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ABSTRACT: The uncertain relationship between genotype and
phenotype can make strain engineering an arduous trial and error
process. To identify promising gene targets faster, constraint-based
modeling methodologies are often used, although they remain
limited in their predictive power. Even though the search for gene
knockouts is fairly established in constraint-based modeling, most
strain design methods still model gene up/down-regulations by
forcing the corresponding flux values to fixed levels without taking
in consideration the availability of resources. Here, we present a
constraint-based algorithm, the turnover dependent phenotypic
simulation (TDPS) that quantitatively simulates phenotypes in a resource conscious manner. Unlike other available algorithms,
TDPS does not force flux values and considers resource availability, using metabolite production turnovers as an indicator of
metabolite abundance. TDPS can simulate up-regulation of metabolic reactions as well as the introduction of heterologous
genes, alongside gene deletion and down-regulation scenarios. TDPS simulations were validated using engineered Saccharomyces
cerevisiae strains available in the literature by comparing the simulated and experimental production yields of the target
metabolite. For many of the strains evaluated, the experimental production yields were within the simulated intervals and the
relative strain performance could be predicted with TDPS. However, the algorithm failed to predict some of the production
changes observed experimentally, suggesting that further improvements are necessary. The results also showed that TDPS may
be helpful in finding metabolic bottlenecks, but further experiments would be required to confirm these findings.

KEYWORDS: genome-scale models, Saccharomyces cerevisiae, phenotype simulation, metabolite turnovers, network rigidity,
metabolic engineering

In strain engineering, the impact of genetic alterations on cell
phenotype is rarely straightforward, typically resulting in

several cycles of trial and error during cell factory development.
To test the effects of genetic alterations quickly and at genome
scale, constraint-based modeling of metabolic fluxes can be
used with several methods already having been developed for
this purpose (reviewed1,2). Currently, however, most computa-
tional methods developed for strain design focus only on gene
knockout based strategies.1,3 Moreover, many of these
methods were only designed for use in an optimization
context; that is, they can identify possible metabolic engineer-
ing targets, but cannot predict effects that a set of genetic
modifications may have on the organism’s phenotype via
quantitative simulations. Therefore, despite recent advances in
constraint-based modeling, the simulation of strain engineering
designs involving up and down-regulation of a few genes
remains challenging.

Among the options available from literature, the under/
overexpression plugin4 in OptFlux5 is the most oriented
method for simulation purposes, allowing simulation of
deletions as well as up- or down-regulations of genes and
reactions, according to user specific preferences. The main
disadvantage of this tool, however, is its inability to regulate
metabolic reactions that are inactive under reference
conditions. As a consequence, this algorithm is not able to
simulate the activation of a given gene or reaction, nor can it
simulate the introduction of heterologous genes. Although not
developed for strain simulation purposes, other constraint-
based methods also exist which can predict the effects of up/
down-regulations based on different strategies. For example,
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OptReg6 constrains the regulated flux to be considerably
higher or lower than the reference value (steady-state range)
by forcing the flux to go above or below the threshold
computed from the maximum/minimum fluxes possible in that
reaction. Another method, EMILiO7 can manipulate target
fluxes to any feasible value, while another approach by
Redirector8 enables addition of the flux variable to the
objective function linear problem. All these strategies were
formulated with the aim of finding new genetic targets;
therefore, their use for simulating phenotypes is neither direct
nor recommended.
Besides the lack of suitability for simulation purposes, all the

above methods for simulating up/down-regulations also share
a common limitation: they force flux to increase in up-
regulated/activated reactions to fixed values, a feature that can
lead to the increase of additional fluxes in adjacent reactions to
supply the required precursors. One extreme example of this is
to consider the last step of an inactive linear pathway being up-
regulated, as this would lead to flux in all other reactions of that
pathway also increasing (see Supplementary Text S1 for
examples). In biological terms, however, it would make more
sense for this flux to be constrained by the fluxes that produce
the required precursors under these conditions, which would
mean that, considering only the effect of the up-regulation, the
reaction would remain with no flux.
The framework for activating reactions proposed by Ip et al.,

called proportional flux forcing (PFF),9 offers an alternative for
modeling precursor availability. PFF makes the flux through an
activated reaction dependent on the availability of its substrate,
by assuming that the flux is proportional to the production
turnover of the metabolite (i.e., the sum of the fluxes producing
the precursor metabolite).9 After applying the turnover-

dependent flux constraints, the phenotype is simulated using
flux balance analysis (FBA)10,11 by maximizing biomass
production. PFF can then be used to find gene deletions
that increase the turnover (availability) of the precursor
metabolite and/or that decrease the flux in reactions
competing for the same precursor. However, PFF is still
limited in functionality with regard to its applicability to the
simulation of strains that have different types of modifications:
the simulations are restricted to the activation of a single
reaction, only gene knockouts are achievable with PFF (up/
down-regulations are only possible when PFF is used together
with other algorithms), and the authors do not explain how to
handle the activation of reactions with multiple reactants.
Here, we present the turnover dependent phenotypic

simulation (TDPS) algorithm. TDPS is a simulation-oriented
constraint-based method developed to generate more bio-
logically meaningful simulations for strains including up/down-
regulations. Similar to PFF,9 TDPS uses metabolite turnover to
integrate knowledge of precursor availability for the regulated
reactions. Besides gene deletions, TDPS can also simulate up/
down-regulations, as well as the activation of inactive reactions.
Here, heterologous reactions are included in the category of
reaction activations, allowing TDPS to simulate, in quantitative
terms, the performance of heterologous genes, based on the
availability of required precursor metabolites in their new host.
Furthermore, a newly developed objective function, based on
Stephanopoulos and Vallino’s12 work on the rigidity of
metabolic networks, is also implemented in TDPS, which
reinforces network rigidity by minimizing the change in the
split ratios between the reference and disturbed network.
To validate TDPS, we collected production yields from

Saccharomyces cerevisiae strains already characterized in the

Figure 1. Schematic representation of flux constraints applied by TDPS to model different types of genetic modifications. An illustrative metabolic
node is shown in its reference state (b) and after four different genetic modifications: the down-regulation of reaction R5 to half of its reference
turnover fraction (a); the up-regulation of reaction R5 to double the reference turnover fraction (c); the inactivation of reaction R5 (d); and the
insertion of a heterologous reaction RH by forcing it to consume 50% of the available precursors (f). Additionally, a summary table (e) is also
shown with an overview of the types of genetic modifications allowed by TDPS with the corresponding flux constraints applied in each case (for
further details see the Methods section and the Supplementary Text S2). TA, production turnover of metabolite A; Tm, production turnover of
metabolite m; Vn, flux in reaction n; Xm,n, flux partition ratios.
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literature and challenged the algorithm to predict, quantita-
tively, the effect of genetic changes in strain performance.
Using three case studies, our validation showed that TDPS can
indeed predict many of the phenotypes tested, with many
experimental production yields being within simulated
intervals. Overall, this simulation-oriented method offers a
promising approach for more effective strain development,
serving as a solid platform for future optimization.

