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ABSTRACT:  Uniaxial compressive strength (qu) of soil stabilized with cementitious binders is a key feature 
for design purposes. However, its measurement requires extensive laboratory tests, which is time and resources 
consuming. Accordingly, aiming to make this process faster and cheaper, this paper presents a novel approach 
for qu estimation of soil stabilized with cementitious binders based on soft computing techniques, particularly 
Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs). For models training, a database 
comprising 444 records, encompassing cohesionless to cohesive and organic soils, different binder types, 
mixture conditions and curing time was compiled. The results show a promising performance in qu prediction 
of laboratory soil-cement mixtures, being the best results achieved with the SVM model (𝑅ଶ  =  0.94). In 
addition, by averaging SVM and ANN predictions a slightly better accuracy can be achieved (𝑅ଶ  =  0.95). 
Through the application of a sensitivity analysis over the fitted models, it is measured the relative importance 
of each model attributes, which highlighted the major effects of water/cement ratio, cement content, organic 
matter content and curing time, which are known as preponderant in soil-cement mixtures behaviour. 

 
RÉSUMÉ:  La résistance en compression uniaxiale (qu) des sols stabilisés avec liants à base de ciment est un 
élément très important pour le projet. Toutefois, sa mesure nécessite des essais intensifs en laboratoire, qui de-
mande du temps et des ressources. Pour permettre un processus plus rapide et moins cher, ce travail présente 
une nouvelle approche pour l’estimation de qu des sols stabilisés avec des liants à base de ciment, basée sur des 
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techniques informatiques, (en particulier) "Support Vector Machines" (SVMs) et "Artificial Neural Networks" 
(ANNs). Les modèles sont utilisés avec une base de données comprenant des 444 données, englobant sols non 
cohésifs, cohésifs et organiques, différents types des liants, différents conditions de mélange et des temps de 
durcissement. Les résultats montrent une performance prometteuse dans la prédiction de qu avec des mélanges 
de sol-ciment préparés en laboratoire, et les meilleurs résultats sont obtenus avec le modèle SVM (𝑅ଶ  =
 0.94). En complément, avec la moyenne de SVM et ANN sont obtenus prédictions avec une précision légère-
ment meilleure (𝑅ଶ  =  0.95). Avec l’implémentation d’une analyse de sensibilité sur les modèles utilisés, on 
mesure l’importance relative des attributs de chaque modèle, qui a souligné l’importance du rapport 
eau/ciment, le teneur du ciment, le teneur de la matière organique et le temps de durcissement, qui sont connu 
comme les plus prépondérant dans le comportement de mélanges de sol-ciment. 

 
Keywords: Soil-cement mixtures; jet grouting; deep soil mixing; soft computing; sensitivity analysis 
 
1 INTRODUCTION 

Mechanical properties study of soil-cement 
mixtures is a complex task due to high number 
of parameters involved. Over the last decades, 
several researches have been conducted, 
following different approaches but with the 
same purpose of a better understand of soil-
cement mixtures behaviour over time. 

Concerning to uniaxial compression strength 
(qu, MPa), this mechanical property is obtained 
through laboratory tests that involves time and 
resources consuming, which are generally very 
limited. Therefore, it is important to reduce the 
number of laboratory tests without 
compromising safety or confidence issues. A 
common practice is to prepare (before 
construction works) and test some laboratory 
samples aiming to simulate the field conditions. 
These samples, prepared with the same soil, 
cement and water used in the field, will give an 
important idea about the behaviour of the in 
field mixture. However, this laboratory samples 
also represent an important cost for the project 
and therefore should be minimized. 

This scenario underlines the necessity, at 
least upon at a pre-design stage, to have 
available prediction tools to obtain the best 
design parameters. However, due to the high 
number of parameters affecting the behaviour of 
soil-cement mechanical properties, in 

particularly the qu, the traditional statistical 
analysis are unable to deal with. 

