
Proceedings of the International Multiconference on

Computer Science and Information Technology pp. 699–706

ISBN 978-83-60810-22-4

ISSN 1896-7094

Applying Program Comprehension Techniques to
Karel Robot Programs

Nuno Oliveira∗, Pedro Rangel Henriques∗, Daniela da Cruz∗, Maria João Varanda Pereira†,

Marjan Mernik‡, Tomaž Kosar‡ and Matej Črepinšek‡

∗ University of Minho - Department of Computer Science,

Campus de Gualtar, 4715-057, Braga, Portugal

Email: {nunooliveira, prh, danieladacruz}@di.uminho.pt
† Polytechnic Institute of Bragança

Campus de Sta. Apolónia, Apartado 134 - 5301-857, Bragança, Portugal

Email: mjoao@ipb.pt
‡ University of Maribor, Faculty of Electrical Engineering and Computer Science,

Smetanova 17, 2000 Maribor, Slovenia

Email: {marjan.mernik, tomaz.kosar, matej.crepinsek}@uni-mb.si

Abstract—In the context of program understanding, a chal-
lenge research topic1 is to learn how techniques and tools for
the comprehension of General-Purpose Languages (GPLs) can
be used or adjusted to the understanding of Domain-Specific
Languages (DSLs). Being DSLs tailored for the description of
problems within a specific domain, it becomes easier to improve
these tools with specific visualizations (at a higher abstraction
level, closer to the problem level) in order to understand the
DSLs programs.

In this paper, comprehension techniques will be applied to
Karel language. This will allow us to explore the creation of
problem domain visualizations for this language and to combine
both problem and program domains in order to reach a full
understanding of Karel programs.

I. INTRODUCTION

IN THIS paper, we explore the use of program comprehen-

sion techniques to understand Domain-Specific Programs

(DSPs). By DSP [1], [2], [3] we mean programs written in

a Domain-Specific Language (DSL), which in its turn, is

designed to program specific tasks in a fixed problem domain.

To program in DSLs means to use a specific vocabulary,

structures, and higher level components. Moreover, to imple-

ment this kind of languages, specific tools can be constructed

and they are customized for a problem domain. These facts

make the programming task easier in this specific context, but

difficult to understand by people that are out of the subject.

We are convinced that we can apply traditional Program

Comprehension Techniques to DSLs [4], [5], and we can

go further constructing visualizations closer to the problem

domain. This is possible because, from a DSL program, we

can easily infer information about the problem to be solved.

The construction of program comprehension tools can

be based on the formal definition of the language and, in

1This work is part of a bilateral cooperation project (Portugal/Slovenia)
supported by FCT, Departamento das Relaçőes Europeias, Bilaterais e Mul-
tilaterais, and Slovenian Research Agency (grant No. BI-PT/08-09-008).

our case, their development relies completely on traditional

grammar-oriented techniques. Using the grammar, we can

generate automatically textual or visual editors, to create

and handle programs in that language. In a similar way,

we can also generate parsers (generally speaking, language

processors) to extract from the source code static and dynamic

information to create visualizations helpful to understand it.

In the context of General-Purpose Languages (GPLs) the

information about the problem to be solved, collectable from

the code, is neither sufficient to infer the object that is

controlled, nor the problem domain— perceiving what kind of

control can be programmed. Under those circumstances, it is

necessary to resort to other kind of resources like annotations,

comments, user manuals, implementation reports, and so forth.

However, from the definition of DSL comes out that, when

dealing with such languages, we know the objects operated by

the programs; thus it is possible to construct problem domain

visualizations changing the object states according to dynamic

data extracted from the source code.

In this case we have information about the object, the

problem domain (the operations over the object), and the

program domain (the instructions that modifies the object

state). The mapping of these views improves the efficiency

of program comprehension tools.

The outline of this paper is as follows: in Section II the

related work about PC techniques and tools are presented;

the application of these techniques to DSLs will be described

in Section III; along Section IV we present the processes

of extracting, visualizing, and synchronizing the information

of different domains for Karel Language [6]; finally the

conclusion of the paper is in Section V.

