
LUÍS GONZAGA MARTINS FERREIRA

FORMALIZING MARKUP LANGUAGES FOR USER INTERFACE

Dissertação para Mestrado em Informática

Escola de Engenharia

UNIVERSIDADE DO MINHO

Braga, 2005



LUÍS GONZAGA MARTINS FERREIRA

FORMALIZING MARKUP LANGUAGES FOR USER INTERFACE

Dissertação submetida à Universidade do Minho para obtenção do grau
de Mestre em Informática, área de especialização em Sistemas Distribuı́dos,
Comunicações por Computador e Arquitectura de Computadores, elabo-
rada sob a orientação do Professor Doutor José Nuno de Oliveira, Pro-
fessor Associado do Departamento de Informática da Universidade do
Minho.

Dissertação desenvolvida no âmbito do Projecto EUREKA IKF (E!2235)

Escola de Engenharia

UNIVERSIDADE DO MINHO

Braga, 2005



À Ana, Aninhas e Ritinha



Abstract

This document presents a Dissertation theme, as integral part of Masters Degree in
Distributed Systems, Computers Architecture and Computers Communication.

The work has as primary objective the application of formal methods in the specifi-
cation of presentation layer. Even reaching several relevance HCI concerns, the scope
focus essentially on the way how formal methods can be explored to specify user in-
terfaces described using markup languages.

The state-of-the-art analysis of user interface markup languages and UIML - User
Interface Markup Language formal specification are main contributions. Therefore the
tabular graphical object OLAP main features are formally specified in VDM-SL and
animated using UIML.

This research should be considered as a contribution towards a definition of a visual
component library , with user interfaces components composition and reuse.

i



Acknowledgements

I would like to thank my supervisor Professor José Nuno Oliveira, member of DI
(Department of Informatics, Minho University1), who encouraged all formal methods
research and initiatives at the University, for his useful support and advice during this
work. I am also grateful to Mark Adams and James Helms Harmonia members, for
their enthusiastic support along this research as well for the availability of their UIML
supporting tools.

To all which improved the English in this thesis, I am also very grateful.
Thanks also to all my friends which have made contributions to this work.
would like to thank my Ana for her admirable patience and support during this

work, and our daughters Aninhas e Ritinha, which were deprived of their father for the
best part of these years.

1http://www.di.uminho.pt

ii



Table of Contents

Abstract ii

Acknowledgements ii

List of Figures ix

List of Tables x

Listings xi

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Document support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Research Foundations 13
2.1 The context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 User Interface Properties . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 User Interface Models . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 “Ancient” HCI models . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 XForms Model . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 The N-Tier Model . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 MIM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.5 Other research in HCI modelling . . . . . . . . . . . . . . . . 21

2.4 User Interfaces Analysis and Specification . . . . . . . . . . . . . . . 22
2.4.1 Adaptable Interfaces . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Formal Methods and Specification . . . . . . . . . . . . . . . 25
2.4.3 VDM-SL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 User Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.1 UMLi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 User Interface Programming . . . . . . . . . . . . . . . . . . . . . . 36
2.6.1 UI Programming Methods . . . . . . . . . . . . . . . . . . . 36
2.6.2 N-Layer architecture . . . . . . . . . . . . . . . . . . . . . . 39
2.6.3 Tools and Applications . . . . . . . . . . . . . . . . . . . . . 41

iii



TABLE OF CONTENTS iv

2.7 Data description and manipulation . . . . . . . . . . . . . . . . . . . 44
2.7.1 Multidimensional Analysis . . . . . . . . . . . . . . . . . . . 44
2.7.2 OLAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.8 User Interfaces Evaluation . . . . . . . . . . . . . . . . . . . . . . . 51
2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Markup Languages for User Interface description 53
3.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 XIML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.4 Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 XUL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.4 Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 UIML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.4 Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Relationship between UIML and other UI Markup languages . . . . . 65

4 UIML Formal Specification 69
4.1 VDM-SL Specification . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Terminologies . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.2 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 UIML Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.1 The Structure of an UIML Document . . . . . . . . . . . . . 71
4.2.2 UIML document . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.3 UIML Namespaces . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.4 UIML Elements . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 UIML Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.1 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 VDM-SL Types and common UIML attributes . . . . . . . . . 78
4.3.3 UIML top elements . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.4 Interface description . . . . . . . . . . . . . . . . . . . . . . 81
4.3.5 Peer Components . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.6 Templates - Reusable Interface Components . . . . . . . . . . 115

4.4 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.2 Auxiliary Data Types . . . . . . . . . . . . . . . . . . . . . . 118



TABLE OF CONTENTS v

4.4.3 The uniqueness of ID’s . . . . . . . . . . . . . . . . . . . . . 118
4.4.4 Attribute part-name must refer an existing part ID attribute . . 142
4.4.5 Auxiliary Functions . . . . . . . . . . . . . . . . . . . . . . 147

4.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5 Case study: Table IO 150
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.2 Fundamentals of Table IO Formalization . . . . . . . . . . . . . . . . 150

5.2.1 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.2.2 Table model . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.3 Table VDM-SL specification . . . . . . . . . . . . . . . . . . . . . . 157
5.3.1 General table methods . . . . . . . . . . . . . . . . . . . . . 160
5.3.2 Towards Multidimensional Analysis . . . . . . . . . . . . . . 173
5.3.3 Auxiliary functions . . . . . . . . . . . . . . . . . . . . . . . 188
5.3.4 Pretty print functions . . . . . . . . . . . . . . . . . . . . . . 196
5.3.5 AST Conversion . . . . . . . . . . . . . . . . . . . . . . . . 201
5.3.6 UIML visualization . . . . . . . . . . . . . . . . . . . . . . . 206