Aiming to overcome this limitation, a first 
and successful attempt have been recently made, 
taking advantage of the high learning 
capabilities of Data Mining (DM) techniques 
(Tinoco et al., 2014; Gomes Correia et al., 2014. 
Although a good performance have been 
achieved in qu prediction of laboratory soil-
cement mixtures with an 𝑅ଶ = 0.93 (see Gomes 
Correia et al. (2014) for more details), there are 
some limitations that still need to be overcome. 
In particular, the model dependence on the 
mixture properties, such as its porosity, is one of 
its main drawbacks. As can be observed in 
Figure 1, which shows the relative importance 
of each input variables in qu prediction, the 
mixture porosity (only measured after mixture 
preparation) has a relative importance higher 
than 15%. Moreover, these models were 
developed based on a database regarding soil-
cement samples covering mostly high cement 
dosages (Gomes Correia et al., 2014). 

Hence, aiming to eliminate models 
dependence on the final mixtures properties, 
namely its porosity, as well as increase their 
applicability domain, a new data-driven model is 
here proposed for qu prediction over time 
without considering any property of the final 
soil-cement mixture and covering a larger range 
of cement contents. For that, a set o ten input 
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variables such as the cement content, soil grain 
size distribution or type of binder was select to 
feed the models.  

 

Figure 1. Relative importance of each input varia-
ble in qu prediction of laboratory soil-cement mix-
tures according to SVM algorithm. 

2 METHODOLOGY 

2.1 Modelling 

For qu modelling it was followed a data driven 
approach where three different DM algorithms 
were fitted to a database previously compiled 
and prepared containing unconfined 
compression tests results related to laboratory 
soil-cement mixtures, as well as a set of ten 
input variables related to the soil and cement 
characteristics used to prepare the mixture. In 
particular, two of the high flexible learning DM 
algorithms were trained, namely Support Vector 
Machines (SVMs) and Artificial Neural 
Networks (ANNs). Bellow is presented a brief 
overview of the two DM algorithms applied in 
this study, highlighting the adopted parameters 
for each one. 

Initially developed for classification tasks 
(Cortes and Vapnik, 1995), SVMs were latter 

adapted to regression tasks thanks to the 
introduction of ε-insensitive loss function 
(Smola and Schölkopf, 2004). The main purpose 
of the SVMs is to transform input data into a 
high dimensional feature space using non-linear 
mapping. This transformation depends on a 
kernel function. In this work the popular 
Gaussian kernel was adopted. In this context, its 
performance is affected by three parameters: γ, 
the parameter of the kernel; C, a penalty 
parameter; and ε (only for regression), the width 
of an ε-insensitive zone. The heuristics proposed 
by Cherkassky and Ma (2004) were used to 
define the first two parameter values, 𝐶 =  3 
(for a standardised output) and 𝜀 = 𝜎ො √𝑁⁄ , 
where 𝜎ො = 1.5 𝑁⁄ ∙ ∑ (𝑦௜ − 𝑦ො௜)ଶே

ଵୀଵ , 𝑦௜ is the 
measured value, 𝑦ො௜ is the value predicted by a 3-
nearest neighbour algorithm and 𝑁 is the 
number of examples. A grid search of 
2{ିଵହ;ିଵଵ;ି଻;ିଷ;ଵ} was adopted to optimise the 
kernel parameter γ, under an internal threefold 
cross-validation scheme. 

Concerning to ANNs, they are a method of 
artificial intelligence, which seeks to simulate 
the biological structure of the human brain and 
nervous system through their architecture 
(Kenig et al., 2001). ANNs are a technique 
capable of modelling complex non-linear 
mappings and is robust in exploration of data 
with noise. In this study the multilayer 
perceptron that contains only feedforward 
connections, with one hidden layer containing 𝐻 
processing units, was adopted. Because the 
network's performance is sensitive to H (a trade-
off between fitting accuracy and generalisation 
capability), it was adopted a grid search (similar 
to the one used for SVM) of {0; 2; 4; 6; 8} 
during the learning phase to find the best 𝐻 
value. Such grid search only considered training 
data, dividing it into fitting (70%) and validation 
data (30%), where the validation error was used 
to select the best 𝐻. After selecting the best 𝐻 
value, the ANN is retrained with the whole 
training data. The neural function of the hidden 
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nodes was set to the popular logistic function 
1 (1 + 𝑒ି௫)⁄ . 