II. PROGRAM COMPREHENSION, TECHNIQUES AND TOOLS

Program Comprehension (PC) [7], [8] is a hard cognitive

task that involves constructing a mental model of the program,

978-83-60810-22-4/09/$25.00 c© 2009 IEEE 699

700 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

trying to reconstruct the thoughts of the original programmer.

This process becomes easier when concrete representations

are automatically produced, revealing different aspects of the

program structure and behavior. Hence, program visualization

and program animations are important aids for accomplishing

this task. Even more important, is the ability to create visual

representations that allow the programmer to interconnect the

execution of program statements with the effect produced

by them; thus allowing visualization of the relation between

problem and program domains.

Program Comprehension plays an important role in the area

of software maintenance, as it is a complex and expensive task.

Thus, the need for software engineering tools that facilitate the

process of understanding computer programs is compelling.

In this context, the main goal of a Program Comprehen-

sion Tool (PCT) is to ease the process of understanding

the structure and functionality of a program. In this field

of PC, many tools were developed along the last 20 years.

Imagix 4D [9], CodeSurfer [10], Shrimp [11], CANTO [12],

CodeCrawler [13] and Bauhaus [14] are only a few tools

among many others. All the tools comply with the referred

objective by: providing one or more known mental models for

program comprehension; maintaining a repository of structural

and/or behavioral information about a program; providing a

presentation model for visualizing information about programs

in various ways; providing mechanisms for navigating from

one kind of representation to another; and so forth.

According to our background on program comprehension,

we are convinced that existing PC techniques can be used for

DSLs. We have some experience with two different approaches

[15]: a non-invasive approach (the source code does not

change) and an invasive approach (it changes the source code).

Concerning the first one, we have developed an animator,

Alma [16], that does not modify the source program and

uses abstract interpretation techniques, aimed at an easy and

systematic adaptation to cope with different programming

languages. Concerning the second one, we have applied it in

the development of two other tools, CEAR [17] and WAV [18],

a technique called program instrumentation that modifies the

source code (inserting inspector functions) in order to collect

dynamic information at runtime. In Alma, the source pro-

gram is not compiled. Variables are not converted into mem-

ory locations, algebraic operations are not transformed into

register operations involving value transfers among memory

addresses, and control flow is not implemented as jumps to

code addresses. Instead, we work with abstractions of program

concerns (such as assignment, algebraic operations, conditions

for controlling the execution flow, input/output, and so forth)

and interpret them (no assembly code is executed). Concerning

the second approach, we have expertise in weaving inspectors

in the source program to catch and record the functions that are

actually called during execution and their concrete parameters

(in the context of web applications, the program units that are

interpreted by the server, or the links really visited).

The development of both approaches—abstract interpre-

tation and code instrumentation—rely completely on tradi-

tional grammar-oriented techniques for compiler writing and

implementation. We use Translation Grammars or Attribute

Grammars [19] to specify the tools, and resort to Compiler

Generators for automatically produce the code of the target

processors.

III. OUR APPROACH TO APPLY PC TECHNIQUES IN DSLS

Although there are several approaches that we could follow

to implement our ideas, due to our acquaintanceship with

Alma, we have decided to adhere to its philosophy. In this

context we extended it to deal with the ideas expounded.

Alma [16] is a system for program visualization and ani-

mation that deals easily with different programming languages

and allows the construction of more appropriate visualizations

for each domain. The purpose of this tool is to help the

programmer to inspect data and control flow for a given pro-

gram (static view of the algorithm realized by the program—

visualization), and to understand its behavior (dynamic view of

the algorithm—animation). The core of such tool is language

independent; it is similar to a compiler’s Back-End (BE)

that takes as input an abstract representation. As intermediate

representation, between the Front-End (FE) and the BE, we

use a Decorated Abstract Syntax Tree (DAST) and implement

the visualizer and the animator components in a systematic

way. This is achieved by means of two rule bases, one for

the visualization of tree nodes, and another one for tree

rewriting. To process a concrete programming language, Alma

is customized by providing a dedicated FE that converts the

input programs into the internal abstract representation.

Besides that reconfiguration of Alma, to cope with different

input languages, at present we propose another evolution of

Alma to Alma2, a PC tool tuned to cope with a given DSL.