■ RESULTS AND DISCUSSION
Turnover Dependent Phenotypic Simulation. To

account for the availability of a metabolite in constraint-
based simulations one can calculate the magnitude of the fluxes
producing it (turnover).13,14 The production turnover (rate) of
a metabolite (Tm) (which equals its consumption under the
steady state assumption) is hereby defined as the sum of all
fluxes producing metabolite m multiplied by the corresponding
stoichiometric coefficients.
In TDPS, the Tm is used to model all types of genetic

modifications (Figure 1). The insertion or activation of a
reaction is modeled by assuming that a fraction of the total Tm
will be consumed by the activated reaction (as suggested by Ip
et al.9). In this way, flux through the new or activated reaction
becomes proportional to Tm and can even be zero if Tm is equal
to zero, i.e., if no reaction in the network is producing
metabolite m. This heuristic respects the availability of
precursors when imposing constraints because the regulated
fluxes are not fixed to a certain value or interval, but made
dependent on the Tm of the precursors. Figure 1f shows an
example of how TDPS would model the insertion of a
heterologous reaction RH into the toy network depicted. In
this case, it was assumed that 50% of the turnover of
metabolite A (TA) would be consumed by the inserted reaction

RH. It is important to note that the Tm used in these
constraints is not the reference Tm value, but a variable in the
simulation, meaning that the flux is not forced to be above a
certain value, but at least 50% of whatever value Tm will have in
the final simulation.
Besides reaction insertion and activation, TDPS also models

up and down-regulations in a turnover dependent manner. By
computing the fraction of Tm that each reaction consumes in a
reference state, it is assumed that an increase in that fraction
value will correspond to an up-regulation and similarly, that a
decrease will correspond to a down-regulation. Using the
example shown in Figure 1, the fraction of precursor turnover
that R5 consumes in the reference state is about 0.4/40%.
Therefore, a possible down-regulation performed with TDPS
would involve imposing that the flux through R5 must be
smaller than or equal to 20% of TA (Figure 1a). Using the same
logic, R5 can be up-regulated with TDPS by increasing the
minimum fraction of TA that R5 must consume. In the up-
regulation example shown in Figure 1c, the fraction of TA
consumed by R5 was therefore increased to 0.8 (double that of
the reference value). It is important to note here that the
changes in turnover fractions depicted in Figure 1 were chosen
for illustrative purposes. Full details of the procedure used by
the TDPS algorithm to perform each type of genetic
modification can be found in the Methods section and the
Supplementary Text S2.
The genetic modifications shown in Figure 1 were all

exemplified using reactions with a single precursor metabolite;
however, most biochemical reactions typically have more than
one reactant. Since TDPS models genetic modifications using a
precursor dependent methodology, when a reaction has several
precursors it is crucial to determine the precursor that will limit
the flux in the modulated reaction. Therefore, TDPS handles

Figure 2. Objective function implemented in TDPS (a) and the schematic representation of a metabolic node in the reference state (b), after the
inactivation of R4 (c) or the activation of R5 (d). The flux changes in response to the inactivation of reaction R4 and the activation of reaction R5
are used to illustrate how the objective function in TDPS promotes the stability of the flux partition ratios (see the text and Methods section for
more details about the variables and the objective function). Im, set of inactive reactions in the reference flux distribution that can consume
metabolite m; M, set of all metabolites; N, set of all reactions; P, penalty constant for activated reactions; R+

m, set containing all the active reactions
consuming metabolite m in the reference flux distribution; Sm,n, stoichiometric coefficient of metabolite m in reaction n; Tm, production turnover of
metabolite m in the simulation; Tm

R, production turnover of metabolite m in the reference flux distribution; Vn, flux value of reaction n in the
simulation; Xm,n, flux partition ratios.
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the regulation of reactions with more than one precursor using
a strategy based on the most limiting precursor. Concerning
down-regulated reactions, TDPS formulates multiple turnover-
dependent constraints according to the number of precursors,
and imposes that the flux in the regulated reaction must be
lower or equal to the constraint that imposes the lowest flux.
Likewise, the flux in an up-regulated/inserted/activated
reaction should be higher than or equal to the lowest flux
imposed by the turnover-dependent constraints (see Supple-
mentary Text S2 and Methods for the mathematical
formulation).
The turnover-dependent constraints applied by TDPS

(Figure 1) can be related to in vivo enzyme activities at two
levels: first, the abundance of the substrate is modeled using
the Tm values; second, the turnover fraction values can be
interpreted as the capacity of a certain enzyme to compete with
other enzymes for a precursor (mimicking the effects of
enzyme kinetic parameters and enzyme concentration).
Although TDPS should not be used as a replacement for
kinetic modeling, its simple formulation is less computationally
intensive, allowing its use for modeling metabolism at the
genome scale.
In order to simulate mutant phenotypes, besides the

turnover-dependent constraints applied in TDPS, it is also
necessary to define a cellular goal (objective function) that
represents how the network reacts to the disturbances applied.
Since the constraints applied by TDPS manipulate the flux
consumption ratios for certain metabolites, it would be
appropriate to define an objective function that represents
how a cell controls the partition of flux at important nodes.
Stephanopoulos and Vallino12 have introduced the idea that
some of the nodes in biochemical networks have evolved to
maintain rigid flux ratios, with the objective of sustaining
biomass growth with a relatively stable supply of building
blocks. Therefore, the objective function included in TDPS
was developed to reinforce network rigidity at the level of flux
ratios observed for the wild-type organism. Moreover, similar
to other mutant simulation strategies,15 the objective function
also minimizes the flux in reactions that are inactive in the
reference flux distribution, which have not been subject to
direct manipulations.
The rigidity-based objective function was thus formulated as

the minimization of the sum of two different terms (Figure 2a).
The first term was formulated to keep the flux partition ratios
(Xm,n) of the mutant as close as possible to the reference, while
penalizing changes in the metabolite turnovers (Tm). In a node
where the turnover has not changed (Tm = Tm

