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Abstract—In this paper, we perform an exploratory study of
user Conversion Rate (CVR) prediction using recent big data
from a global mobile marketing company. We design a stream
processing engine to collect sampled mobile marketing data.
Then, we execute a large set of CVR prediction tests, under a
two-stage experimental procedure that considers a rolling window
evaluation. First, several preprocessing and machine learning
combinations are analyzed using preliminary data. Next, the se-
lected combinations are tested on a larger set of unseen datasets.
Interesting classification performances were achieved, with some
learning models (e.g., XGboost, Logistic Regression) requiring a
reduced computational effort, thus showing a potential value for
user CVR prediction in this domain.

Keywords – Classification; Conversion Rate (CVR); Big
Data; Data Mining; Mobile Performance Marketing

I. INTRODUCTION

Mobile performance marketing is growing due to the
widespread usage of mobile devices (e.g., smartphones,
tablets). Several mobile advertising commercial platforms have
been created, in what is known as Demand-Side Platforms
(DSP) [1]. The DSP acts as a broker, matching user profiles
to ads, thus linking user traffic, coming from publishers
(e.g., news site, game app) to advertisers. And, if there is
a conversion (e.g., product sale), the DSP facilitates the cash
flows, returning a portion of the advertiser’s revenue to the
publishers. All ad clicks and sales generate data events, leading
to big data with its 4Vs characteristics [2]: volume, velocity,
variety and value. A critical aspect of the DSP big data system
is the prediction of the user Conversion Rate (CVR), which
involves estimating if there will be a sale when a user clicks
and views an advertisement [3].

In this paper, we perform a large number of computational
experiments, aiming to compare several data preprocessing
and machine learning approaches for predicting user CVR
responses after clicking a mobile ad link. As a case study,
we work with recent real-world data from OLAmobile, which
is a global mobile advertising company that created and
maintains its own DSP. First, we design a stream processing
engine to collect sampled data from the DSP data center.
Then, we execute a vast experimental comparison, under a

two-stage experimental design that includes distinct datasets,
data preprocessing (five categorical and five balancing training
set transformations) and machine learning (three offline and
three online algorithms) combinations, and a realistic rolling
window evaluation.

This paper is organized as follows. First, the related work
is introduced (Section II). Next, the data and methods are
described (Section III). Then, the experimental results are
presented and analyzed (Section IV). Finally, the main con-
clusions are discussed (Section V).

II. RELATED WORK

Several works approached user CVR prediction, mostly
using linear models, such as Logistic Regression (LR) [4].
Recently, more flexible machine learning methods have been
proposed, such as Gradient Boosting Decision Trees (GBDT)
[4], [5], Random Forest (RF) [3] and Deep Learning [6]. Yet,
these studies tend to only consider the prediction performance
and not the computational effort. For instance, the Deep
Learning models proposed in [6] are more complex than the
LR method, although the classification only improved slightly.
Since DSP generate big data, with millions of worldwide clicks
per hour, constant model updates and real-time predictions
are required. In this paper we evaluate both the predictive
performance and computational effort.

Data preprocessing is another relevant issue. Due to privacy
and DSP issues, only a limited set of mobile CVR related
attributes is available, which increases the complexity of the
prediction task (e.g., it is not possible to identify a user).
Attributes are mostly categorical, often presenting a large
cardinality, with hundreds of levels. CVR works have adopted
either raw numeric encodings (e.g., [4]) or one-hot-encoding
(e.g., [3], [6]), thus distinct categorical transformation methods
are rarely compared. One-hot is a popular transformation
but it presents limitations, since it heavily increases the
computational effort for high cardinality attributes. Moreover,
CVR are highly imbalanced, with sales often corresponding
to less than 1% of the generated data events. Thus, balancing
the training data (e.g., undersampling or SMOTE [7]) might
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improve results, although this aspect has been neglected in
most CVR prediction studies.

In contrast with previous CVR works, in this paper we test
a larger set of combinations of preprocessing and learning
methods, including five categorical transformations (e.g., raw,
categorical or one-hot), five training set setups (e.g., none,
SMOTE) and six learning algorithms (e.g., LR, RF). Also, we
adopt a more realistic and robust rolling window validation [8],
[9], which simulates several holdout (train and test) iterations
through time, rather than the simpler holdout validation used
in [3]–[6].