That evolution relies on the use of a second base of

visualizing rules, synchronized with the first one and with

the tree rewriting system. This new set of visualizing rules

is adapted to each DSL and is responsible for producing the

problem domain view.

Concerning the characteristics of each particular DSL, a set

of animation rules must be defined and the inclusion in our

internal representation of new abstractions or even adaptation

of their operational semantics must be done. This will prepare

the tool for the final user that just have to insert a source

program in order to get the visualizations. On the other hand,

since each DSL has special characteristics, we need to perform

a deeper study concerning the kind of visualizations that are

more appropriate for each case.

In our research project, several DSLs will be studied but we

have started the work with Karel Programming Language, and

this paper is devoted to report the outcomes so far attained.

IV. COMPREHENDING KAREL PROGRAMS

In the previous section we gave an overview of the approach

we conceive for the development of a program comprehension

tool for DSLs. In this section, we show how we use Alma2

to help on the comprehension of programs written in Karel

Language.

NUNO OLIVEIRA ET. AL: APPLYING PROGRAM COMPREHENSION TECHNIQUES TO KAREL ROBOT PROGRAMS 701

Karel Language [6], is a DSL to control a robot, called

Karel2. As the language also has the academic purpose of

teaching the bases of imperative programming, the robot is

neither a full-featured nor a sophisticated machine. Besides

turning on or off, moving one step ahead, turning left, picking

objects from the ground, keeping them in an object bag, and

putting them back on the ground, Karel, the robot, knows (i)
which direction it is facing to; (ii) whether it is blocked by

walls or even (iii) whether it sees objects in the ground.

To sum up, the robot only understands a few basic in-

structions, hence, its controlling language is simple as can

be noticed in Listing 1, where a version of Karel language

grammar is presented3. Notice, though, that the language

only specifies the robot actions, and it does not concern the

modeling of the world where the robot lives.

Listing 1. Formal Definition of Karel Language
1

2 s t a r t → BEGINNING−OF−PROGRAM program
3 END−OF−PROGRAM
4 program → d e f i n i t i o n ∗ BEGINNING−OF−EXECUTION
5 s t a t eme n t ∗ END−OF−EXECUTION
6 d e f i n i t i o n → DEFINE−NEW−INSTRUCTION i d e n t i f i e r AS
7 s t a t eme n t
8 s t a t eme n t → b l o ck | i t e r a t i o n
9 | l oop | c o n d i t i o n a l

10 | i n s t r u c t i o n
11 b l o ck → BEGIN s t a t eme n t ∗ END
12 i t e r a t i o n → ITERATE number TIMES s t a t eme n t
13 l oop → WHILE c o n d i t i o n DO s t a t eme n t
14 c o n d i t i o n a l → IF c o n d i t i o n THEN s t a t eme n t
15 (ELSE s t a t eme n t) ?
16 i n s t r u c t i o n → TURNON | MOVE | TURNLEFT
17 | PICKBEEPER | PUTBEEPER
18 | TURNOFF | i d e n t i f i e r
19 c o n d i t i o n → FRONT−IS−CLEAR | FRONT−IS−BLOCKED
20 | LEFT−IS−CLEAR | LEFT−IS−BLOCKED
21 | RIGHT−IS−CLEAR | RIGHT−IS−BLOCKED
22 | BACK−IS−CLEAR | BACK−IS−BLOCKED
23 | NEXT−TO−A−BEEPER
24 | NOT−NEXT−TO−A−BEEPER
25 | ANY−BEEPERS−IN−BEEPER−BAG
26 | NO−BEEPERS−IN−BEEPER−BAG
27 | FACING−NORTH | NOT−FACING−NORTH
28 | FACING−SOUTH | NOT−FACING−SOUTH
29 | FACING−EAST | NOT−FACING−EAST
30 | FACING−WEST | NOT−FACING−WEST

31 i d e n t i f i e r → [a−z] ([a−z] | [0−9]+)∗

32 number → [0−9]+

A. Knowledge Analysis

Regarding the language description and its formal definition,

we can infer some knowledge about the program and problem

domains, and we also can create a set of connections between

them, to ease the comprehension of the target program.

