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Development of a Scoring System to Assess Potential Biomarkers 

for Atrial Fibrillation 

Abstract 

Atrial fibrillation affects millions of individuals worldwide, posing a major threat to 

public health due to the variety of comorbidities that constitute by-products of the disease. 

In light of this epidemic, new means of diagnosis, prognosis and therapy are pressing. 

Biomarkers, particularly protein markers, are important tools in this process but lack 

validation, which is essential before clinical translation. Several appraisal benchmarks 

have been developed to determine the relative potential of biomarkers, but these present 

multiple limitations. 

We developed a bioinformatic-oriented scoring function aimed at weighing the 

importance of proteins and mitigating the limitations of the currently known scores. After 

taking an extensive literature search and mining a massive volume of reports, data was 

organized into several subsets, according to the sample major characteristic and atrial 

fibrillation type. A mathematical scoring function was proposed, based on the consensus 

of studies supporting the protein-disease association (incoherence), median of the 

reported fold-changes and importance of each study according to the number of diseased 

individuals, and applied to each subset in the form of an algorithm implemented in Python 

3.5.  

The developed ranking method performed well regarding both the degree of alteration 

and the inconsistency parameters. Our results portray a set of proteins with the highest 

biomarker potential (highest scores) for atrial fibrillation. We also selected the top five 

potential biomarkers for atrial fibrillation in general and for each type of disease. The 

main biological functions in which they are involved were retrieved for comparison with 

the state of the art. Alterations in the expression levels of proteins involved in either of 

these functions seem to agree with AF’s pathophysiology and clinical presentation, 

showing the effectiveness of the developed algorithm. 

Overall, the developed pipeline seems to improve the processes of biomarker ranking 

and selection for a target disease, allowing a leap towards clinical translation.
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Desenvolvimento de um Sistema de Classificação para Aferir 

Potenciais Biomarcadores para a Fibrilhação Auricular 

Resumo 

A fibrilhação auricular afeta milhões de indivíduos em todo o mundo, representando 

uma grande ameaça à saúde pública devido à grande variedade de comorbidades que 

constituem subprodutos da mesma. Face a esta epidemia, novos métodos de diagnóstico, 

prognóstico e terapêutica são prementes. Os biomarcadores, em particular marcadores 

proteicos, tornam-se importantes ferramentas neste processo, mas carecem de validação, 

passo essencial antes da tradução clínica. Vários meios de avaliação foram desenvolvidos 

para determinar o seu potencial relativo, mas estes apresentam inúmeras limitações. 

Neste trabalho desenvolvemos uma função de classificação orientada para a 

bioinformática, destinada a calcular a importância de proteínas e a mitigar as limitações 

dos métodos já conhecidos. Após uma extensa pesquisa de literatura e análise de um 

volume enorme de artigos, os dados foram organizados em vários subconjuntos, de 

acordo com a principal característica da amostra e tipo de fibrilhação auricular. Uma 

função matemática de classificação foi proposta, baseada no consenso de estudos que 

suportam a associação proteína-doença (incoerência), mediana dos fold-changes e 

importância de cada estudo de acordo com o número de indivíduos afetados, e aplicada a 

cada subconjunto por meio de um algoritmo implementado em Python 3.5. 

O método de classificação desenvolvido teve uma boa performance relativamente a 

ambos os parâmetros, nomeadamente o grau de alteração e a coerência. Os resultados 

retratam um conjunto de proteínas com o potencial de biomarcador mais elevado 

(classificações mais elevadas) para a fibrilhação auricular. Também selecionamos as 

cinco proteínas com o maior potencial de biomarcador para a fibrilhação auricular geral 

e para cada tipo da doença. Procedeu-se um rastreio das principais funções biológicas nas 

quais as proteínas estão envolvidas para comparação com o estado da arte. Alterações nos 

níveis de expressão de proteínas envolvidas em qualquer uma destas funções parecem 

estar de acordo com a patofisiologia e apresentação clínica desta arritmia, o que 

demonstra a eficácia do algoritmo desenvolvido. 

De forma geral, todo o processo aqui delineado parece melhorar os processos de 

classificação e seleção de biomarcadores para uma doença alvo, permitindo progressos 

na direção da tradução clínica. 
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1. Introduction 
1.1 Motivation 
Atrial fibrillation (AF) is a cardiac rhythm disturbance associated with high 

cardiovascular morbidity and mortality rates [1]. The prevalence and incidence of AF 

increase with advancing age [2], making it a particular problem among the elderly. Thus, 

preventive strategies to identify those who are at risk of developing the disease are of 

utmost importance. The association of AF with adverse outcomes, including stroke, 

prompts the need to prevent it. As such, it is necessary to know the conditions that 

predispose to episodes of arrhythmia and its prognosis [3]. There is also a recognized 

need to improve AF’s detection rates prior to the development of first complications and 

to provide adequate anticoagulation therapy to all eligible patients [4]. Single time-point 

screening with electrocardiogram (ECG) or pulse palpitation measurement have shown 

multiple benefits in older patients. However, these are not very effective in screening 

paroxysmal AF, given that subjects may not be experiencing an AF episode at that time. 

Additionally, pulse palpitation has a high-degree of sensitivity for AF (87%-97%) but 

there is an element of subjectivity that may lead to false positives (specificity range 70%-

81%)[5]. To develop effective screening strategies for AF, appropriate target populations 

and timing must be considered to improve the chances of identifying paroxysmal patients 

in the most convenient and cost-effective manner for primary care [6].  

Multiple biological markers that have the ability to predict the future development of 

AF have been identified. Such markers allowed a better knowledge of AF’s 

pathophysiology, giving light to several processes that either initiate or perpetuate the 

disease. Importantly, they may give prognostic information [7], allowing the anticipation 

of corrective therapies. This thesis will focus on protein biomarkers, which can be used 

for prognostic or diagnostic purposes or even as pharmacological targets. Introducing the 

use of biomarkers into the clinical practice would facilitate these processes, which could 

be achieved with a procedure as simple as urine or blood sample measurement of the 

specific markers’ levels. The challenge nonetheless, is to determine which proteins are 

differentially expressed in a disease, in this case AF, and if there is consensus between 

different studies. When validated, that is when a protein is associated with a certain 

disease and there is a high-degree of consensus between the majority of publications and 

independent experimental evidence, a protein could be considered a biomarker. To 

address this issue, objective scoring algorithms can be useful to unbiasedly sort and 
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pinpoint surrogate markers retrieved from the literature. Hence, a scoring method was 

developed and applied to datasets created from text-mining, with the ultimate aim of 

highlighting differentially expressed proteins in patients with AF and determining a 

subset of those proteins that could represent potential biomarkers for this condition. 

1.2 Objectives 
The main aim of this work was to design biomarker panels for atrial fibrillation 

diagnosis and prognosis, based on a scoring function defined over protein quantification 

data. In detail, the scientific and technological objectives were to: 

1) Retrieve and manually curate single protein-centred and proteomics-based 

literature to create a dataset/database of proteins that may or may not be altered in 

AF; 

2) Create/formulate a mathematical scoring function which weighs the importance 

of proteins as potential biomarkers for AF; 

3) Design and implement an algorithm applying the created scoring function to the 

protein dataset collected; 

4) Define panels of potential biomarkers for AF and its several types as proof of 

concept; 

5) Determine the uncertainty of the results obtained by the developed scoring 

approach using a bootstrap-based system. 

1.3 Structure of the Document 
The present document is organized as follows: 

Chapter 2 – State of The Art 

Introduction to atrial fibrillation, namely characterization, classification, 

epidemiology, risk factors, means of diagnosis, management and prognosis and 

pathophysiology. Concept of the term biomarker, importance of their use and advances 

regarding its study or use in atrial fibrillation. Discussion of the importance of text-mining 

and bioinformatics in the field of biomarkers, comparison between manual and automated 

text-mining and mention and appraisal of existing ranking methods for biomarkers. 

Chapter 3 – Methods 

  Description of the extraction and retrieval of relevant literature processes, the 

developed scoring function and the validation steps as part of the followed pipeline. 
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Chapter 4 – Results 

Presentation of the main results obtained. 

Chapter 5 – Discussion 

Discussion of the performance of the created approach and of the results. 

Chapter 6 – Conclusion and Future Work 

Main conclusion of the developed work and results and description of possible future 

endeavours and applications of the conceived algorithm.   
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2. State of the Art 
2.1 Characterization, Classification and Epidemiology of 
Atrial Fibrillation 
Atrial fibrillation (AF) is characterized by the rapid and irregular activation of the atria, 

400-600 pulses per minute. In normal conditions, the heart rate is adjusted according to 

the body’s metabolic needs through physiological control of the sinoatrial node, which 

maintains a rhythm of around 60 beats per minute at rest and up to 180-200 beats per 

minute during exercise. Instead, atrial cells of a patient with AF fire at a much higher rate, 

which would lead to ineffective cardiac contraction and rapid death if conducted to the 

ventricles. The atrioventricular node acts as a filter or obstacle, with limited impulse-

carrying capacity, through which the atrial impulses must pass before activating the 

ventricles. Hence, the ventricular rate during AF is no longer controlled by the sinoatrial 

node, but by the interaction between the atrial rate and the atrioventricular node. In the 

absence of any drug therapy, the ventricular rate in AF patients is of about 150 pulses per 

minute [8].  

According to the 2016 European Guidelines for the management of AF, the arrhythmia 

can be classified into five types: first-diagnosed, if it has not been diagnosed before, 

regardless of the duration or the presence and severity of AF-related symptoms; 

paroxysmal, when it lasts less than 7 days and spontaneously converts to sinus rhythm 

(SR) or is cardioverted; persistent, if it occurs for a period of at least seven days; long-

standing persistent, if it lasts for more than one year; and permanent, when no further 

attempts to return to SR are made [4]. Individuals with long-standing persistent AF tend 

to be older and have more comorbidities [9]. The different types of AF are summarized 

in Table 1. 

Guidelines state that patients showing arrhythmia lasting for at least seven days have 

the persistent form, but individuals with AF of longer duration are more likely to have 

sustained greater extent of atrial remodelling and respond poorer to long-term treatment 

compared to the previous. The American College of Cardiology and the American Heart 

Association also consider an additional type of AF known as lone AF. Individuals with 

this type of arrhythmia are younger, present no cardiopulmonary disease nor hypertension 

and face a lower risk of thromboembolism in earlier stages. Notwithstanding, as the 

disease progresses with age, the risk of thromboembolism and mortality increases and, 

subsequently, patients may respond differently to the same treatment [10]. Whether the 
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term lone AF should actually be used is questionable. Some guidelines do provide a 

definition of this type of AF but do not provide direction about how much or what kind 

of tests are warranted to exclude heart disease. Moreover, there is variability in the 

definitions encountered in the literature, and so the term should be avoided [11].  

Each year, approximately 5% of paroxysmal AF patients progress to the persistent 

form [12]. Progression from persistent to permanent AF has an even bigger rate, with 

35% to 40% of the patients progressing in less than a year [13]. In younger patients with 

lone AF the rate of progression is lower, only 1% to 3% per year [14]. Still, AF’s 

progression presents a wide variability among individuals. For instance, in new onsets of 

the disease the presenting form is persistent AF [12]. In a study conducted along 30 years, 

the probability of progression from paroxysmal or persistent to permanent AF was lower 

than expected. AF can induce electrophysiological changes that tend to perpetuate the 

arrhythmia, but the results from the same study indicate that in individuals without heart 

disease, these proarrhythmic effects are insufficient for progression in the absence of 

comorbidities [14].  

Table 1 – Characterization of Atrial Fibrillation. 

Type of AF Definition Reference 

First-diagnosed 
AF that has not been diagnosed 

before. 
Kirchhof P. et al. (2016) 

Paroxysmal 

AF lasting < 7 days and 
spontaneously or through 

cardioversion reverts to SR. 
Caused by focal drivers, especially 

in the cardiomyocytes sleeves 
around the pulmonary veins. 

Kirchhof P. et al. 
(2016); Burstein B. et 

al. (2008) 

Persistent 

AF lasting ≥ 7 days, including 
episodes terminated by 

cardioversion after at least 7 days. 
Caused by functional re-entry 

substrates. 

Kirchhof P. et al. 
(2016); 

Nattel S. et al. (2011) 

Long-standing 
persistent 

AF lasting for ≥ 1 year. Kirchhof P. et al. (2016) 

Permanent 

AF that is accepted by the patient 
and the physician. No further 

attempts to return to SR are made. 
It occurs when the substrate 

becomes fixed and irreversible due 
to structural remodelling. 

Kirchhof P. et al. 
(2016); Allessie M.A. et 

al. (2001) 

AF = Atrial Fibrillation 
SR = Sinus Rhythm 
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AF is the most common type of arrhythmia encountered in clinical practice with a 

prevalence set to increase due to ageing trends in the global population [15]. In fact, the 

current demographic transition to an inverted pyramid age may partly explain the also 

rising incidence of AF [16]. Nonetheless, comorbidities, cardiovascular risk factors and 

lifestyle changes may also lie on the root of this growth [17,18]. Both the incidence and 

prevalence of AF double with each passing decade for people older than 50 and reach 

10% in octogenarians [3]. In Portugal, according to the Direção Geral de Saúde (DGS) 

the prevalence of AF is not clearly defined [19]. In 2003, a study conducted with patients 

from Portugal’s health centres found a prevalence of 0.53% in men and 0.54% in women. 

Such prevalence raised progressively with age: 0.02% in individuals with 35-44 years 

old, 0.13% in individuals with 45-54 years old, 0.63% between 55-64 years old, 1.83% 

between 65-74 years old, reaching 2.87% in individuals with 75 or more years old [20].  

However, more recently a prevalence of 2.5% in both men and women in Portugal was 

described [21], clearly indicating that levels have been rising in the last decade.  

The burden of AF in public health was measured as disability-adjusted life-years by S. 

Chugh and collaborators (2014) [16], who found an increase of 18.8% in men and 18.9% 

in women from 1990 to 2010. Such finding was also sided by a rise in both men and 

women mortality rates in the same period. Truly, AF tends to double the risk of mortality 

from cardiovascular and other causes [22].  

AF poses a major risk factor for stroke, with considerable weight regardless of the 

individual’s age. One may hypothesize that coexisting conditions (e.g.: coronary artery 

disease) are the cause of the excess of strokes rather than AF itself. Nevertheless, 

observations from the Framingham study show that the occurrence of stroke in people 

with coronary artery disease was higher in individuals with concomitant AF and the 

recurrence of stroke happened earlier in AF patients [23].  

In the general population, the risk of stroke is inferior to 1.7-2.1% according to 

Portuguese data ([24–30] cited by [20]). In the presence of AF, the risk increases to more 

than 5% per year, even without further risk factors [31,32]. This augmented risk is 

explained by the loss of atrial contraction which leads to stasis of the blood in the atria. 

Such stasis promotes clot formation and thromboemboli, which tend to propagate to other 

organs, particularly the brain [8]. Recent data from Portugal also shows that 25% of 

patients with ischaemic cerebral vascular accidents and subjected to intravenous 

fibrinolysis in the first three hours of onset of signs exhibit AF. Furthermore, it was 
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observed that 22% of the ischaemic patients presented cardioembolism, with AF being 

responsible for 80% of these events [19]. Moreover, sustained AF, along with an 

uncontrolled ventricular rate, can cause severe congestive heart failure, although 

reversible by proper rate or rhythm control [33].  

AF is also associated with significantly impaired quality of life (e.g.: frequent 

hospitalization) [16]. Such impact has socio-economic repercussions worldwide owing to 

hospital admissions, chronic disease management and disabilities [18]. Therefore, an 

understanding of the underlying mechanisms of this arrhythmia is crucial to the 

identification of new therapeutic drugs and to prevent or subside the progression of AF 

[15]. Additionally, the present pathophysiological insights of AF suggest that early 

diagnosis and comprehensive therapy could help in preventing progression, reducing AF-

related complications [34].  

2.2 Risk Factors 
Many factors and conditions are thought to predispose the development of AF. AF’s 

episodes are initiated by a trigger acting on a vulnerable substrate, at least partially 

determined by genetic factors [35,36]. In the absence of risk factors, several mutations 

and gene variants allow AF’s initiation. Deshmukh et al. (2015) [37] contributed to the 

discovery of new genetic variants associated with AF. In this study, AF’s susceptibility 

was related with decreased expression of the targets of cAMP response element binding 

protein, activating transcription factors (CREB/ATF) family, heat shock transcription 

factor 1 (HSF1), activating transcription factor 6 (ATF6), serum response factor (SRF), 

and E2F transcription factor 1 (E2F1) and persistent AF was associated with decreased 

expression in genes and gene sets related to ion channel function, consistent with reported 

functional changes.  

Many genetic components are yet to be uncovered, but large population studies show 

that the risk of AF is doubled if there is parental history of arrhythmia [38]. Additional 

risk factors that develop overtime, combined with physiological aging or cardiac 

remodelling, make way for an appropriate trigger to initiate AF [9]. Genetic variants that 

increase the liability of AF’s risk factors may, therefore, also raise the risk of AF [39]. 

Cardiovascular causes associated with AF include valvular heart disease, acute 

myocardial infarction, myocarditis, hypertrophic cardiomyopathy, congenital heart 

disease, pericarditis, hypertensive cardiovascular disease and heart failure [3]. 

Accordingly, in the Framingham study, cardiovascular diseases such as heart failure, 
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myocardial infarction and valvular heart disease were found to be the most common 

pathological precursors of AF, accounting for 20% and 31% of AF’s incidence in men 

and women, respectively [2]. As a matter of fact, 5% to 10% of patients with myocardial 

infarction [40,41] and up to 40% of patients that underwent cardiothoracic surgery [42] 

develop AF. Left-ventricular hypertrophy and hypertension were also established as 

significant AF predictors [3]. 

Non-cardiac risk factors linked to AF include thyrotoxicosis, alcohol abuse, severe 

infections, pulmonary pathology, smoking habits and diabetes [3].  

Hypertension and ischaemic heart disease are the most common clinical settings on 

permanent AF. Additionally, if this subset of patients has congestive heart disease, the 

probability of developing the arrhythmia is even higher [43]. Notwithstanding, there is 

no obvious clinical cause for half of the patients with paroxysmal AF and for less than 

20% of the patients with permanent or persistent forms [44]. The absence of identifiable 

predisposing factors is quite troublesome in that it makes targeting preventive therapy 

difficult [45], which turns the investigation of reliable diagnostic and prognostic tools 

imperative.  

2.3 Diagnosis, Management and Prognosis 
More than thirty million people worldwide were estimated to suffer from AF in 2010 

[16]. An early and accurate diagnosis is crucial to provide anticoagulation therapy, which 

may prevent an initial ischaemic stroke event [4]. Unfortunately, in many cases, diagnosis 

occurs after a stroke event has taken place [46]. The biggest diagnostic challenge concerns 

paroxysmal or asymptomatic AF, especially according to the ASSERT and Copenhagen 

Holter studies, which indicate that even episodes of silent AF are associated with an 

increased risk of stroke [47,48].  

Many benefits have been reported regarding the use of an ECG or pulse palpitation for 

single time-point screening of AF in older patients [49]. In the elderly study (SAFE, 2007) 

[50], active screening (opportunistic or systematic) among patients aged 65 or more was 

found to be more effective in detecting AF than routine care. In 2015, the European 

Primary Care Cardiovascular Society recommended opportunistic screening through the 

same approaches or by using modified sphygmomanometers or single-lead ECG devices 

if subject to independent validation with a 12-lead ECG [51].  

In 2016, the previous European Society of Cardiology (ESC) recommendations, that 

is opportunistic screening through pulse palpitation followed by a confirmatory ECG, to 
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all patients with 65 or more years old [52,53], were reiterated and systematic ECG 

screening was recommended in patients with more than 75 years or with high stroke risk. 

Extended screening in patients after a transient ischaemic attack or ischaemic stroke was 

also proposed and should include a short-term ECG followed by at least 72 hours of ECG 

monitoring. Using non-invasive ECG monitors or implanted loop recorders that allow 

long-term monitoring to detect silent AF episodes may be considered for stroke patients. 

Moreover, ESC guidelines recommended interrogating pacemakers and implantable 

cardioverter defibrillators on a regular basis to detect atrial high-rate episodes, which 

should trigger further investigation by ECG to document AF [4].  

Even though pulse palpitation is a sensitive method for AF’s screening, it lacks 

specificity. Accordingly, suspected AF should always be confirmed with 12-lead ECG. 

A normal ECG, however, does not rule out the diagnosis of AF because the patient might 

not be experiencing an episode at that time [11].  

Non-pharmacological approaches to treat AF aim to modify the anatomical substrate 

causative of the arrhythmia or eliminate the trigger that initiates the same [54]. In the 

early 90’s, Cox developed the Maze procedure, that proved to be very effective in treating 

AF ([55] cited by [54]). This technique is a relatively complex one. It consisted of an 

extensive dissection of right and left atrium, creating a sort of a maze through which the 

electrical activation was forced. This prevented the formation and perpetuation of the 

multiple wavelets that maintain AF [56]. Surgical dissection was eventually substituted 

by lesions provoked by different sources of energy like radiofrequency [57] or 

cryothermy [58]. All novel techniques have in common the fact that the posterior part of 

the left atrium and the pulmonary veins are involved in the ablation [54]. Thereby, 

nowadays there are essentially two ways of achieving rate control in patients with AF, 

pharmacologic treatment and ablation.  

Antiarrhythmic drugs are seen as first-line treatment for rhythm control. They pose, 

however, proarrhythmic toxicity and have little efficacy in accomplishing and 

maintaining SR. Amiodarone seems to be the most effective pharmaceutical and yet, in 

trials in which it most successfully maintained SR, AF recurred in 35% of the cases [59]. 

Furthermore, antiarrhythmic drugs are not specific for atrial electrical activity and can 

have profound effects on ventricles [8], potentially leading to proarrhythmia and 

increased mortality [60]. Consequently, safer and more effective pharmacologic 

approaches are needed.  
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Drugs that act by inhibition of ion channels remain the main strategy to terminate AF, 

especially multi-ion channel blockers in comparison to selective-ion channel blockers. 

