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Abstract 

Current manufacturing enterprises facing the challenge of increasing energy prices and its 

associated environmental effects to reduce their emissions. In order to reduce the 

manufacturing energy consumption, the system-level energy reduction with the operational 

method can be employed as an energy-saving approach. This paper presents an energy efficient 

Flexible Job-shop Scheduling Problem (FJSSP) that offer several advantages in the current 

competitive atmosphere by way to improve the system performance. Therefore, a multi-

objective scheduling method is developed in this paper, with reducing total completion time of 

jobs, processing cost of operations and energy consumption of machines as objectives. Since 

the problem is strongly NP-hard, a novel algorithm based on an improved Moth Flame 

Optimization (MFO) is adapted to search for the optimal/near-optimal solution in Flexible Job-

shop Scheduling problems (FJSSP). Numerical experiments are conducted with modified ten 

different instances of FJSSP is presented to show the effectiveness of algorithm and to prove 

the feasibility of the model. Finally, the performance of the proposed MFO algorithm is 

compared with Non-Dominated Sorting Genetic Algorithm (NSGA-II). Experimental results 

show that the proposed MFO algorithm performed better in comparison to NSGA-II.  



Keywords: Flexible Job Shop Scheduling, Multi-objective Optimization, Energy Consumption, 

Makespan, Moth Flame Optimization Algorithm. 

 

1. Introduction 

In the technically advanced manufacturing environment of today’s world, an important aim of 

current manufacturing companies is to meet the requirements of the rapid increase in energy 

consumption and its associated environmental affect (Giret, 2016). In order to achieve the cost-

effective, environmentally friendly, and efficient manufacturing processes the current 

manufacturing systems have to be flexible enough and highly efficient. But, due to the increase 

in the price of unit energy and stringent environmental protection awareness schemes to meet 

the mentioned requirements is a challenge. However, out of the mentioned objectives, reducing 

the energy consumption of manufacturing process has become an important issue, thus recently 

many researchers drew their attention towards it (Jiang, 2014). In this paper, we have considered 

the production-scheduling problem as a Flexible Job-shop Scheduling Problem (FJSSP) due to 

its realistic and constructive approach for manufacturing industries (Yang, 2016). Flexible Job-

shop Scheduling has several applications in various industries such as factories of plastic 

injection machines, fastener manufacturing companies,  To investigate the above mentioned 

sustainable parameters in FJSSP, the objective functions such as energy consumption, 

completion time and processing cost has been considered for the development of a sustainable 

manufacturing.  

FJSSP is an NP-hard problem and it is an extension of classical job-shop scheduling 

problem (JSSP), it usually deals with the real-time manufacturing situations and it is more 

complex scheduling problem than JSSP (Jiang, 2014) as the number of jobs increases finding 

the optimal schedule in short time becomes very difficult. In general, there are two different 

approaches for solving FJSSP, namely Hierarchical and Integrated approach. In Hierarchical 

approach, the problem is solved by dividing it into sub-problems and solving them 

independently (Brandimarte, 1993). But by doing so we may lose the best possible solutions 

and settle down with a compromising solution for multiple objectives. In addition, the 

considered problem has multiple objectives such as maximum completion time i.e. makespan 

and minimum energy consumption, where its actual production scenario is complex as it is 

difficult to find a compromising solution between two or more conflicting objectives that need 

to be solved to optimality by scheduling of operations to determine the optimal processing 

sequence. Thus, it can be well portrayed as multiple objective FJSSP (MOFJSSP). Therefore, 



efficient optimization algorithms with outstanding computational effort are required to deal 

with multiple objective functions.  

Taking all the above-mentioned characteristics into account and the requirements of 

sustainable manufacturing, it is required to merge the considered multi-objectives maximum 

completion time and minimum energy consumption functions more tightly for the 

improvement of the manufacturing system performance. In this regard, we focus on responding 

to the following questions.  

1) What kind of mathematical model must be developed with the considered performance 

measures and how this model can be solved to optimality?  

2) What are the effects of the proposed multi-objective evolutionary algorithm i.e., MOO-

HMF on the considered FJSSP problem and how these effects influence the considered 

objectives?  

3) How do these three conflicting objectives trade-off? 

 

2. Literature review 

The discussion in this section will focus on the three identified production scheduling problems 

i.e., Job-shop Scheduling Problem, Flow Shop Scheduling Problem and Flexible Job-shop 

Scheduling Problem. The detailed literature on these problems is mentioned as follows.  

 

2.1  Job shop scheduling problem (JSSP) 

Fang et al. (1993) proposed a new promising genetic algorithm approach for finding the 

makespan of job-shop scheduling problem and open-shop scheduling problem. Pezzella et al. 

(2000) developed a new Tabu search method for the Job-shop scheduling problem which is 

guided by shifting bottleneck model that considered makespan as the objective to attain the 

best solution. Goncalves et al. (2005) addressed a scheduling model in a job-shop production 

system, with proposed hybrid genetic algorithm approach an optimal solution related to 

makespan has been obtained. Lin et al. (2010) addressed a makespan related multi-objective 

scheduling model, machine idle time and total tardiness in a job-shop system and achieved 

most optimal solutions using multi-objective PSO. Liu et al. (2014) developed a scheduling 

model for the job-shop problem that minimizes the total non-processing energy consumption 

and total weighted tardiness to acquire the optimal solution. May et al. (2015) developed a 

multi-objective model considering makespan, energy consumption of a job-shop scheduling 

problem and obtained a set of various Pareto front solutions using green genetic algorithm. 

Escamilla et al. (2016) proposed a multi-objective scheduling model for JSSP, involving 



makespan and energy consumption as objectives and obtained a set of solutions based on a 

multi-objective genetic algorithm. Zhang et al. (2016) developed a scheduling model that 

minimizes the energy requirement and weighted tardiness of the job-shop problem and derived 

the exact solution by employing the genetic algorithm with an enhanced local search. Yin et al. 