III. MATERIALS AND METHODS

A. Stream Engine and Collected Data

Under the analyzed market, publishers put a dynamic link
in their web pages or apps. Once it is clicked, the DSP selects
a marketing campaign, redirecting the user to a specific ad and
advertiser. Two data events are generated: redirects, when users
click the dynamic link; and sales, when there is a conversion.
All events are stored at the DSP data center, which receives
millions of redirects and thousands of sales per hour. The DSP
provided us a secure web service (https) that allows to request
a total of NR redirects or NS sales from the data center.

In this work, we had access to an Intel Xeon 1.70GHz server
with 56 cores and 2TB of disk, which has limited capabilities
when compared with the data center and thus we worked
with sampled data. We designed a stream processing engine
(Figure 1) using the R tool [10]. The engine sets K cores for
requesting redirects and sales. After receiving the stream (in
JSON format), each core sleeps for SR or SS seconds and
then repeats the request (asking for more data). The received
streams are sent to another layer of cores, which filter the data
according to some of its attribute values. The filtered streams
are then stored (first in, first out - FIFO order) in three files:
redirects; sales; and an event log, used for monitoring the data
collection. These files were stored using MongoDB, a fast
NoSQL JSON database system [11].

Table I describes the stream collection parameters and
resulting datasets. The Traffic column distinguishes two main
event types:

• TEST – initial DSP testing mode, used to measure
campaign performance; and

• BEST – with best product campaigns that have obtained a
minimal TEST performance and that corresponds to most
traffic.

The last two columns denote the number of redirects that
produced sale (Yyes) and no sale events (Yno). For two
TEST datasets (30 minutes and 1 week), the amount of
events collected is around half when compared with the other
datasets. This is due to the fact that TEST traffic, which
is scarcer than BEST traffic, changes through time and the
datasets were collected at different periods.

Although we increased the number of redirect request cores
(K column of Table I) for the shorter duration datasets, due to
the web service limitations it was not possible to retrieve all

redirects. Thus, our ratio of collected sales Yyes/(Yno+Yyes)
is often higher than the real DSP ratio, ranging from 2.1%
to 34.4% (BEST) and 0.2% to 20.4% (TEST). This issue is
handled by setting two data variants:

• collected – with all stored events; and
• realistic – with a sample of the collected data such that

the overall sales ratio is 1% for BEST and 0.5% for TEST.
All redirect and sale events were merged into tabular files

for the classification modeling. Table II lists the respective
input categorical attributes and output target (last row), as pro-
vided by the DSP. The attributes are defined in terms of their
context (user, advertiser, publisher or target) and description
(including the number of levels and example values).

B. Data Preprocessing

We compare five transformations to handle the nominal
inputs: raw (R), categorical or one-hot coding (C), Inverse
Document Frequency IDF (I), categorical pruned (CP) and
IDF pruned (IP). The categorical coding was computed using
only training data. When necessary, training transformation
variables (e.g., IDF numeric value for a level) were stored,
such that test data could be encoded using the same transform.
Moreover, a special “new” category was set to match any new
levels present in test data and that could not be known at
training time.

The transformations work as follows:
• R – uses the original numeric value of the data (“new”

is encoded as 0).
• C – assumes a categorical attribute for methods that can

handle directly such attributes (e.g., tree based or RF) or
one-hot encoding for numeric based methods (e.g., LR).
In this second case, the R tool transforms each attribute
into L−1 binary inputs, where L is the number of levels
(including the special “new” value).

• CPF - proposed variant used to reduce the input memory
requirements. It first ranks the L levels according to their
frequency in the data. Only the most frequent F levels are
used and all other levels (including “new”) are merged
into the special “other” category.

• I – coding adopts the transform [12]: I(x) = ln(n/fx),
where n is the number of instances and fx is the
frequency of attribute x. The transformed I(x) values
range from near 0 (most frequent level) to a Imax (less
frequent).