The R statistical environment (R Team, 
2009) and the rminer package (Cortez, 2010), 
were used to conduct all experiments. 

2.2 Model Evaluation 

For models comparison and accuracy 
measurement, three metrics currently used in 
regression problems were calculated (Hastie et 
al., 2009): Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE) and Coeficient of 
correlation (R2). A low value of MAE and 
RMSE and an R2 close to the unit value means a 
higher predictive capacity. The main difference 
between MAE and RMSE is that the latter one is 
more sensitive to extreme values since it uses 
the square of the distance between the real and 
predicted values (Tinoco et al., 2014). In 
addition to this three metrics it was taken also 
advantage of Regression Error Characteristic 
(REC) curve proposed by Bi and Bennett 
(2003), which plots the error tolerance on the x-
axis versus the percentage of points predicted 
within the tolerance on the y-axis, allowing a 
quick and easy comparison of different DM 
models. For models generalization purposes, a 
cross-validation (k-fold = 10) approach (Hastie 
et al., 2009) was applied and the entire process 
was repeated 5 times. 

Understanding what was learned by the 
models is also a key point in any data driven 
project. Since data driven models, particularly 
SVM or ANN that rely on complex statistical 
analysis and are frequently referred to as “black 
boxes“, are mathematically very complex it 
urges the necessity to “open“ such models in 
order to facilitate its understanding. Aiming to 
overcome this drawback, Cortez and Embrechts 
(2013) proposed a novel visualization approach 
based on sensitivity analysis (SA), which is used 
in this work. SA is a simple method that is 
applied after the training phase and measures the 
model responses when a given input is changed, 
allowing the quantification of the relative 

importance of each attribute as well as its 
average effect on the target variable. In 
particular, it was applied the Global Sensitivity 
Analysis (GSA) method (Cortez and Embrechts, 
2013), which is able to detect interactions 
among input variables. This is achieved by 
performing a simultaneous variation of F inputs. 
Each input is varied through its range with L 
levels and the remaining inputs fixed to a given 
baseline value. In this work, it was adopted the 
average input variable value as a baseline and 
set 𝐿 =  12, which allows an interesting detail 
level under a reasonable amount of 
computational effort. 

With the sensitivity response of the GSA, the 
input importance barplot can be  ploted, which 
shows the relative influence (Ra) of each input 
variable in the model (from 0% to 100%). The 
rational of GSA is that the higher the changes 
produced in the output, the more important is the 
input. To measure this effect, first the gradient 
metric (ga) for all inputs was calculated. After 
that, the relative influence was computed 
according to the following equation: 

 
𝑅௔ = 𝑔௔ 𝑔௜⁄ ∙ 100(%),    𝑤ℎ𝑒𝑟𝑒  𝑔௔ =

 ∑ ห𝑦ො௔,௝ − 𝑦ො௔,௝ିଵห (𝐿 − 1)⁄௅
௝ୀଶ  (1) 

 
where a denotes the input variable under 

analysis and 𝑦ො௔,௝ is the sensitivity response for 
𝑥௔,௝ . 