(2017) formulated a multi-objective optimization model that considers productivity, energy 

efficiency and noise reduction with flexible spindle speed for a job-shop scheduling problem 

and proposed a multi-objective genetic algorithm based on simplex lattice design to solve to 

optimality.  

 

2.2 Flow shop scheduling problem (FSSP) 

Tang et al. (2005) suggested a neural network model and proposed an algorithm for the hybrid 

flow shop scheduling prototype, which addressed the average flow time, average tardy time 

and percentage of tardy jobs as multi-objective optimization functions that depicted the 

performance of the neural network approach as superior to the traditional dispatching rules in 

evaluating the optimum solution. Yagmahan et al. (2008) proposed an ant colony optimization 

algorithm to minimize makespan, total flow time and total machine idle time of flow shop 

scheduling problem. Sayadi et al. (2010) proposed a new discrete firefly meta-heuristic model 

for the flow shop scheduling model that deemed makespan as an objective in order to establish 

the accurate result. Lionel et al. (2010) formulated a multi-objective scheduling model 

involving the utilisation rate of the bottleneck and the total completion time for a hybrid flow 

shop model and used L-NSGA algorithm to obtain an accurate answer. Pan et al. (2011) 

addressed an IOT streaming flow shop scheduling problem that took into supposition the 

weighted earliness and tardiness penalties with discrete artificial bee colony (DABC) algorithm 

to evaluate the performance of the proposed DABC algorithm with the other best-performing 

algorithms known from the literature. Fang et al. (2011) developed a new mixed integer 

programming model which considered peak power consumption, the carbon footprint and the 

makespan of flow shop scheduling model to examine computationally tractable approaches for 

finding near-optimal schedules. Bruzzone et al. (2012) addressed an energy-aware scheduling 

model with the help of mixed integer programming formulation that accounts for energy 

consumption of a flexible flow shop problem, where the initial assignment of jobs and 

sequencing were required to be kept fixed. Liu et al. (2017) proposed a hybrid multi-objective 

backtracking search algorithm for permutation flow shop scheduling problem that considered 

makespan and energy consumption as objective functions to attain makespan related definite 



results. Marichelvam et al. (2017) developed a multi-objective scheduling problem to evaluate 

makespan and total flow time in a flow-shop system and solved it with a hybrid monkey search 

algorithm. 

2.3 Flexible job shop scheduling problem (FJSSP)     

In modern production systems of FJSSP, due to its real-life applications, simultaneous 

optimization of multiple objectives need to be done. Therefore, many researchers have started 

working on multi-objective optimization of FJSSP (Reddy, et al., Silva, et al., Varela, et al., 

2017; Santos, et al., 2015). Gen et al. (2007) built a multi-objective optimization model 

considering makespan, maximum machine workload and total workload of a flexible job-shop 

scheduling problem and designed a hybridised genetic algorithm with an innovative local 

search procedure (bottleneck shifting) to solve it for acquiring accurate results. Madureira et 

al. (2008) proposed a Multi-Agent Autonomic and Bio-Inspired framework with self-managing 

capabilities to solve the extended job-shop scheduling problem. Zhang et al. (2009) addressed 

a multi-objective scheduling model related to completion time, workload of critical machine 

and total workload of machines in a flexible job-shop system and obtained most optimal results 

based on hybrid PSO. Gen et al. (2009) employed genetic algorithm with the crossover and 

mutation methods for flexible job-shop scheduling problem with the objectives of minimizing 

makespan, total workloads of machines and maximum workloads of machines to obtain 

accurate solutions. Madureira et al. (2010) developed a BioSched system to support the 

dynamic and distributed scheduling of extended job-shop scheduling problem. Jun-Qing et al. 

(2011) developed a Pareto-based discrete artificial bee colony algorithm to elucidate multi-

objective flexible job-shop scheduling problems to obtain faultless results. Jiang et al. (2014) 

developed a multi-objective flexible job-shop scheduling model involving makespan, 

processing cost, energy consumption and cost-weighted processing quality and solved it with 

the proposed on-dominant sorting genetic algorithm with the target of accomplishing the best 

results. Madureira et al. (2014) proposed a negotiation mechanism for the extended job-shop 

scheduling problem that considers makespan and machine occupation rate as objective 

functions. Karthikeyan et al. (2015) proposed a hybrid discrete firefly algorithm for the flexible 

job-shop scheduling problem that considers maximum completion time, the workload of a 

critical machine and total workload of all machines to finally obtain the required results. Giret 

et al. (2016) confronted a multi-objective scheduling model related to energy consumption and 

makespan in a flexible job-shop system and obtained a set of Pareto optimal solutions using 

improved particle swarm optimization algorithm. Yang et al. (2016) presented a novel method 



for the optimization of bi-objective flexible job-shop scheduling model that considers total 

completion time and total energy consumption under stochastic processing times using NSGA-

II algorithm to be applied to the manufacturing industry. Deng et al. (2017) proposed a bee 

evolutionary guiding non-dominated sorting genetic algorithm II for the multi-objective 

flexible job-shop scheduling problem that considered the total completion time, workload of 

the most loaded machine and the total workload of all machines to obtain optimum results by 

comparing the experimental results and the results of some pre-defined algorithms.  

Although much work has been done on Multi-objective based FJSSP to the author’s 

knowledge, till date very few literature are available with the consideration of multiple 

objectives as energy consumption of machines to process the job’s, processing costs of 

operations and maximum completion time of jobs in the context of FJSSP. Inspired by the 

complexity of the above problem and its importance known from the literature, the issues 

related to the multi-objective problem have been taken into account to find the efficient and 

feasible solutions. 

In this paper, taking environmental concerns into account the performance measures 

such as makespan, processing cost, and energy consumption based on the actual production 

environment in the context of FJSSP. Thereafter, a multi-objective mathematical model has 

been developed by considering the above-mentioned objectives. Further, in order to obtain 

good approximate solutions, we proposed a multi-objective based hybrid Moth Flame 

Optimization Algorithm (MOO-HMF). Numerical experiments are conducted with various 

complex scenarios having different job complexities to assess the performance of the proposed 

hybrid multi-objective algorithm. With Non-Dominated Sorting Genetic Algorithm (NSGA-

II) we try to compare the proposed algorithm effectiveness and efficiency in order to obtain 

good approximate solutions. From the results, the performance of the proposed evolutionary 

algorithm is evaluated and found the feasible and efficient scheduling plans for the proposed 

FJSSP. In later sections the problem description, proposed framework, and its experimentation 

have been detailed. 

