
Algebras of Singular Integral Operators
with Piecewise Continuous Coefficients
on Weighted Nakano Spaces

Alexei Yu. Karlovich
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1. Introduction

The study of one-dimensional singular integral operators (SIOs) with piecewise
continuous (PC) coefficients on weighted Lebesgue spaces was started by Khvedeli-
dze in the fifties and then was continued in the sixties by Widom, Simonenko,
Gohberg, Krupnik, and others. The starting point for those investigations was the
sufficient conditions for the boundedness of the Cauchy singular integral operator
S on Lebesgue spaces with power weights over Lyapunov curves proved in 1956 by
Khvedelidze [27]. Gohberg and Krupnik constructed the Fredholm theory for SIOs
with PC coefficients under the assumptions of the Khvedelidze theorem and this
theory is the heart of their monograph [16] first published in Russian in 1973 (see
also the monographs [6, 20, 33, 35, 36]). In the same year Hunt, Muckenhoupt, and
Wheeden proved that for the boundedness of S on Lp(T, w) it is necessary and
sufficient that the weight w belongs to the so-called Muckenhoupt class Ap(T),
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here T denotes the unit circle. In 1982 David proved that S is bounded on L2

over a rectifiable curve if and only if the curve is a Carleson curve. After some
hard analysis one can conclude, finally, that S is bounded on a weighted Lebesgue
space over a rectifiable curve if and only the weight belongs to a Carleson curve
analog of the Muckenhoupt class (see [11], [2] and also [36]). In 1992 Spitkovsky
[43] made the next significant step after Gohberg and Krupnik (20 years later!): he
proved Fredholm criteria for an individual SIO with PC coefficients on Lebesgue
spaces with Muckenhoupt weights over Lyapunov curves. Finally, Böttcher and
Yu. Karlovich extended Spitkovsky’s result to the case of arbitrary Carleson curves
and Banach algebras of SIOs with PC coefficients. With their work the Fredholm
theory of SIOs with PC coefficients is available in the maximal generality (that,
is, when the Cauchy singular integral operator S is bounded on weighted Lebesgue
spaces). We recommend the nice paper [3] for a first reading about this topic and
[2] for a complete and self-contained analysis (see also [4]).

It is quite natural to consider the same problems in other, more general,
spaces of measurable functions on which the operator S is bounded. Good can-
didates for this role are rearrangement-invariant spaces (that is, spaces with the
property that norms of equimeasurable functions are equal). These spaces have nice
interpolation properties and boundedness results can be extracted from known re-
sults for Lebesgue spaces applying interpolation theorems. The author extended
(some parts of) the Böttcher-Yu. Karlovich Fredholm theory of SIOs with PC co-
efficients to the case of rearrangement-invariant spaces with Muckenhoupt weights
[22, 24]. Notice that necessary conditions for the Fredholmness of an individual
singular integral operator with PC coefficients are obtained in [25] for weighted re-
flexive Banach function spaces (see [1, Ch. 1]) on which the operator S is bounded.

Nakano spaces Lp(·) (generalized Lebesgue spaces with variable exponent)
are a nontrivial example of Banach function spaces which are not rearrangement-
invariant, in general. Many results about the behavior of some classical operators
on these spaces have important applications to fluid dynamics (see [10] and the ref-
erences therein). Recently Kokilashvili and S. Samko proved [29] that the operator
S is bounded on weighted Nakano spaces for the case of nice curves, nice weights,
and nice (but variable!) exponents. They also extended the Gohberg-Krupnik Fred-
holm criteria for an individual SIO with PC coefficients to this situation [30]. So,
Nakano spaces are a natural context for the “localization” of the Gohberg-Krupnik
theory with respect to the variable exponent. In this paper we proved Fredholm
criteria and a formula for the index of an arbitrary operator in the Banach alge-
bra of SIOs with PC coefficients on Nakano spaces (generalized Lebesgue spaces
with variable exponent) with Khvedelidze weights over either Lyapunov curves or
Radon curves without cusps. These results generalize [30] (see also [25]) to the case
of Banach algebras and the results of [15] (see also [14]) to the case of variable
exponents (notice also that Radon curves were not considered in [15]). Basically,
under the assumptions of the theorem of Kokilashvili and Samko, we can replace
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the constant exponent p by the value of the variable exponent p(t) at each point
t of the contour of integration in the Gohberg-Krupnik Fredholm theory [15].

The paper is organized as follows. In Section 2 we define weighted Nakano
spaces and discuss the boundedness of the Cauchy singular integral operator S
on weighted Nakano spaces. Section 3 contains Fredholm criteria for an individual
SIO with PC coefficients on weighted Nakano spaces. In Section 4 we formulate
the Allan-Douglas local principle and the two projections theorem. The results of
Section 4 are the main tools allowing us to construct the symbols calculus for the
Banach algebra of SIOs with PC coefficients in Section 5. Finally, in Section 6, we
prove an index formula for an arbitrary operator in the Banach algebra of SIOs
with PC coefficients acting on a Nakano space with a Khvedelidze weight over
either a Lyapunov curve or a Radon curve without cusps.