• IPF – proposed procedure that works by selecting the
most frequent F levels, grouping other levels except
“new” into an “other” category, and then applying the
I(x) function to the F + 1 levels. In both I and IP
procedures, the “new” level is transformed into the least
frequent numeric value (Imax).

We explore one normal and four balancing methods, which
were applied only to training data. Thus, the test sets are kept
with their original unbalanced target distributions. The data
transformation methods include [7]: none (N), undersampling
(U), oversampling (O), both (B) and SMOTE (S). The N
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Fig. 1. Scheme of the developed stream processing engine.

TABLE I
SUMMARY OF THE STREAM ENGINE SETUP AND COLLECTED DATASETS

Traffic Duration Start NR NS SR SS K Yno Yyes

BEST

30 min. 14/09/2017 16:12 7,500 2,000 0 0 5 235,069 9,401
1 hour 28/11/2017 19:29 5,000 1,000 0 0 5 229,707 4,847
1 day 16/11/2017 12:55 500 500 60 60 2 227,687 119,388
1 week 07/12/2017 15:23 70 50 150 150 2 180,629 80,775

TEST

30 min. 28/09/2017 09:29 10,000 2,000 0 0 5 85,312 167
1 hour 22/01/2018 18:10 7,500 1,000 0 0 5 217,102 765
1 day 22/01/2018 18:10 5,000 500 60 60 5 216,369 1,242
1 week 17/12/2017 22:25 200 50 150 150 2 98,172 25,131

TABLE II
DESCRIPTION OF THE DATA ATTRIBUTES

Context Attribute Description

user

country user country: 192 to 216 levels (e.g., Russia, Spain, Brazil)
region region of the country: 22 to 24 levels (e.g., Asia, Europe)
browser browser name: 13 to 14 levels (e.g., Chrome, Safari)
operator mobile carrier or WiFi: 377 to 437 levels (e.g., Vodafone)

advertiser
vertical ad type: 3 to 5 levels (e.g., video, mainstream, dating)
campaign ad product identification: 797 to 1564 numeric levels
special smart link or special offer: 451 to 1271 levels

publisher account publisher type: 7 to 11 levels (e.g, app developer, webmaster)
manager publisher account manager: 18 to 26 levels (numeric)

target Y if there is a conversion: 2 levels (no, yes)

method uses the original data. The U, O and B methods work
by sampling the data according to:

• U – uses a sample of Yyes negative examples;
• O – uses a sample (with repetition) of Yno positive

examples;
• B – the minority classes are oversampled and the majority

classes are undersampled (according to the default R
ROSE package) [13]; and

• S – creates new synthetic positive examples within the
neighborhood input space of the positive labels and
undersamples the negative examples, as implemented in
the R DMwR package [14].

C. Classification Methods

The comparison includes three offline and three online
classifiers. To reduce the bias towards a given algorithm and
perform a fair comparison, we executed all algorithms with
their default parameters.

The offline algorithms include: Logistic Regression (LR),
Random Forests (RF) and XGboost (XB). LR is a popular
linear model for CVR prediction. Both RF and XB are based
on decision tree ensembles. RF was proposed in 2001 [15] and
it combines the responses of a large number of decision trees.
In [3] it provided the best CVR prediction results, although it
required much more computation than LR. More recently, the
scalable XB gradient boosting algorithm was proposed in 2016
[16], winning several classification challenges and requiring
less computational effort than RF.
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Fig. 2. Rolling window evaluation.

Regarding the online learning algorithms, these include
OzaBoost (OB), DecisionStump (DS) and Random Hoeffding
Trees (RH). OB is an online boosting ensemble version
of the AdaBoost.M.1 algorithm, DS is based on one-level
decision trees and RH uses incremental decision trees [17].
All algorithms were implemented in the R tool [10], using
the packages rminer [18], for the offline learning, and RMOA
[17], for the online learning.

D. Evaluation

We adopted the robust rolling window validation [8], [9],
which simulates a real classifier usage through time, with sev-
eral training and test updates (Figure 2). In the first iteration,
the learning model is fit to a training window with the W
oldest examples, and then predicts H ahead predictions. Next,
the training set is updated by discarding the oldest H records
and adding H more recent ones. A new model is fit, producing
H new predictions, and so on. In total, this produces:

U =
DL − (W +H)

H
+ 1 (1)

classifier updates (training and test iterations), where DL is
the data length (number of examples). In this work, after
consulting OLAmobile experts, we opted to use the realistic
values of W = 50, 000 and H = 3, 000.