In Karel language, looking to its description it is not difficult

to conclude that it is used to control some kind of robot. From

the formal definition, we suspect how to control that robot. In

other cases, some extra documentation should be consulted.

However, as long as this machine has no brain to think

on its movements, we can infer that there is an internal state

that is changed by the sequence of operations allowed by the

2The robot inherited its name from the inventor of the word and concept
robot: Karel Čapek, a well-known Czech writer and playwright.

3The original grammar is available at http://mormegil.wz.cz/prog/karel/
prog doc.htm

controlling language. This means that the language does not

control the robot directly, instead it controls its internal state.

This is what really happens at the program level. But persons,

who try to understand the programs in this language, may be

interested not only in what happens internally, at the robot’s

state, but also in what are the effects produced, externally, in

the robot.

Alma2 purpose is precisely that: to give a joint view of

what is done at program level, and what are the repercussions

at problem (real-world) level. So, we have to define the

visualization of both domains. Program level visualization

requires the creation of the program’s state (the robot’s internal

state) and the definition of the interpretation tree4. Problem

level visualization requires the definition of images that de-

pict situation on that domain; it needs also the creation of

connections with language operations and constructions. These

connections will make possible a synchronized visualization

of both domains, enabling an inspection of what are the

program actions that produce the effect (movement) on the

robot. Finally, it requires the construction of the animation,

resorting to the images and the mappings created.

Again from the language description and its formal defini-

tion, we can infer concepts that define the robot’s state. Table I

shows these concepts, to which we call variables.

TABLE I
KAREL’S INTERNAL STATE VARIABLES

VARIABLE DESCRIPTION

posX Stores the X-axe value of the robot’s position.

posY Stores the Y -axe value of the robot’s position.

angle Stores the angle of the robot’s direction.

beepers Stores the number of objects the robot has in its bag.

Also from the grammar of Karel Language and the descrip-

tion of the domain, incremented with the empirical knowledge

about the controlled object (the robot), we can infer the

situations (poses of the robot) illustrated in Figure 1. This

figure is composed of five images. Each one represent an upper

view of the robot in a different situation: 1) the robot is turned

off (red light in its back); 2) the robot is turned on (green light

in its back); 3) the robot rotated left; 4) the robot picked an

object and 5) the robot dropped an object. These images would

be combined with each other to perform animations directed

by the operations at the program level. This is an issue that

will be addressed in Section IV-C.

In the next Section IV-B, we will center attentions in the

definition of the program domain visualization.

B. Visualizing the Program Domain

When writing a program with Karel Language, the user

does not need to be worried about the definition of a state

4By interpretation tree we mean an attribute valued (decorated) abstract
syntax tree that is a static/dynamic semantic representation of the input
program, either in a imperative or declarative language. Usually in the
literature it is named execution tree.

702 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

1 2 3

4 5

Fig. 1. Problem Domain Situations: Karel Possible Poses

Listing 2. Definition of the Robot’s State (Fragment)

1

2 CToken tX = new CToken ("posX" , . . .) ;
3 CToken tY = new CToken ("posY" , . . .) ;
4 CToken tA = new CToken ("angle" , . . .) ;
5 CToken tB = new CToken ("beepers" , . . .) ;
6 (. . .)
7

8 pub l i c Alma . CAlmaNode i n i t S t a t e () {
9 CConstNode c0 = new Alma . CConstNode (0) ;

10 CAlmaNode nX = new AssignNode (tX , c0) ;
11 CAlmaNode nY = new CAssignNode (tY , c0) ;
12 CDeclNode x =
13 new CDeclNode (tX , "integer" , nul l , nX) ;
14 CDeclNode y =
15 new CDeclNode (tY , "integer" , nul l , nY) ;
16 CAlmaNode dec l1 =new Alma . CStmtsNode (x , y) ;
17

18 (. . .)
19 }

for the robot, because such state should already be defined

by the compiler/processor. The delegation of these tasks (and

other semantic definitions) to the compiler, is a very common

practice when dealing with DSLs. As found in [20], the same

does not happen with GPLs, where the state of the program is

defined in the program itself. This way, as the BE of Alma2 is

an interface for the processing of a language, we must define

the operational semantics of Karel Language.