Blockade of atrial-selective sodium ion (Na+) channels may effectively and safely 

suppress AF and concurrent potassium ion (K+) channels inhibition may increment 

efficacy. Selectively targeting atrial K+ channels may also be potentially relevant [61].  

As for ablation, there are two different approaches, catheter ablation and surgical 

ablation. The former usually targets the pulmonary vein [62] with its complete electrical 

isolation as a primary goal. Although isolation is sufficient to suppress paroxysmal AF in 

most patients during one year of follow-up, in most cases of persistent AF substrate 

modification is needed [13]. Catheter ablation shows better results in maintaining SR than 

antiarrhythmic drugs but recurrences do occur ([63] cited by [13]). Besides, this 

procedure presents limitations in the reconnection of the isolated veins and it may lead to 

iatrogenic atrial tachycardia [13]. Surgical ablation, on its turn, creates transmural lesions 

capable of interrupting macroreentrant circuits that take part in sustaining atrial flutter or 

fibrillation. Studies show that rehabilitation is achieved in 75% to 95% of cases. Anyhow, 

this procedure is still hardly used given its complexity and high likelihood for major 

complications [54,64].  

As previously stated, the rising prevalence, the complications associated with AF and 

its mortality rates pose a major threat to public health. On that account, identifying 

individuals who are at risk of developing the disease and, thus, may benefit from primary 

prevention has a considerable significance nowadays. In addition, the ability to predict 

AF within few months of onset may concede management approaches to have greater 

impact on outcomes. Nevertheless, no screening test has been developed to predict new 

cases of AF in at-risk patients [13].  

Predicting AF’s progression is also an interesting and important feat, but there is only 

one available tool to do so. According to the HATCH score [Heart failure, Age, previous 

Transient ischaemic attack or stroke, Chronic obstructive pulmonary disease and 

Hypertension (one point for each)], 50% of the subjects with scores larger than five 

progress to persistent AF in juxtaposition to the 6% of patients with a score of zero that 

do so [65]. Still, this score is in need of validation regarding assessment of differential 

weighing of components like systolic versus diastolic heart failure, hypertension with or 

without left ventricular hypertrophy and additional risk factors [13].  

From the prevailing AF’s clinical paradigm, it is apparent that the current diagnostic 

and prognostic methods lack specificity in differentiating AF from other medical 
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conditions. On that account, new methods are required either to be used alone or in 

conjunction with the current approaches. The measurement of molecular disease markers 

might potentially be an effective screening and prognosis strategy, given that changes in 

the expression of such markers might be specific to the target disease. Therefore, the 

challenge is to identify these potential disease markers, in order to improve the screening 

and prognosis’ efficacy of AF. Additionally, the same markers might represent 

themselves possible therapeutic targets. 

2.4 Mechanisms Underlying the Pathophysiology of AF 
AF is not only a result of ageing, it is also an expression of myocardial damage caused 

by modifiable and nonmodifiable risk factors. Even though AF is associated with many 

clinical conditions, the mechanisms underlying these associations are not completely 

understood [13]. Although AF was first identified in 1909, the notion that AF tends to 

propagate itself was only discovered in 1995 by Wijffels and colleagues [66].  

Such process is likely a result of electrophysiological remodelling, probably related to 

the recycling of ion channels. This electric remodelling is marked by a reduction in the 

L-type calcium ion (Ca2+) current, which leads to short-lived action potentials and the 

loss of the ability to adapt the heart rate to the duration of the action potential [67]. Electric 

remodelling is also implicated in the decrease of atrial contractility observed in AF and, 

as such, both events occur alongside [68].  

In terms of structural changes, modifications like redistribution of nuclear chromatin, 

loss of myofibrils, accumulation of glycogen, alterations in mitochondrial shape and size, 

fragmentation of the sarcoplasmic reticulum (SPR), Z-line disruptions, and complete 

interruptions of myofibrils have been identified in animal models [69,70]. Post-mortem 

analysis of human samples have shown the presence of myocardial inflammation and 

fibrosis confined to the atrial myocardium, but not present in ventricular walls [71]. In 

fact, differentiation of fibroblasts into myofibroblasts is observed in AF.  

Such cells exert a paracrine activity on cardiomyocytes, vital to electrophysiological 

and structural remodelling [72]. Structural remodelling, however, takes place on a longer 

timescale and it is likely associated with age, hypertension and multiple comorbid cardiac 

diseases [12]. It is known that both types of remodelling can be induced by heart failure 

[73,74] and atrial ischemia [75]. The mechanisms by which ageing induces AF are poorly 

understood, but anisotropy due to myocardial fibrosis [76] and connexin redistribution 

[77] are likely involved. 
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AF’s pathophysiology comprises three major stages, initiation, maintenance and 

progression [12,73]. Interestingly, not only is AF generally initiated and maintained in 

the left atrium, the cycle length is also, in most cases, shorter in the left than in the right 

atrium [15]. In fact, areas with shorter cycle length are thought to be the critical substrate 

for driving or maintaining the fibrillatory circuits in AF [11].  

In physiological conditions, atrial cells stand at a negative intracellular membrane 

potential, called the resting potential, become very positive when depolarized and go 

through a series of repolarizing states, including a plateau phase, to enter the resting 

potential phase once again [73]. Atrial action potentials start with the activation of 

voltage-dependent Na+ channels, leading to cell depolarization {[72], Figure 1 – (1)}. 

During the action potential plateau, Ca2+ enters cardiomyocytes through voltage-

dependent channels [Figure 1 – (2)], triggering Ca2+ release from the SPR through 

ryanodine receptors [RyRs, Figure 1 – (3)]. This systolic Ca2+ release is responsible for 

cardiac contraction [73]. Time-dependent delayed-rectifier K+ currents and the transient-

outward K+ current allow cell repolarization and control the action potential’s duration 

[Figure 1 – (4)]. The basal and acetylcholine-dependent inward rectifier K+ currents 

control final repolarization and determine resting membrane potential [Figure 1 – (5)]. 

During diastole, Ca2+ is handled by the electrogenic Ca2+/Na+ exchanger (NCX), which 

transports three Na+ into the cell and one Ca2+ outwards, resulting in a depolarizing 

inward current [Figure 1 – (6)]. Ca2+ is also removed from the cytosol into the SPR via 

the SPR Ca2+ ATPase (SERCA) pump [Figure 1 – (7)]. These processes restore low Ca2+ 

concentrations characteristic of the resting state and warrant atrial relaxation during 

diastole [72].  

The beginning and extent of an AF episode relies on several electrical/structural 

triggers and substrates. The substrate sustaining AF comprises altered 

electrophysiological properties and altered structural properties of the atrium [11]. 

Although triggers are diverse (e.g.: sympathetic or parasympathetic stimulation, 

bradycardia, atrial premature beats or tachycardia, accessory atrioventricular pathways 

and acute atrial stretch), they do not cause the arrhythmia in the absence of other 

contributors.  

Ectopic foci occurring in sleeves of atrial tissue within the pulmonary veins or vena 

cava junctions also constitute AF’s triggers ([78] cited by [45]). Ectopic activity and re-

entry are major mechanisms responsible for AF (Figure 2). Focal ectopic activity is 

probably caused by delayed afterdepolarizations (DADs) and early afterdepolarizations 
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(EADs). DADs [Figure 2 – (1)] result from abnormal and diastolic leak of Ca2+ through 

the RyRs and are promoted by an increased load of Ca2+ into the SPR and dysfunction of 

the receptors [72]. RyRs’ function is modulated by phosphorylation and 

hyperphosphorylation causes them to become leaky and, thus, arrhythmogenic [79]. 

Excess of Ca2+ activates the NCX, producing a depolarization current. If the DADs are 

large enough to reach threshold, an ectopic action potential is triggered [72]. EADs 

[Figure 2 – (2)] are generally associated with prolonged duration of action potentials, due 

to the loss of repolarizing K+ currents [80] or an excessive late component of 

noninactivating Na+ current [81]. During a normal action potential, L-type Ca2+ channels 

undergo voltage and Ca2+-dependent inactivation. However, prolonged action potential 

duration allows these channels to recuperate from inactivation, resulting in an inward 

current of Ca2+ and, consequently, an EAD [72]. [82] 

Re-entry requires appropriate tissue properties that can either be caused by altered 

electrical properties or by fixed structural changes [72]. It can occur around an anatomical 

obstacle when each point in the pathway is able to regain excitability before the next 

impulse arrives. The possibility of anatomical re-entry is controlled by the wavelength 

[83]. Re-entry can also originate when premature impulses conduct unidirectionally 

Figure 1 – Phases of the cardiac action potential (1) Na+ channels are activated resulting in an influx of 

Na+ to the cell (depolarization); (2) L-type calcium channels are activated allowing Ca2+ to enter the cell, 

which leads to Ca2+ release from the SR [(3), plateau]; (4) The K+ outflow from the cell turns the plasmatic 

membrane more negative (repolarization); (5) inward rectifier K+ currents control final repolarization; (6) 

NCX transports 3Na+ into the cell and 1Ca2+ out of the cell; (7) Ca2+ is removed from the cytoplasm into 

the SR through SERCA pump, resulting in the resting state. Abbreviations: NCX, Ca2+/Na+ exchanger; 

SERCA, SPR Ca2+ ATPase; SR, Sarcoplasmic Reticulum. 
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around an initial refractory border [72]. Furthermore, slowed conduction is also able to 

lead to re-entry since slower conduction of an impulse leaves additional time for 

refractoriness to dissipate [73]. Together, atrial dilation and fibrosis create longer 

potential conduction pathways, slower conduction and impose conduction barriers that 

favour both initiation and maintenance of multiple re-entry circuits that sustain AF [84]. 

AF-related re-entry might occur as a single circuit, involving one primary re-entry circuit 

driver, or as a multiple circuit, involving several simultaneous dyssynchronous re-entry 

circuits. Functional re-entry is promoted by atrial tachycardia remodelling (ATR) of atrial 

electrical properties, which in turn is caused by the very rapid activation produced by AF. 

ATR leads to spatial heterogeneity that generates multiple circuit re-entry [8]. Mitral 

valve disease, which induces atrial dilation, conduction disturbances and electrical 

remodelling, also favours re-entry [85,86]. 

Figure 2 – AF’s persistence mechanisms. Electric and structural remodelling favour the development of 

ectopic foci, more specifically through the cause of DADs and EADs. (1) Hyperphosphorylation of RyRs 

leads to Ca2+ leakage from the SR, which is promoted by an increase in the load of Ca2+ to the SR. The 

excessive amounts of Ca2+ activate the NCX, resulting in a depolarizing current and, consequently, an EAD. 

(2)  The loss of K+ currents or a late inactivation of the Na+ current lead to a prolonged action potential, 

which allows the L-type Ca2+ channels to recuperate. The inward current of Ca2+ results in an EAD. The 

resulting ectopic foci causes AF and other triggers. Such triggers, together with sustaining substrates caused 

by structural and electric remodelling, create single or multiple re-entry circuits that perpetuate AF. 

Abbreviations: AF, atrial fibrillation; DADs, delayed afterdepolarizations; EADs, early 

afterdepolarizations; NCX, Ca2+/Na+ exchanger; RyRs, ryanodine receptors; SR, sarcoplasmic reticulum.

Adapted from [82]. 
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2.5 Biomarkers in Atrial Fibrillation 
The International Programme on Chemical Safety, led by the World Health 

Organization in coordination with the United Nations and the International Labor 

Organization, has defined a biomarker as “any substance, structure, or process that can 

be measured in the body or its products and influence or predict the incidence of outcome 

or disease” ([87] cited by [88]). Biomarkers can be anything from pulse and blood 

pressure to measurements of blood and other tissues [88]. Biomarkers can, for instance, 

be proteins identified and measured through proteomic and other ancillary techniques, 

showing alterations in a certain disease, thus, carrying valuable diagnostic or prognostic 

information, such as allowing the determination of the likelihood of its recurrence [76].  

Additionally, such proteins or their peptide products can themselves be novel 

molecular targets for drug design [15]. Furthermore, from a clinical perspective, they 

assist physicians in the management of a patient status, being indicative of different stages 

in the development of a disease. In some cases, they can even be detected prior to the 

befall of a disease, reinforcing their role in disease prevention. In summary, they can be 

useful for diagnosis, prognosis and therapy monitoring [89]. Besides, it should be noted 

that applied strategies for biomarker discovery can even be of great interest to shed light 

into the pathophysiological mechanisms of the disease [15]. 

Biomarkers have been widely used in the diagnosis and management of myocardial 

infarction and heart failure but not in AF [90–92]. Only recently, did they start coming 

into view as promising predictors of AF risk [93]. In 2016,  the European Society of 

Cardiology guidelines on AF recommended the use of biomarkers such as high-sensitive 

troponin and natriuretic peptides to further refine stroke and bleeding risk in AF patients 

[4]. These guidelines, however, recommend the use of biomarkers for an evaluation of 

the risk of complications resulting from AF and not for diagnostic or prognostic purposes 

of AF itself.  

Anyhow, a growing number of studies, either by proteomic approaches per se or by 

the use of other techniques to study specific proteins, have been associating AF with 

several protein alterations and consequently uncovering surrogate biomarkers. Most of 

these, however, focus on one or two proteins or on a selected group of proteins, using 

techniques such as One(1)-Dimensional SDS-Polyacrylamide Gel Electrophoresis (1D 

SDS-PAGE), Two(2)-Dimensional gel Electrophoresis (2DE), Enzyme-Linked 

Immunosorbent Assay (ELISA), western blot and other immunoassays. ELISA, for 
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instance, is used in a variety of studies to detect changes in protein’s expression levels. 

Fu et al. (2011) [94] quantified the plasma levels of von Willebrand factor and p-selectin 

of AF patients using ELISA. P-selectin levels were higher in AF patients compared to 

controls, but there were no statistically significant differences regarding von Willebrand 

factor. Gordon et al. (2016) [95] also used ELISA to quantify the levels  of  galectin-3 

and fibroblast growth factor 23. In this study, there was no statistically significant 

differences between the AF group and the control group nor between patients with and 

without AF recurrence. 

Troponin, for instance, is one of the most frequently studied proteins and is hoped to 

aid in the management of AF, particularly new-onset and postoperative AF, myocardial 

infarction in AF and prognosis of AF [96]. Elevated troponin levels have been associated 

with increased incidence of AF [97–99], but the optimal cut-off to determine the risk of 

AF is still unclear [97,98]. Therefore, the use of troponin screening to predict the risk of 

AF incidence is alluring but premature [96]. As for the risk of postoperative AF, 

preoperative values of troponin were not associated with risk of postoperative AF [100]. 

Additionally, one study reported an association with postoperative cardiac-troponin T 

levels [101] and a second study with postoperative cardiac-troponin I levels [102]. 

However, a third study was unable to validate the second finding [103]. Comparably to 

new-onset AF, there is also no cut-off value to determine the risk of postoperative AF 

[96]. In order to distinguish between myocardial infarction and AF, attempts to ascertain 

an optimal cut-off for troponin levels have been made [104,105]. Persistently detectable 

troponin values separated by 3 months indicated worse prognosis compared with patients 

with undetectable or transiently detectable levels [106]. In brief, more studies are 

necessary to evaluate the power of troponin in detecting the risk of AF, especially due to 

contradictory results, requiring consensus. Nonetheless, troponin remains a potential 

biomarker for diagnosing and prognosticating AF.  

Alike troponin, Brain natriuretic peptide (BNP) and N-terminal proBNP (NTproBNP) 

have been associated with the development of AF, either postoperatively or not. They 

have also been associated with diagnosis of heart failure in AF and have been proposed 

as predictors of the success of current direct cardioversion for AF [96]. However, the 

threshold levels of BNP and NTproBNP for the diagnosis of AF are yet to be determined 

[107]. As an example, in 2007, Matsuura et al. [108] investigated the relationship between 

the plasma BNP levels and the occurrence of AF in nonobstructive hypertrophic 

cardiomyopathy. Their results showed significantly higher plasma BNP levels in the 
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paroxysmal AF group and in the long-standing persistent AF group than in the SR group. 

As a result, the authors concluded that plasma BNP levels are clinically useful for 

identification of nonobstructive hypertrophic cardiomyopathy patients who are at risk of 

developing AF. BNP and NTproBNP have also been asserted as independent predictors 

of AF in the Cardiovascular Health Study [109]. C-reactive protein (CRP) is yet another 

protein with biomarker potential for AF over a median follow-up of 7.8 years in the same 

study [110]. 

 Despite proteomic studies per se are currently not as voluminous for AF as studies 

focusing on one protein or a particular set of proteins, they are extremely relevant. 

Proteomics is the large-scale study of proteins in a complex biological sample (biofluids, 

cells, tissues, etc) at a given time [82], using high-throughput techniques, such as mass 

spectrometry (MS), to identify and detect changes in multiple proteins, unveiling several 

potential biomarkers. Hence, proteomics’ tools can be of extreme importance in the 

process of discovery and identification of potential biomarkers and in the creation of a 

biomarker panel for a target disease. Likewise, it has the potential to aid in the 

implementation of novel and standardized diagnostic and prognostic approaches for AF 

and other conditions.  

In 2009, Mondrego et al. [111] undertook a proteomics approach to evaluate the 

expression of proteins associated with the cytoskeleton, energetic metabolism, and 

cardiac cytoprotection in left atrial appendages (LAA) and right atrial appendages (RAA), 

obtained from patients with mitral valve disease both in SR and in permanent AF. Proteins 

were separated with 2DE and identified by MS and more than 30 proteins were analysed. 

Cardiac α-actin isotypes 1 and 2, tropomyosin α- and β-chains, and myosin light chain 

embryonic muscle/atrial isoform were found to be overexpressed in the LAA of AF 

patients compared to the LAA of SR patients. Different cytoskeleton-associated protein 

levels measured from RAA samples, as well as different energetic metabolism-associated 

proteins levels measured from both LAA and RAA samples were elevated with respect 

to those from SR patients. The expression of proteins associated with cardiac 

cytoprotection, such as gluthatione-S-transferase, heat shock protein (HSP27), and 

different 60 kDa heat shock protein (HSP60) isotypes, were higher in the RAA of AF 

patients compared to the RAA of SR patients. This study is a perfect example of how MS-

based proteomics experiments can detect differentially expressed proteins, with potential 

biomarker value.  
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Thousands of claimed biomarkers are reported in thousands of biomedical papers 

[109]. Such a tremendous amount of data led to the belief that effective biomarker-based 

diagnosis would rapidly unfold [112]. However, even though several molecules were and 

are being investigated as candidate biomarkers, most have not been validated for routine 

clinical practice [113]. Indeed, the vast majority of biomarkers lack the validation or 

downstream development and refinement necessary for clinical translation [112].  

This comes to show the importance of extracting and re-evaluating information on 

disease-related surrogate biomarkers from scientific publications. In fact, curation of 

relevant literature might aid in the creation of a biomarker panel for a specific disease. 

However, establishing correlations between diseases and changes in biomarkers is not 

enough; the amount of associations that have already been established, along with the 

ones that are yet to be uncovered, and the fact that changes in a certain biomarker may 

not be specific to a disease, lead to the need of a biomarker ranking, which can be 

achieved by scoring the true biomarker value of biomolecules, such as proteins, through 

appropriate functions, weighing several parameters. Such score could weigh, among 

others, the number of evidences supporting the association, the existence of independent 

validations either intra- or inter-studies, the performance of a quantitative analysis, among 

others. From this point forward, this dissertation will only focus on protein biomarkers; 

the term “biomarker” will refer to protein biomarker for simplification. 

2.6 How Text-mining and Bioinformatics Resources May 
Help Defining a Biomarker Panel for AF 
Multiple areas of research from molecular biology to machine learning are partnered 

to better understand complex biological systems, such as cells, tissues and the human 

body [114]. Bioinformatics is now a key field in this regard, because it allows to deal with 

the tremendous volume of publicly available data ([115] cited by [116]). Proteomics, for 

instance, contributes with massive MS datasets, which represent tremendous amounts of 

information, the so-called big data. Consequently, bioinformatics became fundamental 

and indispensable for life sciences [117]. On a different note, it is also highly dependent 

on it, given that laboratory work is responsible for the translation of matter of life into 

data, which can then be assessed by bioinformatics [118].  

There has been an increase in the number of diagnostic breakthroughs and in 

successful efforts in identifying patients more susceptible to certain diseases or that will 

maximally benefit from certain treatments using biomarkers. Although oncology was the 
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main area of research in this field, there have been considerable advances in other areas, 

for instance respiratory, infectious and inflammatory diseases, in the last ten years [119]. 

These advances are reflected in the vast amount of literature available from online 

databases, such as PubMed (https://www.ncbi.nlm.nih.gov/pubmed/), regarding 

biomarker-disease associations. Effectively extracting such associations from papers will 

potentially enable the discovery and development of new therapeutic targets and patient 

segment biomarkers [119]. There are several online databases built and maintained for 

this purpose, capable of gathering in one place valuable information, such as The Human 

Metabolome Database (HMDB; http://www.hmdb.ca/diseases), Global Online 

Biomarker Database (GOBIOM; https://gobiomdb.com/login.jsp) and DisGeNET 

(http://www.disgenet.org/). HMDB is an online database that reports information on 

several associations. However, it only covers metabolites [120]. GOBIOM is yet another 

database that provides information on several types of markers for multiple conditions, 

with its reported utilities like diagnosis, prognosis, monitoring disease progression, 

among others. Information is gathered by over 200,000 sources, including clinical trials, 

scientific conferences, regulatory-approved documents, literature databases, patents, etc 

[121]. DisGeNET stores a large amount of gene/protein-disease associations and will be 

discussed further ahead. Despite the ability to perform a quick search for a given 

condition/marker, these online repositories may not comprehend the entire collection of 

biomarkers for a condition. This is due to the ever-growing number of biomedical papers 

and the requirement of a careful survey of the same [122]. Hence, the process of text-

mining, either manual or with the aid of bioinformatic tools gains relevance in this field. 