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6 Prototype and Supporting Tools 210
6.1 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.2 Supporting tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.2.1 Phase 1 - Transcoding UIML to VDM-SL . . . . . . . . . . . 211
6.2.2 Pretty Print . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.2.3 Phase 2 - Verifier . . . . . . . . . . . . . . . . . . . . . . . . 213
6.2.4 Phase 3 - Abstraction . . . . . . . . . . . . . . . . . . . . . . 214
6.2.5 Phase 4 - Rendering UIML . . . . . . . . . . . . . . . . . . . 214

7 Conclusions and Future Work 216
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.2 Discussion and Future Research . . . . . . . . . . . . . . . . . . . . 218

7.2.1 UIML formal specification refactoring . . . . . . . . . . . . . 219
7.2.2 Tool support for language refactoring . . . . . . . . . . . . . 227
7.2.3 IO Visualization . . . . . . . . . . . . . . . . . . . . . . . . 228

7.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Bibliography 232

Appendices 242

A VDM-SL Notation 243

B W3C XML 248

C UIML DTD 257

D UIML 3.0 Hierarchy elements 264



TABLE OF CONTENTS vi

E Supporting Tools 266
E.1 Transcoding UIML 7→ VDM -SL - uiml2vdm stylesheet . . . . . . . 266
E.2 Verifier VDM 7→ UIML - vdm2uiml . . . . . . . . . . . . . . . . . 279

E.2.1 Auxiliar Data Types . . . . . . . . . . . . . . . . . . . . . . 279

F Prototype 285

G UIML Code examples 288
G.1 Stack UIML Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
G.2 Table UIML Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

H Stack VDM -SL Specification 293

Function/Method Cross-Reference Index 296

Glossary 300



List of Figures

1.1 VBasic visual Components . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Delphi visual Components . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Java AWT/Swing visual Components . . . . . . . . . . . . . . . . . . 7
1.4 Interfaces development . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Example of multidimensional representation . . . . . . . . . . . . . . . . 9
1.6 Phases of the formalization process . . . . . . . . . . . . . . . . . . . . 10
1.7 Stack implemented in Visual Basic . . . . . . . . . . . . . . . . . . . . 12
1.8 UIML stack rendered to Java . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 The basic software architecture and the corresponding layered model for
Human-Computer Interaction (adapted from [JBK89]) . . . . . . . . . . . 15

2.2 Seeheim Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Arch Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 MVC -Model View Controller . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 PAC-Presentation-Abstraction-Control . . . . . . . . . . . . . . . . . . . 18
2.6 XForms architecture (adapted from [Rec03f]) . . . . . . . . . . . . . . . 19
2.7 N-Tier Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Meta-Interface Model (adapted from [Pha00]) . . . . . . . . . . . . . . . 21
2.9 XXL/XiBuilder Visual Builder Graph View . . . . . . . . . . . . . . . . 24
2.10 Explanation of symbols in the definition of adaptation (adapted from [SC03]) 25
2.11 User Interface Reverse Engineering . . . . . . . . . . . . . . . . . . . . 28
2.12 User Interface Forward Engineering . . . . . . . . . . . . . . . . . . . . 28
2.13 VDM-SL module structure . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.14 ConnectUI - UMLi example of User Interface Diagram (generated using AR-

GOi version 0.8.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.15 Components of user interface software (adapted from [Mye96]) . . . . . . 36
2.16 Generations of Architectures . . . . . . . . . . . . . . . . . . . . . . . 40
2.17 N-Tier Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.18 HyperCube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.19 Relation versus Multidimensional Model . . . . . . . . . . . . . . . . . 46
2.20 Multidimensional Rotation . . . . . . . . . . . . . . . . . . . . . . . . 48
2.21 Ranging operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.22 Schema and instance for the Sales Region dimension . . . . . . . . . . . . 49
2.23 Rolling-Up and Drilling-down . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Basic structure of XIML language (adapted from [PE02b]) . . . . . . . . . 55

vii



LIST OF FIGURES viii

3.2 XUL window example . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 The uiml element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4 The peers element . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 The interface element . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Portability of UIML (adapted from [PA99]) . . . . . . . . . . . . . . . . 66

4.1 Stack Java/UIML interface . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 <uiml> hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 <interface> hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 <peers> hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Sales volumes HyperCube . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2 Sales :Month ⇀ Low ×High . . . . . . . . . . . . . . . . . . . . 153
5.3 Sales :Month ⇀ High . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.4 Sales :Month × Color ⇀ High . . . . . . . . . . . . . . . . . . . 154
5.5 Sales :North ⊕ South ⇀ Total . . . . . . . . . . . . . . . . . . . 154
5.6 Sales table information . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.7 delRow operation result . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.8 Single column project operation . . . . . . . . . . . . . . . . . . . . . . 166
5.9 Multiple column project operation . . . . . . . . . . . . . . . . . . . . . 167
5.10 New column applying addCol . . . . . . . . . . . . . . . . . . . . . . . 169
5.11 Result of rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.12 Result of applying mda . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.13 Sales per region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.14 rollUp process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.15 UIML Visualization process . . . . . . . . . . . . . . . . . . . . . . . . 206
5.16 Result of applying outHtml operator . . . . . . . . . . . . . . . . . . . . 207
5.17 Result of applying u2h render to table.uiml . . . . . . . . . . . . . . . . 209

6.1 Prototype architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.2 VDM/UIML integration prototype . . . . . . . . . . . . . . . . . . . . . 211
6.3 Harmonia LiquidUI UIML browser . . . . . . . . . . . . . . . . . . . . 215

