For example, if A is invertible and $\psi_B = x^2f(x)$ where $gcd(\Delta_A, f) = 1$, then the condition for $G^\#$ to exist are satisfied, yet $B^\#$ does not exist.

On the other hand, if $A^\#$ and $B^\#$ both exist, then $G^\#$ need not exist since they could have common e-values other than zero.

(ii) We know that if $G^\#$ exists then it is a polynomial in G, the coefficients of which can be derived from $\Delta(G)$, which in turn can be found from the eigenvalues of A and B. Since this becomes intractable, we shall proceed differently. First an alternative proof of the above which is based on the property of Jordan blocks.

(iii) Since G^T is similar to $(A^T \otimes I - I \otimes B)$ and $\psi_A = \psi_A^T$, we may interchange the roles of A and B to deduce the desired symmetry of Theorem 2.1.

To compute $G^\#$ suppose that $\beta_i \notin \sigma(A)$, for $i = 1, \ldots, t$, and $\beta_i \in \sigma(A)$, for $i = t + 1, \ldots, v$. Next let $Q = [Q_1, \cdots, Q_v]$ and $Y = (Q^T)^{-1} = [Y_1, \cdots, Y_v]$ so that $BQ_i = Q_iJ_{q_i}(\beta_i)$ and $B_i^T = Y_iJ_{q_i}^T(\beta_i)$. Then

$$G^\# = (Y \otimes I) \begin{bmatrix} G_1^{-1} & \cdots & 0 \\ 0 & G_t^{-1} \\ \vdots & \ddots & \ddots \\ 0 & \cdots & G_{t+1}^\# \end{bmatrix} (Q^T \otimes I)$$

$$= \sum_{i=1}^t Y_iG_i^{-1}Q_i^T + \sum_{i=t+1}^v Y_iG_i^\#Q_i^T.$$

Now G_i^{-1} is given as in (2.1) in which $(A - \beta_i I)^{-r}$ can be calculated from the spectral theorem [3]. Indeed,

$$(A - \beta_i I)^{-r} = \sum_{k=1}^s \sum_{j=0}^{m_k-1} (x - \beta_i)^{-r} [y_j Z_k^j] = \sum_{k=1}^s \sum_{j=0}^{m_k-1} (-1)^j (r + j - 1)! (\lambda_k - \beta_i)^{-r-j} Z_k^j. \quad (11)$$
Furthermore \((A - \beta_i I)^\# = g(A)\) where \(g(x) = \begin{cases} 0 & x = \beta_i \\ 1/(x - \beta_i) & x \neq \beta_i \end{cases}\) and so

\[
(A - \beta_i I)^\# = \sum_{k=1}^s \sum_{j=0}^{m_k-1} g^{(j)}(\lambda_k) Z_k^j = \sum_{\lambda_k \neq \beta_j}^{m_k-1} \sum_{j=0} \frac{(-1)^j}{(\lambda_k - \beta_j)^{j+1}} Z_k^j. \tag{12}
\]

Substituting these in the above yields \(G^\#\).

Let us now turn to the case of an arbitrary field.

3 The Arbitrary Field Case

We shall now give conditions for \(G^\#\) to exist in term of the invariant factors \(\{a_1(x), \ldots, a_r(x)\}\) of \(A\), and \(\{b_1(x), \ldots, b_s(x)\}\) of \(B\), and compute \(G^\#\) in terms of polynomial matrices associated with \(A\) and/or \(B\).

We begin by reducing \(A\) and \(B\) to their respective rational canonical forms and as such reduce the problem to one where we have two companion matrices \([3, p. 163]\), i.e.,

\[
P^{-1}AP = A_c = \text{diag}[L(a_1(x)), \ldots, L(a_r(x))]\]

and

\[
Q^{-1}BQ = B_c = \text{diag}[L(b_1(x)), \ldots, L(b_s(x))].
\]

The nivellateur becomes

\[
(Q^T \otimes P^{-1})G(Q^{-T} \otimes P) = I_n \otimes A_c - B_c^T \otimes I_m
\]

We permute the diagonal blocks using the “universal flip” matrix – see [3] – to get

\[
G \approx \oplus_{i=1}^r \oplus_{j=1}^s G_{ij},
\]

where \(G_{ij} = I_{n_i} \otimes L[a_i(x)] - L^T[b_j(x)] \otimes I_{m_j}\).