The choice of which curation solution works best for a given researcher, laboratory or 

organization varies [123], according to the number of relevant retrieved articles and the 

amount of information to extract. However, manual and automated text-mining have 

different advantages, which will be debated in the following sub-section. 

2.6.1 Manual vs Automated Text-mining 

Although, as previously mentioned, there are already multiple online repositories of 

biological data, most of the relevant information is still maintained in textual format 

[124]. Likewise, the curation of literature represents a crucial aspect towards the 

annotation of important information. The first step of the curation process is the gathering 

of relevant research papers, which often involves a paper-by-paper review by the curators 

[125]. However, automated forms of information retrieval (IR) have been developed, 
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which help to prioritize literature curation, such as @Note [126]. The final collection may 

range from 100 to 1000 papers a month [125]. The next step is the actual curation of each 

of the selected articles to extract pertinent information. The type and amount of data to 

be extracted is highly dependent on the ultimate goal of the curation process. Even though 

many experts are involved in this process, manual data curation is time-consuming [122]. 

Also, manual curation can be biased by limiting journals and articles due to resource 

restrictions and journal value [123]. Nonetheless, the resulting datasets are of high quality 

and relevance [127], due to an overall accuracy of 90% of expert curators [123]. 

With the discussed issues in view, biomedical text-mining emerged as a new research 

field [128]. This automated form of curation encompasses IR, information extraction (IE) 

and Hypothesis generation [126]. Hypothesis generation tries to conciliate data from 

experimental procedures or in silico experiments with annotations derived from the 

literature [129]. Initially, such computational solutions could not compete with the 

accuracy and completeness of the gold standard manual curation. Nowadays, that is no 

longer the case; the technological advances allowed the improvement of automated 

curation. Automated curation systems scan and retrieve papers without associated bias 

and are only limited by legal issues and licensing fees. Plus, new ontologies can easily 

and rapidly be added to include new terms and concepts in biology [123]. Howbeit, higher 

error rates and less overall relevance are still a reality [127]. 

2.6.2 Ranking Biomarkers 

The curation of relevant literature might aid in the creation of a biomarker panel for a 

specific disease. However, establishing correlations between diseases and changes in 

biomarkers is not enough. After extracting gene/protein expression data or molecule-

disease associations from the literature or from databases, the next challenge is to define 

the relevance of the molecules towards their biomarker potential. The amount of 

associations that have already been established, along with the ones that are yet to be 

uncovered, and the fact that changes in a certain biomarker may not be specific to a 

disease, lead to the need of a biomarker ranking, which can be achieved by scoring the 

relative biomarker value of biomolecules through appropriate functions with high 

discriminatory abilities, weighing several parameters. Only after this step, may a group 

of molecules proceed in the pipeline towards biomarker validation and implementation. 

In that regard, several scores can already be found in the literature and are described in 

the next subsections and summarized in Table 2 and Table 3. These scores can be based 
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on several criteria, already mentioned in section 2.5, comprising, therefore, a more 

objective and independent approach to define the biomarker panel. 

2.6.2.1 Scoring Approaches to Rank Associations Extracted by Text-mining 

Many scoring approaches based on text-mining are focused on the number of papers 

studying an association. Consequently, the higher the number of studies reporting the 

association, the higher the score will be. Notwithstanding, these often ignore the variation 

of the expression levels/quantification values of the selected markers. Xu et al. 

(2016)[119] proposed four different methods (Table 2) to rank disease-related genes 

based on co-occurrence frequency, paper citations and author information. The first 

method simply ranks different marker-disease pairs, where the disease is the same, by the 

number of distinct journal articles in which they co-occur. The second method is based 

on the PageRank algorithm which was proposed by Larry Paige and Sergey Brin in 1998 

[130] and operates on the idea that the more important a website is, the more websites 

will link to it. Therefore, the importance of a website is based on the number and 

significance of the websites connected to it. In the study by Xu et al. (2016)[119], the 

PageRank of an article is higher the more articles cite it and the more influential those 

articles are. The third ranking function (suppressed PageRank method) is improved by 

consideration of the authors. Considering that researchers who focus on specific diseases 

or genes may write about the same gene-disease pair in multiple publications, it makes 

sense that the contribution of the multiplicated evidence should be somehow corrected. 

However, while correcting for some data homogeneity, this type of scoring drags another 

issue, related to the rationale and experimental approach of the studies taken by the same 

authors. In fact, there may be the case where the same marker-disease association is 

described by the same author(s), but in independent study populations, distinct biological 

sample types and even with different experimental techniques, sometimes used for inter-

validation. In such cases, a correcting factor should be minded. Finally, the last method 

(time-weighted PageRank method) uses a PageRank function adjusted by a time factor. 

This adjustment is placed because of the assumption that recently published articles may 

have “less exposure” for citation and have, consequently, fewer citations than those 

published before them. This last method also suppresses gene-disease pairs mentioned 

multiple times by the same authors. In order to evaluate which of the four methods 

performed better, ten diseases were extracted from DisGeNET and the mean reciprocal 
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rank of ranks obtained was computed for each method. Overall, the Suppressed PageRank 

method achieved better results compared to the other three methods.  

Bravo and colleagues’ (2013)[113] score is obtained as the product between the 

inverse document frequency (IDF) of the association and the normalized frequency of the 

association (NF). The IDF consists of the logarithm of the total number of abstracts 

considered in the study, which correspond to a pool of articles extracted from a specific 

query to PubMed, divided by the number of abstracts containing the association in 

question. The function NF is computed as the quotient between the number of times an 

association is found in a certain abstract and the maximum frequency of any association 

in that same abstract. This approach is based on the premise that if a biomarker and a 

disease are mentioned together in the same sentence, then there is a high probability of 

them being associated to each other. Withal, this is not always verified, because results 

might not be statistically significant. Moreover, whilst the analysis time may be reduced 

when considering only the abstract, all the information in the body of the article is 

neglected, which could have given indication of other pertinent associations. 

DisGeNET 

(http://www.disgenet.org/web/DisGeNET/menu/home;jsessionid=17dgwkd84j64a14no

ky9ny3epk), which might be the most popular online repository for marker-disease 

associations, integrates human gene-disease associations from various expert curated 

databases and text-mining derived associations. It also presents approaches to rank the 

gene-disease associations (GDA) and the variant-disease associations (VDA), according 

to their level of evidence (Table 2). In both methods scores range from zero to one, and 

consider the number and type of sources and the number of publications supporting the 

association [131]. The GDA system also contemplates the number of different models 

(mouse, rat, human, etc) in which the association was studied. The higher the number of 

models, the higher should the strength of the study be and, consequently, the higher the 

score. 

The approaches described by Xu et al. (2016)[119] and Bravo et al. (2013)[132] and 

DisGeNET’s scoring systems take into account the number of publications supporting an 

association. However, these do not consider the type of variation observed when the 

biomarker-disease association was conveyed. Simply knowing that a certain biological 

parameter, such as a gene or its corresponding protein/peptide or related metabolites, is 

associated with a disease does not give us any information with respect to the specific 

variation of such marker. In other words, there is no knowledge whether the entity’s levels 
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are higher or lower than the recommended values in the affected patients. Furthermore, 

they also do not consider the coherence between findings. DisGeNET does present an 

Evidence Index, which indicates the existence of contradictory results in publications 

regarding positive and negative associations, but this index does not consider 

contradictions in terms of alterations in opposite directions. 

2.6.2.2 Ranking Approaches Based on Expression Data   

The previous approaches do not consider the use of expression data; still, 

acknowledging the degree of variation and its direction is important to achieve a more 

accurate and quantitative biomarker panel. Ernst et al. (2017)[132], proposed an heuristic 

approach (Table 3) to rank GDAs based on expression levels and on a gene 

interaction/regulation network. The FocusHeuristics algorithm computes three scores: the 

log fold change (LFC), i.e. the log-transformed difference of gene expression between 

two conditions, the differential link score (LSd), which is the sum (for activation or 

unspecified links) or the difference (for inhibition) of the LFCs of the connected genes, 

and the interaction link score (LSi), which is the lowest value of the sum of the expression 

levels of the connected genes for each condition, representing the activity of a link in the 

graph for both conditions. This algorithm generates a new network, keeping the nodes of 

the reference network that pass at least one of the thresholds set for each score. Although 

it may be true and logic that when the expression of a gene is altered there are downstream 

effects, the premise on which FocusHeuristic is based, this is not always verified, which 

means that the final condensed network may include genes whose expression is not 

altered and therefore does not take part in the pathophysiology of a certain disease. This 

happens because the activation or inhibition of a certain gene is not directly controlled by 

a second gene per se, but by the product of that second gene, whose expression may not 

be altered due to regulation steps that take part after the transcription process.  

A similar approach (Table 3) was proposed by Yu et al.  (2015)[133], where both the 

expression levels and an interaction network are considered, to identify risk genes 

associated with myocardial infarction. In this case, the suggested system takes into 

consideration the fold change value for the expression level of the node and the nodes 

connected to the selected node. With this scoring system, called neighbourhood scoring 

algorithm, the influence of the “diseased” genes on their connected genes is inferred; if 

the score is >0, the node and its connected nodes are highly expressed, and if the score is 

<0, the expression of the nodes is low. 
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Although the variation is weighed in both methods, no attempts to understand its 

direction are made. Additionally, the frequency of reports describing a particular marker-

disease association is not weighted as well as the coherence between findings. However, 

the usage of an interaction network, in both approaches, means that additional GDAs 

could be identified based on gene-gene regulation. Also, quantitative data regarding the 

variation of the expression levels/quantitative values is considered. 

In spite the fact that a few scoring functions were already developed by other authors 

to rank genes/proteins according to their biomarker potential, as previously reported, 

several limitations can be found in those methods. Thus, after taking an extensive 

literature search with relaxed queries and mining a massive volume of reports, protein 

data was extracted and scored to define potential biomarker panels for AF diagnosis or 

prognosis. In this sense, a mathematical scoring function was developed to weigh the 

importance of proteins, based on several parameters (consensus of studies supporting the 

association, median fold-change of a protein and number of diseased individuals in the 

study), and to minimize the limitations of the currently known approaches.  
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Table 2 – Existing ranking scores for associations extracted by text-mining, respective potentials and limitations. 

Name Formula Potentials Limitations 
Reference 
/Database 

Frequency-

based 
? 

 Co-occurrence frequency 
in the literature is 
considered to identify 
disease-related genes. 

 Categorical information regarding the type 
of variation is ignored; 

 Quantitative data regarding the variation of 
the expression levels is not considered. 

Xu et al. 
(2016) 

PageRank-

based 

𝑆(𝑔, 𝑑) = 𝑝𝑟(𝑎)

∈ ( , )

 

Where:  
g → gene; 
d → disease; 
C( , ) → set of all the articles that contain the 

(g, d)pair; 
𝑝𝑟(𝑎)→ PageRank of paper 𝑎. 

 Information is prioritized 
according to the degree of 
data accession (it assumes 
that most cited articles are 
more important). 

 Categorical information regarding the type 
of variation is ignored; 

 Quantitative data regarding the variation of 
the expression levels is not considered; 

 Most recent papers and, thus, recently 
reported marker-disease associations have 
less exposure and may be neglected. 

Xu et al. 
(2016) 

Suppressed 

PageRank 

𝑆 =  𝑤 (𝑔, 𝑑) × 𝑝𝑟(𝑎)

∈ ( , )

 

Where: 

w (g, d) =  

∑ 𝑥 ∈ 𝑙
1

|𝐶 |

|𝑙|
 

Where: 
𝑙 → author list of paper 𝑎; 
𝐶  → number of papers author 𝑥 wrote 
about (g, d); 
g → gene; 
d → disease; 
C( , ) → set of all the articles that contain 

the (g, d) pair; 
𝑝𝑟(𝑎) → PageRank of paper 𝑎. 

 Information is prioritized 
according to the degree of 
data accession It tries to 
suppress repeated 
contributions by the same 
authors. 

 Categorical information regarding the type 
of variation is ignored; 

 Quantitative data regarding the variation of 
the expression levels is not considered; 

 Most recent papers and, thus, recently 
reported marker-disease associations have 
less exposure and may be neglected; 

 While suppressing repeated conclusions by 
the same authors, it ignores if different 
reports from the same author entails 
different populations, biological samples 
and technical procedures. 

Xu et al. 
(2016) 
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Table 2 – Existing ranking scores for associations extracted by text-mining, respective potentials and limitations (continued). 

Name Formula Potentials Limitations 
Reference 
/Database 

Time-weighted 

PageRank 

𝑝𝑟(𝑢) = 𝑑
𝑝𝑟(𝑣)

𝑁
∈ ( )

+ (1 − 𝑑)  ×  𝑇  

Where: 
d → disease; 
T  → time factor related to each paper’s year of 

publication. 

  Information is prioritized 
according to the degree of 
data accession; 

 The relevance of each 
article is balanced by the 
time of publication. 

 Categorical information regarding the 
type of variation is ignored; 

 Quantitative data regarding the variation 
of the expression levels is not considered; 

 Repeated contributions of the same 
authors for a given marker-disease 
relationship are neglected  

Xu et al. 
(2016) 

Variant of the 

Inverse 

Document 

Frequency 

model 

𝑆  = 𝑖𝑑𝑓(𝐷𝐵, 𝐴)  × 𝛼𝑓(𝐷𝐵, 𝐴 )

| |

 

Where: 

𝑖𝑑𝑓(𝐷𝐵, 𝐴) =  log
|𝐴|

|{𝛼 ∈ 𝐴: 𝐷𝐵 ∈ 𝑎}|′
 

 

𝑎𝑓(𝐷𝐵, 𝐴 ) =  
𝑓(𝐷𝐵, 𝐴 )

max {𝑓(𝑥𝑦, 𝐴 ): 𝑋𝑌 ∈ 𝐴 }′
 

𝐷 → disease; 
𝐵 → biomarker; 
|𝐴| → total number of abstracts; 
𝐴  → the 𝑖th abstract; 
𝑓(𝐷𝐵, 𝐴 ) → number of times the association 
between 𝐷 and 𝐵 occurs in 𝐴 . 

 Associations are ranked 
according to the 
frequency of the reports 
describing them; 

 The association between 
the marker-disease pair at 
scope is weighted 
according to the 
maximum number of 
associations described in 
the abstract for any other 
pair. 

 Categorical information regarding the 
type of variation is ignored; 

 Quantitative data regarding the variation 
of the expression levels is not considered; 

 Repeated contributions of the same 
authors for a given marker-disease 
relationship are neglected; 

 Analysis is restricted to the content of the 
abstract. 

Bravo et al. 
(2013) 
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Table 2 – Existing ranking scores for associations extracted by text-mining, respective potentials and limitations (continued). 

Name Formula Potentials Limitations 
Reference 
/Database 

The GDA 

Score 

𝑆 = 𝐶 + 𝑀 + 𝐿  

Where: 

𝐶 =  

⎩
⎨

⎧
0,6 𝑖𝑓 𝑁 > 2

0,4 𝑖𝑓 𝑁 = 2

0,2 𝑖𝑓 𝑁 = 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where: 
𝑁  → number of curated sources supporting a 

GDA; 
𝑖 ∈ UNIPROT, CTD, PSYGENET, ORPHANET, 
HPO. 
 

𝑀 =  
0,16 𝑖𝑓 𝑁 = 2
0,08 𝑖𝑓 𝑁 = 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where: 
𝑁  → number of animal models for a GDA; 
Models ∈ Rat, Mouse from RGD, MGD, CTD. 
 

𝐿 =  

⎩
⎪
⎨

⎪
⎧ 0,08 𝑖𝑓 

𝑁 × 100

𝑁
≥ 0,08

𝑁 × 100

𝑁
 𝑖𝑓 

𝑁 × 100

𝑁
< 0,08

 

Where: 
N  → number of publication supporting a GDA in 

the source k; 
N  → total number of publications in the 
source k; 
k ∈ GAD, LHGDN, BEFREE. 

 Associations are ranked 
according to the frequency of the 
reports describing them (L); 

 The number of animal models 
supporting an association is duly 
accounted (M); 

 The curation level of the data 
source is taken into account (C). 

 Categorical information 
regarding the type of variation 
is ignored; 

 Quantitative data regarding the 
variation of the expression 
levels is not considered; 

 No correction is attempted for 
marker-disease associations 
found by the same authors, in 
the same population, in the 
same biological sample or 
uncovered through the same 
technique. 

DisGeNET 
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Table 3 – Existing ranking scores for expression data, respective potentials and limitations. 

Name Formula Potentials Limitations Reference/Database 

FocusHeuristics 

- Differential 

Link Score 

(LSd) 

- Interaction 

Link Score 

(LSi) 

𝐿𝑆 =  𝐿𝑆 = 𝐿𝐹𝐶

+ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 × 𝐿𝐹𝐶  
 

LS =  LS = min (E + E , E + E )  
Where: 

A, B → nodes/genes; 
AB → edge/interaction between the two nodes/genes A 
and B;  
c, t → conditions; 

E  → log expression level of gene G in condition C; 
𝐿𝐹𝐶  → log fold change of gene A;  
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  → direction of a directed edge: -1 for 
inhibitions, +1 otherwise. 

 The type and magnitude of 
variation of a marker is 
considered; 

 Additional GDAs can be 
identified by considering 
the interactions between 
genes. 

 The premise on which it 
is based is not always 
verified; 

 The frequency of reports 
describing an 
association is not 
considered; 

 The level of data 
curation is not 
acknowledged. 

Ernst et al. (2017) 

Neighbourhood 

Scoring 

𝑆(𝑖) =  
1

2
× 𝐹𝐶(𝑖) +

1

2
×

∑ 𝐹𝐶(𝑛)∈ ( )

𝑁(𝑖)
 

Where: 
i → node; 
FC  → fold change value for the expression level of the 
node; 
N(i) → number of the connection nodes to the selected 
node. 

 The type and magnitude of 
variation of a marker is 
considered; 

 Additional GDAs can be 
identified by considering 
the interactions between 
genes. 

 The frequency of reports 
describing an 
association is not 
considered; 

 The level of data 
curation is not 
acknowledged; 

 Indirect determination of 
the potential biomarker 
value. 

Yang et al. (2017) 
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3. Methods 
3.1 Literature Search 
Independent PubMed queries were ensued up to 26th July 2017 to retrieve available 

proteomic and protein focused studies in AF, using the following keywords in separate 

queries: “atrial fibrillation AND proteomics” and “atrial fibrillation marker”. The 

literature search came up with 18 entries using the first set of keywords and 2255 entries 

with the latter, making a total of 2273 papers. A collection of potentially relevant articles 

(321 papers) was pre-selected after reading the titles and abstracts, whenever possible; if 

an abstract was not available but the title indicated a possibly pertinent study, the article 

was also retrieved. The following inclusion criteria were mandatory: 

1) full-text English-written article; 

2) publication in peer-reviewed journal; 

3) proteomic or protein focused study; 

4) study enrolling humans only; 

5) study enrolling subjects with AF in comparison to healthy individuals, individuals 

who successfully cardioverted or individuals with other conditions except for other 

arrhythmias, and 

6) study enrolling samples such as plasma, serum, whole blood, urine and atrial 

appendages. 

As for exclusion criteria, studies which tried to establish associations based only on 

linear/logistic regressions or hazard/odd ratios, studies without control subjects and 

reviews and meta-analysis were left apart. In the end, 172 papers were included in the 

study and 149 were excluded. 

3.2 Text-mining 
The final assortment of publications was carefully analysed to extract data to Excel 

Spreadsheets, for further bioinformatic analysis. The subsequent fields were filled in: 

“Protein ID” (UNIPROT code), “Protein Name”, “Sample Type” (biofluid or tissue); 

“Sample” (plasma, urine, blood, left atrial appendages, right atrial appendages, 

pericardial fluid, serum), “Sample’s Treatment” {including: “Frozen” [yes (y) or no (n)], 

“Freezing Temperature”, “Centrifuged”, “Treatment”},  “Pathology Definition 

(Cases)” [including: “Age” (mean ± sd), “Disease Stage/Subtype” (paroxysmal, 

persistent, permanent, first-diagnosed, postoperative), “Recurrence study” (y or n), 
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“Procedure”, “Classification/Characterization” (additional medical conditions beyond 

AF), “n” (number of enrolled patients for discovery)], “Background Condition 

(Controls)” (including: “Age”, “Procedure”, “Classification/Characterization”), “Study 

Design”, “Population Source”, “Methodology”, “MS approach”, “Variation” [1 

(overexpressed), -1 (underexpressed), 0 (unchanged) “N/A” (not applicable)], “Cases 

expression value”, “Controls expression value”, “Fold-change”, “Fold-change formula”, 

“p-value”, “Statistical test”, “DOI”, “Article Title”, “Year of publication”, “Source of 

Data” (tables, figures, core text, etc, from which the expression values were retrieved). 

The fold-change was calculated as a ratio between the mean or median levels in diseased 

patients and the mean or median levels in control patients. Regarding the topic 

“variation”, proteins were classified as overexpressed/underexpressed if levels of a 

certain protein were found higher/lower in patients compared to controls and the 

difference was statistically significant. A p-value of less than 0.05 was considered 

statistically significant; protein levels were considered unchanged if the p-value was 

higher. Entries were defined with “N/A” (not applicable) if there was no information in 

the paper whether differences were significant or not. 

3.3 Scoring System 
After analysing every retrieved article and extracting all the relevant information, a 

scoring approach was applied to subsets of the complete dataset. Four partial datasets 

were created according to the sample (atrial appendages, whole blood, plasma and serum) 

and each part was further subdivided into six subsets, whenever possible, in relation to 

the disease subtype (“All” - which includes first-diagnosed, paroxysmal, persistent, long-

standing persistent and permanent AF as conditions -, paroxysmal AF, persistent AF, 

permanent AF, postoperative new-onset AF and postoperative AF recurrence), making a 

total of 24 subsets. The “All” subsets contain entries in which the AF state is not specified, 

entries which correspond to a mixture of at least two of the major types of AF 

(paroxysmal, persistent and permanent) and entries which correspond to one specific type 

of AF.  The paroxysmal AF, persistent AF and permanent AF subsets, regardless of the 

sample, only contain entries which correspond to the type of AF specified in the subset’s 

name. The postoperative new-onset AF subsets include entries in which the 

corresponding patients only developed AF after surgery and did not have history of AF. 