7.1 Example of <uiml> hierarchy elements . . . . . . . . . . . . . . . . . . 226
7.2 Abstract and Concrete graphical visualization of basic elements . . . . . . 229
7.3 A∗ seen as an array . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
7.4 (Exp ↪→ C ) representation . . . . . . . . . . . . . . . . . . . . . . . . 230
7.5 (A× B) ↪→ C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
7.6 (A ↪→ Exp) representation . . . . . . . . . . . . . . . . . . . . . . . . 231
7.7 A ↪→ D × (B ↪→ C ) representation . . . . . . . . . . . . . . . . . . . 231

B.1 Essential XML rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
B.2 XML working process . . . . . . . . . . . . . . . . . . . . . . . . . . 252

D.1 UIML 3.0 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

F.1 VDM/UIML integration test case . . . . . . . . . . . . . . . . . . . . . 285
F.2 VDM/UIML integration test case - OLAP . . . . . . . . . . . . . . . . . 286



LIST OF FIGURES ix

F.3 Prototype: Rotation operation . . . . . . . . . . . . . . . . . . . . . . . 286
F.4 Prototype: Consolidation operation . . . . . . . . . . . . . . . . . . . . 286
F.5 Prototype: Hiding column operation . . . . . . . . . . . . . . . . . . . . 287



List of Tables

1.1 Non normalized Relational Structure . . . . . . . . . . . . . . . . . . . 8

2.1 VDMl-SL constructors . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 A two dimensional table . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3 Relational SQL query result . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 UIML elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Example of table data display . . . . . . . . . . . . . . . . . . . . . . 152

7.1 Abbreviations for UIML element names . . . . . . . . . . . . . . . . 220

x



Listings

1.1 Function F (x ) = x 2 implemented in BASIC . . . . . . . . . . . . . 3
1.2 A PASCAL STACK implementation . . . . . . . . . . . . . . . . . . . 3
3.1 XUL User Interface example . . . . . . . . . . . . . . . . . . . . . . 59
3.2 UIML Hello World example (adapted from [AH02]) . . . . . . . . . . . . 61
3.3 WML <peers> example . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 WML rendering result . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Typical UIML document . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1 UIML “Hello World” example . . . . . . . . . . . . . . . . . . . . . 73
4.2 UIML “Hello World” example - WML <peers> description . . . . . . 73
4.3 UIML “Hello World” example - WML output” . . . . . . . . . . . . . 73
4.4 UIML Stack Interfaces specification . . . . . . . . . . . . . . . . . . 74
4.5 Skeleton of a UIML document . . . . . . . . . . . . . . . . . . . . . 75
5.1 VDM-SL Sales table . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.2 UIML table code generated by outUiml . . . . . . . . . . . . . . . . 207
6.1 XSL template to “transcode” <uiml> element . . . . . . . . . . . . . 212
6.2 Excerpt of UIML Hello example . . . . . . . . . . . . . . . . . . . . 212
6.3 Extract of vdm2uiml VDM-SL script . . . . . . . . . . . . . . . . . . 213
6.4 UIML generated from vdm2uiml VDM “script” . . . . . . . . . . . . 213
7.1 UIML code to describe a Java AWT label . . . . . . . . . . . . . . . 225
B.1 XML document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
B.2 A sample DTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
B.3 A sample schema written in W3C XML Schema syntax . . . . . . . . 250
B.4 Another XML example . . . . . . . . . . . . . . . . . . . . . . . . . 254
B.5 XSL example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
B.6 HTML generated from XSL . . . . . . . . . . . . . . . . . . . . . . 255
C.1 UIML DTD 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
E.1 XML Stylesheet to generate VDM-SL from UIML . . . . . . . . . . . 266
G.1 Complete UIML Stack user interface specification . . . . . . . . . . . 288
G.2 UIML “template” for table definition . . . . . . . . . . . . . . . . . . 291

xi



Chapter 1

Introduction

1.1 Overview

There will always be old software(Hausi Muller)

The human brain is able to learn and to reason in vague and imprecise contexts. It
can decide upon imprecise and qualitative data. In contrast, formal methods (logical
and mathematical) demand accurate and quantitative data.

Since the computer machine appeared, we understood its capabilities, when it was
properly used. It is true that the computers have important capabilities, but they still are
far away from being a match for the human intelligence. Nevertheless man is making
an effort in “instructing” these machines in that sense.

It is one of the great challenges of ours days, that complex data, contained in
databases of great dimension and longevity are processed and which are increasing
exponentially in size. The Internet provides obvious evidence of all this.

From another perspective, for the actual companies it is crucial the full integration
and consistency of all the information which flows or is stored in its databases. The
number of specific and different applications, manipulating this information, is nec-
essarily big. Maintenance and support of these applications requires expensive team
work.

The (conventional) Relational Database Management Systems (RDBMS) no longer
can guarantee timely efficiency in the answers to complex queries. The treatment
of information in bidimensional format (tables and spreadsheets, for example), the
inability of the analysis, transformation and consolidation of such information, restrict
the overall application of these systems.

If we look at the young history of Computer Science (almost nothing existed be-
fore 30 years), we find orientations more or less objective, always focusing on the
principle of trying to reach something that does not exist. A lot of times following typ-
ical “azimuthes” with “boomerang” effect, believing that, tuning certain options and
returning again to the starting point, will reach something different, innovative or not.
Practically similar to the new fashion effect. Something like “déjà vu”.

This can be easily seen in several programming language paradigms, which appear

1



CHAPTER 1. INTRODUCTION 2

everyday. If we carry these thoughts to the User Interface development area in several
computer applications, we obtain a not less important question and perhaps, more
critical, since progress on it was a little shallow along the last years.