2. Preliminaries

2.1. The Cauchy singular integral

Let Γ be a Jordan (i.e., homeomorphic to a circle) rectifiable curve. We equip Γ
with the Lebesgue length measure |dτ | and the counter-clockwise orientation. The
Cauchy singular integral of a measurable function f : Γ → C is defined by

(Sf)(t) := lim
R→0

1
πi

∫
Γ\Γ(t,R)

f(τ)
τ − t

dτ (t ∈ Γ),

where the “portion” Γ(t, R) is

Γ(t, R) := {τ ∈ Γ : |τ − t| < R} (R > 0).

It is well known that (Sf)(t) exists almost everywhere on Γ whenever f is inte-
grable (see [11, Theorem 2.22]).

2.2. Weighted Nakano spaces Lp(·)

Function spaces Lp(·) of Lebesgue type with variable exponent p were studied for
the first time by Orlicz [42] in 1931, but notice that other kind of Banach spaces
are named after him. Inspired by the successful theory of Orlicz spaces, Nakano
defined in the late forties [40, 41] so-called modular spaces. He considered the space
Lp(·) as an example of modular spaces. Musielak and Orlicz [38] in 1959 extended
the definition of modular spaces by Nakano. Actually, that paper was the starting
point for the theory of Musielak-Orlicz spaces (generalized Orlicz spaces generated
by Young functions with a parameter), see [37].

Let p : Γ → [1,∞) be a measurable function. Consider the convex modular
(see [37, Ch. 1] for definitions and properties)

m(f, p) :=
∫

Γ

|f(τ)|p(τ)|dτ |.

Denote by Lp(·) the set of all measurable complex-valued functions f on Γ such
that m(λf, p) < ∞ for some λ = λ(f) > 0. This set becomes a Banach space with
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respect to the Luxemburg-Nakano norm

‖f‖Lp(·) := inf
{

λ > 0 : m(f/λ, p) ≤ 1
}

(see, e.g., [37, Ch. 2]). So, the spaces Lp(·) are a special case of Musielak-Orlicz
spaces. Sometimes the spaces Lp(·) are referred to as Nakano spaces (see, e.g., [13,
p. 151], [19, p. 179]). We will follow this tradition. Clearly, if p(·) = p is constant,
then the Nakano space Lp(·) is isometrically isomorphic to the Lebesgue space Lp.
Therefore, sometimes Lp(·) are called generalized Lebesgue spaces with variable
exponent or, simply, variable Lp spaces.

A nonnegative measurable function w on the curve Γ is referred to as a weight
if 0 < w(t) < ∞ almost everywhere on Γ. The weighted Nakano space is defined
by

Lp(·)
w =

{
f is measurable on Γ and fw ∈ Lp(·)

}
.

The norm in this space is defined as usual by ‖f‖
L

p(·)
w

= ‖fw‖Lp(·) .

2.3. Carleson, Lyapunov, and Radon curves

A rectifiable Jordan curve Γ is said to be a Carleson (or Ahlfors-David regular)
curve if

sup
t∈Γ

sup
R>0

|Γ(t, R)|
R

< ∞,

where |Ω| denotes the measure of a measurable set Ω ⊂ Γ. Much information about
Carleson curves can be found in [2].

On a rectifiable Jordan curve we have dτ = eiθΓ(τ)|dτ | where θΓ(τ) is the
angle between the positively oriented real axis and the naturally oriented tangent
of Γ at τ (which exists almost everywhere). A rectifiable Jordan curve Γ is said to
be a Lyapunov curve if

|θΓ(τ)− θΓ(t)| ≤ c|τ − t|µ

for some constants c > 0, µ ∈ (0, 1) and for all τ, t ∈ Γ. If θΓ is a function of
bounded variation on Γ, then the curve gamma Γ is called a Radon curve (or a
curve of bounded rotation). It is well known that Lyapunov curves are smooth,
while Radon curves may have at most countable set of corner points or cusps. All
Lyapunov curves and Radon curves without cusps are Carleson curves (see, e.g.,
[28, Section 2.3]).

2.4. Boundedness of the Cauchy singular integral operator

We shall assume that

1 < ess inf
t∈Γ

p(t), ess sup
t∈Γ

p(t) < ∞. (1)

In this case the conjugate exponent

q(t) :=
p(t)

p(t)− 1
(t ∈ Γ)

has the same property.
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Not so much is known about the boundedness of the Cauchy singular integral
operator S on weighted Nakano spaces L

p(·)
w for general curves, general weights, and

general exponents p(·). From [25, Theorem 6.1] we immediately get the following.

