INTERACTIONS OF *Pseudomonas aeruginosa* AND *Staphylococcus aureus* IN BIOFILM-RELATED INFECTIONS: INSIGHTS THROUGH NETWORK RECONSTRUCTION AND CREATION OF A NEW ONLINE DATABASE

P Jorge*, AP Magalhães*, MO Pereira * equally contributing authors
Centre of Biological Engineering, LIBRO – Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal

POLYMICROBIAL BIOFILMS

Biofilms are a critical concern for many biomedical applications. Their natural polymicrobial nature is characterized by complex communities, where pathogen interactions promote disease progression and severity. Inter-species communication within biofilms is majorly regulated by quorum-sensing, making it a promising target for new therapies.

GOAL

- Understand the implications of *P. aeruginosa* - *S. aureus* interactions on infection progression and find key mechanisms to be explored for antimicrobial therapy.

OBJECTIVES

- Retrieve and analyse all available experimental data on *P. aeruginosa* - *S. aureus* interactions.
- Map interaction mechanisms and make them available online.
- Integrate the retrieved data with other databases to check for possible antimicrobials.

RESULTS

1st Publicly Online Database on Microbial Communication

STEP 1 Choose Interaction Direction

STEP 2 Choose Source Entity Category

STEP 3 Choose Target Entity Category

Two keywords below to further narrow down your search:

- Target organism (e.g. *P. aeruginosa*, *S. aureus*), disease (e.g. respiratory disease), etc.
- Target process (e.g. transcription, translation, protein synthesis, etc.)
- Target key pathway (e.g. quorum sensing, biofilm formation, etc.)
- Target drug (e.g. antimicrobial, antibiotic, etc.)
- Target microorganism (e.g. *P. aeruginosa*, *S. aureus*, etc.)

150 PAPERS

55 PAPERS

Network Reconstruction

Database Construction

Data Integration

Methods

- Retrieval of PMID List
- Relevance Classification
- Systematic Information Annotation
- Interactions, entities, strains, diseases, experimental methods, etc...

Effect of *P. aeruginosa* on *S. aureus*

- Identification of major molecular players in *P. aeruginosa*- *S. aureus* communication (e.g. PQS system)

Inhibitors of Major *P. aeruginosa* Virulence Factors

- 54 different agents retrieved from the PCQuorum database.
- 32% of natural origin.

CONCLUSIONS

- This work successfully and comprehensively analyzed all current data on *P. aeruginosa* – *S. aureus* interactions.
- The first online database on bacterial communication was created and key molecular players were pointed out as promising targets for therapy.

Acknowledgements

This work was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit; European Regional Development Fund under the scope of Norte2020 – Programa Operacional Regional do Norte for the BioCellNet operation (NORTE-01-0145-FEDER-028084), COMPETE2020 and FCT for the project POCI-01-0145-FEDER-028184. The authors also thank FCT for the PhD Grant of Andreia Patricia Magalhães (grant number SFRH/BD/132025/2017) and ESCLM for the Young Scientist Members Attendance Grant of Paula Jorge.