From observing multiple facts, one can observe that large companies involved in
software development, invest hardly in user interface quality and associated features.

HCI -Human-Computer Interaction [SIG, oM03], is a branch of research in Com-
puter Science, focused precisely on this kind of problems, where one tries to get near
to human behavior, in the way the application functionality is presented to the user.
Ergonomic issues, as well as organization and process logic are key points in these
works.

The scope of this research work, although it can reach, with some relevance, HCI
concerns, focus essentially on the way how formal methods can be explored to specify
the user interface graphical objects and associated features.

We focus on an initial and specific interface and its related issues which can then
be translated to different platforms. The Web is an evidence of this. Several entities
are converting their normal applications to be available also in the Internet. The quick
Web spread, the B2B1 scenario, the emergence of EAI2 concerns, can justify many of
these decisions.

The advantages of formal specifications of complex systems using formal meth-
ods are well known. It is known and accepted by a considerable group of persons, as
a way to avoid ambiguities and clearly guarantee correctness and consistency of the
developed programs. In this context, it is useful to experiment these methods on user
interface development, trying some kind of merging process of new methods specifi-
cations with existing graphical objects specifications.

ProgramSpecification = Specification(Data + Services + Interfaces)

As a consequence of this large set of graphical elements, many of them only found
in pure commercial application, its formal specification process, towards a Visual Com-
ponent Library - VCL, could becomes complex. This complexity can even increase
during the tentative abstraction of real problems.

An interface specification, based on the intended model, i.e., strongly supported
by a top-down analysis of existent interface and end user opinions, can conduce to a
partial system specification. This is due to the analyzed interfaces inability to represent
correctly the all system. In this sense, to get a deep abstraction, we think it is funda-
mental to consider also the interfaces specification based on operations, properties and
services.

1.2 Problem Statement

During all this period of continuous advances in the development of software tech-
nologies, the programmer always needed to deal with two complementary challenges:

1B2B - Business to Business
2EAI - Enterprise Application Integration



CHAPTER 1. INTRODUCTION 3

from one side he needed to solve problems and from the other side he needed to do it
properly (that is, with correction and adequate performance).

Jumping from the interpreted to the compiled programming language paradigm
cannot be justified only by quality. We can not say “one language is better than an
other” without discussing whether it explores efficiently the capacities of the support
technologies, namely the Hardware.

Let us in retrospective, review some programming languages/technologies, look-
ing for very simple examples of common problems.

Listing 1.1, presents a piece of BASIC source code which implements the mathe-
matical function F (x ) = x 2, applied to a range of values from A to B.

Listing 1.1: Function F (x ) = x 2 implemented in BASIC

2 REM TABULATE A FUNCTION F (X) FROM X=A TO X=B IN STEPS DX
3 REM ENTER THE FUNCTION F (X) IN THE NEXT LINE

5 DEF FN F (X)=Xˆ2
6 :
7 INPUT ”FROM X= ” ;A
8 INPUT ” TO X= ” ; B
9 INPUT ” IN STEPS OF ” ;DX

10 :
11 FOR X=A TO B STEP DX
12 Y=FN F (X)
13 PRINT X,Y
14 NEXT X
15 :
16 END

We observe that the whole program (in this case interpreted), constitutes only one
source code document. The way the information reaches the end user (at this time, the
term User Interface was not common) does not deserve any special attention.

The next program fragment (Listing 1.2), implements a Stack structure in Pascal,
a compiled language. Although some of the source code organization is in modules,
functions or procedures, some concepts, related with data calculation, user integration
and interaction are merged when reading values and presenting results (see e.g. the
addToStack function)

Listing 1.2: A PASCAL STACK implementation

1 {∗STACK module - by l u f e r ∗}

3 program e x S t a c k 1 ( i n p u t , o u t p u t ) ;
4 type
5 p c e l l = ˆ c e l l ;
6 c e l l = record
7 no : i n t e g e r ;
8 d a t a : s t r i n g ;
9 n x t : p c e l l ;

10 end ;

12 var
13 top , temp : p c e l l ;
14 n s e r i a l , ncount , ID : i n t e g e r ;
15 ch : char ;
16 d a t a : s t r i n g ;

18 procedure addToStack ;



CHAPTER 1. INTRODUCTION 4

19 begin
20 i f t o p = n i l then
21 begin
22 new ( t o p ) ;
23 t o p ˆ . n x t := n i l ;
24 end
25 e l s e
26 begin
27 temp := t o p ;
28 new ( t o p ) ;
29 t o p ˆ . n x t := temp ;
30 end ;
31 t o p ˆ . no := n s e r i a l ;
32 n s e r i a l := n s e r i a l + 1 ;
33 w r i t e l n ( ’ C e l l o f ID ’ , t o p ˆ . no : 4 , ’ was added a t
34 t h e t o p of s t a c k ! ’ ) ;
35 w r i t e l n ( ’ P l e a s e I n p u t some d a t a ’ ) ;
36 readln ( t o p ˆ . d a t a ) ;
37 w r i t e l n ;
38 end ;

40 procedure removeFromstackTop ;
41 begin
42 i f t o p <> n i l then
43 begin
44 temp := t o p ;
45 t o p := t o p ˆ . n x t ;
46 w r i t e l n ( ’ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ’ ) ;
47 w r i t e l n ( ’ C e l l ID = ’ , temp ˆ . no ) ;
48 w r i t e l n ( ’ Data : ’ , temp ˆ . d a t a ) ;
49 w r i t e l n ( ’ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ’ ) ;
50 w r i t e l n ;
51 w r i t e l n ( ’ C e l l o f ID ’ , temp ˆ . no : 4 , ’ was removed
52 from t o p of s t a c k ! ’ ) ;
53 w r i t e l n ;
54 d i s p o s e ( temp ) ;
55 end
56 e l s e
57 begin
58 w r i t e l n ( ’ S t a c k i s empty ! ! ’ ) ;
59 w r i t e l n ;
60 end ;
61 end ;