Theorem 2.1. Let Γ be a rectifiable Jordan curve, let w : Γ → [0,∞] be a weight,
and let p : Γ → [0,∞) be a measurable function satisfying (1). If the Cauchy
singular integral generates a bounded operator S on the weighted Nakano space
L

p(·)
w , then

sup
t∈Γ

sup
R>0

1
R
‖wχΓ(t,R)‖Lp(·)‖χΓ(t,R)/w‖Lq(·) < ∞. (2)

From the Hölder inequality for Nakano spaces (see, e.g., [37] or [32]) and (2)
we deduce that if S is bounded on L

p(·)
w , then Γ is necessarily a Carleson curve.

If the exponent p(·) = p ∈ (1,∞) is constant, then (2) is simply the famous
Muckenhoupt condition Ap (written in the symmetric form):

sup
t∈Γ

sup
R>0

1
R

(∫
Γ(t,R)

wp(τ)|dτ |

)1/p(∫
Γ(t,R)

w−q(τ)|dτ |

)−1/q

< ∞,

where 1/p + 1/q = 1. It is well known that for classical Lebesgue spaces Lp this
condition is not only necessary, but also sufficient for the boundedness of the
Cauchy singular integral operator S. A detailed proof of this result can be found
in [2, Theorem 4.15].

Consider now a power weight of the form

%(t) :=
N∏

k=1

|t− τk|λk , τk ∈ Γ, k ∈ {1, . . . , N}, N ∈ N, (3)

where all λk are real numbers. Introduce the class P of exponents p : Γ → [1,∞)
satisfying (1) and

|p(τ)− p(t)| ≤ A

− log |τ − t|
(4)

for some A ∈ (0,∞) and all τ, t ∈ Γ such that |τ − t| < 1/2.
Criteria for the boundedness of the Cauchy singular integral operator on

Nakano spaces with power weights (3) were recently proved by Kokilashvili and
Samko [29] under the condition that the curve Γ and the variable exponent p(·)
are sufficiently nice.

Theorem 2.2. (see [29, Theorem 2]). Let Γ be either a Lyapunov Jordan curve or
a Radon Jordan curve without cusps, let % be a power weight of the form (3), and
let p ∈ P. The Cauchy singular integral operator S is bounded on the weighted
Nakano space L

p(·)
% if and only if

0 <
1

p(τk)
+ λk < 1 for all k ∈ {1, . . . , N}. (5)
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For weighted Lebesgue spaces this result is classic, for Lyapunov curves it
was proved by Khvedelidze [27]. Therefore the weights of the form (3) are often
called Khvedelidze weights. We shall follow this tradition. For Lebesgue spaces
over Radon curves without cusps the above result was proved by Danilyuk and
Shelepov [8, Theorem 2]. The proofs and history can be found in [7, 16, 28, 36].

Notice that if p is constant and Γ is a Carleson curve, then (5) is equivalent
to the fact that % is a Muckenhoupt weight (see, e.g., [2, Chapter 2]). Analogously
one can prove that if the exponent p belong to the class P and the curve Γ is
Carleson, then the power weight (3) satisfies the condition (2) if and only if (5) is
fulfilled. The proof of this fact is essentially based on the possibility of estimation
of the norms of power functions in Nakano spaces with exponents in the class P
(see also [25, Lemmas 5.7 and 5.8] and [29], [31]).

2.5. Is the condition p ∈ P necessary for the boundedness?

What can be said about the necessity of the condition p ∈ P in Theorem 2.2? We
conjecture that this condition is not necessary, that is, the Cauchy singular integral
operator can be bounded on L

p(·)
% , but p does not satisfy (4). This conjecture is

supported by the following observation made by Andrei Lerner [34].
It is well known that, roughly speaking, singular integrals can be controlled

by maximal functions. Denote by M(Rn) the class of exponents p : Rn → [1,∞)
which are essentially bounded and bounded away from 1 and such that the Hardy-
Littlewood maximal operator is bounded on Lp(·)(Rn). Diening and Růžička [10,
Theorem 4.8] proved that if p ∈ M(Rn) and there exists s ∈ (0, 1) such that
s/p(t)+1/q̃(t) = 1 and q̃ ∈M(Rn), then the Calderón-Zygmund singular integral
operator is bounded on Lp(·)(Rn). A weighted analog of this theorem was used by
Kokilashvili and Samko (see [29] and also [31]) to prove Theorem 2.2. Notice also
that the author and Lerner [26, Theorem 2.7] proved that if p, q ∈ M(Rn), then
the Calderón-Zygmund singular integral operator is bounded on Lp(·)(Rn). On the
other hand, Diening [9] showed that the following conditions are equivalent:

(i) p ∈M(Rn);
(ii) q ∈M(Rn);
(iii) there exists s ∈ (0, 1) such that s/p(t) + 1/q̃(t) = 1 and q̃ ∈M(Rn).
So, p ∈ M(Rn) implies the boundedness of the Calderón-Zygmund singular inte-
gral operator on Lp(·)(Rn).