R), the first term
ensures that the consumption of metabolite m in reaction n
predicted by the simulation (Vn·|Sm,n|) is as close as possible to
the amount of metabolite m that reaction n should be using
according to the reference flux distribution and the effect of the
reaction regulations imposed (Xm,n·Tm). The formulation of the
second term is simply the sum of all fluxes (Vn) passing in
reactions that are inactive in the reference flux distribution (Im)
multiplied by the corresponding stoichiometric coefficient (|
Sm,n|) and by a penalty constant (P). A more detailed
description of the implementation of the objective function
and the calculation of the updated partition ratios (Xm,n) is
provided in the Supplementary Text S2 and the Methods
section.
As shown in Figure 2b, the first requirement for simulating a

phenotype with TDPS is the computation of a reference flux
distribution for the wild-type organism and the flux partition

ratios (turnover fraction values) for each metabolite. In Figure
2c, we show an example of a metabolic node consisting of
three reactions that consume metabolite A. When one of the
reactions is inactivated (R4 in this case), the objective function
promotes the stability of the flux partition ratios for the
remaining reactions by adjusting their fluxes. Furthermore, the
reaction activation penalty ensures that reactions that were
inactive in reference flux distributions are less likely to carry
any flux. In another example shown in Figure 2d, the same
metabolic node is shown for when a reaction is activated. In
this case, the flux partition ratios were recalculated to
accommodate activation, and the objective function ensures
that relative fluxes in the other reactions are kept as close as
possible to the wild-type state.
Similar to the objective functions of previously described

algorithms, such as MOMA16 or LMOMA,17 the objective
function of TDPS also promotes the stability of a mutant
network relative to a reference flux distribution (Figure 2).
However, in TDPS, the objective function promotes stability at
the level of the flux partition ratios. This contrasts with
objective functions used in MOMA and LMOMA, which
penalize any changes in the fluxes of the mutant organism
compared to the reference state. Taking the knockout example
shown in Figure 2c, simulating this with MOMA or LMOMA
would result in the nonmodified fluxes maintaining their
reference values (R2 = 20 and R3 = 60). Therefore, while
many simulation methods which promote flux stability always
try to keep the network identical to the reference, the objective
function of TDPS allows for flux flexibility, an important
feature for simulating reaction up- and down-regulations and/
or insertions.
The flux changes depicted in Figure 1 and Figure 2 assume

that the turnover of metabolite A remained constant when the
network was disturbed. In more realistic scenarios, changes in
the turnover will affect the fluxes in regulated reactions (Figure
1) and in the flux distribution computed by the objective
function (Figure 2). The proportionality between the
production turnover and consumption fluxes is present in
TDPS at two levels: in regulated fluxes, a rigid relationship
between precursor turnover and flux is imposed and the two
will always be proportional; in the objective function, the
proportionality is promoted but not enforced, and it can
happen that there are nodes with fluxes changing independ-
ently of the precursor turnovers. By making the flux in
regulated reactions dependent on the precursor turnover,
TDPS assumes that changes in the abundance of the precursor
must be reflected in the flux though the regulated reaction. For
example, assuming that the production turnover of a precursor
doubles, mass balance constraints dictate that at least a few of
the consuming fluxes will have to increase accordingly. For the
fluxes computed by the objective function, the flux partition
ratios are not enforced, which can result in cases where fluxes
change independently of the changes in the precursor
turnovers. For example, deletions of certain reactions may
cause fluxes to become zero in nodes where the turnover has
increased.

Validation Using a Toy Model. The TDPS algorithm was
developed to simulate mutant phenotypes of engineered strains
using genome-scale metabolic models (GEMs). However,
GEMs are difficult to visualize due to their size, making it
challenging to validate some aspects of TDPS using such
models that incorporate hundreds of metabolic reactions.
Subsequently, a small toy model was created to demonstrate
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that each component of TDPS functions correctly. The toy
model was designed to be as small as possible while also
allowing different tests to be performed with it, including (i)
up-regulation of an active reaction, (ii) down-regulation of an
active reaction, (iii) activation of a reaction with available
precursors, (iv) activation of a reaction without available
precursors, and (v) the simultaneous activation of two
consecutive reactions. In order to simulate mutant phenotypes,
TDPS requires a reference flux distribution to serve as a basis
for calculations performed by the algorithm (see Supplemen-
tary Text S2 and the Methods section). Figure 3a shows the
reference flux distribution obtained for the toy model using
parsimonious flux balance analysis (pFBA)18 by maximizing
the biomass production flux (reaction R7) and fixing the
substrate (metabolite A) uptake rate to at 100 flux units.
Furthermore, Figure 3 also shows TDPS simulations of
selected types of genetic modifications.
To validate the application of the TDPS algorithm to up-

regulated reactions, reaction R2 was selected as the target. As
shown in Figure 3b, the up-regulation of R2 resulted in an
increase of 17 flux units causing, in response, an activation of
reaction R4, to dispose of excess metabolite D. There was also
a drop in biomass flux, consistent with the diversion of
metabolite B from reaction R3. Looking at the flux partition
ratios, up-regulation of R2 also caused a decrease in the
partition ratio of metabolite B to reaction R3. In contrast,
when reaction R2 is down-regulated, Figure 3c shows that the
flux in R3 rises while flux in R2 decreases. Furthermore, down-
regulation of R2 also limits the amount of metabolite D
available in the network, leading to a reduction in the rate of
biomass formation. The ability to simulate both up- and down-

regulations confirms that TDPS may be used to both
manipulate partition ratios of selected metabolic nodes and
divert fluxes, without constraining fluxes to fixed values.
One main feature of TDPS is that it makes flux through an

up-regulated/activated reaction be dependent on the avail-
ability of the relevant precursors. To demonstrate this, two
inactive reactions with precursors that were available in
different amounts were selected as targets for activation (R4
and R5). Figure 3d shows that a significant flux is predicted
when reaction R4 is activated because of the high availability of
its precursor (metabolite D). In contrast, when reaction R5 is
activated, there are no changes in flux distribution in
comparison to the reference network (Figure 3e) due to a
lack of precursor (metabolite I). This lack of flux, when low
precursor availability is recognized by the TDPS algorithm,
highlights that the activation of a reaction does not always
imply that there will be changes in the network. This stresses
the advantage of using TDPS to simulate reaction activations,
over methods that only manipulate either the flux values
directly6,7 or the objective function.8