In section 3, the detailed description of the problem and its basic assumptions with a 

developed mathematical model along with the constraints. In section 4, we presented a 

framework of the proposed MOO-HMF algorithm. In section 5, numerical experiments with 

different instances having various complex scenarios are explained and their respective results 

are discussed in section 6. The paper concludes with section 7. 



3. Problem description 

We addressed a flexible job shop scheduling problem (FJSSP) and it is defined as a set of n 

jobs with vi number of operations where vi varies between (Oj1, Oj2, ..., Ojl). Each operation Ojl 

of job j is to be processed on one machine k from a set of eligible machines m.  We assume that 

the processing time of the operations is known and all the machines are available at time zero 

i.e. before the scheduling of operations. Each machine can process only one operation at a time, 

and the consecutive jobs can wait at buffers until its preceding job finishes its process. Here, 

we have considered the buffer sizes are unlimited. To assess the performance of the system, 

most frequently considered performance measure such as the minimization of makespan for 

the total completion time of the manufacturing processes is considered. Thereafter, the 

sustainability parameters such as power and time have been considered due to the fact that as 

the working speed of a machine increase, the energy consumption also increases despite the 

shorter processing time. Therefore, the performance measure i.e. minimization of energy 

consumption has been considered as a second objective function. In addition to the above 

performance measures, minimization of total processing cost is considered as the third 

objective function which is also an important factor to be considered in scheduling. As the 

problem is a multi-objective in nature a mathematical model has been developed with the 

consideration of the above mentioned three objectives. The above-discussed problem makes 

several assumptions that are noteworthy to mention.  

3.1. Assumptions 

(a) The considered machines before scheduling must be available at time zero. 

(b) All products can be started at time zero. 

(c) At a time it is possible to process only one operation on one machine. 

(d) Processing of operations on the machines should not be interrupted. 

(e) The sequence of operations of each job for further processing has to be pre-defined. 

(f) Release times and due dates are not specified. 

(g) Job transportation time among machines is not considered. 

Based on the above-mentioned problem and considering its assumptions, the proposed model 

and its mathematical model is shown below and their notations are explained in Table 1.  

 

 



Table 1. Notations used in mathematical model 

 

 

Objectives: 

           Targeting this problem, minimization of total completion time, total processing cost 

minimization, and minimization of energy consumption are the three objectives considered 

during simulation-based optimization. These objectives can be formulated using the following 

equations: 
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The objective of this problem is to mainly focus on scheduling of the jobs so as to minimize 

the maximum of their total completion time, i.e., makespan as mentioned in equation (1); to 

minimize the Total processing cost of operations which is mentioned in equation (2); and to 

minimize the Energy consumption of machines which is mentioned in equation (3). The 

constraints are in the equation (4 -6). Equation (4) and (5) ensures that the precedence 

constraints between the operations of a job and jobs are not violated i.e., oth operation cannot 

N Total number of jobs. 

M Total number of machines. 

vi Number of operations of job j 

k

joC  Completion time of oth operation of job j on machine k. 

k

joT  Duration of oth operation of job j on machine k. 

k

joS  Beginning time of oth operation of job j on machine k. 

mcj Denotes raw material cost of job j. 

pck Denotes process cost of machine k per unit time. 

ek Denotes energy consumption of machine k per unit time. 



be started unless (o-1)th operation is completed and jth job cannot be processed before the 

previous job is completed. Equation (6) indicates processing constraints, which the preceding 

constraints among operations of the same job should follow so that each machine is available 

to other operations only if the concerned operations are complete.  

4. The NSGA-II and Proposed multi-objective hybrid moth flame evolutionary algorithm 

(MOO-HMFA) 

Recent years due to the advancements in information and communication technology the 

manufacturing sector gain its advantage to fulfil the customized customer orders in less time. 

These advances make the system and process more complex. They also make the scheduling 

problem NP-hard in nature and hence it cannot be solved in a polynomial amount of time. Thus, 

there is a need for new optimization techniques more than before. Although, many algorithms 

available in the market, the nature-inspired evolutionary algorithms to gain their advantages 

due to their merits by obtaining the optimal/near optimal solutions in computationally 

reasonable time. Of course, according to no free lunch theorem, no algorithm solves better for 

all optimization problems (Wolpert, 1997). Due to their demerits, it is necessary to have a right 

balance of the operators in the algorithm that can generate a very accurate approximation of 

the global optimum.  

 

4.1 NSGA-II 

The problem considered in this paper is first solved by applying the non-dominated sorting 

genetic algorithm-II (NSGA-II) developed by Deb et al. (2002a) and then we propose the 

recently emerged modified Moth Flame Optimization (MFO) algorithm (2015). The above 

mentioned two meta-heuristics are adapted to generate the near-optimal process plans for three 

complex examples in the context of Flexible Job-shop Scheduling problem. 

4.1.1. Initial Population Generation 

This method is carried out by generating the initial population for a given population size in a 

random order. Given the defined problem, randomly a job is nominated and verified for its 

predecessor constraints. If the predecessor constraint is satisfied, then it is added to the 

chromosome, otherwise a new job is randomly nominated and verified for its predecessor 

constraint. Until all the chromosomes are completely occupied with the jobs, the process will 

continue. Fig 1 clearly depicts encoding scheme of the chromosome. The first array depicts the 



operations which will be performed by the machines; here fourteen different operations have 

been randomly allocated. Likewise, the second array depicts the machines that have been 

utilized for respective operations in the first array. The next two arrays depict the processing 

cost and the energy consumption of machines in accordance with the corresponding operations.  