Lerner [34], among other things, observed that

p(x) = α + sin(log log(1/|x|)χE(x)),

where α > 2 is some constant and χE is the characteristic function of the ball
E := {x ∈ Rn : |x| ≤ 1/e}, belongs to M(Rn). Clearly, the exponent p in this
example is discontinuous at the origin, so it does not satisfy (an Rn analog of) the
condition (4). This exponent belongs to the class of pointwise multipliers for BMO
(the space of functions of bounded mean oscillation). For descriptions of pointwise
multipliers for BMO, see Stegenga [44], Janson [18] (local case) and Nakai, Yabuta
[39] (global case). So, we strongly believe that necessary and sufficient conditions
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for the boundedness of the Cauchy singular integral operator (and other singular
integrals and maximal functions) on Nakano spaces Lp(·) should be formulated
in terms of integral means of the exponent p (i.e., in BMO terms), but not in
pointwise terms like (4).

3. Fredholm criteria

3.1. Fredholm operators

A bounded linear operator A on a Banach space is said to be Fredholm if its image
is closed and both so-called defect numbers

n(A) := dim kerA, d(A) := dim kerA∗

are finite. In this case the difference n(A)− d(A) is referred to as the index of the
operator A and is denoted by IndA. Basic properties of Fredholm operators are
discussed in [5, 16, 20, 35, 36] and in many other monographs.

3.2. Singular integral operators with piecewise continuous coefficients

In the following we shall suppose that Γ is either a Lyapunov Jordan curve or a
Radon Jordan curve without cusps, the variable exponent p belongs to the class P,
and the Khvedelidze weight (3) satisfies the conditions (5). Then, by Theorem 2.2,
the operator S is bounded on the weighted Nakano space L

p(·)
% . Let I be the

identity operator on L
p(·)
% . Put

P := (I + S)/2, Q := (I − S)/2.

Let L∞ denote the space of all measurable essentially bounded functions on
Γ. We denote by PC the Banach algebra of all piecewise continuous functions on
Γ: a function a ∈ L∞ belongs to PC if and only if the finite one-sided limits

a(t± 0) := lim
τ→t±0

a(τ)

exist for every t ∈ Γ.
For a ∈ PC denote by aI the operator of multiplication by a. Obviously, it

is bounded on L
p(·)
% . If B is a bounded operator, then we will simply write aB for

the product aI ·B. The operators of the form aP + bQ with a, b ∈ PC are called
singular integral operators (SIOs) with piecewise continuous (PC) coefficients.

Theorem 3.1. The operator aP +bQ, where a, b ∈ PC, is Fredholm on the weighted
Nakano space L

p(·)
% if and only if

a(t± 0) 6= 0, b(t± 0) 6= 0, − 1
2π

arg
g(t− 0)
g(t + 0)

+
1

p(t)
+ λ(t) /∈ Z

for all t ∈ Γ, where g = a/b and

λ(t) :=
{

λk, if t = τk, k ∈ {1, . . . , N},
0, if t /∈ Γ \ {τ1, . . . , τN}.
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If a, b have only finite numbers of jumps and % = 1, this result was obtained
in [30, Theorem A] (as well as a formula for the index of the operator aP + bQ).
In the present form this result is contained in [25, Theorem 8.3]. For Lebesgue
spaces with Khvedelidze weights over Lyapunov curves the corresponding result
was obtained in the late sixties by Gohberg and Krupnik [16, Ch. 9].

3.3. Widom-Gohberg-Krupnik arcs

Given z1, z2 ∈ C and r ∈ (0, 1), put

A(z1, z2; r) := {z1, z2} ∪
{

z ∈ C \ {z1, z2} : arg
z − z1

z − z2
∈ 2πr + 2πZ

}
.

This is a circular arc between z1 and z2 (which contains its endpoints z1 and
z2). Clearly, A(z, z; ν) degenerates to the point {z} and A(z1, z2; 1/2) is the line
segment between z1 and z2. A connection of these arcs to Fredholm properties
of singular integral operators with piecewise continuous coefficients on Lp(R) was
first observed by Widom in 1960. Gohberg and Krupnik expressed their Fredholm
theory of SIOs with PC coefficients on Lebesgue spaces with Khvedelidze weights
over piecewise Lyapunov curves in terms of these arcs. For more about this topic we
refer to the books [5, 16, 20, 36], where the Gohberg-Krupnik Fredholm theory is
presented; see also more recent monographs [2, 4], where generalizations of Widom-
Gohberg-Krupnik arcs play an essential role in the Fredholm theory of Toeplitz
operators with PC symbols on Hardy spaces with Muckenhoupt weights.

Fix t ∈ Γ and consider a function χt ∈ PC which is continuous on Γ \ {t}
and satisfies χt(t− 0) = 0 and χt(t + 0) = 1.

From Theorem 3.1 we immediately get the following.

Corollary 3.2. We have{
λ ∈ C : (χt − λ)P + Q is not Fredholm on Lp(·)

%

}
= A

(
0, 1; 1/p(t) + λ(t)

)
.