Although the activation of R5 on its own resulted in a
phenotype with zero flux on that reaction, TDPS can also be
used to model multiple genetic modifications in an integrated
approach. For example, when R4 is activated simultaneously
with R5, the production turnover for metabolite I becomes
higher than zero and R5 can then also be active as a
consequence (Figure 3f). This highlights another relevant
feature of TDPS: since turnover-dependent constraints are not
imposed based on the reference turnover values, genetic
modifications can interact with each other. This can
subsequently lead to either antagonistic or synergistic effects

Figure 3. TDPS validation using a toy model. The reference flux distribution (a) was computed for the toy model using pFBA by maximizing the
biomass flux (reaction R7) and assuming a substrate (metabolite A) uptake rate of 100 flux units. The up-regulation (b) and down-regulation
panels (c) illustrate how TDPS can manipulate the flux partition ratios in certain metabolic nodes and divert fluxes accordingly. The activation of
reaction R4 (d) or R5 (e) demonstrate that precursor availability has a significant impact in the flux of activated reactions; i.e., the flux in an
activated reaction is only induced if the precursors are available in the network. The simultaneous activation of reaction R4 and R5 (f), exemplifies
how TDPS allows genetic modifications to interact with each other and have a synergistic effect. All mutant simulations were obtained with TDPS
assuming a C parameter of 2.0 for up-regulations and 0.50 for down-regulation (see Supplementary Text S2 and the Methods section for more
details about the C parameter). The reaction activation penalty constant used was 1.0.
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depending on which genes are modified and how. This feature
may be of significant relevance when simulations include
several genetic modifications that are associated with closely
related precursors.
From the toy model simulations we could see that the

strategy used to model genetic modifications using metabolite
turnovers results in more meaningful simulations in biological
terms. Nevertheless, this can also lead to changes in fluxes that
seem counterintuitive. For example, in the simulation shown in
Figure 3e the flux in an up-regulated reaction does not increase
in comparison to the reference strain. Because the flux
constrains are made dependent on the turnover of the
precursor metabolites, up-regulating a certain reaction may

result in the flux staying the same or even decreasing in
comparison to the nondisturbed state, assuming that
manipulations in other parts of the network may affect the
turnover. The same is valid for down-regulations, which can
lead to an increased flux in the event of the precursor turnovers
increasing a lot between the reference and disturbed state.

TDPS Validation Using Experimental Results. The
major motivation behind the development of TDPS was to
create an algorithm capable of simulating complex strain
designs in quantitative terms. Therefore, the ultimate test to
evaluate this algorithm consisted of comparing phenotypes of
experimentally characterized strains with their simulated
counterparts. S. cerevisiae was chosen as a case study here as

Figure 4. TDPS validation using experimental results from three different case studies. (a) The polyhydroxybutyrate (PHB) yields from S. cerevisiae
strains characterized by Kocharin et al.20 (red dots) are compared to the violin plots of simulated yields from TDPS (blue) and TDPS_FBA
(green). (b) The product yield of four different santalene producing S. cerevisiae strains characterized by Scalcinati et al.24 (red dots) are compared
to the violin plots of simulated yields from TDPS (blue) and TDPS_FBA (green). (c) A series of 3-hydroxypropionic acid producing S. cerevisiae
strains, characterized by Chen et al. and Shi et al.25,26 (red dots) are compared to the violin plots of simulated yields from TDPS (blue) and
TDPS_FBA (green). (d) Minimum and maximum product yields for each case study computed with flux variability analysis. (e) Sets of genetic
modifications, relevant for the simulations, present in each strain analyzed. Gene abbreviations: all genes endogenous to S. cerevisiae follow the
accepted nomenclature. ACSSE, acetyl-CoA synthetase (L641P) from Salmonella enterica; gapN, glyceraldehyde-3-phosphate dehydrogenase from
Streptococcus mutans; mcr, malonyl-CoA reductase from Chlorof lexus aurantiacus; phaA/phaB/phaC, genes of the PHB production operon from
Ralstonia eutropha; SanSyn, santalene synthase (SanSyn) from Clausena lansium.
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the flux distributions obtained with the genome-scale models
for this organism are well established, and have been validated
and curated previously.19 Besides the availability of curated flux
distributions, S. cerevisiae was also selected due to its status as a
model organism, with abundant physiological data being
available, as well as many strain engineering strategies
accessible in the literature. Since the reference flux distribution
plays an important role in TDPS simulations, we restricted
validation efforts to strains of S. cerevisiae grown aerobically on
minimal media with glucose as the carbon source.
Ideally, the validation of steady-state simulations obtained

with TDPS should be done using data obtained from steady-
state conditions, such as glucose limited chemostat experi-
ments. However, as chemostat fermentations are labor
intensive, the majority of metabolic engineering studies
available in the literature are predominantly batch cultures in
bioreactors or shake-flasks for strain characterization. To
maximize the amount of experimental data used in the
validation, we included both batch and chemostat experiments.
Two different reference flux distributions were created for
TDPS simulations: the first describing glucose-limited
conditions characteristic of chemostat cultures growing at a
dilution rate of 0.1 h−1 and the second for simulating respiro-
fermentative conditions typical of the glucose consumption
phase in batch fermentations.
Besides a reference flux distribution, to simulate a certain set

of genetic modifications in TDPS it is also necessary to select
the strength of each modification. In TDPS this is achieved by
assigning appropriate values to the C parameter (see the
Methods section and Supplementary Text S2) for each genetic
modification simulated. Experimentally, the strength of an up/
down-regulation will depend on several variables, from the
specific strategy used to alter the abundance to the kinetic
characteristics of the enzymes involved. The translation of
these experimental modifications therefore, to a set of C
parameters can be challenging, when simulating mutant strains
with TDPS. In order to get an overview of the phenotype range
that TDPS could predict for the same set of genetic
modifications, each strain was simulated by attributing 1000
uniformly distributed random values to each C parameter
within a defined range (see Methods section for range values).
For each case study, we therefore present the distribution of
production yields obtained from these 1000 simulations.
To simulate the phenotypes of strains obtained from

literature, two different versions of TDPS were used: the
regular TDPS formulation and a relaxed version (TDPS_FBA)
where the optimal value of the objective function was allowed
to relax slightly while biomass was maximized (for a detailed
description see Methods). TDPS_FBA was therefore used to
determine how robust the phenotypes obtained with TDPS
are, that is, to check if the production yields obtained with
TDPS can vary significantly when the objective function is
allowed to vary slightly. As explained in the introduction, most
existing constrained-based simulation methods only allow to
account for reaction knockouts, while other methods cannot be
used for simulation. Thus, the results obtained with TDPS
were not benchmarked against any other in silico methods, but
rather only with the experimental results.
Case Study 1: PHB Production in S. cerevisiae. The first

case study used for validating TDPS involves the production of
polyhydroxybutyrate (PHB) in S. cerevisiae using genes from
the phaCAB operon in Ralstonia eutropha.20,21 This case study
uses experimental PHB production yields obtained by