 

Figure 1. Encoding scheme of chromosome for NSGA-II. 

 4.1.2. Evolutionary operators 

Newly developed solutions are carried over to operators namely mutation and crossover for 

generating a child population of size N. This will preserve the diversity in the population N. 

Diversification is achieved with the help of crossover operator. Moreover, it also helps to 

search in the unevaluated solution space so as to generate a solution which will be suggestively 

different from previously determined solutions. An appropriate value for probability of 

crossover plays a vital role so as to make sure that the performance of the proposed algorithm 

is maintained. Hence, a one-cut point order-based crossover operator Davis (1991) with a 

probability of crossover (Pc) as 0.6 is considered. The mutation operator plays a vital role in 

safeguarding stronger individuals from diversification and to adjust the weaker ones.  

 A new type of population of size 2N is identified by merging the parent and child 

population each of which has a size of N. This is to make sure that there is elitism which 

produces a huge diversity of population, so as to attain better convergence. The new size of 

population which is 2N now goes through non-dominated sorting procedure which divides the 

set of individuals into different non-dominated regions named non-dominated fronts. In the 

field of non-dominated sorting procedure and usage of diversity preservation operators an 

extension has been proposed and detailed Deb et al. (2002). 

4.2. Hybrid Moth Flame Optimization (MFO) Algorithm  

In this section, we adopted a well-known bio-inspired evolutionary algorithm i.e., moth flame 

optimization (MFO) algorithm to find the best possible solutions of the considered problem. 

The adopted algorithm has several applications in various diverse fields, but in this paper, we 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

O41 o21 o42 o23 o43 o31 o33 o22 o11 o13 o44 o12 o32 o14 

m2 m3 m3 m3 m2 m2 m2 m2 m4 m3 m2 m4 m3 m3 

pc2  pc3    pc3  pc3     pc2  pc2     pc2    pc2    pc4    pc3  pc2   pc4     pc3    pc3  

e2    e3 e3  e3  e2     e2  e2   e2   e4   e3    e2  e4    e3   e3 



have used the algorithm and then proposed a modified version of Moth Flame Algorithm that 

suits the need of the considered problem which covers all the possible solution set to give an 

optimized result.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 2. Flowchart of the proposed MOO-HMF. 
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 In Fig.2 the flowchart of the proposed MOO-HMFO is depicted where the moths in the 

algorithm are defined as possible solutions and their position in the space are considered as 

variables of the problem. The basic assumption for performing the algorithm is, the moths can 

fly in all dimensions together and individually or even in hyper dimensional space with 

changing their position vectors. The detail description of the proposed algorithm and its step 

wise procedure is as follows: 

Step 1 Initially we define the space for moths to explore in the form of time matrices and

 their related inputs. An encoding scheme for the initialisation of processing time in the

 form of a chromosome is shown in Fig 3.  

Figure 3. Encoding scheme of chromosome for initialisation. 

Step 2 Next, we multiply the time matrices with our processing cost inputs and energy    

 consumption inputs to get our remaining search spaces as energy and processing cost. 

  𝑃_𝑐𝑜𝑠𝑡 ( 𝑗 , 𝑘, 𝑖) = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑘) ∗ 𝑡𝑖𝑚𝑒( 𝑗 , 𝑘 , 𝑖)                  (7) 

   𝐸𝑛𝑒𝑟𝑔𝑦(𝑗 , 𝑘, 𝑖 ) = 𝐸𝑛𝑒𝑟𝑔𝑦_𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑘) ∗ 𝑡𝑖𝑚𝑒(𝑗 , 𝑘, 𝑖)        (8) 

Equation (7) and (8) represent processing cost of jobs and energy consumption of machines. 

The procedure for the calculation of processing cost and energy consumption matrix is shown 

in Algorithm 2. 

Step 3 We then convert time and energy matrices in terms of money by multiplying it by wages 

and cost per unit energy and add all three matrices along with their weights. This 

mutation is applied so as to dimensionally match the matrices of time, cost and energy. 

 



Figure 4. Proposed mutation by considering operator wages. 

 



Figure 5. Proposed mutation by considering unit cost of energy. 

A different type of mutation is proposed in this paper and this is shown in Fig 4 and 5. This 

was done because of the difference in dimensions of the matrices that are added to form a 

matrix with minimum values. Hence, we multiplied the energy by its unit cost and time with 

operator wages. 

Step 4 All the rows are considered as individual light sources in which the minimum value is

 to be found. 

Step 5 We then start exploring the matrices (search spaces) to find the minimum of the sum so

 as to obtain a Gantt chart and analyse the results. 

Step 6 After the inputs are received and our search area has been properly defined, we then

 start exploring the matrices row by row in search for the minimum entry in their

 respective rows.  

Step 7 For the same we finally find the sum of all resultant matrices column-wise to gain a 

 single-valued function after converting all ∞’s to zeros. 

Step 8: Checking the single-valued function is optimized or not. 



Based on the fitness values we select the highest probable solution for our problem. Hence, in 

the example, as shown in Fig 3, we can see that second chromosome has best fitness value and 

hence we are selecting them. 

 

5. Experimental Evaluation  

In this section, the performance of the proposed algorithm is assessed by considering different 

modified FJSSP benchmark instances incorporating processing costs and energy consumption 

profiles for a different set of jobs and machines. First, an FJSSP is proposed and according to 

our requirements, we constructed ten FJSSP benchmarks. These constructed benchmarks are 

based on the instances proposed by Brandimarte (1993), Fisher and Thompson (1963) and 

Lawrence (1984) and it is shown in Algorithm 2. Thereafter, processing cost matrix is 

generated by multiplying the unit processing cost matrix with processing time matrix. 

Similarly, the energy consumption matrix is formed by multiplying the unit energy 

consumption matrix with the processing time matrix. It can be inferred from these matrices 

that, with a decrease in processing time, processing cost decreases and the energy consumption 

also decreases.  