We create an Alma2 FE for Karel Language, in order to

convert Karel programs into Alma2 tree-based abstract repre-

sentation. LISA system [21], based on attribute grammars, is

used to construct the FE for Karel. We start by implementing

this FE by defining the variables and nodes that will be able

to describe the robot’s internal state. Then, as a second step,

for each Karel instruction, we create DAST nodes, resorting

to Alma2 notation. The functions and objects of Alma2 are

implemented in Java. LISA is used to synthesize an attribute

that will store the complete DAST of a program. This DAST,

representing the internal and abstract structure of a program,

is built resorting to the constructs defined in Alma2. In some

extent, Alma2 can be seen as an domain-specific embedded

language [22].

The code fragment in Listing 2 shows how we declare the

variables that determine the state of the robot, and initialized

Listing 3. Definition of the Program Domain Visualization (Fragment)

1

2 r u l e I n s t r u c t i o n P i c kB e e p e r {
3 INSTRUCTION : : = # P i ckbeepe r compute {
4 INSTRUCTION. t r e e =
5 new AssignNode (
6 tB ,
7 new COperNode (
8 new CVarNode (tB) ,
9 new CConstNode (1) , "+"

10)
11) ;
12 } ;
13 }

the position. The idea is to i) define global tokens (line 2

to 5) that would be used in whole grammar to refer to the

variables posX, posY, angle and beepers, respectively;

ii) then we create an auxiliary function, initState, that

builds the nodes of a branch with the variable’s declaration

and initialization (lines 8 to 19). The fragment, in Listing 2,

builds a tree equivalent to the tree that would represent a piece

of an imperative language program like:

integer posX = 0, posY = 0;

The tree resultant from the auxiliary function presented in

Listing 2 is prepended to the reminder of the tree synthesized

when processing a program in Karel Language. In Listing 3 we

show another fragment of the Karel Language processor. This

time, we illustrate the construction of the tree representation

and semantics behind the command PICKBEEPER.

The command PICKBEEPER hides, in its abstraction, a

small operation that modifies the state of the robot, namely,

it increments the number of beepers. So, when including

this command in a program, at interpretation phase we must

consider the program as having one more statement equivalent

to:

beepers = beepers + 1;

As the other instructions in Karel Language have a similar

abstraction level, the interpreter of each one requires a similar

approach, adding statements to change the state. For instance,

the instruction TURNLEFT, changes the value of the variable

angle in the following way:

angle = (angle + 90)%360

A concrete illustration of a sub-tree from the program’s

DAST, can be seen ahead in this document, in Figure 3.

C. Visualizing the Problem Domain

As stated before, to build the visualization of the problem

domain, the first step is to create connections between problem

and program concepts — with them we would be able to

see which parts of the program affect the produced output (at

problem domain); and, as a last step, to define the animation

NUNO OLIVEIRA ET. AL: APPLYING PROGRAM COMPREHENSION TECHNIQUES TO KAREL ROBOT PROGRAMS 703

of images (depicting situations of the problem) according to

the mappings created.

Since the problem domain underlying the Karel Language

was known, we are able to infer the chief concepts character-

izing the problem domain (see Table II, first column); from the

program domain we identify the main operations (see Table II,

second column).

TABLE II
MAPPING PROGRAM AND PROBLEM CONCEPTS

PROBLEM DOMAIN →֒ PROGRAM DOMAIN

Turn Off TURNOFF

Turn On TURNON

Step Ahead MOVE

Turn Left TURNLEFT

Pick Object PICKBEEPER

Drop Object PUTBEEPER

With the contents of this table we are able to look back to

the processor we were creating with Alma2, and finish it by

adding the visualization of the problem domain.

In Alma2, the visualization of the problem domain has a

central concept, which we call Actor. An Actor is an object

either controlled by the language or just referenced by it. It

is composed of a set of poses, which it can stand through

the animation process, and an internal state. A language can

have more than one Actor associated, in order to be more

perceptible the visualization of the problem domain. Besides

the Actor, to define the problem visualization, Alma2 offers

a set of Animation Patterns that stimulate the internal state

of the Actors and provoke their animation. Using the same

approach of the last section, visualization rules will be applied

to the DAST but, in this case, they are based on the animation

patterns which are associated to the nodes.