Kocharin et al. in batch cultures (bioreactor and shake-flask)
for strains expressing three heterologous genes from R. eutropha
(SCKK005 and SCKK006).20,21 The PHB production yields
calculated from the results of Kocharin et al.20,21 along with the
corresponding yields simulated with TDPS are shown in
Figure 4a. The detailed strain genotypes are described in
Figure 4e and interval of possible yields are shown in Figure 4d
to show how TDPS simulations restrict product excretion. The
simulated yields shown for batch conditions in Figure 4a were
obtained specifically for the respiro-fermentative metabolism in
glucose, making their value comparable with the glucose
consumption phase of bioreactor cultivations. Since the shake-
flask yields were calculated at the end of the fermentation, the
values shown are the sum of both the respiro-fermentative
phase on glucose and the growth on fermentation products
phase. Therefore, the shake-flask yields should not be directly
comparable to the simulated yields obtained with TDPS but
are still shown for a qualitative comparison. Not all strains in
refs 20, 21 were used, however, as some included the
inactivation of genes in the glyoxylate cycle, which should
not be active during the glucose consumption phase.22,23

Therefore, for this case study these strains were not included.
In vivo, these modifications were intended to have an impact
only during ethanol assimilation and indeed, in silico
simulations with TDPS confirmed that deletion of either of
the two glyoxylate cycle’s genes (MLS1 and CIT2) had no
impact on PHB accumulation in the glucose consumption
phase (data not shown).
Regarding strain SCKK005 (Figure 4a), the minimum yield

simulated with TDPS (0.26 mg/g) is 1 order of magnitude
higher than the experimental value obtained in the glucose
phase of the bioreactor fermentation (0.020 mg/g). However,
it is interesting to note that the shake-flask final yield (0.50
mg/g) is 5 times higher than the bioreactor. This shows how
the same strain can perform quite differently in different
conditions and that the yield simulated with TDPS is much
closer to the PHB yield obtained in shake-flask for SCKK005.
The analysis of the flux distribution in the conditions tested
showed that the turnover of acetoacetyl-CoA (a precursor to
PHB production) is 0.011 mmol/gCDW·h. Assuming that all
precursors would be converted to PHB, the maximum
theoretical yield would be 0.46 mg/g. Since the minimum
PHB yield simulated with TDPS represents more than 50% of
this value, it is likely that TDPS is overestimating the basal
performance of the heterologous PHB producing enzymes.
In comparison with SCKK005, the strain SCKK006 includes

the additional expression of acsSE
L641P from S. enterica and the

up-regulation of ALD6 and ADH2 with the aim of improving
the availability of acetyl-CoA in the cytosol of S. cerevisiae.20,21

Since the up-regulation of ADH2 was implemented to improve
ethanol utilization after glucose is exhausted, this gene was
excluded in the simulations performed with TDPS for the
glucose phase. Looking at Figure 4a, the improvement in the
PHB production yield observed for the bioreactor cultivation
of SCKK006 was 6.5 times higher in the glucose phase and 23
times higher overall in comparison to SCKK005. TDPS
predicts an improvement of 19-fold in the maximum simulated
value for the PHB yield, while the improvement in the
minimum simulated value is 42 fold. Although TDPS
overestimates the improvement in the glucose phase, the
simulated improvement for the maximum PHB yield is not too
different from the overall improvement observed for the
bioreactor cultivation (19 vs 23 fold increase). As seen for
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strain SCKK005, the minimum production yield predicted by
TDPS for strain SCKK006 (11.0 mg/g) is also considerably
above the experimental value determined in bioreactor
cultivations (0.13 mg/g). Again, only the shake-flask yields
can approximate the values simulated with TDPS.
Besides the batch cultivation, strain SCKK006 was also

characterized in glucose limited chemostat cultures by
Kocharin et al.21 (Figure 4a). As seen for the batch cultures,
the minimum yield simulated with TDPS (12.0 mg/g) is
higher than the experimentally determined value (2.6 mg/g)
but in this case, the difference is lower than in batch cultures.
Furthermore, the minimum yield predicted with TDPS_FBA is
actually coincident with the experimentally determined value
(2.6 mg/g). Although the relative amount of data is limited for
chemostat cultures, the better performance of TDPS in
computing PHB yields here may be a consequence of the
superior activity of the PHB producing enzymes under this
type of cultivation. Alternatively, since genome-scale models
are most suitable for simulating steady-state conditions, the
simulation of chemostat cultures may also benefit from the
increased accuracy of these flux distributions.
Case Study 2: Santalene Production in S. cerevisiae.

Santalene is an isoprenoid that belongs to the sesquiterpene
class (15 carbon atoms) and can be synthesized from farnesyl
pyrophosphate (FPP), a precursor for sterol biosynthesis in
S. cerevisiae. Scalcinati et al. have characterized a series of
S. cerevisiae strains engineered for improved production of
santalene, which included among other modifications, the
expression of santalene synthase (SanSyn) from Clausena
lansium.24 The product yields reported by Scalcinati et al.24 for
the santalene producing strains are shown in Figure 4b
alongside the simulation values obtained with TDPS. It is
important to note that the strains constructed by Scalcinati et
al.,24 which included the expression of a mutated transcription
factor (UPC2), were excluded from this analysis due to TDPS
being unable to simulate this type of genetic modification.
Strain SCIGS28 was built by introducing the SanSyn into