 The proposed algorithm has been coded in MATLAB software and data is provided 

through input. The computation for the above data was conducted on an HP Notebook (522TX) 

with Intel Core i5 -6200U CPU (2.30GHz, 3MB L3 Cache) running under Windows 10 

Professional as Operating System with 8 GB RAM. All of the instances considered to 

determine the results were benchmark instances whose references in mentioned in the paper. 

The number of iterations for each instance are: 10X6X6, 15X10X10, 20X5X5, 10X10X10, 

10X5X5, 10X9X9, 6X6X6, and 15X5X5 (number of jobs X number of machines X number of 

operations).    

 In each instance, there are n jobs and m machines where each job has a different number 

of operations having pre-defined operating times. Unspecified operating time implies that the 

concerned operation cannot be processed on that machine. The operation times on the machines 

are kept different. For example, in Table 2 the 10 by 6 data from Brandimarte instances 

(Brandimarte, 1993) is shown where 10 jobs and 6 machines indicate each job has a maximum 

of 6 operations, at a time only one job can be processed on one machine.  The operational time 

of different operations for jobs on different machines, the processing cost and energy 

consumption of respective machines are also given.  



Table 2. Modified instance “mk1” by Brandimarte (1993) 

J Ojo M1 M2 M3 M4 M5 M6 Mcj 

 

 

J1 

O11 5 - 4 - - -  

120 
O12 - 1 5 - 3 - 

O13 - - 4 - - 2 

O14 1 6 - - - 5 

O15 - - 1 - - - 

O16 - - 6 3 - 6 

 

 

J2 

O21 - 6 - - - -  

100 O22 - - 1 - - - 

O23 2 - - - - - 

O24 - 6 - 6 - - 

O25 1 - - - - 5 

 

 

J3 

O31 - 6 - - - -  

 

65 
O32 - - 4 - - 2 

O33 1 6 - - - 5 

O34 - 6 4 - - 6 

O35 1 - - - 5 - 

 

 

J4 

O41 1 6 - - - 5  

 

100 
O42 - 6 - - - - 

O43 - - 1 - - - 

O44 - 1 5 - 3 - 

O45 - - 4 - - 2 

 

 

J5 

O51 - 1 5 - 3 -  

 

150 
O52 1 6 - - - 5 

O53 - 6 - - - - 

O54 5 - 4 - - - 

O55 - 6 - 6 - - 

O56 - 6 4 - - 6 

J6 O61 - - 4 - - 2  

 

85 
O62 2 - - - - - 

O63 - 6 4 - - - 

O64 - 6 - - - - 

O65 1 6 - - - 5 

O66 3 - - 2 - - 

 

 

J7 

O71 - - - - - 1  

 

120 
O72 3 - - 2 - - 

O73 - 6 4 - - 6 

O74 6 6 - - 1 - 

O75 - - 1 - - - 

 

 

J8 

O81 - - 4 - - 2  

 

100 
O82 - 6 4 - - 6 

O83 1 6 - - - 5 

O84 - 6 - - - - 

O85 - 6 - 6 - - 

 

 

J9 

O91 - - - - - 1  

 

65 
O92 1 - - - 5 - 

O93 - - 6 3 - 6 

O94 2 - - - - - 

O95 - 6 4 - - 6 

O96 - 6 - 6 - - 

 

 

J10 

O101 - - 4 - - 2  

 

100 
O102 - 6 4 - - 6 

O103 - 1 5 - 3 - 

O104 - - - - - 1 

O105 - 6 - 6 - - 



O106 3 - - 2 - - 

 pck 6 8 7 4 5 6  

ek 8 10 7.5 12 9 10.5 

 

 Although various optimization algorithms are available to solve this problem, we 

considered a newly developed Moth Flame Optimization algorithm (Mirjalili, 2015) for solving 

the above-described problem. The proposed algorithm has been coded in MATLAB software 

and data is provided through input. The computation for the above data was conducted on a PC 

with Intel Core i5 -6200U CPU (2.30GHz, 3MB L3 Cache) running under Windows 10 

Professional Operating System with 8 GB RAM. The operations of jobs that are assigned to 

the machines are in an order to get the minimum values of performance measures i.e. makespan, 

processing cost, and energy consumption. 

 The above procedure is repeated for all the considered instances to find the robustness 

of the proposed algorithm. In Table 4, the first column indicates different instances, the second 

column represents a number of jobs and the respective number of machines are represented in 

column 3, makespan, processing cost, and energy consumption are represented in columns 4,5, 

and 6 respectively. The results of the proposed MOEA based HMFO algorithm is compared 

with most popular meta-heuristic NSGA-II. 

6. Results and Discussion 

The performance of the proposed MOO-HMFO algorithm is tested on different benchmark 

instances with objective functions as minimization of makespan, processing cost and energy 

consumption. This modified MOO-HMFO Algorithm helps us to find and determine what must 

be the best sequence of the jobs that should be scheduled on the given machines for a particular 

job to meet the criterion of the objective function. This helps to maximize profits without any 

resource or time wastage. 

 

 

 

 

 