We now replace \(G\) by \(G_{ij}\) and consider the “two-companion” case where \(G = I_n \otimes L[a(x)] - L^T[b(x)] \otimes I_m\), with \(b(x) = b_0 + b_1 x + \cdots + b_n x^n\).

Following [3] we reduce \(xI - L^T[b(x)]\) to its Smith Normal Form via

\[
R(x)[xI - L^T(b)]K(x) = \begin{bmatrix} b(x) & 0 \\ 0 & I_{n-1} \end{bmatrix}, \tag{13}
\]

where \(R(x) = \begin{bmatrix} \beta^T(x) & 1 \\ -I & 0 \end{bmatrix}\), \(K(x)\) is as in lemma (2.1) and \([\beta^T(x), 1] = [b_0(x), \ldots, b_{n-2}(x), 1]\).

In this the \(b_i(x)\) are the adjoint polynomials defined by \([\beta^T(x), 1] = [b_1, \ldots, b_n] K(x)\). We recall in passing that \(\text{adj}(xI - B) = \sum_{i=0}^{n-1} b_i(B) x^i\). Solving this gives

\[
[xI - L^T(b)] = R(x)^{-1} \begin{bmatrix} b(x) & 0 \\ 0 & I_{n-1} \end{bmatrix} K(x)^{-1}, \tag{14}
\]
and subsequently replacing x by $A = L[a(x)]$ throughout, these polynomial identities we arrive at

$$G = R(A)^{-1} \begin{bmatrix} b(A) & 0 \\ 0 & I_{n-1} \end{bmatrix} K(A)^{-1} = PDQ. \quad (15)$$

Since P and Q are invertible we may use [10, Corollary 2], which says that $(PDQ)^\#$ exists if and only if $U = DQPDD^+ + I - DD^+$ is invertible. Since

$$(1 - ab)^{-1} = 1 + a(1 - ba)^{-1}b,$$

this is equivalent to $U' = DQP + I - DD^-$ being invertible, i.e. to $W = D + (I - DD^-)R(A)K(A)$ being invertible.

Theorem 3.1. W is invertible if and only if $G^\#$ exists.

To compute $R(x)K(x)$ we define $T(x) = \begin{bmatrix} b^T(x) & 1 \\ -K_{n-1}^{-1} & 0 \end{bmatrix}$, where $b^T = [b_1, \ldots, b_n]$. Then

$$T(x)K_n(x) = R(x) = \begin{bmatrix} b^T(x) & 1 \\ -I_{n-1} & 0 \end{bmatrix}$$

and

$$R(x)K(x) = T(x)K(x)^2 = \begin{bmatrix} b^T & 1 \\ -K_{n-1}^{-1} & 0 \end{bmatrix} \begin{bmatrix} K_{n-1}^2(x) & 0 \\ ? & 1 \end{bmatrix} = \begin{bmatrix} \gamma^T(x) & 1 \\ -K_{n-1}(x) & 0 \end{bmatrix}, \quad (16)$$

in which $\gamma^T(x) = [b'(x), \rho^T(x)]$ and $\rho^T = [b'_0(x), \ldots, b'_{n-3}(x)]$. These contain the formal derivatives of the adjoint polynomials.