The predictive performance is measured using test data
and the area under the curve (AUC) of receiver operating
characteristic (ROC) curve [19]. Often, the quality of the
AUC values is interpreted as: 50% performance of a random
classifier; 60% - reasonable; 70% good; 80% very good; 90%
excellent; and 100% perfect. We also record the computational
effort (in seconds) for each rolling window iteration.

The experimental design includes two stages. First, we
conduct a large number of preliminary experiments using the
oldest collected datasets (duration of 30 minutes), with all
preprocessing and classifier combinations. Then, the selected
first stage combinations are tested over a larger number of
unseen datasets. The goal is to measure the performance of
the selected combinations on unseen data. To aggregate all
execution results (e.g., AUC values of the U rolling window

TABLE III
RESULTS FOR DISTINCT CPF AND IPF LEVELS (MEDIAN VALUES, BEST

VALUES IN BOLD)

Traffic Variant AUC (in %) Effort (in s)

(results)

BEST

CP10 CP20 CP30 CP10 CP20 CP30
collected 84.52 75.57 72.03 53.03 68.26 68.58
realistic 82.98 72.01 72.8 63.13 80.64 78.96

(R) (60) (59) (59) (60) (59) (59)
IP10 IP20 IP30 IP10 IP20 IP30

collected 84.49 83.95 84.61 62.93 63.57 63.82
realistic 85.15 84.04 84.34 82.93 83.03 83.34

(R) (60) (60) (60) (60) (60) (60)

TEST

CP10 CP20 CP30 CP10 CP20 CP30
collected 64.30 63.00 57.85 42.6 51.51 58.54
realistic 69.47 66.22 63.78 52.05 74.27 74.15

(R) (60) (59) (59) (60) (59) (59)
IP10 IP20 IP30 IP10 IP20 IP30

collected 61.07 59.5 62.80 50.06 49.77 49.88
realistic 67.48 66.01 68.37 61.71 61.67 62.67

(R) (60) (60) (60) (60) (60) (60)

test iterations), we compute the median value, instead of aver-
age values, since this statistic is less sensitive to outliers. All
median values are estimated by the Wilcoxon non parametric
statistic [20]. The same Wilcoxon test is used to check if paired
median differences are statistically significant.

IV. RESULTS

A. First Phase

This phase uses only the 30 minutes data and starts by
the setting of the number of pruned levels (F ). Then, the
preprocessing and classifier performances are compared. For
each factor of analysis (e.g., CP10), there are E executed
experiments (e.g., different classifiers). Some experiments
produce computational errors (e.g., lack of memory), resulting
in R rolling window results (R ≤ E). For each rolling window
execution, we compute the Wilcoxon median result over all U
iterations. Then, we compute the Wilcoxon median over all R
executions.

For the pruned encodings (CP and IP), we tested F ∈
{10, 20, 30}. Table III presents the median results (AUC
and computational effort) when fixing a particular F value,
resulting in E = 5 (training setups) × 6 (classifiers) = 30
experiments per level and data variant. In Table III, the number
of execution results (R) is shown in brackets and aggregated
for both data variants. In a few cases, the F = 20 and
F = 30 levels led to an execution error, resulting in R = 59
(and not 60). Since F = 10 did not lead to execution errors
and provided the best AUC and computational effort overall
results, we opted to fix this value. Table IV presents the overall
first phase results when fixing an encoding method. All execu-
tions were successful, except for the categorical (C) encoding,
confirming that the C transformation is problematic for high
cardinality attributes. The last row presents the overall median
values, computed over the four data setups. The C encoding
also produced the worst AUC values. Considering both the
predictive AUC performance (e.g., best overall median value



of 76.4) and computation effort, we opted to select CP10 as
the encoding method for the second stage experiments.