In our case study, the Karel Language only needs one

actor: the robot. The images in Figure 1 illustrate some of the

possible poses of the robot. Figure 1 (3) is equal to Figure 1

(2), it only was rotated 90o to the left, the result of a possible

animation.

Listing 4, line 2, shows how we created the Actor for Karel

Language. The first argument of the constructor is the name

of the images that would serve as poses for the Actor. The

second argument is the definition of the Actor’s state.

This Actor is combined with animation patterns to define

the animation of each instruction on the language. We use the

knowledge in Table II to guide the creation of the concrete

mappings with Alma2. In Listing 4 we present two fragments

of code that define the animation for the commands TURNLEFT

(lines 5 to 17) and PICKBEEPER (lines 19 to 29).

In both cases we append animation patterns to the same

kind of tree node: AnimAssignNode. These nodes behave

exactly the same as the AssignNode used in Listing 3, but

they have a new attribute that defines the animation. In the first

fragment of the code, in Listing 4, we associated the pattern

Rotate. The code means that the Actor, robot, will perform

a rotation over the value stored in variable angle of its state,

and will use the second pose in the set of poses5. For the

second fragment we used the pattern Identity. The code means

that the animation of the Actor, robot, is only to change its

poses from the fourth pose to the third, and from the latter to

the second pose in its set of poses.
With all of the animations defined and appended to the tree

nodes, the Alma2 FE for Karel Language is complete. Figure 2

shows some of the results of animating the problem domain

of a program, inside the Alma2’s environment.

(a) (b)

(c) (d)

Fig. 2. Problem Domain Visualization. (a) The robot is turned off; (b) The
robot turned left for three times; (c) The robot gave a step ahead; (d) The
robot is picking an object (we only show the first frame of the animation
associated).

D. Visualizing the Interconnection Between Domains

Finally, with Figure 3, we show the complete synchroniza-

tion of all the visualization perpectives.
The working window of Alma2 is divided into four parts

that show different perspectives of the program being inter-

preted. In the upper left corner, the Identifier Table (IT),

representing the internal state of the controlled object, is

displayed. Also on the left but below the IT, appears the

source code (the line being interpreted is highlighted). In the

upper right corner, the interpretation tree is shown, and below

that, the effects of the program execution/interpretation on the

objects of the problem domain are displayed.
The views displayed in the four windows are synchronized

by Alma2 engine while performing tree traversals to interpret

(and animate) the input program.
The synchronous step-by-step evolution of the information

displayed for each view makes visible the cause-effect relation,

and grants the envisaged relation between problem and pro-

gram domains, aiding the analyst to understand the program

meaning. It is worthwhile to notice that this feature comes

for free due to Alma2’s principle and architecture; it is just

needed to develop a FE for the concrete DSL.

5Notice that the indexes to access the poses are zero-based.

704 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

Listing 4. Definition of the Problem Domain Visualization (Fragment)

1

2 Actor r o b o t = new Actor (new S t r i n g [] {"Off" , "On" , "Pick" , "Drop"} , s e t S t a t e ()) ;
3

4

5 r u l e I n s t r u c t i o n T u r n L e f t {
6 INSTRUCTION : : = # Tu r n l e f t compute {
7 INSTRUCTION. t r e e =
8 new CStmtsNode (
9 new AnimAssignNode (

10 (. . .)
11 new An ima t i o nP a t t e r n [] {
12 new APRotate (robo t , new i n t [] {1} , "angle")
13 }
14)
15) ;
16 } ;
17 }
18

19 r u l e I n s t r u c t i o n P i c kB e e p e r {
20 INSTRUCTION : : = # P i ckbeepe r compute {
21 INSTRUCTION. t r e e =
22 new AnimAssignNode (
23 (. . .)
24 new An ima t i o nP a t t e r n [] {
25 new AP I d en t i t y (robo t , new i n t [] {3 ,2 ,1})
26 }
27) ;
28 } ;
29 }

Fig. 3. Synchronization of all Visualization Perspectives

NUNO OLIVEIRA ET. AL: APPLYING PROGRAM COMPREHENSION TECHNIQUES TO KAREL ROBOT PROGRAMS 705

V. CONCLUSION

Karel Programming Language is a Domain-Specific Lan-

guage designed only to command a robot. Writing a program

in Karel Language is an easy task for someone who knows

the problem domain owing to the high level of the language

constructors and their closeness of mapping to that domain.