4. Tools for the construction of the symbol calculus

4.1. The Allan-Douglas local principle

Let B be a Banach algebra with identity. A subalgebra Z of B is said to be a
central subalgebra if zb = bz for all z ∈ Z and all b ∈ B.

Theorem 4.1. (see [5, Theorem 1.34(a)]). Let B be a Banach algebra with unit e
and let Z be closed central subalgebra of B containing e. Let M(Z) be the maximal
ideal space of Z, and for ω ∈ M(Z), let Jω refer to the smallest closed two-sided
ideal of B containing the ideal ω. Then an element b is invertible in B if and only
if b + Jω is invertible in the quotient algebra B/Jω for all ω ∈ M(Z).
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4.2. The two projections theorem

The following two projections theorem was obtained by Finck, Roch, Silbermann
[12] and Gohberg, Krupnik [17].

Theorem 4.2. Let F be a Banach algebra with identity e, let C = Cn×n be a Banach
subalgebra of F which contains e, and let p and q be two projections in F such
that cp = pc and cq = qc for all c ∈ C. Let W = alg(C, p, q) be the smallest closed
subalgebra of F containing C, p, q. Put

x = pqp + (e− p)(e− q)(e− p),

denote by sp x the spectrum of x in F , and suppose the points 0 and 1 are not
isolated points of sp x. Then
(a) for each µ ∈ sp x the map σµ of C ∪ {p, q} into the algebra C2n×2n of all

complex 2n× 2n matrices defined by

σµc =
(

c 0
0 c

)
, σµp =

(
E 0
0 0

)
, (6)

σµq =
(

µE
√

µ(1− µ)E√
µ(1− µ)E (1− µ)E

)
, (7)

where c ∈ C, E denotes the n × n unit matrix and
√

µ(1− µ) denotes any
complex number whose square is µ(1 − µ), extends to a Banach algebra ho-
momorphism σµ : W → C2n×2n;

(b) an element a ∈ W is invertible in F if and only if detσµa 6= 0 for all µ ∈ sp x;
(c) the algebra W is inverse closed in F if and only if the spectrum of x in W

coincides with the spectrum of x in F .

A further generalization of the above result to the case of N projections is
contained in [2].

5. Algebra of singular integral operators

5.1. The ideal of compact operators

The curve Γ divides the complex plane C into the bounded simply connected
domain D+ and the unbounded domain D−. Without loss of generality we as-
sume that 0 ∈ D+. Let Xn := [Lp(·)

% ]n be a direct sum of n copies of weighted
Nakano spaces X := L

p(·)
% , let B := B(Xn) be the Banach algebra of all bounded

linear operators on Xn, and let K := K(Xn) be the closed two-sided ideal of
all compact operators on Xn. We denote by Cn×n (resp. PCn×n) the collection
of all continuous (resp. piecewise continuous) n × n matrix functions, that is,
matrix-valued functions with entries in C (resp. PC). Put I(n) := diag{I, . . . , I}
and S(n) := diag{S, . . . , S}. Our aim is to get Fredholm criteria for an operator
A ∈ U := alg(PCn×n, S(n)), the smallest Banach subalgebra of B which con-
tains all operators of multiplication by matrix-valued functions in PCn×n and the
operator S(n).
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Lemma 5.1. K is contained in alg(Cn×n, S(n)), the smallest closed subalgebra of B
which contains the operators of multiplication by continuous matrix-valued func-
tions and the operator S(n).

Proof. The proof of this statement is standard, here we follow the presentation in
[21, Lemma 9.1]. First, notice that it is sufficient to prove the statement for n = 1.
By [32, Theorem 2.3 and Corollary 2.7] (see also [37]), (1) is equivalent to the
reflexivity of the Nakano space Lp(·). Then, in view of [25, Proposition 2.11], the
set of all rational functions without poles on Γ is dense in both weighted spaces
L

p(·)
% and L

q(·)
1/%. Hence {tk}∞k=−∞ is a basis in L

p(·)
% (we assumed that 0 ∈ D+),

whence L
p(·)
% has the approximating property: each compact operator on L

p(·)
%

can be approximated in the operator norm by finite-rank operators as closely as
desired. So, it is sufficient to show that a finite-rank operator on L

p(·)
% belongs to

alg(C,S). Since [Lp(·)
% ]∗ = L

q(·)
1/% (again see [32] or [37]), a finite-rank operator on

L
p(·)
% is of the form

(Kf)(t) =
m∑

j=1

aj(t)
∫

Γ

bj(τ)f(τ)dτ, t ∈ Γ, (8)

where aj ∈ L
p(·)
% and bj ∈ L

q(·)
1/%. Since C is dense in L

p(·)
% and in L

q(·)
1/%, one can

approximate in the operator norm every operator of the form (8) by operators
of the same form but with aj , bj ∈ C. Therefore it is sufficient to prove that the
operator (8) with aj , bj ∈ C belongs to alg(C,S). But the latter fact is obvious
because

K =
m∑

j=1

aj(SχI − χS)bjI,

where χ(τ) = τ for τ ∈ Γ. �

5.2. Operators of local type

We shall denote by Bπ the Calkin algebra B/K and by Aπ the coset A+K for any
operator A ∈ B. An operator A ∈ B is said to be of local type if AcI(n) − cA is
compact for all c ∈ C, where cI(n) denotes the operator of multiplication by the
diagonal matrix-valued function diag{c, . . . , c}. It easy to see that the set L of all
operators of local type is a closed subalgebra of B.