The results for a fixed balanced training are shown in
Table V. In this table, R = 54 since 6 C encodings produced
computational errors. The table includes the median value for
each traffic type. For the BEST traffic events, the no balancing
step (N) achieved the best AUC results. Balancing the training
data seems more useful for the TEST traffic, which makes
sense, since it presents a lower ratio of sales. Considering
both the AUC and computational effort, for the second phase
we selected the N training mode for BEST and S for TEST.

The last analyzed factor is the learning algorithm (Table VI).
The number of executed experiments was E = 5 (encodings)
× 5 (training setups) × 2 (variants) = 50 experiments. Three
learning algorithms produced computational errors for the C
encoding, resulting in a smaller R = 40. RF achieved the
best overall result, followed by XB, OB and LR (for BEST)
and followed by LR, OB and XB (for TEST). OB provided
the best online learning AUC results. Yet, under the adopted
rolling window scheme, the computational effort is still higher
than LR and XB, being only comparable to RF. For the second
phase, we selected three methods: RF (best AUC results), LR
(second best TEST results), and XB (fastest method, second
best BEST results).

B. Second Phase

We tested the first phase selected combinations (CP10
encoding; N training for BEST and S balancing for TEST;
LR, XB and RF) in the unseen datasets (1 hour, 1 day and 1
week). This resulted in E = 2 (traffic type) × 2 (data variants)
× 3 (durations) = 12 rolling window executions per classifier.
There were no computational errors (R = 12).

The results are shown in Table VII in terms of median values
for all U rolling window iterations for each classifier and
data. In terms of AUC, RF is the best model for the collected
setups (BEST and TEST), XG is the best option for BEST and
realistic, and LR produces best results for TEST and realistic.
The quality of the obtained AUC values can be valued: as good
(around 70%) or very good (around 80%) for BEST collected;
good for BEST realistic and TEST collected (around 70%);
and reasonable (around 60%) for TEST realistic. This last case
is particularly relevant, since the marketing company does not
have any information about campaign success in TEST traffic
and uses a random user ad matching, which is equivalent to
an AUC of 50%. Thus, the proposed LR model has a business
value.

XG is the fastest method, followed by LR, while RF requires
a substantial computation. DSP platforms have real-time re-
quirements, which should be lower than 10 ms for matching
users to ads. While we did not use optimized infrastructure
and code, several of the XB and LR data-driven models do
follow the real-time constrains, even when constantly updating
the training model. For instance, for TEST data, LR needs an
average of 15.6/3000=5 ms to issue a prediction, while XG
requires a shorter time of 1 ms.

V. CONCLUSIONS

There is an increasing interest in the domain of mobile
performance marketing due to the massive usage of mo-
bile devices (e.g., smartphones, tablets). Within this industry,
Demand-Side Platforms (DSP) act as brokers, matching user
traffic, coming from publishers, to advertisers. Acting globally,
DSP generate big data related with ad clicks and conversions
(product sales). Under this context, user Conversion Rate
(CVR) prediction is a critical element of a DSP, allowing to
better match user profiles to ads.

In this paper, we study user Conversion Rate (CVR) predic-
tion using big data from a global mobile marketing company.
Since the company data center receives big data, with millions
of ad clicks and thousands of sales per hour, we design a
stream processing engine to collect sample data from the
company data center into our computational system. Several
datasets with distinct duration times were collected and for
two main traffic types: BEST and TEST. Then, we perform
an extensive set of CVR prediction tests, under a two stage ex-
perimental design and using robust rolling window validation.
The first stage explored five categorical transformations, five
balanced training setups and six machine learning methods,
which were applied to the oldest collected datasets. In the
second phase, the best data-driven combinations were then
tested on a larger set of unseen datasets.

Interesting predictive performances were achieved, ranging
from reasonable (AUC of 61.2% for Logistic Regression and
TEST traffic) to very good (AUC of 83.8% for Random Forest
and BEST traffic). Thus, there is a potential value for an
improved CVR user prediction in the analyzed mobile market.
In particular, we achieved an AUC higher than 60% for the
realistic TEST scenario, related with new ad campaigns. This
is quite valuable for the analyzed DSP, since it currently
employs a random user ad matching method for this traffic
data type, which corresponds to an AUC of 50%.