In all these cases, the control subjects had to be in SR and not have experienced AF in the 

past. The postoperative AF recurrence subsets include entries in which diseased subjects 
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had AF prior to surgery and developed recurrence after surgery. Control subjects also had 

AF before surgery but did not suffer from recurrence. The scoring system was applied to 

each protein in each subset, in order to identify and rank proteins according to their 

biomarker potential. 

𝑆 (𝑝) = 𝑚(𝐹𝐶 ) ×  
∑ 𝐶(𝐸 , )

∑ 𝐶(𝐸 )
  

Where: 

𝑑 → direction of the variation; 

𝑝 → protein; 

𝐹𝐶 ,  → Fold-change of 𝑝; 

𝑥
1 𝑖𝑓 𝑑 = "𝑢𝑝"

−1 𝑖𝑓 𝑑 = "𝑑𝑜𝑤𝑛"
 

𝐶(𝐸 , )
1 𝑖𝑓 𝑛

,
<  𝑚(𝑛) + 𝐼𝑄𝑅 

2 𝑖𝑓 𝑛
,

≥  𝑚(𝑛) + 𝐼𝑄𝑅 
 

Where: 

𝐸 ,  → entry with 𝑝 and in the direction 𝑑; 

𝐶(𝐸 , ) → contribution of 𝐸 , ; 

𝑛𝐸𝑝,𝑑
 → number of enrolled patients in 𝐸 , . 

𝑛 → number of enrolled patients in every entry of the dataset; 

𝐼𝑄𝑅 → inter-quartile range. 

𝐶(𝐸 )
1 𝑖𝑓 𝑛 <  𝑚(𝑛) + 𝐼𝑄𝑅 

2 𝑖𝑓 𝑛 ≥  𝑚(𝑛) + 𝐼𝑄𝑅 
 

Where: 

𝐸  → entry containing 𝑝; 

𝐶(𝐸 ) → contribution of 𝐸 ; 

𝑛  → number of enrolled patients in 

𝐸 . 

Equation 1 – Simple scoring approach. 

The formula (Equation 1), is applied in two cases, one that considers entries in which 

the protein was found to be overexpressed (𝑑 = "𝑢𝑝") and one which includes entries in 

which the protein was found to be underexpressed (𝑑 = "𝑑𝑜𝑤𝑛"). The formula takes into 

consideration the median fold-change value and the degree of agreement between all the 

entries with the specific protein (𝒑), as a fraction of the number of entries supporting the 

association in the respective direction and the total number of entries with the protein. 
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The contribution of entries with a number of enrolled patients higher that the median plus 

the interquartile range (IQR) of enrolled patients in every entry is doubled. 

Some proteins might not be scored in one or both directions because they might be 

defined as unchanged or “N/A” in every entry or not changed in the considered direction. 

In order for the protein to be considered a potential biomarker of the respective 

subset/condition, the computed score has to be higher than one (threshold). 

The scoring function was implemented in form of an algorithm developed in Python 

3.5. Five proteins whose score passed the threshold were chosen as the top potential 

biomarkers for the particular condition. The results concerning atrial appendages were 

ignored for the conditions “All”, paroxysmal AF, persistent AF and permanent AF 

because the measurement of biomarkers’ levels in such samples in the clinical practice is 

not viable, unless patients underwent cardiac surgery. 

3.4 Bootstrap 
In order to determine the uncertainty of the simple scoring approach, the method was 

applied in an iteration-based method, bootstrap, developed in Python 3.5. The bootstrap 

was performed for each subset but all entries corresponding to proteins which had a null 

score with the first scoring approach were eliminated. As such, each subset is divided in 

two parts, one which includes the entries regarding the proteins which were scored with 

the simple scoring approach in the direction “up” and one which includes the entries 

regarding the proteins which were scored in the opposite direction. Likewise, the input 

subsets are different according to the direction. 

The bootstrap consists of creating partial datasets with the same size (n1) as the input 

subset. Each entry has a probability (p) of being chosen for the new subset of size n2 

Figure 3 - Bootstrap Schematic.  (1) Each entry in the input subset of size n1 has a probability (p) of being 
part of the intermediate subset of size n2. In green are represented the entries that will form that subset. (2)
n1 - n2 entries (in blue) from the intermediate subset are randomly chosen to complete the intermediate

subset, (3) creating a new subset of size n1. (4) The process is iterated i times. 
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[Figure 3 – (1)], which is then completed by a replacement strategy; entries that are 

already part of the new subset are randomly chosen [Figure 3 – (2,3)]. This process is 

iterated i times. The bootstrap approach was applied with a p of 50% and 75% and an i of 

1000. The arithmetic mean of the scores in every iteration was computed for each protein. 

The pipeline followed is represented in Figure 4. PubMed was accessed to perform 

keyword-based queries and retrieve articles of interest (Literature Search). These were 

then analysed to extract data into excel spreadsheets and organize it according to the 

sample major characteristic and type of AF (Information Extraction). After this step, a 

scoring function was developed and implemented in Python 3.5 and applied to the 

multiple subsets created (Scoring Approach). The final step was to determine the 

uncertainty of the developed method through bootstrapping (Robustness Analysis). 

Figure 4 - Pipeline of the methods used in the present work. PubMed was accessed to conduct keyword-
based queries and retrieve relevant articles (Literature Search). Each article was analysed to extract 
relevant information into excel spreadsheets; data was organized according to the sample major 
characteristic and atrial fibrillation (AF) type (Information Extraction). A scoring function was 
developed, implemented in Python and applied to the created datasets (Scoring Approach). The 
uncertainty of the scoring approach was assessed by a bootstrap-based method (Robustness Analysis).   



 

35 
 

4. Results 
 

The original dataset was composed of 712 entries. For each sample, the largest subsets 

were the “All” subsets, since they also include entries from the paroxysmal AF, persistent 

AF and permanent AF subsets of the corresponding sample, except for the atrial 

appendages subsets. The majority of the remaining subsets, however, had very few 

entries. The number of entries in each subset is represented in Table 4. 

Table 4 – Distribution of the number of entries in each subset. 

AF Types                   Samples 
Atrial 

Appendages 
Whole 
Blood 

Plasma Serum 

"All" 51 28 151 138 
Paroxysmal AF 13 10 34 49 
Persistent AF 56 7 32 64 
Permanent AF 66 11 28 3 

Postoperative new-onset AF 5 3 61 48 
Postoperative AF recurrence 5 6 50 20 

4.1 Scoring Systems 

4.1.1 “All” Subsets – First-diagnosed, Paroxysmal, Persistent, Long-

standing Persistent and Permanent AF 

Regarding the atrial appendages-“All” dataset, 11/19 proteins were scored in the 

upwards direction and 8/19 proteins were scored in the opposite direction. Out of the 11 

proteins scored in the direction “up”, 10 had a score higher than one, the established 

threshold. All scores computed in the direction “down” passed the threshold. The 

proteins’ UNIPROT code, full name, abbreviation, gene and respective scores, direction 

and number of entries in the subset are represented in Supplemental Table 1, ordered by 

the highest to the lowest scoring result. The fold-change range of the 10 highly-scored 

proteins in the direction “up” and of the eight proteins scored in the direction “down” is 

represented in Figure 5 - (1). Every protein ranked in the upwards direction had a 

minimum fold-change value higher than one and every protein ranked in the downwards 

direction had a maximum fold-change value lower than one.  

As for the whole blood-“All” dataset, four out of nine proteins/peptides had a 

computed score with “up” as the direction and only one score was computed with “down” 

as the direction. The latter reached the threshold, as did three scores calculated in the 

direction “up”. The proteins whose score reached the threshold are present in 

Supplemental Table 2 and their fold-change range in Figure 5 – (2). All proteins whose 
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score was computed in the direction “up” had a minimum fold-change value higher than 

one.  

(1) Atrial Appendages-“All” Subset (2) Whole Blood-“All” Subset 

(3) Plasma-“All” Subset (4) Serum-“All” Subset 

Figure 5 - Fold-change range of the proteins scored higher than one for each subset including all types of 
atrial fibrillation (AF). The median fold-change of each protein is represented. 1) Atrial appendages-“All”
subset; 2) Whole blood-“All” subset; 3) Plasma-“All” subset; 4) Serum-“All” subset. Abbreviations: 
ACOT1, Acyl-coenzyme A thioesterase 1; AHSG, Alpha-2-HS-glycoprotein; ANP, Atrial Natriuretic 
Peptide; B-TG, Beta-thromboglobulin; BNP, Brain Natriuretic Peptide; CALR, Calreticulin; CHI3L1, 
Chitinase-3-like protein 1; CPM, Carboxypeptidase M; CRP, C-reactive protein; CST-C, Cystatin-C; CTSK, 
Cathepsin K; DD, D-dimer; DMQH, 5-demethoxyubiquinone hydroxylase, mitochondrial; FIBL-1, Fibulin-
1; GH1, Glutathione hydrolase 1 proenzyme; HBA1, Hemoglobin subunit alpha; ICAM1, Intercellular 
adhesion molecule 1; IL-10, Interleukin-10; IL-18, Interleukin-18; IL-1B, Interleukin-1 beta; ITGAV, 
Integrin alpha-V; KCTD12, BTB/POZ domain-containing protein KCTD12; MMP-9, Matrix 
metalloproteinase-9; MRproANP, Mid-region pro-Atrial Natriuretic Peptide; NDKA, Nucleoside 
diphosphate kinase A; NTANP, N-terminal Atrial Natriuretic Peptide; NTproANP, N-terminal pro-Atrial 
Natriuretic Peptide; NTproBNP, N-terminal pro-Brain Natriuretic Peptide; PG-4, Platelet glycoprotein 4; 
PYGM, Glycogen phosphorylase, muscle form; RLX, Relaxin; RabGDIA, Rab GDP dissociation inhibitor 
alpha; TAGLN, Transgelin; TGF-B-1, Transforming growth factor beta-1; TIMP-1, Metalloproteinase 
inhibitor 1; TNF-B, Lymphotoxin-alpha; TNFRSF11A, Tumor necrosis factor receptor superfamily member 
11A; TNFRSF11B, Tumor necrosis factor receptor superfamily member 11B; TNFSF11, Tumor necrosis 
factor ligand superfamily member 11; TnTc, Troponin T, cardiac muscle; UCH-L1, Ubiquitin carboxyl-
terminal hydrolase isozyme L1. 
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In the plasma-“All” subset, 24/37 and 1/37 scores were computed in the upwards and 

downwards direction, respectively. Of the 24 scores calculated in the upwards direction, 

16 surpassed the established threshold (Supplemental Table 3); the only score computed 

in the direction “down” did not pass the threshold. Every protein/peptide ranked with 𝑑 =

"𝑢𝑝" had a fold-change value/values higher than one [Figure 5 – (3)]. 

When considering “serum” as the sample, 17 scores out of 23 were obtained with 𝑑 =

"𝑢𝑝" and three scores out of 23 with 𝑑 = "𝑑𝑜𝑤𝑛". Only scores computed in the upwards 

direction passed the threshold, specifically eight of the scores (Supplemental Table 4). 

The minimum fold-change values for every protein/peptide, except for Atrial Natriuretic 

peptide (ANP), were higher than one [Figure 5 – (4)] 

The selected top five biomarkers for this disease condition are represented in Table 5. 

4.1.2 Paroxysmal AF Subsets 

Scores were only computed in the upwards direction for the atrial appendages-

paroxysmal AF subset, more specifically seven out of seven and all passed the threshold 

(Supplemental Table 5), and whole blood-paroxysmal AF subset, namely four in four, 

out of which three passed the threshold [NTproBNP – 2.11, Mid-regional pro-Atrial 

Natriuretic peptide (MRproANP) – 1.37 and Cystatin-C (CST-C) - 1.09]. Every 

protein/peptide from both subsets had fold-change values higher than one [Figure 6 – 

(1,2)]. 

Table 5 – Top 5 proteins with the highest biomarker potential for Atrial Fibrillation. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number 

of 
Entries 

Sample 

P22301 
Interleukin-

10 
IL-10 IL10 5.86 Up 2 Plasma 

P36222 
Chitinase-

3-like 
protein 1 

CHI3L1 CHI3L1 2.54 Up 2 Plasma 

- 
Brain 

Natriuretic 
Peptide 

BNP NPPB 2.34 Up 2 Serum 

- 

N-terminal 
pro-Brain 
Natriuretic 

Peptide 

NTproBNP NPPB 2.33 Up 10 Plasma 

- 
Brain 

Natriuretic 
Peptide 

BNP NPPB 2.22 Up 17 Plasma 
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When considering plasma samples and paroxysmal AF as the condition, eight out of 

13 proteins/peptides were ranked in the direction “up”, with six scores passing the 

threshold, and one protein was ranked in the opposite, with the corresponding score 

passing the threshold (Supplemental Table 6). The fold-change range is represented in 

Figure 6 – (3). All fold-change values were higher than one for the proteins/peptides 

(1) Atrial Appendages-Paroxysmal 
AF Subset 

(2) Whole Blood-Paroxysmal AF 
Subset 

(3) Plasma-Paroxysmal AF (4) Serum-Paroxysmal Subset 

Figure 6 - Fold-change range of the proteins scored higher than one for each subset with paroxysmal atrial 
fibrillation (AF) as the disease condition. The median fold-change of each protein is represented. 1) Atrial 
appendages-paroxysmal AF subset; 2) Whole blood-paroxysmal AF subset; 3) Plasma-paroxysmal AF
subset; 4) Serum-paroxysmal AF subset. Abbreviations: ANP, Atrial Natriuretic Peptide; BNP, Brain 
Natriuretic Peptide; CALR, Calreticulin; CRP, C-reactive protein; CST-C, Cystatin-C; GDF-15, 
Growth/differentiation factor 15; HBA1, Hemoglobin subunit alpha; IL-18, Interleukin-18; ITGAV, 
Integrin alpha-V; MRproANP, Mid-region pro-Atrial Natriuretic Peptide; NRG1, neuregulin-1; 
NTproANP, N-terminal pro-Atrial Natriuretic Peptide; NTproBNP, N-terminal pro-Brain Natriuretic 
Peptide; RETN, Resistin; RLX, Relaxin; SAA1, Serum amyloid A-1 protein; TGF-B-1, Transforming 
growth factor beta-1; TIMP-2, Metalloproteinase inhibitor 2; TIMP-4, Metalloproteinase inhibitor 4; 
TNF-A, Tumor necrosis factor; TNF-B, Lymphotoxin-alpha; TNFRSF11A, Tumor necrosis factor 
receptor superfamily member 11A; TNFRSF11B, Tumor necrosis factor receptor superfamily member 
11B; TNFSF11, Tumor necrosis factor ligand superfamily member 11; U-II, Urotensin-2; VCAM-1, 
Vascular cell adhesion protein 1. 
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scored in the direction “up” and the fold-change of the protein scored in the direction 

“down” was lower than one. 

In the serum-paroxysmal AF dataset, 30/42 and 2/42 scores were calculated in the “up” 

and “down” directions, respectively. With 𝑑 = "𝑢𝑝" six scores surpassed the threshold 

and with 𝑑 = "𝑑𝑜𝑤𝑛" no score passed the minimum value (Supplemental Table 7). All 

proteins/peptides had fold-change values higher than one [Figure 6 – (4)]. 

4.1.3 Persistent AF Subsets 

Regarding the atrial appendages-persistent AF subset, 23/30 proteins were ranked when 

𝑑 = "𝑢𝑝", with 20 scores passing the threshold, and four proteins were ranked when 𝑑 =

"𝑑𝑜𝑤𝑛", with all scores passing the threshold (Supplemental Table 8). The proteins 

scored in the direction “down” only had one entry in the subset, which was defined as 

underexpressed (fold-change lower than one), and the proteins scored in the opposite 

direction only had fold-change values higher than one [Figure 7 – (1)]. 

In the whole blood-persistent AF subset, scores were only computed in the direction 

“up” and all five are higher than one (Supplemental Table 9). Every protein/peptide, 

except for CRP, was only present once in the subset but all fold-changes were higher than 

one [Figure 7 – (2)]. 

As for the plasma-persistent AF subset, 9/16 scores and 2/16 scores were computed in 

the “up” and “down” directions, respectively, and every score passed the threshold 

(Supplemental Table 10). The proteins/peptides which were scored with 𝑑 = "𝑑𝑜𝑤𝑛" 

only had one entry each in the subset and a corresponding fold-change value lower than 

one. However, one protein and two peptides, namely Tissue Factor (TF), NTproBNP and 

ANP, which were scored in the direction “up”, had fold-changes ranging from values 

lower than one to values higher than one [Figure 7 – (3)]. 

In the serum-persistent AF subset, out of 26 only one score was calculated in the 

direction “down” and 16/26 were calculated in the opposite direction. The first passed the 

threshold and so did six of the scores computed in the direction “up” (Supplemental 

Table 11). The proteins/peptides which were ranked in the upwards direction had 

minimum fold-change values higher than one, except BNP, whose minimum fold-change 

value was lower than one [Figure 7 – (4)].  
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(1) Atrial Appendages-Persistent 
AF Subset 

(2) Whole Blood- Persistent AF 
Subset 

(3) Plasma-Persistent AF Subset (4) Serum-Persistent AF Subset 

Figure 7 - Fold-change range of the proteins scored higher than one for each subset with persistent atrial 
fibrillation (AF) as the disease condition. The median fold-change of each protein is represented. 1) Atrial 
appendages-persistent AF subset; 2) Whole blood-persistent AF subset; 3) Plasma-persistent AF subset; 
4) Serum-persistent AF subset. Abbreviations: ACE, Angiotensin-converting enzyme; ACTN2, Alpha-
actinin-2; ADIPOQ, Adiponectin; ANP, Atrial Natriuretic Peptide; BNP, Brain Natriuretic Peptide; 
CALR, Calreticulin; CFL1, Cofilin-1; CHI3L1, Chitinase-3-like protein 1; CRP, C-reactive protein; CST-
C, Cystatin-C; DDDCoAI, Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial; HBA1, 
Hemoglobin subunit alpha; HGF, Hepatocyte growth factor; ITGAV, Integrin alpha-V; K1, Keratin, type 
II cytoskeletal 1; MADH2, Mothers against decapentaplegic homolog 2; MMP-1, Interstitial collagenase; 
MMP-2, 72 kDa type IV collagenase; MMP-9, Matrix metalloproteinase-9; MRproANP, Mid-region pro-
Atrial Natriuretic Peptide; MYL3, Myosin light chain 3; NDUFA10, NADH dehydrogenase ubiquinone 
1 alpha subcomplex subunit 10, mitochondrial; NDUFA13, NADH dehydrogenase ubiquinone 1 alpha 
subcomplex subunit 13; NTproANP, N-terminal pro-Atrial Natriuretic Peptide; NTproBNP, N-terminal 
pro-Brain Natriuretic Peptide; PEBP-1, Phosphatidylethanolamine-binding protein 1; PPIaseA, Peptidyl-
prolyl cis-trans isomerase A; PRDX1, Peroxiredoxin-1; PTX3, Pentraxin-related protein PTX3; RETN, 
Resistin; RLX, Relaxin; SELE, E-selectin; SELP, P-selectin; SOD1, Superoxide dismutase Cu-Zn; 
TDPRDX, Thioredoxin-dependent peroxide reductase, mitochondrial; TF, Tissue factor; TGF-B-1, 
Transforming growth factor beta-1; TIMP-1, Metalloproteinase inhibitor 1; TNF-B, Lymphotoxin-alpha; 
TNFRSF11A, Tumor necrosis factor receptor superfamily member 11A; TNFRSF11B, Tumor necrosis 
factor receptor superfamily member 11B; TNFRSF6, Tumor necrosis factor receptor superfamily member 
6; TNFSF11, Tumor necrosis factor ligand superfamily member 11; TnIc, Troponin I, cardiac muscle; 
VDAC-2, Voltage-dependent anion-selective channel protein 2; VEGF-A, Vascular endothelial growth 
factor A; VEGFR-1, Vascular endothelial growth factor receptor 1; VLCAD, Very long-chain specific 
acyl-CoA dehydrogenase, mitochondrial. 
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4.1.4 Permanent AF Subsets 

In the atrial appendages dataset, scores were computed for every protein belonging to 

the subset (15) in the direction “up”, with nine passing the threshold (Supplemental 

Table 12). All entries in the subset regarding these proteins had corresponding fold-

change values higher than one, except one entry regarding M-CK [Figure 8 – (1)]. In the 

opposite direction, only Desmin (DES) was ranked, but the score did not pass the 

threshold. 

(1) Atrial Appendages-Permanent AF 
Subset 

(2) Whole Blood-Permanent AF 
Subset 

(3) Plasma-Permanent AF (4) Serum-Permanent AF 
Subset 

Figure 8 - Fold-change range of the proteins scored higher than one for each subset with permanent atrial 
fibrillation (AF) as the disease condition. The median fold-change of each protein is represented. 1) Atrial 
appendages-permanent AF subset; 2) Whole blood-permanent AF subset; 3) Plasma-permanent AF subset; 
4) Serum-permanent AF subset. Abbreviations: ACTC1, Actin, alpha cardiac muscle 1; B-TG, Beta-
thromboglobulin; CHI3L1, Chitinase-3-like protein 1; CRP, C-reactive protein; CST-C, Cystatin-C; DD, 
D-dimer; ECoAh, Enoyl-CoA hydratase, mitochondrial; Hsp60, 60 kDa heat shock protein, mitochondrial; 
M-CK, Creatine kinase M-type; MRproANP, Mid-region pro-Atrial Natriuretic Peptide; MYL4, Myosin 
light chain 4; NTproBNP, N-terminal pro-Brain Natriuretic Peptide; PAI, Plasminogen activator inhibitor 
1; PDHE1-B, Pyruvate dehydrogenase E1 component subunit beta, mitochondrial; PF-4, Platelet factor 4; 
TF, Tissue factor; TM, Thrombomodulin; TMSB, Tropomyosin beta chain; TPM3, Tropomyosin alpha-3 
chain; Vwf, von Willebrand factor; t-PA, Tissue-type plasminogen activator. 
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In the remaining three subsets, no score was computed in the downwards direction. 