Table 3. The results of Instances with different iteration number 

Instance 
 Iteration 

number 
Best fitness Worst fitness Average fitness Average deviation 

mk1 

100 389.5 61.35 225.425 72.78474 

300 985.5 155.4 570.45 72.75835 

500 1906.5 299.1 1102.8 72.87813 

700 1906.5 299.1 1102.8 72.87813 

1000 1906.5 299.1 1102.8 72.87813 

mk2 

100 834 131.3 482.65 72.79602 

300 2153.5 338.85 1246.175 72.80879 

360 2836 447 1641.5 72.76881 

700 2836 447 1641.5 72.76881 

1000 2836 447 1641.5 72.76881 

mk3 

100 605.5 96.6 351.05 72.48255 

300 1689.5 267.1 978.3 72.69754 

500 2608.5 410.2 1509.35 72.82274 

1000 5323 834.85 3078.925 72.88502 

1500 7223 1130.7 4176.85 72.92936 

mk5 

100 257.5 40.25 148.875 72.96390 

300 515.5 81.05 298.275 72.82709 

500 791 126.2 458.6 72.48147 

810 2005 316.2 1160.6 72.75547 

1000 2005 316.2 1160.6 72.75547 

mk7 

100 2357 374.1 1365.55 72.60445 

300 7320.5 1166.7 4243.6 72.50683 

500 10635.5 1691.7 6163.6 72.55338 

700 10635.5 1691.7 6163.6 72.55338 

1000 10635.5 1691.7 6163.6 72.55338 

mt06 

100 808.5 127 467.75 72.84874 

216 1400.5 220.15 810.325 72.83189 

500 1400.5 220.15 810.325 72.83189 

700 1400.5 220.15 810.325 72.83189 

1000 1400.5 220.15 810.325 72.83189 

mt10 

100 6629 1046.5 3837.75 72.73142 

300 9255 1474.7 5364.85 72.51181 

500 17081 2699.55 9890.275 72.70501 

700 19101.5 3004.4 11052.95 72.81812 

1000 32048 5031.6 18539.8 72.86055 

mt20 

100 9991 1572.15 5781.575 72.80758 

300 28001.5 4415.65 16208.575 72.75732 

500 47799 7505.5 27652.25 72.85754 

700 47799 7505.5 27652.25 72.85754 

1000 47799 7505.5 27652.25 72.85754 

la01 
100 15100.5 2392.55 8746.525 72.64571 

250 21651 3421.75 12536.375 72.70543 



500 21651 3421.75 12536.375 72.70543 

700 21651 3421.75 12536.375 72.70543 

1000 21651 3421.75 12536.375 72.70543 

la06 

100 9466 1480.75 5473.375 72.94631 

375 41704 6656.25 24180.125 72.47223 

500 41704 6656.25 24180.125 72.47223 

700 41704 6656.25 24180.125 72.47223 

1000 41704 6656.25 24180.125 72.47223 

 

 In Table 3, the comparative analysis of different fitness values of all instances was 

investigated under the same algorithm parameters. The results of best, worst and average fitness 

values for each iteration and for all instances are shown in Table 3. It also shows the average 

deviation value, which is a measure of the deviation of best/worst fitness from the average 

fitness value. We can observe that after a certain number of iterations few values are becoming 

constant in other words the termination criteria have achieved after a significant number of 

iterations indicated by constant fitness values. For example, consider the first instance i.e., mk1 

after five hundred iterations the best, worst and average fitness values are same indicating that 

the number of iterations required for getting optimal values is reached. One can observe from 

the instances that the number of iterations required for obtaining optimum values is different. 

This is the reason why the time for finding optimized value differs for most of the instances.  

Table 4. Optimal values of makespan, processing cost, and energy consumption of MOO-

HMFO and NSGA-II 

Instances Jobs Machines Proposed HMFO NSGA-II 

Makespan Processing 

cost 

Energy 

consumption 

Makespan Processing 

cost 

Energy 

consumption 

mk1 10 6 113 700 1093.5 124 714 1124 

mk2 10 6 172 1032 1632 190 1068 1658 

mk3 15 8 425 2623 4185 462 2654 4203 

mk5 15 4 121 741 1143 138 762 1168 

mk7 20 5 660 3983 5992.5 669 4013 6023 

mt06 6 6 84 510 806.5 102 533 849 

mt10 10 10 2092 9340 20616 3018 9402 20645 

mt20 20 5 2914 16630 28255 3128 16734 28288 

la01 10 5 1319 7986 12346 1350 8034 12386 



la06 15 5 1239 33610 6855 1298 33814 6876 

 

 Table 4 shows the values of makespan, processing cost and energy consumption for 10 

different instances. These values represent the minimized values that can be obtained when the 

inputs were given to each algorithm. For instance, for HMFO, consider mk1 benchmark we got 

a makespan value of 113, processing cost value 700 and energy consumption value 1093.5. 

These are the optimum values that can be obtained by the simultaneous optimization of all the 

three objective functions. To verify the effectiveness of the proposed algorithm, ten different 

instances are used and their results are shown in Table 4. It can be inferred from Table 4, that 

makespan, processing cost and energy consumption values are independent of the number of 

jobs, machines and depends mostly on the type of operations. Taking into consideration not 

only the number of generation (iteration value) as the deciding factor for the algorithm but also 

considering the time complexity of order O (n2) makes the algorithm more enhanced. From the 

results, we have realized that the optimization power of MOO-HMF can project optimal results 

which help to explore and exploit full capabilities of machines. This also tells us the sequence 

in which the machines should be supplied with jobs in order to achieve this optimality hence 

making the production quite profitable. 

  It is evident from the Table 4 that results of the proposed algorithm is better than NSGA-

II. For instance, in almost all the instances the value of makespan, processing cost and energy 

consumption are lesser for our algorithm when compared to NSGA-II. This makes our 

algorithm more efficient because of the fact that all three functions of makespan, processing 

cost and energy consumption are supposed to be minimized and our results are having lesser 

value than NSGA-II. Thus, we can say that on comparing both algorithms we obtain minimum 

values in the case of HMFO which proves that it is an improved method to determine the 

optimal values for all three functions. 



 

Figure 6. Gantt chart for the instance mt06. 

 A Gantt chart has been popularly used to represent a schedule Fig. 6 illustrates the 

maximum completion time for the benchmark instance mt06. The x-axis of Gantt chart denotes 

processing time and the y-axis denotes the machines.  

 Our program flow model contains complex three-dimensional matrix which covers 

machines, jobs and operations. The flow of operation starts with an input of time values for 

respective fields. The time complexity of this operation is O (n3).  For the values of processing 

costs and energy units, the input three-dimensional matrix is multiplied by their respective per 

unit values for each instance that we have considered. Then, these new-found matrices are 

mutated to respective normalized values so as to make all of them dimensionally similar to 

ensure that they are scaled while performing operations on them.  Then minimum values are 

determined row-wise and their sum is computed. This obtained sum is then utilized to form 

Gantt chart and Hypothesis Test so as to perform a complete analysis of our results. 
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Figure 7. Comparison study of makespan for all the instances. 