63 procedure ScanS tack ;
64 begin
65 temp := t o p ;
66 n c o u n t := 1 ;
67 i f temp = n i l then
68 begin
69 w r i t e l n ( ’ S t a c k i s empty ’ ) ;
70 w r i t e l n ;
71 end
72 e l s e
73 whi le temp <> n i l do
74 begin
75 w r i t e l n ( ’ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ’ ) ;
76 w r i t e l n ( ’ Th i s i s ’ , n c o u n t : 4 , ’ t h C e l l ! ’ ) ;
77 w r i t e l n ( ’ C e l l ID = ’ , temp ˆ . no ) ;
78 w r i t e l n ( ’ Data : ’ , temp ˆ . d a t a ) ;
79 w r i t e l n ( ’ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ’ ) ;
80 w r i t e l n ;
81 temp := temp ˆ . n x t ;
82 n c o u n t := n c o u n t + 1 ;
83 end ;
84 end ;



CHAPTER 1. INTRODUCTION 5

87 begin
88 w r i t e l n ( ’ Th i s i s a Demo f o r u n d e r s t a n d i n g S t a c k ! ! ’ ) ;
89 n s e r i a l := 1 ;
90 r e p e a t
91 w r i t e l n ;
92 w r i t e l n ( ’ P l e a s e S e l e c t f u n c t i o n ! ’ ) ;
93 w r i t e l n ( ’A) d d C e l l T o S t a c k R) emoveCel lFromStack
94 S ) c a n S t a c k E ) nd ’ ) ;
95 readln ( ch ) ;
96 w r i t e l n ;
97 i f ( ch = ’A’ ) or ( ch = ’ a ’ ) then
98 AddToStack
99 e l s e i f ( ch = ’R ’ ) or ( ch = ’ r ’ ) then

100 RemoveFromStackTop
101 e l s e i f ( ch = ’S ’ ) or ( ch = ’ s ’ ) then
102 ScanS tack ;
103 u n t i l ( ch = ’E ’ ) or ( ch = ’ e ’ ) ;
104 w r i t e l n ( ’ Program was a s s i g n e d t o end ! ! ’ ) ;
105 w r i t e l n ( ’ Bye ! ! ’ ) ;
106 end .

Thinking of (and more real critical) situations, like supporting bank information
systems, insurance companies, etc., the scenario is the same. Surely much investment
was made on improving and certifying these kind of systems. Not only large hardware
equipment had to be acquired but also complex software had to be developed. Having
done so, the whole attention was put on ensuring that“nothing wrong” could happen to
the system. The way the operations were handled by the users, passed to a secondary
plane. In summary, the interface remained the same for a long time even if the systems
were frequently upgraded.

In ours days things are different. One can see the natural tendency of users to
“accept” new technologies (while the number of end users is increasing), like Internet,
wireless, mobile devices, etc. Maybe because the systems are considered as being
stable and enough robust for their intended purposes.

Almost every company puts effort in having their business contents available in
these new emerging resources. Many of the existing systems remain as they are and
the interfaces need to be frequently transformed and many times created new ones to
support the new devices. The main concern nowadays is to ensure interoperability
among new software components, applications, etc., on top of existing ones.

However, user interface transformation or adaptation is not yet adequately handled
and ensured. If not anarchic, it lacks scientific rigor. Chapter 2 addresses this topic.

An important question is: what is adaptability and how can it be, if it can be, mea-
sured? We will see later (on section 2.4.1) that adaptation means changing a system to
reflect changes in the environment. In the context of user interfaces, where end users
can question non functional requirements such as usability, simplicity, etc., it will be
interesting to analyze how visual component interfaces reflect them.

1.3 Motivation and Objectives

The work described in this thesis stands from the thoughts of Brad Myers [Bra98].
The area of the UI is an example of the strong influence of academic research in the



CHAPTER 1. INTRODUCTION 6

industrial way of doing things. It is often assumed mistakenly that, in case the univer-
sities do not do it, industry will take charge of developing. There are several facts that
reflect the erroneous way of this thinking.

Today practically all kinds of interface standards result from strong influences of
the research in teaching institutions.

In its essence, this thesis work, intends to apply formal semantics techniques to the
user interface development, in order to impose scientific rigor on the whole process,
from interface specification and validation to its transformation (“transcoding”).

The application of formal methods should never surpass the limits of versatility,
trying whenever possible to build the specification through the composition of compo-
nents previously specified.

This work is targeted at formally specifying visual components, classifying new
components and reusing existing ones that are already classified. We refer to visual
components used in actual tools for Graphical User Interface development (GUI),
such as ListBox, Button, TextBox, Menu (Figures 1.1,1.2 and 1.3), which lack rigorous
specification, both at the functional (semantic) and structural (syntactic) levels.

Figure 1.1: VBasic visual Components

Figure 1.2: Delphi visual Components

By applying formal methods, UI development becomes a rigorous discipline with
focus on higher abstraction levels (relative to implementation), using visual compo-



CHAPTER 1. INTRODUCTION 7

Figure 1.3: Java AWT/Swing visual Components

nents and a semantic set of rules which describes the process.

The notation chosen to define components is supported on Sets Theory [Oli03].
The semantic specification of each component will resort to semantic models, describ-
ing the distinct internal states, associated to execution of each operator. For instance,
in a ListBox one must specify the effect of Insert, Remove or Select events of some of
its items (in this case because a ListBox is a composite component).