Nine out of 11 scores were calculated in the blood-permanent AF subset and all passed 

the threshold (Supplemental Table 13), eight in ten in the plasma-permanent AF subset, 

with six passing the threshold (Supplemental Table 14), and one out of two in the serum-

permanent subset, which passed the threshold (CRP - 1.03). In the whole blood subset, 

CRP had a minimum fold-change value lower than one [Figure 8 – (2)], while in the 

plasma and serum subsets all fold-change values were higher than one [Figure 8 – (3,4)].  

4.1.5 Top Five Biomarkers for Paroxysmal, Persistent and Permanent 

AF 

Figures 9-11 show the proteins, which were highly-scored by the simple scoring 

approach, in comon between the paroxysmal, persistent and permanent AF types and 

concerning whole blood, plasma and serum as the major sample characteristic, 

respectively. 

The top five selected biomarkers for the conditions paroxysmal, persistent and 

permanent AF are represented in Tables 6-8, respectively. No protein belonging to one 

of the top five was highly-scored in any of the other two conditions. 

  

Figure 9 – Potential biomarkers only belonging to paroxysmal, persistent or permanent AF and whole 
blood as the sample. 

Elements only in 
Persistent: 

P-selectin (SELP). 

Elements only in 
Permanent: 

D-dimer (DD); 
Tissue-type 

plasminogen activator 
(t-PA); 

von Willebrand factor 
(VWF); 

Plasminogen activator; 
inhibitor 1 (PAI); 

Thrombomodulin (TM). 

Whole Blood 
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Table 6 – Top 5 proteins with the highest biomarker potential for Paroxysmal Atrial Fibrillation. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number of 

Entries 
Sample 

Q14116 Interleukin-18 IL-18 IL18 1.78 Up 1 Serum 
- Apelin-12 APLN12 - 1.63 Down 1 Plasma 

P19320 
Vascular cell 

adhesion 
protein 1 

VCAM-1 VCAM1 1.55 Up 1 Plasma 

P0DJI8 
Serum 

amyloid A-1 
protein 

SAA1 SAA1 1.45 Up 1 Serum 

O95399 Urotensin-2 U-II UTS2 1.44 Up 1 Plasma 

Figure 10 – Potential biomarkers only belonging to paroxysmal, persistent or permanent AF and plasma 
as the sample. 

Elements only in Persistent 
AF: 

 Vascular Endothelial Growth 
Factor Receptor 1 (VEGFR-1); 

 Vascular Endothelial Growth 
Factor A (VEGF-A); 

 Metalloproteinase inhibitor 1 
(TIMP-1); 

 Interstitial collagenase (MMP-
1); 

Adiponectin (ADIPOQ). 

Elements only in Permanent 
AF: 

 Beta-thromboglobulin (B-TG); 
 Platelet factor 4 (PF-4); 
 C-reactive protein (CRP). 

Elements only in Paroxysmal 
AF: 

 Apelin-12 (APLN12); 
 Vascular cell adhesion protein 

1 (VCAM-1); 
 Urotensin 2 (U-II). 

Plasma 
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Table 7 – Top 5 proteins with the highest biomarker potential for Persistent Atrial Fibrillation. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number 

of 
Entries 

Sample 

P17948 

Vascular 
endothelial 

growth 
factor 

receptor 1 

VEGFR-1 FLT1 7.16 Down 2 Plasma 

- 
Atrial 

Natriuretic 
Peptide 

ANP NPPA 3.56 Up 1 Serum 

P15692 

Vascular 
endothelial 

growth 
factor A 

VEGF-A VEGFA 2.83 Up 2 Plasma 

P26022 

Pentraxin-
related 
protein 
PTX3 

PTX3 PTX3 1.96 Up 4 Serum 

P14210 
Hepatocyte 

growth 
factor 

HGF HGF 1.60 Up 3 Serum 

Figure 11 – Potential biomarkers only belonging to paroxysmal, persistent or permanent AF and serum as 
the sample. 

Elements only in Persistent AF: 
 Atrial Natriuretic peptide (ANP): 
 Pentraxin-related protein PTX3 

(PTX3); 
 Hepatocyte growth factor (HGF); 
 Matrix metalloproteinase-9 

(MMP-9); 
 Tumor necrosis factor receptor 

superfamily member 6 
(TNFRSF6); 

 E-selectin (SELE); 
 72 kDa type IV collagenase 

(MMP-2). Elements only in Permanent AF: 
 C-reactive protein (CRP). 

Elements only in Paroxysmal AF: 
 Interleukin-18 (IL-18); 
 Serum amyloid A-1 protein 

(SAA1); 
 Growth/differentiation factor 15 

(GDF-15); 
 Metalloproteinase inhibitor 4 

(TIMP-4); 
 Tumor necrosis factor (TNF-A); 
 Neuroregulin-1 (NRG1) 
 Tissue inhibitor metalloproteinase-

2 (TIMP-2). 

Serum 
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4.1.6 Postoperative new-onset AF Subsets 

Only Triiodothyronine (TH3) had a score computed (1.17) in the atrial appendages-

postoperative new-onset AF subset of a total of five proteins, specifically in the direction 

“down”, and the score passed the threshold. 

The whole blood and the plasma-postoperative new-onset AF subsets only had scores 

computed when 𝑑 = "𝑢𝑝". In the blood subset both peptides were ranked, namely N-

terminal Atrial Natriuretic peptide (NTANP) and BNP, with 1.67 and 1.40 as the 

respective scores. Nine proteins/peptides out of 15 were ranked in the plasma subset, with 

four passing the threshold (Supplemental Table 15). 

Regarding the serum-postoperative new-onset AF dataset, five in 32 scores (16 in each 

direction) were calculated; one in the downwards direction, which did not pass the 

threshold and four in the upwards direction, which passed the threshold (Supplemental 

Table 16).  

Figure 12 shows that every fold-change value for every protein/peptide, whose score 

passed the threshold, in the four subsets was higher than one. 

The selected top five biomarkers for this disease condition are represented in Table 9. 

Table 8 – Top 5 proteins with the highest biomarker potential for Permanent Atrial Fibrillation. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number 

of 
Entries 

Sample 

- D-dimer DD - 2.71 Up 1 Blood 

P00750 
Tissue-type 
plasminogen 

activator 
t-PA PLAT 2.08 Up 1 Blood 

- 
Beta-

thromboglobulin 
B-TG PPBP 1.96 Up 1 Plasma 

P04275 
von Willebrand 

factor 
VWF VWF 1.76 Up 1 Blood 

P02776 Platelet factor 4 PF-4 PF4 1.70 Up 1 Plasma 
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(1) Atrial Appendages-
Postoperative new-onset AF 

(2) Whole Blood-Postoperative 
new-onset AF Subset 

(3) Plasma-Postoperative new-
onset AF Subset 

(4) Serum-Postoperative new-
onset AF Subset 

Figure 12 - Fold-change range of the proteins scored higher than one for each subset with postoperative 
new-onset atrial fibrillation (AF) as the disease condition. The median fold-change of each protein is 
represented. 1) Atrial appendages-postoperative new-onset AF subset; 2) Whole blood-postoperative 
new-onset AF subset; 3) Plasma-postoperative new-onset AF subset; 4) Serum-postoperative new-onset 
AF subset. Abbreviations: ANP, Atrial Natriuretic Peptide; BNP, Brain Natriuretic Peptide; GDF-15, 
Growth/differentiation factor 15; NTANP, N-terminal Atrial Natriuretic Peptide; NTproBNP, N-terminal 
pro-Brain Natriuretic Peptide; TH3, Triiodothyronine; TM, Thrombomodulin; TNFRSF11B, Tumor 
necrosis factor receptor superfamily member 11B; TNFSF11, Tumor necrosis factor ligand superfamily 
member 11; TnIc, Troponin I, cardiac muscle. 
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4.1.7 Postoperative AF Recurrence Subsets 

No score was computed in the direction “down” in the atrial appendages, whole blood 

and serum-postoperative AF recurrence subsets. Three of five scores were computed in 

the atrial appendages-postoperative AF recurrence subset and all three passed the defined 

minimum value [CRP - 1.59, Tumor necrosis factor ligand superfamily member 11 

(TNFSF11) - 1.57 and Tumor necrosis factor receptor superfamily member 11A 

(TNFRSF11A) - 1.13]. The fold-change values of the corresponding proteins are all 

higher than one [Figure 13 – (1)]. 

In the whole blood-postoperative AF recurrence, two out of three proteins were ranked 

but only Hemoglobin subunit alpha (HBA1) ’s score, namely 1.06, passed the threshold. 

The fold-change value is represented in Figure 13 – (2).  

As for the plasma-postoperative AF recurrence, 11/15 proteins were scored in the 

direction “up”, but only seven passed the threshold, and one was scored in the direction 

“down” and passed the threshold (Supplemental Table 17). Nonetheless, CRP, which 

was scored in the upwards direction, has a minimum fold-change value lower than one, 

while the remaining proteins/peptides scored in the same direction only present fold-

change values higher than one [Figure 13 – (3)]. 

In the serum-postoperative AF recurrence dataset, seven out of 12 scores were 

calculated and six reached the threshold (Supplemental Table 18). The fold-change 

values of the corresponding proteins/peptides are all higher than one [Figure 13 – (4)]. 

The selected top five biomarkers for this disease condition are represented in Table 

10.  

Table 9 – Top 5 proteins with the highest biomarker potential for Postoperative New-onset Atrial Fibrillation. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number 

of 
Entries 

Sample 

O14788 
Tumor necrosis factor 

ligand superfamily 
member 11 

TNFSF11 TNFSF11 2.71 Up 1 Serum 

- 
N-terminal Atrial 

Natriuretic peptide 
NTANP NPPA 1.67 Up 1 Blood 

- 
N-terminal pro-Brain 
Natriuretic Peptide 

NTproBNP NPPB 1.60 Up 2 Serum 

Q99988 
Growth/differentiation 

factor 15 
GDF-15 GDF15 1.56 Up 1 Plasma 

- 
Atrial Natriuretic 

Peptide 
ANP NPPA 1.44 Up 6 Plasma 
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4.1.8 Biological Functions 

The biological functions associated with the highly-scored proteins/peptides were 

retrieved; proteins/peptides were divided into 10 groups based on their major biological 

function (Table 11): metabolism, regulation of ion molecules handling/concentration, 

atrial contraction and muscle fibres formation/organization, fibrosis, inflammation, 

(1) Atrial Appendages-
Postoperative AF Recurrence 

Subset 

(2) Whole Blood-Postoperative 
AF Recurrence Subset 

(3) Plasma-Postoperative AF 
Recurrence Subset 

(4) Serum- Postoperative AF 
Recurrence Subset 

Figure 13 - Fold-change range of the proteins scored higher than one for each subset with postoperative 
atrial fibrillation (AF) recurrence as the disease condition. The median fold-change of each protein is 
represented. 1) Atrial appendages-postoperative AF recurrence AF subset; 2) Whole blood-postoperative 
AF recurrence AF subset; 3) Plasma-postoperative AF recurrence AF subset; 4) Serum-postoperative AF 
recurrence AF subset. Abbreviations: APLN, Apelin; CRP, C-reactive protein; GH1, Glutathione 
hydrolase 1 proenzyme; HBA1, Hemoglobin subunit alpha; IL-6, Interleukin-6; MMP-2, 72 kDa type IV 
collagenase; MRproAD, mid-regional pro-adrenomedullin; NTproANP, N-terminal pro-Atrial 
Natriuretic Peptide; NTproBNP, N-terminal pro-Brain Natriuretic Peptide; SDF-1, Stromal cell-derived 
factor 1; TIMP-2, Metalloproteinase inhibitor 2; TNFRSF11A, Tumor necrosis factor receptor 
superfamily member 11A; TNFRSF11B, Tumor necrosis factor receptor superfamily member 11B; 
TNFSF11, Tumor necrosis factor ligand superfamily member 11; proANP, pro-Atrial Natriuretic 
Peptide. 



 

49 
 

fibrinolysis/fibrinogenesis and coagulation, vasoconstriction/vasodilation, oxidative 

stress, apoptosis and others. 

 

  

Table 10 – Top 5 proteins with the highest biomarker potential for Postoperative Atrial Fibrillation Recurrence. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number 

of 
Entries 

Sample 

O14788 

Tumor necrosis 
factor ligand 
superfamily 
member 11 

TNFSF11 TNFSF11 2.36 Up 1 Serum 

- 
N-terminal pro-
Brain Natriuretic 

Peptide 
NTproBNP NPPB 1.92 Up 2 Plasma 

P02741 
C-reactive 

protein 
CRP CRP 1.66 Up 7 Plasma 

P02741 
C-reactive 

protein 
CRP CRP 1.59 Up 1 

Atrial 
Appendages 

O14788 

Tumor necrosis 
factor ligand 
superfamily 
member 11 

TNFSF11 TNFSF11 1.57 Up 1 
Atrial 

Appendages 

Table 11 – Distribution of the highly-scored proteins according to their major biological function. 
Protein Biological Function 

 Pyruvate dehydrogenase E1 component subunit beta, mitochondrial (PDHE1-B) 

Metabolism 

 Enoyl CoA hydratase (ECoAh) 
 Adiponectin (ADIPOQ) 
 NADH dehydrogenase ubiquinone 1 alpha subcomplex subunit 13 (NDUFA13) 
 Very long-chain specific acyl-CoA dehydrogenase, mitochondrial (VLCAD) 
 NADH dehydrogenase ubiquinone 1 alpha subcomplex subunit 10, mitochondrial 

(NDUFA10) 
 Acyl-coenzyme A thioesterase 1 (ACOT1) 
 Glutathione hydrolase 1 proenzyme (GH1) 
 Creatine Kinase type M (M-CK) 
 Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial (DDDCoAI) 
 Glycogen phosphorylase, muscle form (PYGM) 
 Nucleoside diphosphate kinase A (NDKA) 
 Triiodothyronine (TH3) 

Regulation of Ion 
Molecules 

Handling/Concentration 

 Fibulin-1 (FIBL-1) 
 Calreticulin (CALR) 
 Integrin alpha-V (ITGAV) 
 Stromal cell-derived factor-1 (SDF-1) 
 Voltage-dependent anion-selective channel protein 2 (VDAC-2) 
 BTB/POZ domain-containing protein KCTD12 (KCTD12) 
 Rab GDP dissociation inhibitor alpha (RabGDIA) 
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Table 11 – Distribution of the highly-scored proteins according to their major biological function (continued). 
Protein Biological Function 

 Transgelin (TAGLN) 

Atrial Contraction and 
Muscle Fibres 

Formation/Organization 

 Tropomyosin alpha-3 chain (TPM3) 
 Tropomyosin beta chain (TMSB) 
 Myosin light chain 4 (MYL4) 
 Actin, alpha cardiac muscle 1 (ACTC1) 
 Apelin-12 (APLN12) 
 Apelin (APLN) 
 Troponin I, cardiac muscle (TnIc) 
 Troponin T, cardiac muscle (TnT 
 Alpha-actinin-2 (ACTN2) 
 Cofilin-1 (CFL-1) 
 Myosin light chain 3 (MYL3) 
 Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1) 
 Keratin, type II cytoskeletal 1 (K1) 
 Metalloproteinase inhibitor 2 (TIMP-2) 

Fibrosis 

 Metalloproteinase inhibitor 4 (TIMP-4) 
 Transforming growth factor beta-1 (TGF-B-1) 
 Growth/differentiation factor 15 (GDF-15) 
 Mothers against decapentaplegic homolog 2 (MADH2) 
 Brain Natriuretic peptide (BNP) 
 N-terminal Brain Natriuretic peptide (NTproBNP) 
 Pro-Brain Natriuretic peptide (proBNP) 
 Relaxin (RLX) 
 Tumor necrosis factor beta (TNF-B) 
 Peroxiredoxin-1 (PRDX1) 

Oxidative Stress 

 Superoxide dismutase Cu-Zn (SOD1) 
 Thioredoxin-dependent peroxide reductase, mitochondrial 

(TDPRDX) 
 5-demethoxyubiquinone hydroxylase, mitochondrial (DMQH) 
 Ceruloplasmin (CP) 
 Cystatin-C (CST-C) 

Apoptosis 
 Tumor necrosis factor receptor superfamily 6 (TNFRSF6) 
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Table 11 – Distribution of the highly-scored proteins according to their major biological function (continued). 
Protein Biological Function 

 Resistin (RETN) 

Inflammation 

 Serum amyloid A-1 protein (SAA1) 
 Interleukin-1 beta (IL-1B) 
 Tumor necrosis factor receptor superfamily member 11A (TNFRSF11A) 
 Tumor necrosis factor receptor superfamily member 11B (TNFRSF11B) 
 Tumor necrosis factor ligand superfamily member 11 
 C-reactive protein (CRP) 
 Chitinase-3-like protein 1 (CHI3L1) 
 Platelet factor 4 (PF-4 
 P-selectin (SELP) 
 Pentraxin-related protein PTX3 (PTX3) 
 Alpha-2-HS-glycoprotein (AHSG) 
 Vascular endothelial growth factor A (VEGF-A) 
 Vascular endothelial growth factor receptor 1 (VEGFR-1) 
 Vascular cell adhesion protein 1 (VCAM-1) 
 Interleukin-18 (IL-18) 
 Tumor necrosis factor A (TNF-A) 
 Interleukin-10 (IL-10) 
 Interleukin-6 (IL-6) 
 Platelet glycoprotein 4 (PG-4) 
 Intercellular adhesion molecule 1 (ICAM-1) 
 D-dimer (DD) 

Fibrinolysis/Fibrinogenesis 
and Coagulation 

 Plasminogen activator inhibitor 1 (PAI) 
 Beta-thromboglobulin (B-TG) 
 Von Willebrand factor (VWF) 
 Tissue factor (TF) 
 Thrombomodulin (TM) 
 Urotensin-2 (U-II) 

Vasoconstriction/vasodilation 

 Angiotensin-converting enzyme (ACE) 
 Mid-region pro-Adrenomedullin (MRproAD) 
 Atrial Natriuretic peptide (ANP) 
 N-terminal Atrial Natriuretic peptide (NTANP) 
 N-Terminal pro-Atrial Natriuretic peptide (NTproANP) 
 Mid-region pro-Atrial Natriuretic peptide (MRproANP) 
 60 kDa heat shock protein, mitochondrial (Hsp60) 

Others 

 Heat shock protein beta-1 (HspB1) 
 Peptidyl-prolyl cis-trans isomerase A (PPIaseA) 
 Mucin-16 (MUC-16)  
 Hemoglobin subunit alpha (HBA1) 
 Neuregulin-1 (NRG1) 
 Carboxypeptidase M (CPM) 
 E-selectin (SELE) 
 Hepatocyte growth factor (HGF) 
 Phosphatidylethanolamine-binding protein 1 (PEBP-1) 
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4.2 Bootstrap  
Some subsets were not sufficiently large or had very few proteins with very few entries 

each for the bootstrap with a 𝑝 of 50% to be successfully applied in either direction, 

namely the blood subsets with paroxysmal AF, persistent AF or permanent AF as the 

disease conditions, the atrial appendages and blood subsets with postoperative new-onset 

AF and postoperative AF recurrence as the conditions, the serum-permanent AF subset 

and the serum-postoperative new-onset AF subset. The bootstrap was applied with a 𝑝 of 

75% to the blood subsets with paroxysmal AF, persistent AF or permanent AF as the 

disease conditions and the results are presented further ahead. The remaining subsets had 

very few entries for a bootstrap method to be applied, regardless of the value of 𝑝. The 

atrial appendages and blood-postoperative AF recurrence subsets, the blood-

postoperative new-onset AF and the serum-permanent AF subsets had proteins which 

were scored by the simple scoring approach in the direction “up” but not in the direction 

“down”. However, they only have 2-3 entries and, thus, the bootstrap is not applied in 

these cases. The atrial appendages-postoperative new-onset AF subset had one protein 

scored in the direction “down”, but this protein was only represented by one entry and, as 

such, the bootstrap was not applied. 

4.2.1 Bootstrap with 𝒑 = 𝟓𝟎% 

4.2.1.1 “All” Subsets – First-diagnosed, Paroxysmal, Persistent, Long-standing 

Persistent and Permanent AF 

Regardless of the sample, all subsets respecting to the condition “All” were sufficiently 

large for the bootstrap with a 𝑝 of 50% to be applied in the direction “up”. 

In the results of the bootstrap approach applied to the atrial appendages-“All” subset, 

seven proteins were successfully scored but only six had a mean score higher than one. 

The proteins with a mean score higher than the threshold were also highly-scored with 

the scoring approach without iterations (Supplemental Table 19). All proteins defined 

as underexpressed had very few entries in the subset, thus the bootstrap was not applied 

in the direction “down”. The range of scores for each protein is represented in Figure 14 

– (1). The minimum score for every protein is zero, which means that, for each protein, 

no entry or only “unchanged entries” were selected in at least one iteration. 

As for the whole blood-“All” subset, only two peptides [NTproBNP – 2.20 and 

MRproANP – 1.31] had a mean score higher than one, specifically in the direction “up”. 

The same peptides were also highly-scored with the simple scoring approach. Figure 14 
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– (2) shows the score range of the two proteins; each score range started at zero, which 

indicates that, for each protein, no entry was selected in at least one entry for the final 

subset. There was only one protein scored with 𝑑 = "𝑑𝑜𝑤𝑛" by the simple scoring 

approach and it was only represented by one entry in the subset. Likewise, the bootstrap 

was not applied in the direction “down”. 