Proposition 5.2. (a) We have K ⊂ U ⊂ L.
(b) An operator A ∈ L is Fredholm if and only if the coset Aπ is invertible in the

quotient algebra Lπ := L/K.

Proof. (a) The embedding K ⊂ U follows from Lemma 5.1, the embedding U ⊂ L
follows from the fact that cS − ScI is a compact operator on L

p(·)
% for c ∈ C (see,

e.g., [25, Lemma 6.5]).
(b) Straightforward. �
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5.3. Localization

From Proposition 5.2(a) we deduce that the quotient algebras Uπ := U/K and
Lπ := L/K are well defined. We shall study the invertibility of an element Aπ of
Uπ in the larger algebra Lπ by using the localization techniques (more precisely,
Theorem 4.1). To this end, consider

Zπ :=
{
(cI(n))π : c ∈ C

}
.

From the definition of L it follows that Zπ is a central subalgebra of Lπ. The
maximal ideal space M(Zπ) of Zπ may be identified with the curve Γ via the
Gelfand map G given by

G : Zπ → C,
(
G(cI(n))π

)
(t) = c(t) (t ∈ Γ).

In accordance with Theorem 4.1, for every t ∈ Γ we define Jt ⊂ Lπ as the smallest
closed two-sided ideal of Lπ containing the set{

(cI(n))π : c ∈ C, c(t) = 0
}
.

Consider a function χt ∈ PC which is continuous on Γ \ {t} and satisfies
χt(t− 0) = 0 and χt(t + 0) = 1. For a ∈ PCn×n define the function at ∈ PCn×n

by
at := a(t− 0)(1− χt) + a(t + 0)χt. (9)

Clearly (aI(n))π−(atI
(n))π ∈ Jt. Hence, for any operator A ∈ U , the coset Aπ +Jt

belongs to the smallest closed subalgebra Wt of Lπ/Jt containing the cosets

p :=
(
(I(n) + S(n))/2

)π + Jt, q := (χtI
(n))π + Jt, (10)

where χtI
(n) denotes the operator of multiplication by the diagonal matrix-valued

function diag{χt, . . . , χt} and the algebra

C :=
{
(cI(n))π + Jt : c ∈ Cn×n

}
. (11)

The latter algebra is obviously isomorphic to Cn×n, so C and Cn×n can be identified
to each other.

5.4. The spectrum of pqp + (e− p)(e− q)(e− p)

Since P 2 = P on L
p(·)
% (see, e.g., [25, Lemma 6.4]) and χ2

t−χt ∈ C, (χ2
t−χt)(t) = 0,

it is easy to see that

p2 = p, q2 = q, pc = cp, qc = cq (12)

for every c ∈ C, where p, q and C are given by (10) and (11). To apply Theorem 4.2
to the algebras F = Lπ/Jt and W = Wt = alg(C, p, q), we have to identify the
spectrum of

pqp + (e− p)(e− q)(e− p) =
(
P (n)χtP

(n) + Q(n)(1− χt)Q(n)
)π + Jt (13)

in the algebra F = Lπ/Jτ , here P (n) := (I(n)+S(n))/2 and Q(n) := (I(n)−S(n))/2.
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Lemma 5.3. Let χt ∈ PC be a continuous function on Γ\{t} such that χt(t−0) = 0,
χt(τ + 0) = 1 and χt(Γ \ {t}) ∩ A(0, 1; 1/p(t) + λ(t)) = ∅. Then the spectrum of
(13) in the algebra Lπ/Jt coincides with A(0, 1; 1/p(t) + λ(t)).

Proof. Once we have at hand Corollary 3.2, the proof of this lemma can be devel-
oped by a literal repetition of the proof of [21, Lemma 9.4]. It is only necessary to
replace the spiralic horn S(0, 1; δt;αM , βM ) in that proof by the Widom-Gohberg-
Krupnik circular arc A(0, 1; 1/p(t) + λ(t)). A nice discussion of the relations be-
tween (spiralic) horns and circular arcs and their role in the Fredholm theory of
SIOs can be found in [2] and [3]. �

5.5. Symbol calculus

Now we are in a position to prove the main result of this paper.

Theorem 5.4. Define the “arcs bundle”

M :=
⋃
t∈Γ

(
{t} × A

(
0, 1; 1/p(t) + λ(t)

))
.