The traditional process of application development, culminates with the creation
of complex interfaces, which facilitate the interaction with the information system.

With the advent of Application Program Interfaces (APIs) and using some avail-
able interface operators, one can create quickly and globally accepted development
methods. However, the process of interface design appears for the developer as some-
thing conditioned by the information organization on the database or any other infor-
mation support system.

The choice of a ComboBox or a ListBox for instance, is done, knowing that these
components will represent some specific information. In this way, any necessary
change to an interface, could be a delicate and perhaps not very flexible process.

For all this process of UI development, this thesis suggests the use of formal meth-
ods. User interface design should be based on formal specification, before its final
representation or implementation on a particular platform.

The process usually starts from a data model, properly (or not) normalized, which
describes the intended information system. Using a formal specification language,
VDM-SL in this case [Hop01], developers will try to specify the data model, by iden-
tifying the necessary components of the interface for its information visualization.

It is a typing process that guarantees coherence in the final placement of the com-
ponents in the interface layout. Also for each component it can be of interest the def-
inition of conditions (invariants) which, in the later phase of layout placement, justify



CHAPTER 1. INTRODUCTION 8

its relative position.

Figure 1.4 depicts the main intervenients int the user interface development pro-
cess. C is the traditional method while A and B pictures the approach followed in this
thesis.

DB + UI

description


VDM-SL
 GUI

User


A


B


C


Figure 1.4: Interfaces development

In this figure, A represents the modelling process in our prototyping platform
(VDM), of the intended data model. Database tables and their relationships will be
represented in Set notation.

The B process carries out a simplification of the initial structures created by A, by
a process of eventual matching of the available visual components for each structure
specified. This process should finish with the respective interface presentation, in a
specific environment.

By contrast, C represents the normal process of interface development. A specific
software “translates” the data model in forms which will be the application interface.

Our approach will be described in Chapter 5, where all these concepts will be
described in detail. Following we summarize this process, using a simple formal mod-
elling process.

Consider the non (normalized) relational structure, depicted in Table 1.1. In this
structure Student is the primary key and Mark is the final calculated mark considering
Lab and Exam marks.

Student Lab Exam Mark
António 10 12 11

Ana 14 14 14

Table 1.1: Non normalized Relational Structure

Modelled in Sets notation, this structure is written as follows:

Student ↪→ Lab × (Exam ↪→ Mark) (1.1)

From this expression, a normalized view can be derived by calculation:

(Student ↪→ Lab)× (Student × Exam ↪→ Mark) (1.2)



CHAPTER 1. INTRODUCTION 9

We can now try to represent this structure using a multidimensional array (a tech-
nology dealt with in Chapter 2), which constitutes one of the great advances of Mul-
tidimensional Analysis [Nig01]. The result can be represented in the next figure, as
follows:

Ana


Student
 Lab


First


Second


14
 14


António
 10
 12


Exam


Final


14


10


8


Student
 Lab


António
 10


Ana
 14


12


Semester
 Mark


First
 8


Second
 10


Final


First


12


14


Exam


Semester
 Mark


First
 8


Second
 10


Final


First


12


14


Exam


Figure 1.5: Example of multidimensional representation

The result of applying some operators associated to this kind of representation
(later we will describe operators like Rotating, Ranging, etc.) could now be easily
applied and observed.

In the context of using multiple development technologies, with reengineering and
the process of integrating current and legacy systems an important demand and in the
context of a continuous investment on distributed and mobile systems with end user
interaction, it is essential the presence of a System Architect person.

The purpose of this work is to provide guidelines for user interfaces specification
and development in computer science, based on formal methods as follows:

• to show the applicability of formal methods in the specification and development
of interfaces;

• to show the applicability of formal methods in software reengineering processes;

• to analyze the importance of the actual technologies of Markup languages in
integration processes;

• to create in VDM the kernel of a visual component library for user interfaces
specification support;

Figure 1.6 depicts the four main phases of our process:

• Phase 1 - Transcoding - developing of a mapping process from source code to
VDM-SL notation;

• Phase 2 - Validation - inverse process which will allows to obtain a source de-
scription from a formal VDM-SL specification;

• Phase 3 - Abstraction - progressive abstraction of existent formal specification,
using calculation.



CHAPTER 1. INTRODUCTION 10

VDM-SL

Source


(xul,uiml)


html,wml

java, C#


Phase 1


Phase 2


Phase 3
Phase 4


Transcoding


Abstraction


Validation


Rendering


Figure 1.6: Phases of the formalization process

• Phase 4 - Rendering - rendering mechanism to analyze the result in a particular
platform.

Our work will focus onto the area of the specification through DSL - Domain Spe-
cific Languages [ABB+97] because, just as its name suggests, we will try to focus
on components specification regardless or abstracting their implementing details, al-
though continuing to support the creation of prototypes. We will use VDM-SL - The
Vienna Development Method Specification Language [IFA00c] as our specification
language. We will avoid following a specific programming language, working with
GPL - General-Purpose Languages.

1.4 Summary of Contributions

The main contributions of this dissertation are as follows:

• A formal specification of a particular Markup Language (UIML)

• A XML StyleSheet to convert UIML to VDM-SL

• A VDM render to generate UIML from VDM-SL

• A formal specification of a graphical Table

• A formal specification of some basic OLAP operators

1.5 Structure of the Dissertation

This dissertation puts forward a new strategy for user interface development. Quoting
Vijay [Mac96], “user Interfaces are considered as one of the six core fields of Com-
puter Science and are regarded as the most critical area for organizational impact”. It
should be experimented the application of formal methods to the user interfaces devel-
opment process, trying to give rigor or semantics to such a process not yet sufficiently
certified.