(1) Atrial Appendages-“All” 
Subset (2) Whole Blood-“All” Subset 

(3) Plasma-“All” Subset (4) Serum-“All” Subset 

Figure 14  - Score range of the proteins with a mean score higher than one for the subsets with “All” as 
the disease condition. The mean score of each protein is represented. 1) Atrial appendages-“All” AF subset; 
2) Whole blood-“All” subset; 3) Plasma-“All” subset; 4) Serum-“All” subset. Abbreviations: AHSG, 
Alpha-2-HS-glycoprotein; ANP, Atrial Natriuretic Peptide; B-TG, Beta-thromboglobulin; BNP, Brain 
Natriuretic Peptide; CALR, Calreticulin; CHI3L1, Chitinase-3-like protein 1; CRP, C-reactive protein; 
CTSK, Cathepsin K; DD, D-dimer; DMQH, 5-demethoxyubiquinone hydroxylase, mitochondrial; ICAM1, 
Intercellular adhesion molecule 1; IL-10, Interleukin-10; IL-18, Interleukin-18; ITGAV, Integrin alpha-V; 
KCTD12, BTB/POZ domain-containing protein KCTD12; MMP-9, Matrix metalloproteinase-9; 
MRproANP, Mid-region pro-Atrial Natriuretic Peptide; NTproANP, N-terminal pro-Atrial Natriuretic 
Peptide; NTproBNP, N-terminal pro-Brain Natriuretic Peptide; RLX, Relaxin; TF, Tissue factor; TGF-B-
1, Transforming growth factor beta-1; TNFRSF11A, Tumor necrosis factor receptor superfamily member 
11A; TNFRSF11B, Tumor necrosis factor receptor superfamily member 11B; TNFSF11, Tumor necrosis 
factor ligand superfamily member 11. 
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In the plasma-“All” subset, 11 scores passed the threshold with 𝑑 = "𝑢𝑝" and the 

respective proteins were also ranked as potential biomarkers in the previous section, 

except for TF (Supplemental Table 20). The score range is represented in Figure 14 – 

(3). The minimum score for every protein was zero, which means that, for each protein, 

no entry, only “unchanged entries” or only entries defined as “N/A” were selected in at 

least one iteration. There was only one protein, which only had one entry in the subset, 

whose score was calculated with the scoring approach without iterations and with 𝑑 =

"𝑑𝑜𝑤𝑛". Thus, the bootstrap was not applied in the direction “down”. 

In the serum-“All” subset, five scores passed the threshold (Supplemental Table 21), 

specifically in the direction “up”, and the respective proteins also had scores calculated 

with the simple scoring approach higher than one. The range of scores of the bootstrap 

method is represented in Figure 14 – (4). The minimum score for each protein was zero, 

which indicates that, for each protein, no entries, only entries defined as unchanged or 

“N/A” or, in the case of ANP, only the entry defined as “underexpressed” were selected 

for the final subset. No score passed the threshold with 𝑑 = "𝑑𝑜𝑤𝑛".  

4.2.1.2 Paroxysmal AF Subsets 

In the atrial appendages-paroxysmal AF subset, six proteins had a computed score 

higher than one in the direction “up” (Supplemental Table 22). The same proteins were 

also highly-scored by the simple approach and only CRP’s score did not pass the 

threshold after the bootstrap. No protein was scored with 𝑑 = "𝑑𝑜𝑤𝑛" by the simple 

scoring method, so the bootstrap method was not applied in this direction. 

In the plasma-paroxysmal AF subset, four scores were higher than one (Supplemental 

Table 23) and two did not pass the threshold. The proteins, whose score passed the 

threshold in the bootstrap system, were also considered potential biomarkers according 

to the simple scoring approach. There was only one protein scored by the simple scoring 

algorithm in the direction “down” and it was only represented by one entry; thus, the 

bootstrap was not applied in the direction “down”.  

In both subsets, each score range started at zero [Figure 15 – (1,2)], which indicates 

that, for each protein, no entry or only unchanged entries were selected in at least one of 

the iterations. 

As for the serum-paroxysmal AF subset’s results, no mean score passed the threshold 

in the direction “up”. Additionally, there were only two proteins which were scored by 
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the simple scoring method in the direction “down”, but scores did not pass the threshold. 

Hence, the bootstrap was not applied in this direction. 

4.2.1.3 Persistent AF Subsets 

Regardless of the sample, there were very few proteins scored in the direction “down”, 

thus the bootstrap was not applied with 𝑑 = "𝑑𝑜𝑤𝑛" 

In the atrial appendages-persistent AF dataset, 18 scores passed the threshold 

(Supplemental Table 24) and the corresponding proteins also had scores higher than one 

in the previous section. The minimum score computed for each protein was zero [Figure 

16 – (1)], which means that, in at least one iteration, no entry was selected for each 

protein. 

In the plasma-persistent AF subset, five proteins had an average score higher than one 

(Supplemental Table 25) and the same proteins also had high scores derived from the 

simple scoring calculation. Additionally, the minimum score found in the iterations for 

every protein was zero [Figure 16 – (2)], indicating that no entry or only entries defined 

as “N/A” were selected for each protein in at least one iteration. 

As for the serum-persistent AF subset, six proteins had mean scores that passed the 

threshold (Supplemental Table 26). Transforming growth factor beta-1 (TGF-B-1) was 

the only protein which did not have a score, computed with the scoring system without 

iterations, higher than one. The range of scores in the multiple iterations is shown in 

(1) Atrial Appendages-Paroxysmal AF (2) Plasma-Paroxysmal AF Subset 

Figure 15 – Score range of the proteins with a mean score higher than one for the subsets with paroxysmal 
atrial fibrillation (AF) as the disease condition. The mean score of each protein is represented. 1) Atrial 
appendages-paroxysmal AF subset; 2) Plasma-paroxysmal AF subset. Abbreviations: ANP, Atrial 
Natriuretic Peptide; BNP, Brain Natriuretic Peptide; CALR, Calreticulin; ITGAV, Integrin alpha-V; 
NTproANP, N-terminal pro-Atrial Natriuretic Peptide; NTproBNP, N-terminal pro-Brain Natriuretic 
Peptide; TGF-B-1, Transforming growth factor beta-1; TNFRSF11A, Tumor necrosis factor receptor 
superfamily member 11A; TNFRSF11B, Tumor necrosis factor receptor superfamily member 11B; 
TNFSF11, Tumor necrosis factor ligand superfamily member 11. 
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Figure 16 – (3). All ranges started at zero, indicating that in at least one iteration no entry 

or only entries defined as “N/A” were selected for the final subset, for each protein. 

  

Figure 16 – Score range of the proteins with a mean score higher than one for the subsets with persistent 
atrial fibrillation (AF) as the disease condition. The mean score of each protein is represented. 1) Atrial 
appendages-persistent AF subset; 2) Plasma-persistent AF subset; 3) Serum-persistent subset.
Abbreviations: ACE, Angiotensin-converting enzyme; ACTN2, Alpha-actinin-2; ANP, Atrial Natriuretic 
Peptide; BNP, Brain Natriuretic Peptide; CALR, Calreticulin; CFL1, Cofilin-1; HGF, Hepatocyte growth 
factor; ITGAV, Integrin alpha-V; MADH2, Mothers against decapentaplegic homolog 2; MYL3, Myosin 
light chain 3; NDUFA13, NADH dehydrogenase ubiquinone 1 alpha subcomplex subunit 13; NTproBNP, 
N-terminal pro-Brain Natriuretic Peptide; PEBP-1, Phosphatidylethanolamine-binding protein 1; PPIaseA, 
Peptidyl-prolyl cis-trans isomerase A; PRDX1, Peroxiredoxin-1; PTX3, Pentraxin-related protein PTX3; 
SOD1, Superoxide dismutase Cu-Zn; TF, Tissue factor; TGF-B-1, Transforming growth factor beta-1; 
TNFRSF11A, Tumor necrosis factor receptor superfamily member 11A; TNFRSF11B, Tumor necrosis 
factor receptor superfamily member 11B; TNFRSF6, Tumor necrosis factor receptor superfamily member 
6; TNFSF11, Tumor necrosis factor ligand superfamily member 11; TnIc, Troponin I, cardiac muscle; 
VEGF-A, Vascular endothelial growth factor A; VLCAD, Very long-chain specific acyl-CoA 
dehydrogenase, mitochondrial. 

(1) Atrial Appendages-Persistent AF (2) Plasma-Persistent AF Subset 

(3) Serum-Persistent AF Subset 
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4.2.1.4 Permanent AF Subsets 

In the atrial appendages-permanent AF subset, ten proteins had a mean score higher 

than one (Supplemental Table 27) in the direction “up” and the same proteins, except 

for Endoplasmic reticulum chaperone BiP (HSPA5), also had high scores calculated with 

the simple scoring formula. The minimum score for every protein was zero [Figure 17 – 

(1)], which means that, for each protein, no entry or only “unchanged entries” were 

selected in at least one iteration. Moreover, the range for HSPA5 varied between zero and 

50 due to the entry with a corresponding fold-change of 52. With 𝑑 = "𝑑𝑜𝑤𝑛", the mean 

score of DES, the only protein belonging to the subset in this condition, did not pass the 

threshold. 

In the plasma-permanent AF dataset, only three proteins had scores which passed the 

threshold [Chitinase-3-like protein 1 (CHI3L1) – 1.65, CRP – 1.11 and NTproBNP – 

1.08]. The same three proteins were also considered potential biomarkers in the previous 

section. The range of scores is represented in Figure 17 – (2) and had a minimum of zero, 

meaning that no entry or only entries defined as unchanged or “N/A” were selected in at 

least one iteration for each protein. No protein was scored with 𝑑 = "𝑑𝑜𝑤𝑛", so the 

bootstrap method was not applied in this direction.  

  

Figure 17 – Score range of the proteins with a mean score higher than one for the subsets with permanent 
atrial fibrillation (AF) as the disease condition. The mean score of each protein is represented. 1) Atrial 
appendages-permanent AF subset; 2) Plasma-permanent AF subset. Abbreviations:  ACTC1, Actin, alpha 
cardiac muscle 1; CHI3L1, Chitinase-3-like protein 1; CRP, C-reactive protein; ECoAh, Enoyl-CoA 
hydratase, mitochondrial; HSPA5, Endoplasmic reticulum chaperone BiP; Hsp60, 60 kDa heat shock 
protein, mitochondrial; M-CK, Creatine kinase M-type; MYL4, Myosin light chain 4; NTproBNP, N-
terminal pro-Brain Natriuretic Peptide; PDHE1-B, Pyruvate dehydrogenase E1 component subunit beta, 
mitochondrial; TMSB, Tropomyosin beta chain; TPM3, Tropomyosin alpha-3 chain. 

(1) Atrial Appendages-Permanent AF (2) Plasma-Permanent AF Subset 



 

58 
 

4.2.1.5 Postoperative new-onset AF Subsets 

Regarding the postoperative new-onset AF condition, the bootstrap system was only 

successfully applied with a 𝑝 of 50% to the plasma subset with 𝑑 = "𝑢𝑝". Three scores 

passed the established threshold [ANP – 1.49, BNP – 1.22 and NTANP – 1.04], out of 

which two of the corresponding proteins (ANP and NTANP) also had high scores 

computed with the simple scoring method. All score ranges started at zero (Figure 18), 

which indicates that no entry or only “unchanged entries” were selected in at least one 

iteration for each protein. No proteins were scored with 𝑑 = "𝑑𝑜𝑤𝑛" by the simple 

scoring algorithm. Hence, the bootstrap was not applied in this direction.  

4.2.1.6 Postoperative AF Recurrence Subsets 

In the plasma-postoperative AF recurrence subset, only two proteins had scores that 

surpassed the threshold (CRP – 1.52 and NTproBNP – 1.42) and they also presented 

scores higher than one calculated with the approach without iterations. After eliminating 

the entries corresponding to proteins which were not scored by the simple scoring 

approach with 𝑑 = "𝑑𝑜𝑤𝑛", the input subset for the bootstrap in this direction only had 

one entry, thus the bootstrap was not applied.  

In the serum-postoperative AF recurrence subset, NTproBNP and TNFSF11 had mean 

scores higher than one, 1.24 and 1.19, respectively. These proteins also had high scores 

calculated with the simple scoring method. No proteins were scored with 𝑑 = "𝑑𝑜𝑤𝑛" by 

the simple scoring algorithm, hence the bootstrap was not applied in this direction. 

Figure 18 – Score range of the proteins with a mean score higher than one for the plasma-postoperative 
new-onset atrial fibrillation (AF) subset. Abbreviations: ANP, Atrial Natriuretic Peptide; BNP, Brain 
Natriuretic Peptide; NTANP, N-terminal Atrial Natriuretic Peptide. 

Plasma-Postoperative New-onset AF 
Subset 
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For both subsets, the minimum score for each protein was zero [Figure 19 – (1,2)], 

which indicates that no entry or only entries defined as unchanged or “N/A” were selected 

in at least one iteration. 

4.2.2 Bootstrap 75% 

As previously mentioned, the bootstrap approach with a 𝑝 of 75% was applied to some 

subsets, more specifically, the blood subsets with paroxysmal AF, persistent AF or 

permanent AF as the disease conditions and the serum-postoperative new-onset AF 

subset. Regardless of the subset, no protein was scored by the simple scoring system in 

the direction “down” and, thus, the bootstrap was not applied in this direction. As such, 

the following results were obtained with 𝑑 = "𝑢𝑝". 

Regarding the whole blood-paroxysmal AF subset, NTproBNP and MRproANP had a 

mean score higher than one (1.62 and 1.02, respectively). These two proteins also had 

high scores computed with the scoring approach without iterations.  

Only four scores passed the threshold in the whole blood-persistent AF dataset 

(Supplemental Table 28) and the corresponding proteins were also considered potential 

biomarkers according to the results obtained with the simple scoring method.  

As for the whole blood-permanent AF subset, eight proteins presented scores higher 

than one (Supplemental Table 29). The same proteins also hade scores that passed the 

threshold in the previous section. 

Figure 19 – Score range of the proteins with a mean score higher than one for the subsets with postoperative 
atrial fibrillation (AF) recurrence as the disease condition. The mean score of each protein is represented. 
1) Plasma-postoperative AF recurrence subset; 2) Serum-postoperative AF recurrence subset. 
Abbreviations: CRP, C-reactive protein; NTproBNP, N-terminal pro-Brain Natriuretic Peptide; TNFSF11, 
Tumor necrosis factor ligand superfamily member 11. 

(1) Plasma-Postoperative AF Recurrence 
Subset 

(2) Serum-Postoperative AF Recurrence 
Subset 
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For the three subsets, each range of scores started at zero [Figure 20 – (1,2,3)], 

indicating that no entry was selected in at least one iteration for each protein. 

Finally, three scores passed the threshold in the serum-postoperative new-onset AF 

[TNFSF11 – 2.09, NTproBNP - 1.51 and Troponin I, cardiac muscle (TnIc) – 1.28] and 

the corresponding proteins were also highly-scored by the method without iterations. The 

minimum score for each protein was zero (Figure 21), indicating that no entry or, in the 

case of TnIc, only “unchanged entries” were selected for the final subset in at least one 

iteration for each protein.  

  

Figure 20 – Score range of the proteins with a mean score higher than one for the subsets with whole blood 
as the sample and paroxysmal, persistent and permanent atrial fibrillation (AF) as the disease condition. The 
mean score of each protein is represented. 1) Whole blood-paroxysmal AF subset; 2) Whole blood-persistent 
AF subset; 3) Whole blood-permanent subset. Abbreviations: CRP, C-reactive protein; DD, D-dimer; 
MRproANP, Mid-region pro-Atrial Natriuretic Peptide; NTproBNP, N-terminal pro-Brain Natriuretic 
Peptide; PAI, Plasminogen activator inhibitor 1; SELP, P-selectin; TM, Thrombomodulin; Vwf, von 
Willebrand factor; t-PA, Tissue-type plasminogen activator. 

(1) Whole Blood-Paroxysmal 
AF Subset 

(2) Whole Blood-Persistent AF 
Subset 

(3) Whole Blood-Permanent AF 
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Serum-Postoperative New-onset AF 
Subset 

Figure 21 - Score range of the proteins with a mean score higher than one for the serum-postoperative new-
onset atrial fibrillation (AF) subset. Abbreviations: NTproBNP, N-terminal pro-Brain Natriuretic Peptide; 
TNFSF11, Tumor necrosis factor ligand superfamily member 11; TnIc, Troponin I, cardiac muscle. 
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5. Discussion  
 

AF’s molecular profiling might improve diagnostic and prognostic disease 

management. Protein biomarkers are important beacons in this process, hence a gauging 

benchmark is required to determine their relative potential. We developed a 

bioinformatics-oriented scoring function aimed at weighing the importance of 

proteins/peptides and mitigating the limitations of the currently known scores. 

5.1 Scoring Approach Performance and Validation 
One of the main issues when choosing a potential biomarker for a given disease is the 

coherence between findings. For instance, CRP was measured in the serum of patients 

with paroxysmal AF in nine different articles, which in total contributed with 11 entries 

to the original dataset. CRP was classified as overexpressed in five entries, as unchanged 

in other five and as “N/A” in one entry. The simple scoring approach seems to poorly 

score proteins in this situation, which indicates that the scoring system correctly reflects 

the incoherence between studies. This is evidenced by the coherence between findings 

for each protein regardless of the subset, which can be observed in Figures 5-13. For the 

proteins defined and scored as overexpressed and as potential biomarkers for AF, if the 

minimum fold-change encountered is higher than one, then there is complete consistency 

between findings. For the proteins defined and scored as underexpressed and as potential 

biomarkers for AF, if the highest fold-change encountered is lower than one, then there 

is complete consistency between findings. However, there are still some cases in which 

proteins had scores higher than the threshold. Actin, alpha cardiac muscle 1 (ACTC1) 

was found to be either increased or unchanged in the atrial appendages of individuals with 

permanent AF. Although differences between groups in the “unchanged entries” did not 

reach statistical significance, the fold-change was higher than one, which might indicate 

that differences were reaching statistical significance. Moreover, the high fold-change 

pulls the score up, leading to scores higher than the threshold.  

Additionally, the highly-scored proteins were divided into nine major groups based on 

their major biological function: metabolism, regulation of ion molecules concentration, 

atrial contraction and muscle fibres formation/organization, fibrosis, inflammation, 

fibrinogenesis/fibrinolysis and coagulation, vasoconstriction/vasodilation, oxidative 

stress and apoptosis. Changes in the expression levels of proteins involved in either of 

these biological functions/alterations seem to agree with AF’s pathophysiology and 
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clinical presentation. In fact, the overexpression or underexpression of proteins involved 

in these processes might contribute to AF’s development and/or maintenance or represent 

a biological response to changes induced by the disease itself. The raised levels of proteins 

involved in metabolic processes most likely act as a response to the increase in energy 

demand during the early phases of AF, which was observed in experimental animals 

[134,135], and might continue through latter phases of AF and be caused by the 

augmented atria and the cardiac contractile dysfunction.  

On the other hand, lowered levels of certain proteins might act in order to 

counterbalance the raised production of energy and of certain proteins. The 

overexpression or underexpression of proteins/peptides involved in the handling of ionic 

molecules, especially Ca2+, K+ and Na+, might initiate and maintain AF, through the 

generation of DADs and EADs, and result in poor atrial contraction, also observed in AF. 

Additionally, the overexpression/underexpression of molecules involved in actin filament 

binding and sliding might change the contractile properties of the atria, contributing, once 

again, to contractile dysfunction. A variety of proteins participates in 

proteolysis/reorganization of the extracellular matrix, degradation of fibronectin and 

deposition of several collagen types, which might lead to the accumulation of fibrotic 

tissue, one of the major mechanisms responsible for cardiac remodelling [136] and 

characteristic of AF.  

Regarding inflammation, growing evidence suggests that inflammation is associated 

with AF and that it plays a part in AF’s pathophysiology [137,138]. Furthermore, AF 

itself can induce inflammation during the remodelling process, perpetuating the disease 

[139]. AF patients exhibit a high thrombogenic state, which raises the risks of stroke and 

thromboembolism [140]. It seems plausible for this elevated prothrombotic state to 

originate from the dysregulation of proteins which participate in the events concerning 

haemostasis. In response to the low ejection fraction of AF individuals due to 

accumulation of blood in the heart, which in turn results from poor contraction, raised 

levels of vasoconstrictor proteins might be produced to boost the amount of blood that 

reaches the heart and contradict the low ejection fraction. In opposition, in response to 

the overexpression of vasoconstrictors, vasodilator proteins might be released to 

counterbalance the effects produced by the first. Evidence supports that oxidative stress 

occurs in the hearts of subjects with AF and that it may play a role in remodelling [141–

143]. This pathological condition might result from the upregulation or down-regulation 

of proteins with oxidant/anti-oxidant functions.  
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Finally, the apoptotic process was observed in AF and associated with the Ca2+ 

overload in the heart, which leads to rapid activation [178]. Nonetheless, the 

overexpression/underexpression of proteins regulating apoptosis might also be the cause 

of this event. As such, the results obtained by the simple scoring approach seem consistent 

with AF, which gives credibility to the method developed. 

However, because the scoring approach does not take into account the number of times 

a protein has been studied in AF, a variety of proteins was highly-scored despite only 

having been studied once or few times in AF. Thus, more studies are needed to better 

understand if these proteins are actually changed in AF and to find their true scoring 

value.  

To validate our scoring system in face of different realities, the method was applied in 

bootstrap form. Most of the highly-scored proteins by the bootstrap system were also 

highly-scored by the simple method, meaning that in light of different situations the 

developed method is effective. These proteins represent the ones with the most precise 

score. Furthermore, the bootstrap approach did not score as highly proteins which were 

only studied once or few times, with some scores not even passing the threshold. This 

happens since each iteration represents a different “reality” and proteins with more entries 

are most likely to be represented by at least one entry in the final subset in each iteration, 

compared to proteins with only one or few entries, which end up not being selected in 

multiple iterations. Still, some proteins which only appear once or few times in a certain 

subset continue to have high average scores for one or both of the following reasons: 1) 

they present high or low fold-change values, depending of the direction, which result in 

high scores in the iterations in which the entry was selected and end up compensating for 

the iterations in which the entry was not selected (e.g.: 5-demethoxyubiquinone 

hydroxylase, mitochondrial (DMQH) was highly-scored despite only having one entry in 

the atrial appendages-“All” subset because it had a fold-change of 2.86); 2) the subset is 

small and, so, there is a higher chance for the entry to be selected (e.g.: MRproANP had 

a fold-change of 1.37 in the whole blood-paroxysmal AF subset, which was only 

composed of 11 entries). Hence, these two cases confirm that the scoring system is limited 

by or depend on the amount of existing studies. 