S. cerevisiae together with the expression of a truncated version
of HMG-CoA reductase (tHMG1), which lacks feedback
regulation.24 Figure 4b shows that the santalene yield interval
predicted by TDPS for SCIGS28 (0.51−2.5 mg/g) encom-
passes the yield obtained experimentally (0.51 mg/g). Further
optimization of the santalene production yield in strain
SCIGS29 was achieved by down-regulating squalene synthase
(ERG9) and deleting the lipid phosphate phosphatase (LPP1)
to avoid unspecific hydrolysis of FPP by this enzyme.24 Since
the Yeast 6 model lacks the LPP1 gene, its deletion had to be
excluded from the simulations; however, it is noteworthy that
even if the model did include LPP1, it would be unlikely that
the unspecific dephosphorylation of farnesyl-pyrophosphate
would be associated with it. Figure 4b shows that in
comparison to SCIGS28, the experimental santalene yield in
the strain SCIGS29 is 3.1 times higher (1.6 mg/g). However,
the simulations performed with TDPS do not show such an
improvement; in fact, the minimum simulated yield decreased,
while the maximum yield increased by only 12% (Figure 4b).
An analysis of the simulation results revealed that the lack of
improvement in the minimum simulated yield was a
consequence of poor growth rates for simulations where
ERG9 down-regulation was more severe, in turn decreasing the
availability of FPP precursor.
Given the essentiality of ergosterol for growth, it would be

expectable that down-regulating ERG9 in silico would promote

an increase in the turnover of FPP, to compensate for limiting
ERG9 activity. However, the simulations performed with
TDPS failed to reproduce the phenotype observed in vivo,
suggesting that the objective function used in TDPS is not
suited for this type of simulation, wherein growth is anticipated
to be severely impacted. This finding is further supported by
the improved performance of TDPS_FBA in simulating strain
SCIGS29 as a result of partially allowing the maximization of
biomass production (Figure 4b). We then simulated both
SCIGS28 and SCIGS29 using a modified TDPS algorithm that
uses biomass maximization as the objective function. Here, the
results showed that the santalene yield for SCIGS28 remained
very similar to the TDPS simulation (0.52−2.5 mg/g), but the
simulated yield interval for strain SCIGS29 increased
significantly (0.56−43 mg/g). The increase in the maximum
simulated yield for SCIGS29, using only biomass maximization
as the objective, suggests that the rigidity based objective
function is not enough to reproduce some cellular behaviors.
Since santalene production in S. cerevisiae also requires

NADPH in its synthesis, this led Scalcinati et al. to manipulate
the abundance of this cofactor by deleting the NADP+-
dependent glutamate dehydrogenase (GDH1), which is the
main reaction consuming NADPH.24 Strain SCIGS31 also
included the knockout of DPP1, but similarly as was the case
for the LPP1 deletion, this knockout was not included in the
simulations. Figure 4b shows that the santalene yield for
SCIGS31 dropped slightly in comparison to SCIGS29, and
accordingly we also saw a decrease in the minimum yields
simulated with TDPS and TDPS_FBA. The lack of improve-
ment in the santalene yield for SCIGS31 subsequently
indicates that the limiting factor in silico is not related to
NADPH abundance. We can therefore infer from this (the lack
of improvement in the experimental santalene yield), that
TDPS was able to correctly predict NADPH metabolism as
not being the limiting factor for santalene production.
Additional improvement in the santalene production yield

(strain SCIGS24) was achieved by Scalcinati et al. up-
regulating GDH2 and ERG20.24 As shown in Figure 4b, the
santalene production yield in SCIGS24 improved to 2.4 mg/g,
which is 1.5 times higher than strain SCIGS29. In contrast, the
simulations performed with TDPS for this strain resulted in
lower minimum and maximum yields when compared to the
simulations of SCIGS29. One of the main reasons for the lack
of improvement observed in the simulations of strain SCIGS24
could be attributed to the absence of any effect of up-
regulating ERG20 using TDPS. ERG20p catalyzes the
conversion of three isopentenyl diphosphate (IPP) molecules
into a single FPP molecule, but in the reference strain
simulation, all of the available IPP was already being channeled
to the production of FPP. In other words, when a reaction is
already consuming 100% of the precursor, TDPS is not able to
further increase that value. In this particular case, ERG20p is
already consuming all the available IPP; therefore, TDPS could
not increase it any further. Although this should be expected
from the TDPS formulation, it contrasts with some situations
observed in vivo; for example, when a rate-limiting enzyme is
the only consumer for a certain precursor, its up-regulation can
still result in increased flux.

Case Study 3: 3-Hydroxypropionic Acid Production in
S. cerevisiae. The biosynthesis of 3-hydroxypropionic acid (3-
HP) is not native to S. cerevisiae, but it can be achieved from
malonyl-CoA by a double step reduction. In the work of Chen
et al. and Shi et al.,25,26 the authors introduced into S. cerevisiae
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the bifunctional malonyl-CoA reductase (mcr) from Chloro-
f lexus aurantiacus and created a series of strains with improved
3-HP production yields that we used here as case studies to
validate the simulation accuracy of TDPS (Figure 4c).
The strains HPY01 and HPY15 include the heterologous

expression of the mcr gene from C. aurantiacus and, as shown
in Figure 4c, the 3-HP production yield in the glucose phase of
the bioreactor cultivation was very close to the maximum yield
obtained with TDPS (2.4 vs 2.2 mg/g). Although the
experimental yield is slightly above the maximum simulated
yield, it is important to point out that three different
combinations of enzymes were tested by the authors to
catalyze the conversion of malonyl-CoA to 3-HP.25 In shake-
flasks, the yields for the three candidates ranged from 0.23 mg/
g to 4.6 mg/g, showing that the range of yields obtained with
TDPS approximate well the variability observed experimen-
tally. In comparison to HPY01/HPY15, strains HPY04/
HPY18 also include the up-regulation of the acetyl-CoA
carboxylase gene (ACC1)25,26 for improved availability of
malonyl-CoA. The difference between HPY04 (shake-flask
yield) and HPY18 (bioreactor yield) is the extent of ACC1 up-
regulation: in HPY04, ACC1 was simply overexpressed;25 and
in HPY18 the ACC1 gene was modified to improve its
enzymatic activity26 (Figure 4c). Here, the 3-HP yield of strain
HPY18 improved 2.4 fold in the glucose consumption phase
and 3.4 times overall in comparison with strain HPY15 (Figure
4c). The 2.4 fold improvement observed in the glucose phase
is remarkably similar to the improvement of 2.1 fold obtained
in the maximum value simulated with TDPS. In regards to the
production yield value in the glucose phase for HPY18 (5.8
mg/g), it falls outside the interval predicted by TDPS (0.42−
4.5 mg/g) but is included in the interval predicted by
TDPS_FBA (0.50−6.0 mg/L). Regarding the strain HPY04,
the shake-flask final production yield showed an improvement
of 1.7 fold in comparison to strain HPY01 (Figure 4c), which
is similar to the 2.1 fold improvement simulated with TDPS.
The remaining strains presented in Figure 4c for the 3-HP

case study were only characterized by the authors in shake-
flask cultures, which hampered quantitative comparison of the
final yields against the simulations. However, the overall
improvement in comparison to HPY01 can still indicate if
TDPS captures the differences between strains in qualitative
terms. Strain HPY05 has an improved acetyl-CoA availability
when compared to HPY01 because of the additional
expression of acsSE