 From the graph shown in Fig. 7, we can clearly differentiate the makespan values 

obtained from the two different algorithms, HMFO and NSGA-II. For the instances with lower 

makespan, it is observed that the values are approximately same i.e. both the algorithms 

perform equally well. But as we move towards instances ‘mt10’ and ‘mt20’ a significant 

difference in makespan values is observed. This difference clearly shows the supremacy of our 

genetic based algorithm HMFO over a normal algorithm like NSGA-II. So, we can rightfully 

conclude that our algorithm performs well in both normal as well as stressful environment. So, 

from the above we can conclude that artificial intelligence can very well find its practical usage 

in Manufacturing domain for reducing the overall makespan thus reducing processing cost. 

 

7. Conclusions and Future Work 

In this paper, the authors have developed a mathematical model for the multi-objective problem 

in the context of dynamic flexible job shop scheduling problem (FJSSP). Due to the problem 

complexity, it is necessary to develop an efficient multi-objective evolutionary algorithm. 

Thus, we have used moth flame optimization algorithm and tuned the algorithm operators 

according to the problem need due to its multi-objective nature by proposing it into a MOO-

HMF. 

 The flexibility in flexible job shop scheduling problem allows the operators to 

investigate multiple performance measures for the benefit of the manufacturers. Hence, the 
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authors have investigated the objective functions as makespan, processing cost, and energy 

consumption. Out of which the performance measure i.e., energy consumption is of utmost 

important according to the current manufacturing environment. To solve the mentioned multi-

objective functions an efficient algorithm needs to be developed to solve to optimality. 

Henceforth, a hybrid multi-objective moth flame optimization algorithm has been developed. 

In due course, we have found that some more interdependent objectives like as optimal 

sequence of jobs, and the number of generations are significant enough for comparing the 

performance of different algorithms.   

 While implementing the proposed algorithm an effective process plan has been 

followed. Thus, we have obtained the optimized solutions. As an extension of this research 

work, we plan to introduce and evaluate some more sustainable parameters and to develop 

many objective optimization algorithms.  

Acknowledgement 

This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and 

FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013, 

PEst-OE/EEI/UI0760/2014, and PEst2015-2020, and also by Department of Science and 

Technology, Science & Engineering Research Board (SERB), Statutory Body Established 

through an Act of Parliament: SERB Act 2008, Government of India with Sanction Order No 

ECR/2016/001808. 

References 

Brandimarte, P., 1993. Routing and scheduling in a flexible job shop by tabu search. Annals of 

Operations research, 41(3), pp.157-183. 

Bruzzone, A.A.G., Anghinolfi, D., Paolucci, M. and Tonelli, F., 2012. Energy-aware 

scheduling for improving manufacturing process sustainability: A mathematical model for 

flexible flow shops. CIRP Annals-Manufacturing Technology, 61(1), pp.459-462. 

Deng, Q., Gong, G., Gong, X., Zhang, L., Liu, W. and Ren, Q., 2017. A Bee Evolutionary 

Guiding Nondominated Sorting Genetic Algorithm II for Multiobjective Flexible Job-Shop 

Scheduling. Computational intelligence and neuroscience, 2017. 



Dugardin, F., Yalaoui, F. and Amodeo, L., 2010. New multi-objective method to solve 

reentrant hybrid flow shop scheduling problem. European Journal of Operational 

Research, 203(1), pp.22-31. 

Escamilla, J., Salido, M.A., Giret, A. and Barber, F., 2016. A metaheuristic technique for 

energy-efficiency in job-shop scheduling. The Knowledge Engineering Review, 31(5), pp.475-

485. 

Fang, H.L., Ross, P. and Corne, D., 1993. A promising genetic algorithm approach to job-shop 

scheduling, rescheduling, and open-shop scheduling problems (pp. 375-382). University of 

Edinburgh, Department of Artificial Intelligence. 

Fang, K., Uhan, N., Zhao, F. and Sutherland, J.W., 2011. A new approach to scheduling in 

manufacturing for power consumption and carbon footprint reduction. Journal of 

Manufacturing Systems, 30(4), pp.234-240. 

Gao, J., Gen, M., Sun, L. and Zhao, X., 2007. A hybrid of genetic algorithm and bottleneck 

shifting for multiobjective flexible job shop scheduling problems. Computers & Industrial 

Engineering, 53(1), pp.149-162. 

Gen, M., Gao, J. and Lin, L., 2009. Multistage-based genetic algorithm for flexible job-shop 

scheduling problem. Intelligent and evolutionary systems, pp.183-196. 

Gonçalves, J.F., de Magalhães Mendes, J.J. and Resende, M.G., 2005. A hybrid genetic 

algorithm for the job shop scheduling problem. European journal of operational 

research, 167(1), pp.77-95. 

Jiang, Z., Zuo, L. and Mingcheng, E., 2014. Study on multi-objective flexible job-shop 

scheduling problem considering energy consumption. Journal of Industrial Engineering and 

Management, 7(3), p.589. 

Karthikeyan, S., Asokan, P., Nickolas, S. and Page, T., 2015. A hybrid discrete firefly 

algorithm for solving multi-objective flexible job shop scheduling problems. International 

Journal of Bio-Inspired Computation, 7(6), pp.386-401. 

Lawrence, S., 1984. Resouce constrained project scheduling: an experimental investigation of 

heuristic scheduling techniques (Supplement). Graduate School of Industrial Administration, 

Carnegie-Mellon University. 



Li, J.Q., Pan, Q.K. and Gao, K.Z., 2011. Pareto-based discrete artificial bee colony algorithm 

for multi-objective flexible job shop scheduling problems. The International Journal of 

Advanced Manufacturing Technology, 55(9), pp.1159-1169. 

Liu, Y., Dong, H., Lohse, N., Petrovic, S. and Gindy, N., 2014. An investigation into 

minimising total energy consumption and total weighted tardiness in job shops. Journal of 

Cleaner Production, 65, pp.87-96. 