Notwithstanding, if perceived as an actual scoring method, there are four cases in 

which the bootstrap approach did not perform well and scored highly proteins, which 

were poorly scored by the simple method. The first case concerns HSPA5, which was 

measured six times in the atrial appendages of permanent AF individuals and defined as 
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overexpressed in just two of the measurements. However, one of the “unchanged entries” 

had a corresponding fold-change of 2.47 and the “overexpressed entries” had fold-

changes of 52.45 and 7.21. The high fold-changes, especially the first, originated high 

scores in the iterations where at least one of these entries was selected. Furthermore, the 

fold-change of 52.42 was very high and could be considered an outlier or result from 

measurement errors.  

As for the second case, TF had four entries in the plasma-“All” subset but one of the 

entries was defined as “N/A” and the fold-change was lower than one. As such, there 

were iterations in which this entry, which should pull the score down, was not considered 

giving rise to a score higher than one. In the third case, TGF-B-1 had four entries in the 

serum-persistent AF subset. In two of the entries, the protein was defined as 

overexpressed and in the other two as unchanged. Particularly, one of the “unchanged 

entries” had a fold-change lower than one and was, as such, the main responsible for 

pulling the score down. Given that the selection of entries in the bootstrap is random, 

iterations in which one or both “unchanged entries”, especially the entry with a fold-

change lower than one, were not selected had higher scores that contributed to raising the 

bootstrap score.  

Finally, the last case respects to BNP in the plasma-postoperative new-onset AF, which 

presented four “overexpressed entries”, two of which had especially high fold-changes 

(4.08 and 3.37), and three “unchanged entries”. Again, the random selection of entries 

means that not all entries were considered in each iteration, which might lower the 

coherence parameter and raise the median fold-change parameter. From these four cases, 

it seems that the bootstrap method presents some limitations regarding the coherence of 

the findings and outliers and that the simple scoring system performs better in these cases.  

Nonetheless, the issues encountered in the bootstrap method might be solved with 

higher values of 𝑝 and a larger number of studies focusing on proteins here defined as 

potential biomarkers for AF; the higher the value of 𝑝 or the number of entries pertaining 

to a certain protein, the higher the probability of the final subset in each iteration to have 

one or even multiple entries of that specific protein. As such, the true scoring value of the 

protein could be found with more certainty, since the scoring values of each iteration 

should not differ as much from each other.  

Likewise, more studies regarding AF, in its different phases and using all samples, are 

required, to achieve better results and find the true score of every protein and, 

subsequently, determine the proteins with the highest biomarker potential, the ones with 
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the highest scores. Additionally, regardless of the subset, every score range started at zero. 

This also happens because, for each and every protein, no entry or no altered entry was 

selected in at least one iteration for the final subset because several proteins only had one 

or few entries in the subset. 

5.2 Biomarker Panels 
The scoring approach allowed us to identify the proteins with the highest biomarker 

potential for AF and its different phases and build biomarker panels (Supplemental 

Tables 1 – 29). A variety of proteins/peptides was defined as potential biomarkers for AF 

in its different phases, but, again, more studies focusing on these proteins/peptides are 

necessary, since each protein/peptide was studied in AF very few times. Although 

potential biomarkers for AF were also studied and ranked in the atrial appendages of these 

patients, the measurement of biological elements in the blood, serum or plasma for 

diagnostic and prognostic purposes is much more practical in the clinical practice. The 

measurement of proteins/peptides in the atrial appendages, however, is possible after 

cardiac surgery, especially to diagnose postoperative new-onset and recurrence of AF. 

With these considerations in mind, we selected the five potential biomarkers, regardless 

of the sample, with the highest scores for AF in general (“All” subsets’ results) and for 

each phase of AF (Tables 5-10), ignoring the results concerning the atrial appendages 

subsets for “All”, paroxysmal AF, persistent AF and permanent AF as the disease 

conditions. For the conditions paroxysmal, persistent and permanent AF the chosen 

proteins were not part of the biomarker panels of the other two conditions, in order to find 

potential biomarkers specific to each phase and which can act as prognostic indicators. 

Nonetheless, it is possible that the markers for a certain AF’s phase were not defined as 

potential biomarkers in the other two simply because they were not studied in those 

conditions and not because they are not altered. Hence, results should be experimentally 

confirmed. Still, the alteration of the top five biomarkers’ levels chosen for each condition 

seems to agree with AF’s pathophysiology. 

Interleukin-10 (IL-10), CHI3L1, BNP and NTproBNP measured in the plasma of AF 

patients and BNP measured in the serum of AF patients were selected as the top potential 

biomarkers for AF in general. IL-10 inhibits the synthesis of a number of cytokines and 

is, therefore, involved in a variety of pathways, including the inflammatory response. 

Although it is normally involved in the inflammatory response provoked by an antigenic 

stimulus, its overexpression in AF indicates that it might also participate in the non-
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antigenic inflammatory response. CHI3L1 plays a role in in tissue remodelling and is 

involved in the inflammatory response. BNP and NTproBNP result from the cleavage of 

proBNP, which, in turn, is the product of the Natriuretic peptides B. This protein is a 

cardiac hormone which may function as a paracrine antifibrotic factor in the heart. AF 

patients are characterized by extensive fibrosis in their atrial tissue, which favours AF’s 

maintenance. As such, BNP and NTproBNP’s up-expression probably arises from the up-

regulation of the Natriuretic peptides B. As such, the increased levels of IL-10 and 

CHI3L1 and BNP and NTproBNP likely represent internal response mechanisms to 

resolve the inflammation process and counterbalance the profibrotic state observed in AF 

patients, respectively. Furthermore, CHI3L1 might also be partly responsible for the 

extensive remodelling of the atria. 

Interleukin-18 (IL-18), Apelin-12 (APLN12), Vascular cell adhesion protein 1 

(VCAM-1), Serum amyloid A-1 protein (SAA1) and Urotensin-2 (U-II) were selected as 

the top five biomarkers for paroxysmal AF. Il-18 participates in the inflammatory 

response and VCAM-1 promotes leucocyte migration to the sites of inflammation, which 

indicates that the up-expression of both proteins emerges in order to solve the pathological 

lesion that induced inflammation. Contrarily, SAA1 negatively regulates the 

inflammatory response, which indicates that the absence of SAA1 might be trying to  

prevent an exacerbation of the inflammatory response in paroxysmal AF patients. 

Additionally, IL-18 can increase the expression of metalloproteinases [144], which might 

raise the levels of Matrix metalloproteinase 9 (MMP-9) an other metalloproteinases, 

culminating in tissue remodelling of the atrial appendages and deposition of fibrotic 

tissue. APLN12’s underexpression in paroxysmal AF suggests that some degree of 

contractile dysfunction might already exist in paroxysmal AF and that APLN12 might be 

cleared from the plasma into the atria to contrapose such dysfunction, given its proven 

ability to improve the recovery of the heart’s contractile function in rodents [145] and 

which might also occur in humans. On the other hand, the down-regulation of this peptide 

might be, at least in part, responsible for the poor contractility observed in AF patients. 

U-II is a potent vasoconstrictor and, thus, the up-regulation of this protein might represent 

an internal response of the organism to the low ejection fraction observed in AF patients 

due to the contractile dysfunction, which leads to blood accumulation in their atria. 

Consequently, U-II constricts blood vessels and increments the amount of blood that 

reaches the heart, to try and normalize the ejection fraction.  
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Vascular endothelial growth factor receptor 1 (VEGFR-1), ANP, Vascular endothelial 

growth factor A (VEGF-A), Pentraxin-related protein PTX3 (PTX3) and Hepatocyte 

growth factor (HGF) represent the top five biomarkers for persistent AF. VEGFR-1 is a 

negative regulator of VEGF-A, acting in order to limit the amount of free VEGF-A. The 

first was defined as down-regulated in persistent AF and the second as up-regulated, 

suggesting that VEGF-A is present in its active bounded form to VEGFR-2 and is highly 

being used to mediate the inflammatory response of AF individuals. PTX3 is yet another 

protein defined as overexpressed in persistent AF patients and that also participates in the 

inflammatory response. ANP is the product of the proANP cleavage, which in turn 

originates from the Natriuretic peptides A. Hence, it seems likely for ANP’s increased 

concentration to derive from the overexpression of the Natriuretic peptides A, which are 

secreted in response to the atrial dilation of AF patients, one of the key features of these 

individuals due to the accumulation of blood in the chambers resultant from poor 

contraction. HGF is an endothelial specific factor with multiple activities, namely 

mitogenic, chemoattractant, morphogenic, among others, but possibly its major biological 

function related to AF is its role as an anti-fibrotic factor [146,147]. Likewise, the raised 

levels of HGF most likely represent an internal response to counterbalance the deposition 

or negatively regulate the deposition of fibrotic tissue in the heart of persistent AF 

subjects. 

D-dimer (DD), Tissue-type plasminogen activator (t-PA), Beta-thromboglobulin (B-

TG), von Willebrand factor (VWF) and Platelet factor 4 (PF-4) were chosen as the top 

five biomarkers for permanent AF. DD is involved in fibrin formation, platelet activation 

and aggregation and in the initiation and maintenance of the process of thrombogenesis. 

The increased concentration suggests fibrin formation and degradation in permanent AF 

patients [148]. The second protein is responsible for the conversion of plasminogen to 

plasmin, controlling, therefore, plasmin-mediated proteolysis and playing a role in tissue 

remodelling. VWF forms a bridge between sub-endothelial collagen matrix and a platelet 

receptor complex, to promote platelet adhesion to sites of vascular injury. It also stabilizes 

and delivers coagulation factor VIII to the site of injury. As such, the overexpression of 

these three proteins in agreement with the high thrombogenic state seen in AF patients 

and that, in its turn, may raise the risks of stroke and thromboembolism [140]. Moreover. 

permanent AF patients have extensive structural remodelling of the heart and, thus, t-PA 

may be partly responsible or be aggravating the already existing changes. B-TG is the 

product of Platelet basic protein’s cleavage (PBP), a protein which stimulates the 
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formation and secretion of t-PA. The overexpression of B-TG, therefore, suggests an 

overexpression of PBP, which can help explain the high levels of t-PA encountered in the 

blood of permanent AF patients and which worsens the thrombogenic process. PF-4 is a 

protein with chemokine activity, involved in many processes, including platelet activation 

and degranulation and in the inflammatory response. Hence, PF-4’s overexpression seems 

to represent yet another consequence of the organisms’ response to the inflammatory 

process.  

TNFSF11, NTANP, NTproBNP, Growth/differentiation factor 15 (GDF-15) and ANP 

represent the five potential biomarkers selected for postoperative new-onset AF. 

TNFSF11 measured in the serum, NTproBNP and CRP measured in the plasma and CRP 

and TNFSF11 measured in the atrial appendages of patients who developed recurrence 

of AF after cardioversion were the selected markers for this condition. TNFSF11 plays a 

role in regulating the inflammatory response [149,150] and the inflammatory factors 

themselves can contribute to the activation of the axis this protein is involved in [151]. 

CRP participates in the acute phase response to tissue injury and in the inflammatory 

response. Therefore, the overexpression of the first in subjects which suffer development 

of AF after surgery and of both proteins in patients who suffer from AF recurrence occurs 

in order to counteract tissue inflammation. In addtion, up-regulation of TNFSF11 seems 

to contribute to the enhancement of gelatinases’ activity and a modest decrease of TIMP’s 

expression, which in turn might result in matrix degradation and adverse ventricular 

remodelling [152]. GDF-15 is a receptor of the TGF-B-1, which in turn is involved in the 

positive regulation of collagen biosynthetic process and positive regulation of 

extracellular matrix assembly. Therefore, the up-expression of GDF-15 indicates that 

levels of TGF-B-1 might also be raised in AF individuals or individuals who are most 

likely to develop AF. In this manner, the overexpression of TNFSF11 and GDF-15 likely 

leads to structural remodelling and a higher probability of developing or recurring AF 

post-surgery. GDF-15 also regulates the apoptotic process, a biological process also seen 

in AF patients. NTANP is also the product of the cleavage of the Natriuretic peptides A 

and, as such, its’s overexpression in patients which developed AF post-surgery, along 

with ANP’s overexpression, suggests up-regulation of this hormone and some degree of 

atrial dilation in these patients. NTproBNP’s relation to AF was already discussed 

previously and it seems that this peptide is also a good predictor of AF development or 

recurrence after surgery. 
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The proteins here defined as potential biomarkers for AF and each condition, 

particularly the top five, represent potential biomarkers that can aid physicians, especially 

when diagnosing AF. As such, the scoring approach here developed depicts a novel 

method to rank and determine which markers are better to characterize a target disease. 

6. Conclusion and Future Work 
 

Our results represent a set of proteins with the highest biomarker potential (highest 

score) for AF and its different phases and the main biological functions in which they are 

involved. Alterations in the expression levels of proteins involved in either of these 

functions seem to agree with AF’s pathophysiology and clinical presentation, showing 

the effectiveness of the developed algorithm. The biomarker panels obtained can be 

applied to clinical practice for diagnostic and prognostic purposes or even be studied as 

potential drug targets for AF. Given the high incidence and prevalence rates of AF, the 

measurement of such markers should be introduced in the clinical analysis routine after 

the establishment of the threshold values which define normality.  

Furthermore, the proposed method is, to our knowledge, the first to reflect the 

incoherence between studies. Since the scoring function is disease-agnostic it can be 

applied to datasets concerning other conditions, which should be done in future 

endeavours. Moreover, other markers, namely genes and metabolites, can also be ranked 

by the developed system. However, our method is limited by the amount of existing 

studies. Therefore, experimental tests comparing the levels of the proteins which were 

highly-scored but have been studied very few times are needed to really understand if 

they are altered in AF and find their true biomarker potential by, once again, applying the 

developed method to the dataset containing the new data. Overall, this scoring approach 

seems to improve the protein’s importance harvesting process, which is crucial in a 

pipeline aimed at predicting potential biomarkers.  
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Appendix 
 

 

Supplemental Table 1 – Atrial Appendages-“All” subset’s potential biomarker proteins and respective UNIPROT code, full name, 
abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number 

of 
Entries 

P11217 
Glycogen 

phosphorylase, 
muscle form 

PYGM PYGM 15.33 Down 1 

Q01995 Transgelin TAGLN TAGLN 6.39 Down 1 

P15531 
Nucleoside 

diphosphate kinase A 
NDKA NME1 4.45 Down 1 

P06756 Integrin alpha-V ITGAV ITGAV 3.81 Up 6 

O14788 
Tumor necrosis factor 

ligand superfamily 
member 11 

TNFSF11 TNFSF11 3.45 Up 4 

P01137 
Transforming growth 

factor beta-1 
TGF-B-1 TGFB1 3.25 Up 8 

Q9Y6Q6 
Tumor necrosis factor 
receptor superfamily 

member 11A 
TNFRSF11A TNFRSF11A 3.12 Up 4 

P27797 Calreticulin CALR CALR 3.11 Up 6 

Q99807 

5-
demethoxyubiquinone 

hydroxylase, 
mitochondrial 

DMQH COQ7 2.86 Up 1 

Q86TX2 
Acyl-coenzyme A 

thioesterase 1 
ACOT1 ACOT1 2.77 Down 1 

P23142 Fibulin-1 FIBL-1 FBLN1 2.52 Down 2 

Q96CX2 
BTB/POZ domain-
containing protein 

KCTD12 
KCTD12 KCTD12 2.49 Up 1 

P09936 
Ubiquitin carboxyl-
terminal hydrolase 

isozyme L1 
UCH-L1 UCHL1 2.3 Down 1 

P31150 
Rab GDP dissociation 

inhibitor alpha 
RabGDIA GDI1 2.12 Down 1 

P02765 
Alpha-2-HS-
glycoprotein 

AHSG AHSG 2.12 Up 1 

P14384 Carboxypeptidase M CPM CPM 2.08 Down 1 

O00300 
Tumor necrosis factor 
receptor superfamily 

member 11B 
TNFRSF11B TNFRSF11B 1.87 Up 4 

P02741 C-reactive protein CRP CRP 1.53 Up 2 
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Supplemental Table 2 – Whole blood-“All”  subset’s potential biomarker proteins and respective UNIPROT code, full name, 
abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number of 

Entries 

- 
N-terminal pro-Brain 
Natriuretic peptide 

NTproBNP NPPB 2.11 Up 3 

- 
Mid-region pro-Atrial 

Natriuretic peptide 
MRproANP NPPA 1.39 Up 3 

P16671 Platelet glycoprotein 4 PG-4 CD36 1.21 Down 1 
P01034 Cystatin-C CST-C CST3 1.13 Up 3 

Supplemental Table 3 - Plasma-“All” subset’s potential biomarker proteins and respective UNIPROT code, full name, 
abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Protein Gene Score Direction 
Number 

of 
Entries 

P22301 Interleukin-10 IL-10 IL10 5.86 Up 2 

P36222 
Chitinase-3-like 

protein 1 
CHI3L1 CHI3L1 2.54 Up 2 

- 
N-terminal pro-
Brain Natriuretic 

Peptide 
NTproBNP NPPB 2.33 Up 10 

- 
Brain Natriuretic 

Peptide 
BNP NPPB 2.22 Up 17 

- D-dimer DD - 2.17 Up 1 
P43235 Cathepsin K CTSK CTSK 2.15 Up 1 

- 
N-terminal pro-

Atrial Natriuretic 
Peptide 

NTproANP NPPA 1.83 Up 1 

P45379 
Troponin T, cardiac 

muscle 
TnTc TNNT2 1.70 Up 1 

- 
N-terminal Atrial 

Natriuretic Peptide 
NTANP NPPA 1.58 Up 1 

P19440 
Glutathione 
hydrolase 1 
proenzyme 

GH1 GGT1 1.49 Up 1 

P05362 
Intercellular 

adhesion molecule 
1 

ICAM1 ICAM1 1.44 Up 2 

- 
Atrial Natriuretic 

Peptide 
ANP NPPA 1.34 Up 9 

P01033 
Metalloproteinase 

inhibitor 1 
TIMP-1 TIMP1 1.30 Up 2 

- 
Beta-

thromboglobulin 
B-TG PPBP 1.28 Up 3 

P23142 Fibulin-1 FIBL-1 FBLN1 1.27 Up 1 

P14780 
Matrix 

metalloproteinase-9 
MMP-9 MMP9 1.16 Up 1 
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Supplemental Table 4 - Serum-“All” subset’s potential biomarker proteins and respective UNIPROT code, full name, abbreviations, 
gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Protein Gene Score Direction 
Number 

of 
Entries 

- 
Brain Natriuretic 

Peptide 
BNP NPPB 2.34 Up 2 

- 
Atrial Natriuretic 

Peptide 
ANP NPPA 1.99 Up 4 

- Relaxin RLX RLN2 1.51 Up 2 
P01584 Interleukin-1 beta IL-1B IL1B 1.31 Up 1 
P01374 Lymphotoxin-alpha TNF-B LTA 1.22 Up 2 

P14780 
Matrix 

metalloproteinase-9 
MMP-9 MMP9 1.20 Up 5 

P69905 
Hemoglobin subunit 

alpha 
HBA1 HBA1 1.08 Up 3 

Q14116 Interleukin-18 IL-18 IL18 1.02 Up 7 

Supplemental Table 5 - Atrial appendages-paroxysmal AF subset’s potential biomarker proteins and respective UNIPROT code, full 
name, abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number 

of Entries 

O14788 

Tumor necrosis 
factor ligand 
superfamily 
member 11 

TNFSF11 TNFSF11 3.7 Up 2 

Q9Y6Q6 

Tumor necrosis 
factor receptor 

superfamily 
member 11A 

TNFRSF11A TNFRSF11A 3.35 Up 2 

P06756 
Integrin alpha-

V 
ITGAV ITGAV 3.22 Up 2 

O00300 

Tumor necrosis 
factor receptor 

superfamily 
member 11B 

TNFRSF11B TNFRSF11B 1.82 Up 2 

P01137 
Transforming 
growth factor 

beta-1 
TGF-B-1 TGFB1 1.77 UP 2 

P27797 Calreticulin CALR CALR 1.49 UP 2 

P02741 
C-reactive 

protein 
CRP CRP 1.44 UP 1 
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Supplemental Table 6 – Plasma-paroxysmal AF subset’s potential biomarker proteins and respective UNIPROT code, full name, 
abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number of 

Entries 

- 
Brain 

Natriuretic 
Peptide 

BNP NPPB 2.66 Up 3 

- 

N-terminal 
pro-Brain 
Natriuretic 

Peptide 

NTproBNP NPPB 2.49 Up 3 

- 
Atrial 

Natriuretic 
Peptide 

ANP NPPA 2.07 Up 5 

- 

N-terminal 
pro-Atrial 
Natriuretic 

Peptide 

NTproANP NPPA 1.95 Up 1 

- Apelin-12 APLN12 - 1.63 Down 1 

P19320 
Vascular cell 

adhesion 
protein 1 

VCAM-1 VCAM1 1.55 Up 1 

O95399 Urotensin-2 U-II UTS2 1.44 Up 1 

Supplemental Table 7 – Serum-paroxysmal AF subset’s potential biomarker proteins and respective UNIPROT code, full name, 
abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number 

of 
Entries 

Q14116 Interleukin-18 IL-18 IL18 1.78 Up 1 
- Brain natriuretic peptide BNP NPPB 1.72 Up 1 

P0DJI8 
Serum amyloid A-1 

protein 
SAA1 SAA1 1.45 Up 1 

- Relaxin RLX RLN2 1.44 Up 1 

Q99988 
Growth/differentiation 

factor 15 
GDF-15 GDF15 1.38 Up 1 

Q99727 
Metalloproteinase 

inhibitor 4 
TIMP-4 TIMP4 1.32 Up 1 

P01375 Tumor necrosis factor TNF-A TNF 1.31 Up 2 
P01374 Lymphotoxin-alpha TNF-B LTA 1.21 Up 1 