L641P from S. enterica and the up-regulation
of ALD6 and ADH2 (which, as explained for the PHB case
study, was similarly excluded). The performance of the strain
HPY05 in shake flask revealed an improvement of 1.5 times
compared to HPY01 (Figure 4c). However, the yields
predicted by TDPS actually decreased in comparison with
the control strain. Since the up-regulation of the acetyl-CoA
boosting genes was shown to be functional in silico for the PHB
producing strain SCKK006, the mismatch between the
simulation and experimental result of HPY05 may lie in the
limited conversion of acetyl-CoA to malonyl-CoA. This is
supported by the considerable increase in 3-HP production in
the simulation of strain HPY06, which is similar to HPY05 but
also includes the up-regulation of ACC1.
Strain HPY09 was engineered for improved NADPH

availability by introducing in S. cerevisiae a NADP+-dependent
glyceraldehyde-3-phosphate dehydrogenase (gapN) from
Streptococcus mutans.25 Although the 3-HP yield is 1.3 times
higher in strain HPY09 that was cultivated in shake-flasks, the

TDPS simulations failed to predict the advantage of the
increased availability of NADPH (Figure 4c). However, when
the expression of gapN was combined with all the other genetic
modifications (strain HPY11 in Figure 4c), we observed a
synergistic effect in the TDPS simulations. Specifically, the
production yield obtained experimentally (23 mg/g) for
HPY11 is included in the interval predicted by TDPS (6.7
to 160 mg/g).
The simulation of the 3-HP productions yields with TDPS

also showed that this algorithm was successful in predicting the
relative performance between metabolically engineered strains.
Among all the strains shown in Figure 4c, only two of them
failed to be ranked correctly among the others (HPY05 and
HPY09). Although the simulations of strains HPY05 and
HPY09 did not show a direct improvement in the 3-HP
production yield, when combined with additional genetic
modifications, there was a clear positive effect of the underlying
strategy.
Besides predicting production yields, TDPS can also be used

to analyze internal fluxes of engineered strains to help
troubleshooting strategies that are not working as expected.
For example, the authors in ref 27 used 13C metabolic flux
analysis to conclude that part of a strategy to improve 3-HP
production did not work as expected. The issue was pinpointed
to the insertion of a NADPH-dependent glyceraldehyde
phosphate dehydrogenase (gapC), which proved insufficient
to provide enough NADPH for 3-HP production.27 By using
TDPS to simulate the fluxes of the 3-HP producing strain with
and without the insertion of the gapC gene from Clostridium
acetobutylicum, we could also conclude that without gapC the
flux in the oxidative branch of the pentose phosphate pathway
has to increase to compensate for the additional NADPH sink.
However, if gapC is significantly up-regulated, then the flux in
the oxidative branch of the pentose phosphate pathway
decreases and 3-HP production increases (see Supplementary
Figure S4 for the detailed flux distributions).
Overall, the results obtained for the three case studies were

satisfactory in confirming the predictive accuracy of the TDPS
algorithm. The production yields simulated with TDPS were
very close to the values reported experimentally with most of
the engineering strategies implemented in vivo showing a
similar trend to what was simulated with TDPS. However,
problems were identified with genetic modifications that
significantly affect biomass production and that include up-
regulation of reactions that are already fully using their
precursors. Nonetheless, these limitations can be surmountable
by using different objective functions or by integrating enzyme
kinetic parameter information into genome-scale models (such
as with the enzyme constrained genome scale metabolic model
GECKO28). Although not addressed here, TDPS can also be
used together with optimization algorithms to find strain
designs with improved production of target metabolites.
Therefore, any validation efforts to fine-tune the simulation
accuracy of TDPS should also improve the quality of strains
designs obtained with it.

■ METHODS
Implementation of the TDPS Algorithm. The TDPS

algorithm was implemented in the JAVA programming
language within the OptFlux software.5 OptFlux is an in silico
metabolic engineering framework that allows the user to
import and manipulate GEMs and perform strain optimiza-
tion/simulation tasks. With the integration of TDPS in
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OptFlux it is possible to access additional functionalities such
as strain optimization algorithms and flux visualization tools,
which expands the possible applications of TDPS. TDPS is
available in OptFlux from version 3.3.3 and can be accessed
from the Simulation/Under-Overexpression menu.
Precalculations. The reference flux distributions were

calculated with pFBA using biomass maximization as the
objective function.18 Using the reference flux distribution, the
fraction values (FRm,n) were calculated for all reactions (n)
consuming metabolite m (n ∈ Rm):
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where Rm is the set of reactions that consume metabolite m,
VR

m is the reference flux value in reaction n, Sm,n is the
stoichiometric coefficient of metabolite m in reaction n and M
is the set of all the metabolites in the network. The reference
production turnovers (TR

m) were calculated for all metabolites
in the network (m ∈ M) using the equation:
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where Pm is the set of reactions that can produce metabolite m.
Splitting Reversible Reactions in Two Half-Reactions.

The formulation of TDPS requires the creation of variables for
the production turnovers to compute mutant flux distributions.
These variables are required in the formulation of the turnover-
dependent flux constraints and for the formulation of the
objective function. However, the existence of reversible
reactions in metabolic models makes the creation of
production turnover variables complex when using linear
programming. Since the flux variable can be either positive or
negative it was necessary to split all reversible reactions in two
positive half-reactions in order to have flux variables that are
specific for the forward or reverse direction:
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where Vn
Pos is the flux value in the forward direction of reaction

n during the simulation, Vn
Neg is the flux value in the reverse

direction of reaction n during the simulation, U is the set
containing all reversible reactions in the network, Vn

LB is the
lower flux bound of reaction n, Vn

UB is the upper flux bound of
reaction n, and Bn

Pos and Bn
Neg are the binary variables used to

prevent both half-reactions from being active simultaneously.
As a consequence of using binary variables, the simulations
performed with TDPS become a mixed integer linear
programming (MILP) problem.
TDPS Objective Function and Formulation. The

mathematical implementation of the TDPS objective function,
which is shown in the Figure 2 in a simplified version, also
includes the reference turnover in the split ratio stability term
to address the possibility of the simulation returning a flux
distribution filled with zeros. This formulation ensures that the
turnovers in the mutant flux distribution remain close to the
reference value. TDPS was therefore mathematically formu-
lated as follows (eqs 7−21):
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where GMUR is the set of fluxes that should be up-regulated,
GMDR is the set of fluxes that should be down-regulated,
GMKO is the set of fluxes that should be knocked-out and Dn is
the direction of reaction n that should be modified if a
reversible reaction is targeted for up- or down-regulation. As
shown in eqs 7 and 8, the number of terms present in these
equations had to be increased to adjust for the existence of
reversible reactions in the metabolic model. This was achieved
by replacing Vn by the appropriate half-reaction reaction (Vn