However the reverse is not true. To understand a program

is not an easy task, specially if the person in-charge has no

knowledge of the problem domain.

In this paper we propose the use of a traditional non-invasive

program comprehension approach to make the understanding

of domain-specific programs easier, and more effective. Static

information extracted from the source program has been used

to create three synchronous views. The Identifier Table (dis-

playing the system state), and Abstract Syntax Tree (decorated

with attribute values) are traditional, and provided by many

tools; an animation of the program execution is then produced

by abstract interpretation over the tree. The third one is novel:

it reproduces the effects of program execution on the problem

domain. To build that third view, a deeper knowledge of

the connections between the language constructors and the

concepts in the problem domain is required. When dealing

with GPLs this mapping is not evident due to the general

purpose character of those programming languages. Therefore

it is not common to find PC tools with that capability. Working

with DSLs, the closeness between language purpose and a

concrete domain, enables to build and offer such a view.

Besides introducing our proposal and displaying a few

screenshots from Alma2 output, we also discussed, from a

technical point of view, how the system was implemented.

The main achievements obtained when exercising with

Karel Language6, were:

• the feasibility of re-using Alma, principles and environ-

ment.

• the easiness of additionally representing the problem

domain and the synchronization of the three views.

• the worth of Alma2 tool for a faster program compre-

hension.

In the near future, we will apply the same approach to other

case studies dealing with specification languages (that are,

indeed, equivalent to declarative programming languages). The

aim is to corroborate our working hypothesis, and to generalize

the approach.

Concerning the upgrade of Alma2 in the direction of a

customizable tool, we forecast that it would be desirable to

allow end-users, not language designer or developer, to easily

specify their own visualization.

The chief idea is to build a graphical editor. The graphical

editor will enable the end-user to associate each node of the

DAST with a geometric figure (a square, circle, etc), or an

image and also, it will enable the end-user to associate each

node with an external (end-user defined) drawing function. The

external function could be called using the attributes available

6The first case-study of our bilateral project, named Program Comprehen-

sion for Domain-Specific Languages (DSLpc).

at DAST nodes, to tune the picture to each concrete situation.

We can include that functionality, keeping the tree visualizer

engine generic and unchanged; and also the animator system,

based on a tree rewriting engine, is kept unchanged.

This approach is easy to implement and will grant to the

visualizer/animator system, customized for a concrete DSL,

effective improvement and better quality as an aid tool for

understanding specifications/programs written in that specific

language.

REFERENCES

[1] T. Kosar, P. M. Lopez, P. A. Barrientos, and M. Mernik, “A preliminary
study on various implementation approaches of domain-specific
language,” Inf. Softw. Technol., vol. 50, no. 5, pp. 390–405, April 2008.
[Online]. Available: http://dx.doi.org/10.1016/j.infsof.2007.04.002

[2] M. J. V. Pereira, M. Mernik, D. da Cruz, and P. R. Henriques,
“Program comprehension for domain-specific languages,” ComSIS –

Computer Science an Information Systems Journal, Special Issue on

Compilers, Related Technologies and Applications, vol. 5, no. 2, pp.
1–17, December 2008.

[3] M. Mernik, J. Heering, and T. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Surveys, vol. 37, no. 4,
pp. 316 – 344, 2005.

[4] J. I. Maletic and A. Marcus, “Supporting program comprehension
using semantic and structural information,” in 16th IEEE International

Conference on Automated Software Engineering (ASE2001). San Diego
- USA: IEEE, November 2001, pp. 107–114.