- Neuregulin-1 NRG1 NRG1 1.19 Up 1 
Q9HD89 Resistin RETN RETN 1.14 Up 1 

P16035 
Metalloproteinase 

inhibitor 2 
TIMP-2 TIMP2 1.12 Up 1 

P69905 
Hemoglobin subunit 

alpha 
HBA1 HBA1 1.08 Up 1 
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Supplemental Table 8 – Atrial appendages-persistent AF subset’s potential biomarker proteins and respective UNIPROT code, full 
name, abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Protein Gene Score Direction 
Number 

of 
Entries 

P62937 
Peptidyl-prolyl cis-trans 

isomerase A 
PPIaseA PPIA 5.50 Up 1 

P49748 
Very long-chain specific 
acyl-CoA dehydrogenase, 

mitochondrial 
VLCAD ACADVL 4.50 Up 1 

P27797 Calreticulin CALR CALR 4.23 Up 4 
P06756 Integrin alpha-V ITGAV ITGAV 3.94 Up 4 

P01137 
Transforming growth 

factor beta-1 
TGF-B-1 TGFB1 3.71 Up 6 

P00441 
Superoxide dismutase Cu-

Zn 
SOD1 SOD1 3.50 Up 1 

P08590 Myosin light chain 3 MYL3 MYL3 3.30 Up 1 

O14788 
Tumor necrosis factor 

ligand superfamily member 
11 

TNFSF11 TNFSF11 3.28 Up 2 

P30048 
Thioredoxin-dependent 

peroxide reductase, 
mitochondrial 

TDPRDX PRDX3 3.20 Down 1 

Q9Y6Q6 
Tumor necrosis factor 
receptor superfamily 

member 11A 
TNFRSF11A TNFRSF11A 2.97 Up 2 

P12821 
Angiotensin-converting 

enzyme 
ACE ACE 2.94 Up 1 

Q06830 Peroxiredoxin-1 PRDX1 PRDX1 2.90 Up 1 

Q9P0J0 
NADH dehydrogenase 

ubiquinone 1 alpha 
subcomplex subunit 13 

NDUFA13 NDUFA13 2.80 Up 1 

P23528 Cofilin-1 CFL1 CFL1 2.60 Up 1 

P30086 
Phosphatidylethanolamine-

binding protein 1 
PEBP-1 PEBP1 2.60 Up 1 

O95299 

NADH dehydrogenase 
ubiquinone 1 alpha 

subcomplex subunit 10, 
mitochondrial 

NDUFA10 NDUFA10 2.30 Down 1 

P19429 Troponin I, cardiac muscle TnIc TNNI3 2.30 Up 1 

Q13011 
Delta(3,5)-Delta(2,4)-

dienoyl-CoA isomerase, 
mitochondrial 

DDDCoAI ECH1 2.20 Down 1 

P04264 
Keratin, type II 
cytoskeletal 1 

K1 KRT1 2.10 Down 1 

P45880 
Voltage-dependent anion-
selective channel protein 2 

VDAC-2 VDAC2 2.10 Up 1 

Q15796 
Mothers against 

decapentaplegic homolog 2 
MADH2 SMAD2 2.00 Up 2 
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Supplemental Table 9 – Atrial appendages-persistent AF subset’s potential biomarker proteins and respective UNIPROT code, full 
name, abbreviations, gene, score, computation direction and number of entries in the subset (continued). 

UNIPROT 
Code 

Full Name Protein Gene Score Direction 
Number 

of 
Entries 

O00300 
Tumor necrosis factor 
receptor superfamily 

member 11B 
TNFRSF11B TNFRSF11B 1.94 Up 2 

P02741 C-reactive protein CRP CRP 1.62 Up 1 
P35609 Alpha-actinin-2 ACTN2 ACTN2 1.61 Up 2 

Supplemental Table 10 – Whole blood-persistent AF subset’s potential biomarker proteins and respective UNIPROT code, full name, 
abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number of 

Entries 

P02741 
C-reactive 

protein 
CRP CRP 2.17 Up 3 

- 

N-terminal 
pro-Brain 
Natriuretic 

Peptide 

NTproBNP NPPB 1.95 Up 1 

- 

Mid-region 
pro-Atrial 
Natriuretic 

Peptide 

MRproANP NPPA 1.39 Up 1 

P16109 P-selectin SELP SELP 1.38 Up 1 
P01034 Cystatin-C CST-C CST3 1.13 Up 1 
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Supplemental Table 11 – Serum-persistent AF subset’s potential biomarker proteins and respective UNIPROT code, full name, 
abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number 

of Entries 

- 
Atrial Natriuretic 

Peptide 
ANP NPPA 3.56 Up 1 

- 
Brain Natriuretic 

Peptide 
BNP NPPB 2.96 Up 1 

P26022 
Pentraxin-related 

protein PTX3 
PTX3 PTX3 1.96 Up 4 

P14210 
Hepatocyte growth 

factor 
HGF HGF 1.60 Up 3 

- Relaxin RLX RLN2 1.58 Up 1 

P14780 
Matrix 

metalloproteinase-9 
MMP-9 MMP9 1.56 Up 1 

P25445 
Tumor necrosis factor 
receptor superfamily 

member 6 
TNFRSF6 FAS 1.56 Up 3 

P01374 Lymphotoxin-alpha TNF-B LTA 1.24 Up 1 
Q9HD89 Resistin RETN RETN 1.16 Up 1 
P16581 E-selectin SELE SELE 1.16 Up 1 

P08253 
72 kDa type IV 

collagenase 
MMP-2 MMP2 1.14 Down 1 

P69905 
Hemoglobin subunit 

alpha 
HBA1 HBA1 1.08 Up 1 
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Supplemental Table 12 – Atrial appendages-permanent AF subset’s potential biomarker proteins and respective UNIPROT code, 
full name, abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number 

of Entries 

P11177 

Pyruvate 
dehydrogenase E1 

component 
subunit beta, 
mitochondrial 

PDHE1-B PDHB 3.87 Up 2 

P06753 
Tropomyosin 
alpha-3 chain 

TPM3 TPM3 2.77 Up 2 

P12829 
Myosin light chain 

4 
MYL4 MYL4 2.56 Up 2 

P07951 
Tropomyosin beta 

chain 
TMSB TPM2 2.05 Up 2 

P30084 
Enoyl-CoA 
hydratase, 

mitochondrial 
ECoAh ECHS1 1.77 Down 2 

P10809 
60 kDa heat shock 

protein, 
mitochondrial 

Hsp60 HSPD1 1.75 Up 8 

P68032 
Actin, alpha 

cardiac muscle 1 
ACTC1 ACTC1 1.51 Up 6 

P04792 
Heat shock protein 

beta-1 
HspB1 HSPB1 1.26 Up 2 

P06732 
Creatine kinase 

M-type 
M-CK CKM 1.07 Up 4 
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Supplemental Table 13 – Whole blood-permanent AF subset’s potential biomarker proteins and respective UNIPROT code, full 
name, abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number 

of 
Entries 

- 
N-terminal pro-
Brain Natriuretic 

Peptide 
NTproBNP NPPB 3.51 Up 1 

- D-dimer DD - 2.71 Up 1 

P00750 
Tissue-type 
plasminogen 

activator 
t-PA PLAT 2.08 Up 1 

- 
Mid-region pro-
Atrial Natriuretic 

Peptide 
MRproANP NPPA 1.78 Up 1 

P04275 
von Willebrand 

factor 
VWF VWF 1.76 Up 1 

P02741 C-reactive protein CRP CRP 1.72 Up 1 

P05121 
Plasminogen 

activator inhibitor 1 
PAI SERPINE1 1.63 Up 1 

P07204 Thrombomodulin TM THBD 1.46 Up 1 

P00750 
Tissue-type 
plasminogen 

activator 
CST-C CST3 1.18 Up 1 

Supplemental Table 14 – Plasma-permanent AF subset’s potential biomarker proteins and respective UNIPROT code, full name, 
abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number 

of Entries 

P36222 
Chitinase-3-like 

protein 1 
CHI3L1 CHI3L1 3.37 Up 1 

- 
N-terminal pro-
Brain Natriuretic 

Peptide 
NTproBNP NPPB 2.16 Up 1 

- 
Beta-

thromboglobulin 
B-TG PPBP 1.96 Up 1 

P02776 Platelet factor 4 PF-4 PF4 1.70 Up 1 
P02741 C-reactive protein CRP CRP 1.27 Up 4 
P13726 Tissue Factor TF F3 1.18 Up 2 
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Supplemental Table 15 – Plasma-postoperative new-onset AF subset’s potential biomarker proteins and respective UNIPROT code, 
full name, abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number 

of 
Entries 

Q99988 
Growth/differentiation 

factor 15 
GDF-15 GDF15 1.56 Up 1 

- Atrial Natriuretic Peptide ANP NPPA 1.44 Up 6 

- 
N-terminal Atrial 

Natriuretic Peptide 
NTANP NPPA 1.34 Up 2 

P07204 Thrombomodulin TM THBD 1.25 Up 1 

Supplemental Table 16 – Serum-postoperative new-onset AF subset’s potential biomarker proteins and respective UNIPROT code, 
full name, abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number 

of 
Entries 

O14788 

Tumor necrosis 
factor ligand 
superfamily 
member 11 

TNFSF11 TNFSF11 2.71 Up 1 

- 
N-terminal pro-
Brain Natriuretic 

Peptide 
NTproBNP NPPB 1.60 Up 2 

O00300 

Tumor necrosis 
factor receptor 

superfamily 
member 11B 

TNFRSF11B TNFRSF11B 1.15 Up 1 

P19429 
Troponin I, 

cardiac muscle 
TnIc TNNI3 1.08 Up 2 
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Supplemental Table 17 – Plasma-postoperative AF recurrence subset’s potential biomarker proteins and respective UNIPROT code, 
full name, abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number of 

Entries 

- 
N-terminal pro-Brain 
Natriuretic Peptide 

NTproBNP NPPB 1.92 Up 2 

P02741 C-reactive protein CRP CRP 1.66 Up 7 
P05231 Interleukin-6 IL-6 IL6 1.40 Up 1 

- 
mid-regional pro-
adrenomedullin 

MRproAD ADM 1.37 Up 1 

- 
pro-Atrial Natriuretic 

Peptide 
proANP NPPA 1.36 Up 1 

Q9ULZ1 Apelin APLN APLN 1.23 Down 1 

P48061 
Stromal cell-derived 

factor 1 
SDF-1 CXCL12 1.20 Up 1 

- 
N-terminal pro-Atrial 

Natriuretic Peptide 
NTproANP NPPA 1.07 Up 1 

Supplemental Table 18 – Serum-postoperative AF recurrence subset’s potential biomarker proteins and respective UNIPROT code, 
full name, abbreviations, gene, score, computation direction and number of entries in the subset. 

UNIPROT 
Code 

Full Name Abbreviation Gene Score Direction 
Number 

of 
Entries 

O14788 

Tumor necrosis 
factor ligand 
superfamily 
member 11 

TNFSF11 TNFSF11 2.36 Up 1 

- 
N-terminal pro-
Brain Natriuretic 

Peptide 
GH1 NPPB 1.50 Up 1 

P16035 
Metalloproteinase 

inhibitor 2 
NTproBNP TIMP2 1.34 Up 2 

O00300 

Tumor necrosis 
factor receptor 

superfamily 
member 11B 

TIMP-2 TNFRSF11B 1.26 Up 1 

P08253 
72 kDa type IV 

collagenase 
TNFRSF11B MMP2 1.20 Up 1 

O14788 

Tumor necrosis 
factor ligand 
superfamily 
member 11 

MMP-2 TNFSF11 1.11 Up 1 
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Supplemental Table 19 – Atrial appendages-“All” subset’s potential biomarker proteins after the bootstrap approach with 𝑝 = 50%. 
UNIPROT 

Code 
Full Name Abbreviation Gene Mean Score 

P06756 Integrin alpha-V ITGAV ITGAV 3.69 
P27797 Calreticulin CALR CALR 3.35 

P01137 
Transforming growth factor 

beta-1 
TGF-B-1 TGFB1 3.34 

O14788 
Tumor necrosis factor ligand 

superfamily member 11 
TNFSF11 TNFSF11 3.33 

Q9Y6Q6 
Tumor necrosis factor 
receptor superfamily 

member 11A 
TNFRSF11A TNFRSF11A 2.98 

O00300 
Tumor necrosis factor 
receptor superfamily 

member 11B 
TNFRSF11B TNFRSF11B 1.73 

Q99807 
5-demethoxyubiquinone 

hydroxylase, mitochondrial 
DMQH COQ7 1.36 

Q96CX2 
BTB/POZ domain-

containing protein KCTD12 
KCTD12 KCTD12 1.31 

P02741 C-reactive protein CRP CRP 1.14 
P02765 Alpha-2-HS-glycoprotein AHSG AHSG 1.08 

Supplemental Table 20 – Plasma-“All” subset’s potential biomarker proteins after the bootstrap approach with 𝑝 = 50%. 

UNIPROT 
Code 

Full Name Abbreviation Gene Mean Score 

P22301 Interleukin-10 IL-10 IL10 4.43 

- 
N-terminal pro-Brain 
Natriuretic Peptide 

NTproBNP NPPB 2.37 

- Brain Natriuretic Peptide BNP NPPB 2.31 
- Atrial Natriuretic Peptide ANP NPPA 1.89 

P36222 Chitinase-3-like protein 1 CHI3L1 CHI3L1 1.86 

- 
N-terminal pro-Atrial 

Natriuretic Peptide 
NTproANP NPPA 1.39 

P13726 Tissue factor TF F3 1.37 
- Beta-thromboglobulin B-TG PPBP 1.10 
- D-dimer DD - 1.08 

P05362 
Intercellular adhesion 

molecule 1 
ICAM1 ICAM1 1.06 

P43235 Cathepsin K CTSK CTSK 1.02 
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Supplemental Table 21 – Serum-“All” subset’s potential biomarker proteins after the bootstrap approach with 𝑝 = 50%. 

UNIPROT 
Code 

Full Name Abbreviation Gene Mean Score 

- Atrial Natriuretic Peptide ANP NPPA 1.90 
- Brain Natriuretic Peptide BNP NPPB 1.78 
- Relaxin RLX RLN2 1.16 

P14780 Matrix metalloproteinase-9 MMP-9 MMP9 1.16 
Q14116 Interleukin-18 IL-18 IL18 1.03 

Supplemental Table 22 – Plasma- paroxysmal AF subset’s potential biomarker proteins after the bootstrap approach with 𝑝 =
50%. 

UNIPROT 
Code 

Full Name Abbreviation Gene Mean Score 

- Brain Natriuretic Peptide BNP NPPB 2.35 

- 
N-terminal pro-Brain 
Natriuretic Peptide 

NTproBNP NPPB 1.98 

- Atrial Natriuretic Peptide ANP NPPA 1.86 

- 
N-terminal pro-Atrial 

Natriuretic Peptide 
NTproANP NPPA 1.03 

Supplemental Table 23 – Atrial Appendages-paroxysmal AF subset’s potential biomarker proteins after the bootstrap approach 
with 𝑝 = 50%. 

UNIPROT 
Code 

Full Name Abbreviation Gene Mean Score 

O14788 
Tumor necrosis factor ligand 

superfamily member 11 
TNFSF11 TNFSF11 2.80 

Q9Y6Q6 
Tumor necrosis factor 

receptor superfamily member 
11A 

TNFRSF11A TNFRSF11A 2.46 

P06756 Integrin alpha-V ITGAV ITGAV 2.38 

P01137 
Transforming growth factor 

beta-1 
TGF-B-1 TGFB1 1.74 

P27797 Calreticulin CALR CALR 1.46 

O00300 
Tumor necrosis factor 

receptor superfamily member 
11B 

TNFRSF11B TNFRSF11B 1.41 
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Supplemental Table 24 – Atrial Appendages-persistent AF subset’s potential biomarker proteins after the bootstrap approach with 
𝑝 = 50%. 

UNIPROT 
Code 

Full Name Abbreviation Gene Mean Score 

P27797 Calreticulin CALR CALR 4.22 
P01137 Transforming growth factor beta-1 TGF-B-1 TGFB1 3.98 
P06756 Integrin alpha-V ITGAV ITGAV 3.81 

P62937 
Peptidyl-prolyl cis-trans isomerase 

A 
PPIaseA PPIA 2.83 

O14788 
Tumor necrosis factor ligand 

superfamily member 11 
TNFSF11 TNFSF11 2.35 

P49748 
Very long-chain specific acyl-CoA 

dehydrogenase, mitochondrial 
VLCAD ACADVL 2.26 

Q9Y6Q6 
Tumor necrosis factor receptor 

superfamily member 11A 
TNFRSF11A TNFRSF11A 2.22 

P00441 Superoxide dismutase Cu-Zn SOD1 SOD1 1.79 
P08590 Myosin light chain 3 MYL3 MYL3 1.64 
P12821 Angiotensin-converting enzyme ACE ACE 1.51 

Q15796 
Mothers against decapentaplegic 

homolog 2 
MADH2 SMAD2 1.50 

O00300 
Tumor necrosis factor receptor 

superfamily member 11B 
TNFRSF11B TNFRSF11B 1.49 

Q06830 Peroxiredoxin-1 PRDX1 PRDX1 1.44 

Q9P0J0 
NADH dehydrogenase ubiquinone 

1 alpha subcomplex subunit 13 
NDUFA13 NDUFA13 1.33 

P30086 
Phosphatidylethanolamine-binding 

protein 1 
PEBP-1 PEBP1 1.29 

P23528 Cofilin-1 CFL1 CFL1 1.27 
P35609 Alpha-actinin-2 ACTN2 ACTN2 1.22 
P19429 Troponin I, cardiac muscle TnIc TNNI3 1.11 

P45880 
Voltage-dependent anion-selective 

channel protein 2 
VDAC-2 VDAC2 1.01 

Supplemental Table 25 – Plasma-persistent AF subset’s potential biomarker proteins after the bootstrap approach with 𝑝 =
50%. 

UNIPROT 
Code 

Full Name Abbreviation 
Gene Mean Score 

- Brain Natriuretic Peptide BNP NPPB 3.44 

- 
N-terminal pro-Brain Natriuretic 

Peptide 
NTproBNP NPPB 3.05 

P15692 
Vascular endothelial growth factor 

A 
VEGF-A VEGFA 2.66 

- Atrial Natriuretic Peptide ANP NPPA 1.97 
P13726 Tissue factor TF F3 1.46 
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Supplemental Table 26 – Serum-persistent AF subset’s potential biomarker proteins after the bootstrap approach with 𝑝 = 50%. 

UNIPROT 
Code 

Full Name Abbreviation Gene Mean Score 

P26022 
Pentraxin-related protein 

PTX3 
PTX3 PTX3 2.00 

- Atrial Natriuretic Peptide ANP NPPA 1.80 
- Brain Natriuretic Peptide BNP NPPB 1.50 

P25445 
Tumor necrosis factor 

receptor superfamily member 
6 

TNFRSF6 FAS 1.38 

P14210 Hepatocyte growth factor HGF HGF 1.34 

P01137 
Transforming growth factor 

beta-1 
TGF-B-1 TGFB1 1.20 

Supplemental Table 27 – Atrial appendages-permanent AF subset’s potential biomarker proteins after the bootstrap approach with 
𝑝 = 50%. 

UNIPROT Code Full Name Abbreviation Gene Mean Score 

P11021 
Endoplasmic reticulum chaperone 

BiP 
HSPA5 HSPA5 4.04 

P11177 
Pyruvate dehydrogenase E1 

component subunit beta, 
mitochondrial 

PDHE1-B PDHB 2.87 

P06753 Tropomyosin alpha-3 chain TPM3 TPM3 2.04 

P10809 
60 kDa heat shock protein, 

mitochondrial 
Hsp60 HSPD1 1.92 

P12829 Myosin light chain 4 MYL4 MYL4 1.89 
P68032 Actin, alpha cardiac muscle 1 ACTC1 ACTC1 1.58 
P07951 Tropomyosin beta chain TMSB TPM2 1.53 

P30084 
Enoyl-CoA hydratase, 

mitochondrial 
ECoAh ECHS1 1.35 

P06732 Creatine kinase M-type M-CK CKM 1.30 
P04792 Heat shock protein beta-1 HspB1 HSPB1 1.01 
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Supplemental Table 28 – Plasma-postoperative AF recurrence subset’s potential biomarker proteins after the bootstrap approach 
with 𝑝 = 50%. 

UNIPROT 
Code 

Full Name Abbreviation Gene Mean Score 

P22301 Interleukin-10 IL-10 IL10 4.42 
- pro-Brain Natriuretic Peptide proBNP NPPB 2.63 

P15692 Vascular endothelial growth factor A VEGF-A VEGFA 2.52 

- 
N-terminal pro-Brain Natriuretic 

Peptide 
NTproBNP NPPB 2.39 

- Brain Natriuretic Peptide BNP NPPB 2.34 
- Atrial Natriuretic Peptide ANP NPPA 1.93 

P36222 Chitinase-3-like protein 1 CHI3L1 CHI3L1 1.93 

- 
N-terminal pro-Atrial Natriuretic 

Peptide 
NTproANP NPPA 1.38 

P13726 Tissue factor TF F3 1.36 
P43235 Cathepsin K CTSK CTSK 1.13 

- D-dimer DD - 1.10 
P05362 Intercellular adhesion molecule 1 ICAM1 ICAM1 1.09 

- Beta-thromboglobulin B-TG PPBP 1.08 

Supplemental Table 29 – Whole blood-persistent AF subset’s potential biomarker proteins after the bootstrap approach with 𝑝 =
75%. 

UNIPROT 
Code 

Full Name Abbreviation Gene Mean Score 

P02741 C-reactive protein CRP CRP 2.30 
- N-terminal pro-Brain Natriuretic Peptide NTproBNP NPPB 1.46 

P16109 P-selectin SELP SELP 1.03 
- Mid-region pro-Atrial Natriuretic Peptide MRproANP NPPA 1.02 