CHAPTER 1. INTRODUCTION 11

This document is organized in two logical parts, preceded by this Chapter 1 -
Introduction, and followed by several Appendices.

In the first part, constituted by Chapter 2 - Research Foundations, we introduce
concepts and the most significant developments in areas related to the one of this
work. We also describe related work upon which this dissertation is built, review the
specification, design and programming methods for describing user interfaces, existent
formalisms and models, and give an overview of the existent and new technologies, in-
cluding XML markup languages, which are now emerging for user interfaces. A brief
presentation of tools and dedicated frameworks is also included. Here must be under-
lined also the description, on the section Data Description and Manipulation, of the
importance of Markup Languages on this process, mainly represented by XML markup
language and its mapping scenarios.

The Second part, constituted by the remaining chapters, is reserved to the presenta-
tion of all contributions of this work, including the application of formal specifications
and the process adopted for reverse engineering. Chapter 3 - Markup Languages for
Interfaces description, presents the most significant markup languages to describe in-
terfaces, mainly supported by XML, namely XIML, XUL and UIML, their syntax and
semantic principles, scope and evaluation.

Chapter 4 - UIML Formal Specification, presents the VDM-SL specification of
UIML markup language as well as all processes involved, namely the ”Transcod-
ing” process of UIML to VDM using a XML StyleSheet; its reverse Validation process,
where UIML can be generated from VDM-SL; finally the abstraction obtained over
initial VDM-SL specification and performed formal calculus.

Chapter 5 - Case study: Table IO presents the result of specifying formally, using
the VDM specification achieved on Chapter 4, a Table, a particular user interface visual
component. It also specifies in VDM several OLAP operations and demonstrates its
application to this graphical object.

Chapter 6 - Prototype and Supporting Tools presents the prototype which animates
the table OLAP features. It describes also all tools developed to manipulate the result-
ing specifications.

Chapter 7 - Conclusions and Future work presents the main conclusions concern-
ing the obtained results and contributions, problems, advantages and perspectives for
future work.

Following Chapter 7 comes the Bibliographic references used on this research and
then Appendices which complement this work with other information not included in
the main document body. It includes the VDM notation, the UIML Document Type
Definition, sources of generated code and some examples used on this work.

To better analyze this research work, all results use the same practical test case as
reference. It is a Stack implementation, with frontend depicted in figures 1.7 and 1.8.

1.6 Document support

This document was written in LATEX [Lam94, Byn98, AAN03, Vic01], because of its
accepted capacity to deal with large scientific documents. All VDM-SL source code



CHAPTER 1. INTRODUCTION 12

Figure 1.7: Stack implemented in Visual Basic

Figure 1.8: UIML stack rendered to Java

referred in this document, were formatted with styles of evdm, a LATEX Style [Oli02].
There is also a CD-ROM as complement of this work, which has all the resultant
material used in this investigation, including source code and consulted bibliography.



Chapter 2

Research Foundations

2.1 The context

Who gets faster the correct information and uses it properly, will leave winner
Don Keough 1

The Software Engineering of today places emphasis on the need to systematize and
to structure the processes of software development. Adopting more accurate methods
(often identified as formal) or more or less structured processes, it is natural to find
difficulties in the interpretation of the real need to transmit and to coordinate what
must be executed, satisfying the expectations promised by the solution.

This can be compared with the scenario of a new house construction where, even
if the projected architecture represents all the things to be built, it can only be certified
at the end of the work. The same happens with our expectations in software design!

Referring essentially to the most recent terminology and concerns of the current
software development techniques, we can list the following items:

• Fusion and Separation of concerns

• Temporality on restricting interactions

• MultiModal Interfaces [LFJ95, Ovi99]

• Contents security

• Data hierarchies

• Hypermedia contents

• Portability for multiple devices and platforms

• Configured Visual Components

• Client/Server and X-Internet2

1President of American Coca-Cola.
2X Internet - The X Internet pretends to be the future of applications, combining the advantages of

centralized application deployment with the functional richness of locally installed software

13



CHAPTER 2. RESEARCH FOUNDATIONS 14

• Web Services

• Portals

• Inter-operability and B2B

• Legacy Systems

This work, being specially focused with data Visualization in application inter-
faces, it will give priority to the analysis of the existing technologies in the area. In
[Pha00], Constantinos summarizes the main steps which one can identify in this pro-
cess and, as the Seehein model [Pfa85] advocates, the importance on maintaining a real
separation between the presentation layer and the remaining application layers.

Amongst the vast literature on HCI - Human Computer Interaction technology,
published in the specialty journal - e.g. Interactions, several annual conferences -
ACM3 SIGGRAPH Symp., Human Factors in Computing Systems, etc., the work of
Martins [Mar95], Vijay [Mac96], Myers [MHP00] and Constantinos [Pha00] is signif-
icant.

2.2 User Interface Properties

”The User Interface (UI) is that part of a computer program that handles output to
the display and input from the user. The rest of the program is usually called the
application” [Mye95].

The complexity of this theme can be justified in many ways. Foremost among them
is the difficulty in perfectly understanding tasks and users. One of the recommended
solutions for this complex problems is the interactive design, although, this process
still is, by itself, complex and prone to errors. It could be long and consequently
expensive and difficult to identify the correct end of the interaction process. Next we
present some desirable user interface [Mac96, Gee00] properties:

• Functionality. This refers to what an interface must perform. It must be defined
before design and implementation.