Lu, C., Gao, L., Li, X., Pan, Q. and Wang, Q., 2017. Energy-efficient permutation flow shop 

scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of 

Cleaner Production, 144, pp.228-238. 

Madureira, A. and Pereira, I., 2010, August. Intelligent bio-inspired system for manufacturing 

scheduling under uncertainties. In Hybrid intelligent systems (HIS), 2010 10th international 

conference on (pp. 109-112). IEEE. 

Madureira, A., Pereira, I., Pereira, P. and Abraham, A., 2014. Negotiation mechanism for self-

organized scheduling system with collective intelligence. Neurocomputing, 132, pp.97-110. 

Madureira, A., Santos, F., & Pereira, I. 2008, July. Self-managing agents for dynamic 

scheduling in manufacturing. In Proceedings of the 10th annual conference companion on 

genetic and evolutionary computation (pp. 2187-2192). ACM. 

Marichelvam, M.K., Tosun, Ö. and Geetha, M., 2017. Hybrid monkey search algorithm for 

flow shop scheduling problem under makespan and total flow time. Applied Soft 

Computing, 55, pp.82-92. 

May, G., Stahl, B., Taisch, M. and Prabhu, V., 2015. Multi-objective genetic algorithm for 

energy-efficient job shop scheduling. International Journal of Production Research, 53(23), 

pp.7071-7089. 

Mirjalili, S., 2015. Moth-flame optimization algorithm: A novel nature-inspired heuristic 

paradigm. Knowledge-Based Systems, 89, pp.228-249. 

Muth, J.F. and Thompson, G.L. eds., 1963. Industrial scheduling. Prentice-Hall. 

Pan, Q.K., Tasgetiren, M.F., Suganthan, P.N. and Chua, T.J., 2011. A discrete artificial bee 

colony algorithm for the lot-streaming flow shop scheduling problem. Information 

sciences, 181(12), pp.2455-2468. 



Pezzella, F. and Merelli, E., 2000. A tabu search method guided by shifting bottleneck for the 

job shop scheduling problem. European Journal of Operational Research, 120(2), pp.297-310. 

Reddy, M. S., Ratnam, C., Agrawal, R., Varela, M. L. R., Sharma, I., & Manupati, V. K. (2017). 

Investigation of reconfiguration effect on makespan with social network method for flexible 

job shop scheduling problem. Computers & Industrial Engineering, 110, 231-241. 

Https://Doi.org/10.1016/j.cie.2017.06.014. 

Santos, A. S., Madureira, A. M., Varela, M. L. R., Putnik, G. D., Kays, H. E., & Karim, A. N. 

M. (2015, June). Scheduling and batching in multi-site flexible flow shop environments. In 

Information Systems and Technologies (CISTI), 2015 10th Iberian Conference on Information 

Systems and Technologies (CISTI 2015), pp. 1-6), IEEE/ IEEEXplore. 

DOI: 10.1109/CISTI.2015.7170525. 

Silva, C., Reis, V., Morais, A., Brilenkov, I., Vaza, J., Pinheiro, T., ... & Dias, L. (2017). A 

comparison of production control systems in a flexible flow shop. Procedia Manufacturing, 13, 

1090-1095. https://doi.org/10.1016/j.promfg.2017.09.169. 

Sayadi, M., Ramezanian, R. and Ghaffari-Nasab, N., 2010. A discrete firefly meta-heuristic 

with local search for makespan minimization in permutation flow shop scheduling 

problems. International Journal of Industrial Engineering Computations, 1(1), pp.1-10. 

Sha, D.Y. and Lin, H.H., 2010. A multi-objective PSO for job-shop scheduling 

problems. Expert Systems with Applications, 37(2), pp.1065-1070. 

Tang, D., Dai, M., Salido, M.A. and Giret, A., 2016. Energy-efficient dynamic scheduling for 

a flexible flow shop using an improved particle swarm optimization. Computers in 

Industry, 81, pp.82-95. 

Tang, L., Liu, W. and Liu, J., 2005. A neural network model and algorithm for the hybrid flow 

shop scheduling problem in a dynamic environment. Journal of Intelligent 

Manufacturing, 16(3), pp.361-370. 

Varela, M. L., Trojanowska, J., Carmo-Silva, S., Costa, N. M., & Machado, J. (2017). 

Comparative simulation study of production scheduling in the hybrid and the parallel flow. 

Management and Production Engineering Review, 8(2), 69-80. DOI: 10.1515/mper-2017-

0019. 

https://doi.org/10.1016/j.cie.2017.06.014
https://doi.org/10.1016/j.promfg.2017.09.169


Wolpert, D.H. and Macready, W.G., 1997. No free lunch theorems for optimization. IEEE 

transactions on evolutionary computation, 1(1), pp.67-82. 

Yagmahan, B. and Yenisey, M.M., 2008. Ant colony optimization for multi-objective flow 

shop scheduling problem. Computers & Industrial Engineering, 54(3), pp.411-420. 

Yang, X., Zeng, Z., Wang, R. and Sun, X., 2016. Bi-Objective Flexible Job-Shop Scheduling 

Problem Considering Energy Consumption under Stochastic Processing Times. PloS 

one, 11(12), p.e0167427. 

Yin, L., Li, X., Gao, L., Lu, C. and Zhang, Z., 2017. Energy-efficient job shop scheduling 

problem with variable spindle speed using a novel multi-objective algorithm. Advances in 

Mechanical Engineering, 9(4), p.1687814017695959. 

Zhang, G., Shao, X., Li, P. and Gao, L., 2009. An effective hybrid particle swarm optimization 

algorithm for multi-objective flexible job-shop scheduling problem. Computers & Industrial 

Engineering, 56(4), pp.1309-1318. 

Zhang, R. and Chiong, R., 2016. Solving the energy-efficient job shop scheduling problem: a 

multi-objective genetic algorithm with enhanced local search for minimizing the total weighted 

tardiness and total energy consumption. Journal of Cleaner Production, 112, pp.3361-3375. 

 