2.3 Database 

For models training and testing purposes, a 
database with 444 records was collected and 
compiled. These samples make part of different 
laboratory studies carried out on Universities of 
Minho and Coimbra (Tinoco et al., 2014; Venda 
Oliveira et al., 2014; Correia et al., 2015). The 
soils used in the preparation of the laboratory 
samples were collected from eight test sites. One 
of them is Coimbra area (located in Portugal), 
ranging from cohesive to cohesionless soils, 
organic to nonorganic soils, presenting different 
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geotechnical properties. Fourteen different 
binders were tested, including Portland cement, 
slag, fly ash, lime and silica fume, applied 
individually or combined. Concerning to the 
seven remaining sites, all of them are of clayey 
nature, containing different percentages of sand, 
silt, clay and organic matter (Gomes Correia et 
al., 2014). These samples were prepared with 
cement type CEM I 42.5R (Portland cement 
with 100% clinquer) and CEM II 42.5R 
(composed Portland cement with ≥65% 
clinquer). In addition, a couple of samples were 
also prepared with pozzolanic cement (CEM 
IV/A 35.5R with ≥20% clinquer). 

A set of 10 variables were selected to models 
input. The definition of such variables took into 
account the empirical knowledge related to soil-
cement mixtures behavior, particularly 
concerning to the qu evolution over time 
(Sariosseiri and Muhunthan, 2009; Lorenzo and 
Bergado, 2004). Bellow are listed all 10 input 

variables considered in this study for qu 
prediction. 

 %Clay – Clay content (%)  
 %Sand – Sand content (%) 
 %Silt – Silt content (%) 
 %OM – Organic matter content (%) 
 ω0 – Water content (%) 
 aw – Cement content (%) 
 W/C – Water/Cement ratio 
 t – Age of the mixture (days) 
 Cs – Coefficient related with the binder 

type 
 L2 – Coefficient related with a secondary 

binder 
 
Table 1 summarizes the main statistics of all 

10 inputs variables as well as of the output 
variable, showing the wide range of cement 
content as well as the qu values. 

 
Table 1. Summary of the main statistics of the input and output variables used in qu prediction 
Variable Minimum Maximum Mean Standard deviation 
%Clay 0.00 45.00 19.84 14.31 
%Sand 0.00 99.00 22.97 22.10 
%Silt 1.00 79.00 57.17 18.15 
%OM 0.00 19.40 5.87 4.64 
ω0 7.17 113.05 64.96 24.48 
aw 3.00 284.32 55.42 69.21 
W/C 0.63 10.91 3.30 2.05 
t 3.00 90.00 25.71 15.42 
Cs 0.20 0.38 0.22 0.06 
L2 0.00 1.00 0.61 0.49 
qu 0.10 13.19 2.77 2.72 
 

3 RESULTS AND DISCUSSION 

The average hyperparameters and fitting time 
values (and respective 95% level confidence 
intervals according to a t-student distribution) of 
the two DM algorithms trained for qu prediction 
of laboratory soil-cement mixtures (i.e. ANN 
and SVM) are shown in Table 2. 

The achieved results shows a promising 
performance in qu prediction of laboratory soil-
cement mixtures based on the set of inputs 
selected that not include any information about 
the mixture properties. In fact, as shown in 
Table 3, both ANN and SVM algorithms 
(further refered only as ANN.Lab and SVM.Lab 
for shorten) were able to predict qu very 
accurately, haven achieved an 𝑅ଶ  =  0.94. 
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Based on MAE or RMSE it is possible to 
observe that the SVM.Lab is able to predict qu 

with a slightly higher accuracy when compared 
with ANN.Lab.  

 
Table 2. Hyperparameters and computation time for each fitted model. 
Model Hyperparameter Time (s) 
ANN.Lab 𝐻 = 7 ± 1 17.18 ± 0.45 
SVM.Lab 𝛾 = 0.21 ± 0.04;  𝐶 = 4.84 ± 0.22;  𝜀 = −5.57 ± 0.50 9.63 ± 0.28 
 

Although ANN.Lab and SVM.Lab models 
present a very high performance, it was 
observed that qu prediction accuracy can be 
improved by averaging ANN.Lab and SVM.Lab 
predictions (ANN&SVM.Lab for shorten). With 
this trick, an 𝑅ଶ  =  0.95 is achieved as well as 

an RMSE very close to 0.61 MPa (see Table 3). 
Figure 2, that plots the REC curves of each 
model, illustrates this slightly better 
performance in qu prediction by averaging 
ANN.Lab and SVM.Lab predictions.  