(a) for each point (t, µ) ∈M, the map

σt,µ : {S(n)} ∪ {aI(n) : a ∈ PCn×n} → C2n×2n,

given by

σt,µ(S(n)) =
(

E O
O −E

)
, σt,µ(aI(n)) =

(
a11(t, µ) a12(t, µ)
a21(t, µ) a22(t, µ)

)
,

where

a11(t, µ) := a(t + 0)µ + a(t− 0)(1− µ),

a12(t, µ) = a21(t, µ) := (a(t + 0)− a(t− 0))
√

µ(1− µ),
a22(t, µ) := a(t + 0)(1− µ) + a(t− 0)µ,

and O and E are the zero and identity n× n matrices, respectively, extends
to a Banach algebra homomorphism

σt,µ : U → C2n×2n

with the property that

σt,µ(K) =
(

O O
O O

)
for every compact operator K on Xn;

(b) an operator A ∈ U is Fredholm on Xn if and only if

det σt,µ(A) 6= 0 for all (t, µ) ∈M;

(c) the quotient algebra Uπ is inverse closed in the Calkin algebra Bπ, that is, if
an arbitrary coset Aπ ∈ Uπ is invertible in Bπ, then (Aπ)−1 ∈ Uπ.
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Proof. The idea of the proof of this theorem based on the Allan-Douglas local
principle and the two projections theorem is borrowed from [2].

Fix t ∈ Γ and choose a function χt ∈ PC such that χt is continuous on Γ\{t},
χt(t− 0) = 0, χt(t + 0) = 1, and χt(Γ \ {t})∩A(0, 1; 1/p(t) + λ(t)) = ∅. From (12)
and Lemma 5.3 we deduce that the algebras Lπ/Jt and Wt = alg(C, p, q), where
p, q and C are given by (10) and (11), respectively, satisfy all the conditions of the
two projections theorem (Theorem 4.2).

(a) In view of Theorem 4.2(a), for every µ ∈ A(0, 1; 1/p(t) + λ(t)), the map
σµ : Cn×n ∪ {p, q} → C2n×2n given by (6)–(7) extends to a Banach algebra homo-
morphism σµ : Wt → C2n×2n. Then the map

σt,µ = σµ ◦ πt : U → C2n×2n,

where πt : U → Wt = Uπ/Jt is acting by the rule A 7→ Aπ + Jt, is a well defined
Banach algebra homomorphism and

σt,µ(S(n)) = 2σµp− σµe =
(

E O
O −E

)
.

If a ∈ PCn×n, then in view of (9) and (aI(n))π − (atI
(n))π ∈ Jt it follows that

σt,µ(aI(n)) = σt,µ(atI
(n)) = σµ(a(t− 0))σµ(e− q) + σµ(a(t + 0))σµq

=
(

a11(t, µ) a12(t, µ)
a21(t, µ) a22(t, µ)

)
.

From Proposition 5.2(a) it follows that πt(K) = Kπ + Jt = Jt for every K ∈ K
and every t ∈ Γ. Hence,

σt,µ(K) = σµ(0) =
(

O O
O O

)
.

Part (a) is proved.
(b) From Proposition 5.2 it follows that the Fredholmness of A ∈ U is equiv-

alent to the invertibility of Aπ ∈ Lπ. By Theorem 4.1, the former is equivalent to
the invertibility of πt(A) = Aπ +Jt in Lπ/Jt for every t ∈ Γ. By Theorem 4.2(b),
this is equivalent to

detσt,µ(A) = det σµπt(A) 6= 0 for all (t, µ) ∈M. (14)

Part (b) is proved.
(c) Since A(0, 1; 1/p(t) + λ(t)) does not separate the complex plane C, it

follows that the spectra of (13) in the algebras Lπ/Jt and Wt = Uπ/Jt coincide,
so we can apply Theorem 4.2(c). If Aπ, where A ∈ U , is invertible in Bπ, then
(14) holds. Consequently, by Theorem 4.2(b), (c), πt(A) = Aπ +Jt is invertible in
Wt = Uπ/Jt for every t ∈ Γ. Applying Theorem 4.1 to Uπ, its central subalgebra
Zπ, and the ideals Jt, we obtain that Aπ is invertible in Uπ, that is, Uπ is inverse
closed in the Calkin algebra Bπ. �
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6. Index of a Fredholm SIO

6.1. Functions on the cylinder Γ× [0, 1] with an exotic topology

Let us consider the cylinder M := Γ × [0, 1]. Following [14, 15], we equip it with
an exotic topology, where a neighborhood base is given as follows:

Ω(t, 0) :=
{
(t, x) ∈ M : |τ − t| < δ, τ ≺ t, x ∈ [0, 1]

}
∪
{
(t, x) ∈ M : x ∈ [0, ε)

}
,

Ω(t, 1) :=
{
(t, x) ∈ M : |τ − t| < δ, t ≺ τ, x ∈ [0, 1]

}
∪
{
(t, x) ∈ M : x ∈ (ε, 1]

}
,

Ω(t, x0) :=
{
(t, x) ∈ M : x ∈ (x0 − δ1, x0 + δ2)

}
,

where x0 6= 0, 0 < δ1 < x0, 0 < δ2 < 1− x0, and 0 < ε < 1.
Note that A(z1, z2; r) has the following parametric representation

z(x) = z1 + (z2 − z1)ω(x, r), 0 ≤ x ≤ 1,

where ω(x, r) = x for r = 1/2 and

ω(x, r) :=
sin(θx) exp(iθx)

sin θ exp(iθ)
, θ := π(1− 2r), r 6= 1/2.