Pos

or Vn
Neg) for all reversible reactions (n ∈ U). The flux

constraints formulated in eqs 14−19 also take into
consideration which direction of reaction n should be modified
by checking a directionality parameter (Dn) provided by the
user. For modifying the forward reaction of n, Dn must be set
to 1 and for the reverse reaction to −1. Further details
regarding the calculation of the partition ratios (Xm,n)
according to a set of genetic modifications are given in
Supplementary Text S2.
TDPS_FBA Objective Function. TDPS_FBA was im-

plemented to test the robustness of the predictions obtained
with the TDPS algorithm. Initially, a normal TDPS simulation
was performed and the optimal value of the objective function
(OF) was stored. Subsequently, a new TDPS problem was
formulated with all the initial constraints, while also including
eq 22 as well:
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where T is the tolerance constant used to relax the initial
objective function value. The objective function used in TDPS
was then replaced in TDPS_FBA by the maximization of the
biomass production flux.
TDPS_FBA was also used to investigate the impact of the

rigidity enforcing objective function in the predictions
performed with TDPS as shown in Supplementary Text S3.
Mathematical Solver. The academic version of IBM

ILOG CPLEX optimization studio V12.5.1 64bit was used as
the LP and MILP solver in all simulations performed with
TDPS. Given the size and complexity of the problems
generated by TDPS, the CPLEX parameter “NumericalEm-
phasis” was activated in all simulations performed to avoid
occasional numerical instability issues. All other CPLEX
parameters were used as predefined by the manufacturer.

CPLEX is also required for performing TDPS simulations
when using OptFlux.

Toy Model Simulations. TDPS was used to simulate the
effects of different types of genetic modifications on a toy
model using a penalty constant for activated reactions (P)
equal to 1.0, the C parameter for up-regulation was assumed to
be 2 and for down-regulation it was assumed to be 0.5 (for
further details about the C parameter see Supplementary Text
S2). The reference flux distribution used in the simulations was
calculated using pFBA by maximizing the biomass reaction R7.

Genome Scale Models and Reference Flux Distribu-
tions. The consensus GSMM for S. cerevisiae version 6.0629

was downloaded in the SBML format from the project’s Web
site: http://sourceforge.net/projects/yeast/files/ and modified
according to Supplementary Table S1. The models including
the modifications for each case study were then imported into
OptFlux 3.3.35 and all stoichiometric coefficients were
multiplied by 1000 to help solve occasional numerical
instability issues reported by CPLEX when handling reactions
with low fluxes.
The case studies collected from literature to validate TDPS

contained data from two types of cultivation methods,
chemostat and batch cultures. In order to simulate glucose
limited chemostat conditions with a dilution rate of 0.1 h−1, the
glucose uptake rate was set to 1.15 mmol/gCDW·h and the
uptake rates of ammonia, phosphate, sulfate and oxygen were
unconstrained. The cofactor (NADH/NADPH) modifications
applied by Pereira et al.,19 to improve the reference flux
distribution, were also applied here during the computation of
the reference flux distribution.
With the purpose of simulating batch cultures, an

approximate glucose uptake rate was estimated from batch
cultivations of S. cerevisiae (initial glucose concentration of 20
g/L) and set to 11.4 mmol/gCDW·h. To mimic respiro-
fermentative metabolism, the oxygen uptake rate was limited to
1.3 mmol/gCDW·h in order to obtain a final biomass yield on
glucose characteristic of S. cerevisiae (0.12 g/g).30 During
computation of this flux distribution, the constraints described
in19 were also applied, although only those related to NADPH
metabolism were used. All models used here and reference flux
distributions are provided in Supplementary File S1 in formats
that can be imported into OptFlux.

Parametrization of the TDPS Simulation of Mutant
Phenotypes. The simulation of mutant phenotypes was
performed with TDPS using a penalty constant (P) of 50 for
activated reactions. This value (P = 50) provided a good
balance between the maintenance of the split ratio values (first
term of the objective function in Figure 2) and the inhibition
of reaction activation (second term of the objective function in
Figure 2) under the conditions that Yeast 6.06 was tested. The
penalty constant can be changed in OptFlux by navigating to
Help → Preferences → Simulation → Advanced → TDPS
Penalty.
The drain reactions were excluded from the objective

function formulation as they do not represent any metabolic
entity and are only present in the model to allow the exchange
of metabolites with the medium. Some metabolites were also
excluded from the TDPS constraints and objective function as
they are available in excess, making it not logical to include
them in the resource based formulation used to model genetic
modifications, (as their availability will not change from being
in excess). In chemostat conditions the metabolites excluded
were as follows: H2O, H

+, SO4
2−, NH4

+, HPO4
2−, Fe2+ and O2.
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Coenzyme A was also excluded from the algorithm calculations
because it has a passive role in metabolism; i.e., it is always
recycled to its original form; therefore, its availability should
not be a limiting factor for metabolic fluxes at steady-state. In
batch conditions, we used the same conditions with the
exception of O2, which was included in the algorithm
calculations since its consumption flux has been limited in
the simulations. The sets of excluded metabolites are provided
as Supporting Information in a format that can be imported in
OptFlux (files can be imported using the menu: File → Import
→ Reactions/Metabolites extra info).
The strength of the genetic modifications simulated with

TDPS can be adjusted using the C parameter (see
Supplementary Text S2). Given the lack of knowledge
regarding which values for the C parameter would be more
appropriate to simulate the genetic modifications extracted
from the literature, a random number generator was used to
create virtual mutant populations of at least 1000 individuals
with diverse phenotypes for the same set of genetic
modifications. For each up-regulation, 1000 random numbers
between 1 and 5 with a uniform distribution were attributed to
the C parameter (1 < C ≤ 5), while for each down-regulation
1000 random numbers between 0 and 1 with a uniform
distribution (0 < C < 1) were generated. Finally, for reaction
inactivation the C parameter was set to zero. For each virtual
strain, the distribution of production yields obtained for each
randomly generated population is shown. TDPS_FBA
simulations were carried by relaxing 10% (T = 1.1) the
optimal value of the objective function obtained with TDPS
and maximizing the biomass formation with the added
constraint.
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