 
 
Table 3. Models performance comparison based on metrics MAE, RMSE and R2. 
Model MAE RMSE R2 
ANN.Lab 0.46 ± 0.02 0.69 ± 0.05 0.94 ± 0.01 
SVM.Lab 0.43 ± 0.01 0.67 ± 0.03 0.94 ± 0.01 
ANN&SVM.Lab (average) 0.41 ± 0.01 0.61 ± 0.02 0.95 ± 0.00 
 

Figure 3 depicts the histogram of the 
prediction error according to ANN&SVM.Lab 
model. As shown, only few prediction have a 
deviation higher than 1MPa, which represent a 
very high performance. The  two sashed line in 
the graph represent the 5% and 95% quantiles, 
that corresponds to a deviation of -0.79MPa and 
1.03MPa respectively. 

From an engineering point of view, in 
addition to the model accuracy it is also 
important to understand what have been learned 
by it, particularly when dealing with ANN and 
SVM algorithms that are mathematically very 
complex. With this in mind, a GSA (Cortez and 
Embrechts, 2013) methodology was applied 
over the models in order to measure the 
influence of each model attribute in qu 
prediction. 

Figure 4 plots the relative importance of each 
input variable, showing that W/C is the most 
relevant variable in qu prediction according to 
both ANN.Lab and SVM.Lab models, with a 
relative importance higher than 20%. The three 
next key variables are, according to SVM.Lab 

model, aw, %OM and t. Based on ANN.Lab, the 
ranking is slightly different, being ω0, %Silt and 
%Sand the next three most influent variables 
after W/C. Comparing both ANN.Lab and 
SVM.Lab models, the last one seems to be more 
realistic. In fact, among the four most relevant 
variables, SVM.Lab model includes the 
influence of the water and cement contents (W/C 
and aw), soil organic matter content (%OM) and 
age of the mixture (t), which are known as 
preponderant in soil-cement mixtures behaviour 
(Lorenzo and Bergado, 2004; Consoli et al., 
2011). According to ANN.Lab model, the effect 
of the cement content is less representative (only 
present on W/C) and the effect of the cure time 
only takes the sixth position in the ranking (less 
than 10%). As well known, the age of the 
mixture is one the most influent variables in 
soil-cement mixtures behaviour. Thus, 
considering models accuracy as well as the 
relative importance of each variable, SVM.Lab 
seems to be a better choice to estimate qu 
development over time of laboratory soil-cement 
mixtures. 



Data-driven approach to predict unconfined compression strength of laboratory soil stabilized with cementitious binders 

IGS 7 ECSMGE-2019 - Proceedings 

 

 

Figure 2. Comparison of ANN.Lab, SVM.Lab, and 
ANN&SVM.Lab performance in qu prediction of la-
boratory soil-cement mixtures based on REC curves. 

 

Figure 3. Histogram of the ANN&SVM.Lab pre-
diction errors. 

 

Figure 4. Comparison of the relative importance 
of each input variable based on a GSA. 

4 CONCLUSIONS 

A dada driven approach is proposed for uniaxial 
compressive strength (qu) prediction of 
laboratory soil-cement mixtures. The proposed 
models, supported on a representative database 
comprising 444 records, are able to predict qu 
over time with a very promising accuracy 
(𝑅ଶ  =  0.95). In addition, only information 
available during the project stage, such as soil 
properties, binder and water content, is taken as 
model inputs. This way, the project design can 
calculate the expected qu for different scenarios 
(formulations) without the need to prepare/test 
any sample. As a result a better optimization of 
the available resources can be done and 
consequently important economic benefits can 
be achieved. 

The key variable in qu prediction over time 
were also identified based on a global sensitive 
analysis (GSA). It was observed that the 
water/cement ratio (W/C) is the most relevant 
variable followed by cement content, soil 
organic matter content and age of the mixture. 
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