We next form

$$(I - DD^-)R(A)K(A) = \begin{bmatrix} I - b(A)b(A)^- & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} [b'(A), \rho^T(A)] & 1 \\ ? & ? \end{bmatrix}$$

$$= \begin{bmatrix} [I - b(A)b(A)^-]b'(A) & C \\ 0 & 0 \end{bmatrix},$$

where $C = [I - b(A)b(A)^-][\rho^T(A), I]$. Adding in $D = \begin{bmatrix} b(A) & 0 \\ 0 & I_{n-1} \end{bmatrix}$ we arrive at

$$W = \begin{bmatrix} b(A) + [I - b(A)b(A)^-]b'(A) & C \\ 0 & I \end{bmatrix}. \quad (17)$$

This will be invertible exactly when $b(A) + [I - b(A)b(A)^-]b'(A)$ is invertible. Note that $b(A)$ and $b'(A)$ commute, but that $b(A)^-$ need not be a polynomial in A.

We now need
Lemma 3.1. Suppose R is a von Neumann finite regular ring and $ah = ha$. If $a + (1 - aa^-)h$ is a unit then $a\#$ must exist.

Proof. Let $u = a + (1 - aa^-)h$. Then $ua = a^2 + (1 - aa^-)ha = a^2 + (1 - aa^-)ah = a^2$ and thus $a = u^{-1}a^2$. Since R is finite we may conclude that $a\#$ exists. \square

Suppose now that W is invertible. Then $b(A)$ is GP and we can replace $b(A)^{-}$ by $b(A)^\# = g(A)$ in W, implying that

Theorem 3.2. W is a unit if and only if $b(A)$ is GP and $f(A) = b(A) + [I - b(A)b(A)^\#]b'(A)$ is a unit.

We shall now reduce these conditions to suitable polynomial results.

First we recall the trivial gcd result

Lemma 3.2. $(u,d) = 1$ if and only if $(dm + u,d) = 1$.

and the group inverse result

Lemma 3.3. Suppose M has minimal polynomial $\psi_M(x)$, and let $f(x)$ be a polynomial with $d(x) = \gcd(f(x), \psi_M(x))$. The following are equivalent:

(i) $f(M)^\#$ exists (ii) $d(M)^\#$ exists (iii) $(d, \psi/d) = 1$ (iv) $(f, \psi/d) = 1$.

The proof is left as an exercise.

The latter says that if $f = p^r\tilde{f}$ and $\psi = p^s\tilde{\psi}$ for some prime factor p, with $(\tilde{f}, p) = 1 = (p, \tilde{\psi})$, then $r \geq s$. In other words, common factors of f and ψ occur with minimal degree in ψ_M.

Since we may interchange $L(a)$ and $L(b)$ we must actually have that $r = s$. In other words the common prime factors of any invariant factor $a(x)$ of A and any invariant factor $b(x)$ of B must have the same multiplicity.

Now recall that $\psi_A = a(x)$ and set $(a, b) = d$. Then $b = db$ and $a = d\tilde{a}$ for some \tilde{b}, \tilde{a}, with $(\tilde{a}, \tilde{b}) = 1$. Moreover $b(A)$ has a group inverse if and only if $(d, \tilde{a}) = 1$ or if $(b, \tilde{a}) = 1$.

The existence of $b(A)^\#$ also says that $b(A)^2g(A) = b(A)$ which holds iff $a|b(1 - bg)$ iff $d\tilde{a}|db(1 - gb)$ iff $\tilde{a}|\tilde{b}(1 - gb)$. But $(\tilde{a}, \tilde{b}) = 1$ and thus $\tilde{a}|(1 - gb)$ and conversely. We may as such write $1 - gb = \tilde{a}h$, for some $h(x)$. This ensures that $(\tilde{a}, b) = 1 = (\tilde{a}, g)$ and gives $f = b + \tilde{a}hb'$.

Next recall, by Hensel’s theorem [8, p. 21, Theorem 15.5], that $f(A)$ is invertible if and only if $(f, a) = 1$, i.e. if and only if $(f, d) = 1 = (f, \tilde{a})$. First we observe that $(f, d) = 1$ if
and only if \((b + (1 - bg)b', d) = 1\) if and only if \((d\tilde{b}(1 - gb') + b', d) = 1\). By Lemma (3.2) this happens precisely when \((b', d) = 1\).