Let Λ be the set of all piecewise continuous scalar functions having only
finitely many jumps. For a ∈ Λ, put

Ua(t, x) := a(t+0)ω(x, 1/p(t)+λ(t))+a(t−0)
(
1−ω(x, 1/p(t)+λ(t))

)
, (t, x) ∈ M.

Let us consider the function

F (t, x) :=
k∏

j=1

Uaj
(t, x), (t, x) ∈ M, (15)

where aj ∈ Λ, 1 ≤ j ≤ k, and k ≥ 1. If F (t, x) 6= 0 for all (t, x) ∈ M, then F is
continuous on M and the image of this function is a continuous closed curve that
does not pass through the origin and can be oriented in a natural way. Namely,
at the points where the functions aj are continuous, the orientation of the curve
is defined correspondingly to the orientation of Γ. Along the complementary arcs
connecting the one-sided limits at jumps the orientation is defined by the variation
of x from 0 to 1. The index ind MF of F is defined as the winding number of the
above defined curve about the origin.

By F(M) we denote the class of functions H : M → C satisfying the following
two conditions:

(i) H(t, x) 6= 0 for all (t, x) ∈ M;
(ii) H can be represented as the uniform limit with respect to (t, x) ∈ M of a

sequence of functions Fs of the form (15).
The numbers ind MFs are independent of s starting from some number s0.

The number
ind MH := lim

s→∞
ind MFs

will be called the index of H ∈ F(M). One can see that the index just defined is
independent of the choice of a sequence Fs of the form (15).
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6.2. Index formula

The matrix function

A(t, x) = σt,ω(x,1/p(t)+λ(t))(A), (t, x) ∈ M,

is said to be the symbol of the operator A ∈ U . We can write the symbol in the
block form

A(t, x) =
(

A11(t, x) A12(t, x)
A21(t, x) A22(t, x)

)
, (t, x) ∈ M,

where Aij(t, x) are n× n matrix functions.

Theorem 6.1. If an operator A ∈ U is Fredholm on Xn, then the function

QA(t, x) :=
det A(t, x)

detA22(t, 0) det A22(t, 1)
, (t, x) ∈ M,

belongs to F(M) and
IndA = −ind MQA.

Proof. The proof of this theorem is developed as in the classical situation [14, 15]
(see also [22, 23] and [2]) in several steps. We do not present all details here,
although we mention the main steps.

1) The index formula for the scalar Fredholm operator aP + Q with a ∈ Λ:

Ind (aP + Q) = −ind MUa.

In a slightly different form (and in the non-weighted case) this formula was proved
by Kokilashvili and Samko [30].

2) The index formula for aP (n) + Q(n), where a ∈ Cn×n:

Ind (aP (n) + Q(n)) = − 1
2π
{Arg det a(t)}Γ,

where the latter denotes the Cauchy index of the continuous function det a. This
formula can be proved by using standard homotopic arguments.

3) The index formula for aP (n) + Q(n), where a is a function in Λn×n, the
set of n× n matrices with entries in Λ:

Ind (aP (n) + Q(n)) = −ind M detUa.

A proof of this fact is based on the possibility of a representation of a ∈ Λn×n as
the product c1Y c2, where c1 and c2 are nonsingular continuous matrix functions
and Y is an invertible upper-triangular matrix function in Λn×n. A proof of this
representation can be found, e.g., in [6, Ch. VIII, Lemma 2.2].

4) An index formula for the operators of the form
k∑

j=1

(aj1P
(n) + bj1Q

(n))× · · · × (ajrP
(n) + bjrQ

(n)), (16)

where ajl, bjl ∈ Λn×n, 1 ≤ l ≤ r, k ≥ 1, can be proved by using the previous step
an a procedure of linear dilation as in [14, Theorem 7.1] or [15, Theorem 3.1].
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5) Every operator A ∈ U can be represented as a limit (in the operator
topology) of operators of the form (16). So, the index formula in the general case
follows from the fourth step by passing to the limits. Notice that if a sequence of
operators As ∈ U converges to A, then

detA(s) → detA, detA
(s)
11 → detA11, detA

(s)
22 → detA22

uniformly on M, where A and A(s) are the symbols of A and As (see [23, Theo-
rem 3]), so passage to the limits is legitimate. �
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