Moreover, while we did not use a powerful computational
infrastructure or an optimized code, several of the XGboost
and Logistic Regression machine learning algorithms did pro-
duce real-time results (e.g., <10 ms) when performing several
training and testing iterations (e.g., U =56).

In future work, we wish to improve the predictive per-
formance results by putting an increased effort on feature
engineering. For instance, by attempting to collect and extract
a more richer set of attributes (e.g., related with user behavior
after clicking the ad). We also wish to study scalability issues
(e.g., use of the Apache Spark cluster-computing framework
[21]). Currently, this work is part of an ongoing R&D project
that involves a real business company and that will assume,
in a later stage, the adaptation of the proposed data-driven
approach to perform real-time user ad matches.
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TABLE IV
RESULTS FOR THE CATEGORICAL ENCODINGS (MEDIAN VALUES, BEST VALUES IN BOLD)

AUC (in %) Effort (in s)

Traffic Variant CP10 IP10 R C I CP10 IP10 R C I

BEST
collected 84.52 84.49 86.22 50.54 84.66 53.03 62.93 54.79 66.61 61.42
realistic 82.98 85.15 85.80 49.80 85.36 53.13 82.93 57.99 77.04 63.14

(R) (60) (60) (60) (30) (60) (60) (60) (60) (30) (60)

TEST
collected 64.30 61.07 59.80 49.96 60.65 42.64 50.06 40.58 55.81 46.53
realistic 69.47 67.48 64.61 51.14 65.17 52.05 61.71 47.85 59.21 52.65

(R) (60) (60) (60) (30) (60) (60) (60) (60) (30) (60)

median 76.4 75.3 74.5 50.4 74.0 52.3 62.6 50.3 64.7 55.9

TABLE V
RESULTS FOR THE TRAINING SETUPS (MEDIAN VALUES, BEST VALUES IN BOLD)

AUC (in %) Effort (in s)

Traffic Variant N B U O S N B U O S

BEST
collected 84.13 80.45 82.98 80.16 82.07 77.15 70.57 80.18 101.80 25.13
realistic 83.89 83.31 83.22 83.09 82.25 69.54 70.72 62.31 97.78 82.89

(R) (54) (54) (54) (54) (54) (54) (54) (54) (54) (54)

median 84.01 81.88 83.03 81.63 82.16 73.34 70.64 71.25 99.79 54.01

TEST
collected 57.57 63.45 52.82 63.73 64.55 61.60 64.58 53.69 86.28 15.47
realistic 65.45 66.03 62.85 66.17 63.48 61.37 60.65 58.70 84.32 47.67

(R) (54) (54) (54) (54) (54) (54) (54) (54) (54) (54)

median 61.51 64.74 57.84 64.95 64.02 61.48 62.61 56.20 85.30 37.57

TABLE VI
RESULTS FOR THE LEARNING METHODS (MEDIAN VALUES, BEST VALUES IN BOLD)

AUC (in %) Effort (in s)

Traf. Variant RF LR XB OB DS RH RF LR XB OB DS RH

BEST
collect. 91.76 83.95 89.99 87.81 68.10 67.34 90.26 16.21 7.44 116.78 95.13 94.52

realistic 89.75 83.78 88.10 87.83 79.24 67.56 100.61 17.93 9.66 127.44 106.43 90.73
(R) (40) (40) (50) (40) (50) (50) (40) (40) (50) (40) (50) (50)

median 90.75 83.87 89.04 87.82 73.67 67.45 95.44 17.07 8.55 122.11 100.78 92.62

TEST
collect. 74.81 63.38 60.47 64.87 46.67 55.84 83.76 14.90 8.15 87.56 78.64 68.92

realistic 76.63 73.06 65.58 68.16 45.74 59.31 97.14 16.44 8.13 89.41 80.20 73.28
(R) (40) (40) (50) (40) (50) (50) (40) (40) (50) (40) (50) (50)

median 75.72 68.22 63.02 66.52 46.2 57.58 90.45 15.67 8.14 88.48 79.42 71.10

Regional Development Fund (ERDF). This work was also
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FCT Fundação para a Ciência e Tecnologia within the Project
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