Next we note that because \(b = d\tilde{b}\) we have \(b' = d\tilde{b} + d(\tilde{b})'\) and thus again by the lemma, \((b', d) = 1\) if and only if \((d\tilde{b} + d(\tilde{b})', d) = 1\) if and only if \((d\tilde{b}, d) = 1\) if and only if \((d, d') = 1 = (\tilde{b}, d) = 1\).

Since \((\tilde{a}, \tilde{b}) = 1\) it follows that \((a, \tilde{b}) = (\tilde{d}a, \tilde{b}) = 1\) so that \(\tilde{b}(A)\) is invertible.

We now cancel \(\tilde{b}(A)\) in \(d(A)^2\tilde{b}(A)^2g(A) = b(A)^2g(A) = b(A) = d(A)d(\tilde{b}')(A)\). This implies that
\[
d(A)^2\tilde{b}(A)g(A) = d(A),
\]
so that \(d(A)^\#\) exists and
\[
d(A)^\# = g(A)d(\tilde{b}(A))\quad\text{and}\quad b(A)b(\tilde{A})^\# = d(A)d(A)^\#.
\]

The surprising fact is that the condition \((f, \tilde{a}) = 1\) automatically follows if \(b(A)\) is GP.

Indeed, we have
\[
b(a)^\#\quad\Rightarrow\quad(b, \tilde{a}) = 1\quad\Rightarrow\quad(b + \tilde{a}hb', \tilde{a}) = 1\quad\Rightarrow\quad(b + (1 - bg)b', \tilde{a}) = 1\quad\Rightarrow\quad(f, \tilde{a}) = 1.
\]

We recap in

Theorem 3.3. If \(G = I_n \otimes L[a(x)] - L^T[b(x)] \otimes I_m\), then \(G^\#\) exists if and only if \((d, \tilde{a}) = 1 = (d, d')\), where \(d = (a, b)\) and \(a = \tilde{d}a\).

Now \((d, d') = 1\) means that \(d\) only has simple prime factors. As a consequence, the common invariant factors have simple prime factors. For the closed field case, this says that all elementary divisors corresponding to common eigenvalues must be linear – as we met in the previous section.

To compute the actual inverse of \(f(A)\) we observe that because \((d, d') = 1\), we can find \(s\) and \(t\) by Euclid’s algorithm, such that \(d(x)s(x) + d'(x)t(x) = 1\). This means that
\[
d'(A)t(A) = 1 - d(A)s(A).
\]

Substituting for \(b'\) we may rewrite \(f(A) = b(A) + [I - b(A)g(A)]b'(A)\) as \(f(A) = b(A) + [I - d(A)d(\tilde{A})^\#]d'(A)d(\tilde{b}')(A)\), which we may invert to give
\[
f(A)^{-1} = b(A)^\# + [I - d(A)d(\tilde{A})^\#]d(\tilde{b}(A))^{-1}t(A).
\]

Indeed, this follows because
\[
[I - d(A)d(\tilde{A})^\#]d'(A)d(\tilde{b}(A))t(A) = [I - d(A)d(\tilde{A})^\#]d'(A)t(A)
\]
\[
= [I - d(A)d(\tilde{A})^\#][I - d(A)s(A)]
\]
\[
= I - d(A)d(\tilde{A})^\#.
\]
Remark We could have used the fact that $(b', d) = 1$ which gives $b'u = 1 - dv$ for some $v(x)$ and write $f(A)^{-1} = b(A)^# + [I - b(A)b(A)^#]u(A)$. The computation of u, however, is more difficult than that of $t(x)$.