[5] A. J. Ko and B. Uttl, “Individual differences in program compre-
hension strategies in unfamiliar programming systems,” in 11th IEEE

International Workshop on Program Comprehension (IWPC’03), pages

175.184, Portland, Oregon,USA, May 2003.
[6] R. Pattis, Karel, The Robot: A Gentle Introduction to the Art of

Programming, 1st ed. John Wiley and Sons, Inc., 1981.
[7] R. Brooks, “Using a behavioral theory of program comprehension in

software engineering,” in ICSE ’78: Proceedings of the 3rd international

conference on Software engineering. Piscataway, NJ, USA: IEEE Press,
1978, pp. 196–201.

[8] M.-A. Storey, “Theories, methods and tools in program comprehension:
Past, present and future,” in IWPC ’05: Proceedings of the 13th

International Workshop on Program Comprehension. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 181–191.

[9] “Imagix 4d.” [Online]. Available: \url{http://www.imagix.com/products/
products.html}

[10] P. Anderson and M. Zarins, “The codesurfer software understanding
platform,” in IWPC ’05: Proceedings of the 13th International Workshop

on Program Comprehension. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 147–148.

[11] M.-A. Storey, C. Best, J. Michaud, D. Rayside, M. Litoiu, and M. Musen,
“Shrimp views: an interactive environment for information visualization
and navigation,” in CHI ’02: CHI ’02 extended abstracts on Human

factors in computing systems. New York, NY, USA: ACM, 2002, pp.
520–521.

[12] G. Antoniol, R. Fiutem, G. Lutteri, P. Tonella, S. Zanfei, and E. Merlo,
“Program understanding and maintenance with the canto environment,”
in ICSM ’97: Proceedings of the International Conference on Software

Maintenance. Washington, DC, USA: IEEE Computer Society, 1997,
p. 72.

[13] M. Lanza, S. Ducasse, H. Gall, and M. Pinzger, “Codecrawler: an
information visualization tool for program comprehension,” in ICSE

’05: Proceedings of the 27th international conference on Software

engineering. New York, NY, USA: ACM, 2005, pp. 672–673.

[14] A. Raza, G. Vogel, and E. Plödereder, “Bauhaus—a tool suite
for program analysis and reverse engineering,” in Reliable Software

Technologies - Ada-Europe 2006, 2006, pp. 71–82. [Online]. Available:
http://dx.doi.org/10.1007/11767077 6

[15] D. da Cruz, M. Béron, P. R. Henriques, and M. J. V. Pereira, “Strategies
for program inspection and visualization,” in CSE’08—International

Scientific Conference on Computer Science and Engineering. High
Tatras, Slovakia, September 2008.

706 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

[16] D. da Cruz, P. R. Henriques, and M. J. V. Pereira, “Constructing pro-
gram animations using a pattern-based approach,” ComSIS—Computer

Science an Information Systems Journal, Special Issue on Advances in

Programming Languages, vol. 4, no. 2, pp. 97–114, December 2007,
ISSN: 1820-0214.

[17] M. Berón, P. R. Henriques, M. J. V. Pereira, and R. Uzal, “Program
inspection to interconnect behavioral and operational view for program
comprehension,” in York Doctoral Symposium, 2007. University of
York, UK, Oct 2007.

[18] D. da Cruz, R. Fonseca, P. R. Henriques, and M. J. V. Pereira, “How
to interconnect operational and behavioral views of web applications,”
in ICPC ’08: Proceedings of the 2008 The 16th IEEE International

Conference on Program Comprehension. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 263–267.

[19] D. E. Knuth, “The genesis of attribute grammars,” in WAGA: Proceed-

ings of the international conference on Attribute grammars and their

applications. New York, NY, USA: Springer-Verlag New York, Inc.,
1990, pp. 1–12.

[20] A. Deursen and P. Klint, “Little languages: little maintenance?” Univer-
sity of Amsterdam, Amsterdam, The Netherlands, Tech. Rep., 1997.

[21] M. Mernik, M. Lenič, E. Avdičaušević, and V. Žumer, “LISA: An inter-
active environment for programming language development,” Compiler

Construction, pp. 1–4, 2002.
[22] P. Hudak, “Building domain-specific embedded languages,” ACM

Computing Surveys, vol. 28, no. 4, pp. 196–202, June 1996. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.
6020