Since $d(x)$ only has simple prime factors, the computation of $t(A)$ can be done via the gcd algorithm and the Chinese remainder theorem. Indeed, suppose $d = p_1p_2 \cdots p_k$, where the p_i are distinct prime polynomials. Further set $M_i = \frac{d}{p_i}$ and $g_i = M_i^{-1} \mod p_i$. Next we observe that if $sd + td' = 1$, then $t = (d')^{-1} \mod d$, which is equivalent to $t = (d')^{-1} \mod p_i$ for all $i = 1, \ldots, k$. Because $d' = p_1M_1 + p_2M_2 + \ldots$ we see that $(d')^{-1} \mod p_i = (p_iM_i)^{-1} \mod p_i$. Using the Chinese remainder theorem we may conclude that

$$t = \sum_{i=1}^{k} g_i^2 M_i (p_i')^{-1} \mod p_i.$$ \hfill (20)

4 Computation of $G^#$

We may compute the actual group inverse of G via the formula [10],

$$G^# = PU^{-2}DQ = R(A)^{-1}[I + (I - DK(A)^{-1}R(A)^{-1})(U')^{-1}DD^{-1}]DK(A)^{-1}$$

$$= R(A)^{-1}[I + (RK - D)W^{-1}DD^{-1}]DK(A)^{-1},$$

in which $(U')^{-1} = P^{-1}Q^{-1}W^{-1} = R(A)K(A)W^{-1}$ and $W^{-1} = \begin{bmatrix} f(A)^{-1} & -f(A)^{-1}C \\ 0 & I \end{bmatrix}$.

First we see that

$$W^{-1}DD^{-1} = \begin{bmatrix} f(A)^{-1}b(A)b(A)^# & -f(A)^{-1}C \\ 0 & I \end{bmatrix}.$$
Hence

\[
R(A)K(A)W^{-1}DD^{-1} = \begin{bmatrix}
\begin{bmatrix}
\frac{b'(A)}{b'(A)}
\end{bmatrix} & \rho^T(A) & I \\
-\frac{A}{A^2} & 0 & 0 \\
\vdots & -\frac{A^{n-2}}{A^{n-2}} & 0 \\
-\frac{A}{A^2} & 0 & 0 \\
\end{bmatrix} & \begin{bmatrix}
f(A)^{-1}b(A)b(A)^\# & -f(A)^{-1}C
\end{bmatrix}
\]

Recalling the definition of \(C \) we see that the (1,2) entry becomes

\[
\sigma^T = [I - b'(A)f(A)^{-1}(I - b(A)b(A)^\#)][\rho(A)^T, I].
\]

On the other hand,

\[
DW^{-1}DD^{-1} = \begin{bmatrix}
f(A)^{-1}b(A)b(A)^\# & f(A)^{-1}b(A)b(A)^\# \\
0 & I
\end{bmatrix} = \begin{bmatrix}
f(A)^{-1}b(A) & 0 \\
0 & I
\end{bmatrix},
\]

because \(b(A)C = 0 \).

Whence \(U^{-1} = I + (RK - D)W^{-1}DD^{-1} \) takes the form

\[
U^{-1} = \begin{bmatrix}
\frac{I + f(A)^{-1}b(A)[b'(A)b(A)^\# - I]}{I - f(A)^{-1}C + [0, 0]} & \sigma^T(A)
\end{bmatrix}
\]

This we substitute in

\[
G^\# = R(A)^{-1}[I + (R(A)K(A) - D)W^{-1}DD^{-1}][I + (R(A)K(A) - D)W^{-1}DD^{-1}]DK(A)^{-1},
\]

which is not conducive to simplification.
5 Open Questions and remarks

We end with some pertinent questions and remarks.

1. Squaring the matrix U^{-1} does not look appealing!

2. The expression for $G^\#$ should be “symmetric” in $L(a)$ and $L(b)$, i.e $a(x) - b(x)$ symmetric, and as such there should be some simplification.

3. Can we find a good representation for $(p')^{-1} \mod p$ for a prime polynomial $p(x)$?

4. Can we find the polynomial $g(A) = A^\#$?

5. Can Lemma (3.1) be extended to regular rings?

6. Can we use the invertibility of $ag + 1 - aa^-$ to get a better result?

Acknowledgment

The authors thank an anonymous referee for his/her valuable corrections.

References