• Usability. This deals with how good an interface is in satisfying its functionality,
like promptness, ergonomic layout, performance, etc.[McE04].

• Isolation from Application. This is where the application must be isolated from
the program user interface - Seeheim Model [Pfa85] - maintaining the inter-
operability between the parts.

• Adaptiveness, Ability. Respond to different user profiles or program contexts,like
the recent Multimedia Skins (http://cs-skins.net) or CSS4 [Gee00] .

• Consistency. Which facilitates the transfer of skills from one system to another.

3http://www.acm.org
4CSS - Cascading Style Sheets (http://http://www.w3.org/Style/CSS/ )



CHAPTER 2. RESEARCH FOUNDATIONS 15

• Standard. To assure consistency and portability.

User interfaces and almost everything around them have been called different
names over the years. From UIMS, to Toolkits, User Interface Development Environ-
ments, Interface Builder Tools, etc., clearly merging tools with principles and concepts
[Mye96, Cyp93].

The authors of [JBK89] have also explored some system requirements for user
interface development. They have concluded that most of the existing systems fulfill
only some of those requirements. In Figure 2.1 (adapted from [JBK89]) we try to
summarize the components of user interfaces. Although a slightly dated perspective
(1989), we will see later on that it is still actual.

end user interface


dialog interface


database interface


application data

dialog data


end user interface


presentation layer: physical presentation


presentation interface


virtual presentation layer: static UI aspects


internal virtual interface


virtual application layer: dynamic UI aspects


dialog interface


application layer: application functionality


Figure 2.1: The basic software architecture and the corresponding layered model for Human-
Computer Interaction (adapted from [JBK89])

As we can see in Seeheim Model [Pfa85] and in [Mye96, MB86], and later on in
recent architecture models (such as N-Tier [Mic04b]), there are evident concerns in
separating responsibilities between interfaces and the rest of the application.

The functionalities are structured in layers as follows [Sch01]:

• Presentation layer: output to the screen; handling of input from the user; toolkit
functionalities

• Virtual presentation layer: separation of input and output from the dialog; defi-
nition of logical devices and virtual terminals; independent device presentation;
handles all static aspects of the UI.

• Virtual application layer: this contains the semantics of the underlying applica-
tion; dialog between the user and the application; handles all dynamic aspects
of the UI.

• Application layer: main application’s functionality

We will be back to this theme later in sections 2.3.3 and 2.6.2.



CHAPTER 2. RESEARCH FOUNDATIONS 16

2.3 User Interface Models

Let us go back in time and recall the “black box” architecture of the first software
solutions, where the user could only use it and never try to change anything. So, it
was difficult to use the same application in a new situation if not impossible. In our
days the existing solutions are “broken” in several units, and behave like modules or
components allowing modular interfaces.

Several models exist (and continue to be created) that can also be applied to User
Interfaces [Mar95, Pha00]. A recent one was explored in Vadim thesis [Vad96], ex-
perimenting automatic UI generation for applications. Also Markopoulos in [Pan97],
describes important particularities for the main interface architectures and models. In
the following sections, we will present the most significant ones, trying to demonstrate,
by example, their particularities.

2.3.1 “Ancient” HCI models

Several models have been proposed to describe UI and human-computer interaction.

Perhaps the first and the most significant UI model was the one presented at the
Seeheim Workshop in Berlin, in 1985 (thus the name Seeheim Model). Figure 2.2 de-
picts its main particularities, where we can see clearly the separation between User
interaction and Application logic, using an UI split into three components. The Ap-
plication Interface Model, which describes how and when methods in the application
logic should be used (like semantic), the Dialog control, which is responsible for cor-
rectly sequencing the dialog events (like syntactic) and the Presentation, which should
“show” the interface (like lexical) to the user [Pfa85]. This “Compiler” mentality, tried
to obtain, from Application Interface Model, a rapid semantic feedback.

Application


Presentation

Layer


Dialog

Layer


Application

Interface


Feedback


User

Service


Figure 2.2: Seeheim Model

However, this logic and generic model was criticized and considered inadequate
for current complex UI, because there are a lot of particularities that it does not take
into account. Things like, for example, notations to use and information type to pass
between components, are not present.

The same happened with the Arch model, specific for the run-time architecture of
an interactive system, where, instead of examining the possibility to separate the pre-
sentation from other parts, this model analyzes the nature of data that is communicated



CHAPTER 2. RESEARCH FOUNDATIONS 17

between the user interface and the other UI components [Mig97]. Figure 2.3 depicts
this model base architecture, where five components interact between them.

Figure 2.3: Arch Model

Those with an object oriented background, defend the idea of interfaces as collec-
tion of objects, with a mechanism to pass information between components and related
mechanisms. The idea was to minimize the effects of changing technologies, as sup-
ported by object oriented characteristics [org92]. It works as a generalized Arch model
but it does not support adaptive intelligent systems [Mig97].

The Triple Agent Model of HCI, with three components: Task Machine (applica-
tion), User Discourse Machine (interface) and User, reflecting the human point of view
over intended tasks, incorporating the strengths of previous models (integrated with
Arch model), becomes adequate for adaptive intelligent systems, like those supporting
IDSS5, supporting their multimodal interaction and dynamic presentation functionality
[Pue93].

Believing that modern interfaces tend to be collections of quasi-independent agents
(components as buttons, grids, etc.) hierarchically organized, and that inheritance,
composition and aggregation are possible, the MVC - Model View Controller [KP88]
(Figure 2.4) and PAC-Presentation-Abstraction-Control model [Vı́c96] (Figure 2.5),
show how a single application abstraction could be multiply presented.

The MVC model divides an interactive application into three components. The
model contains the core functionality and data. Views display information to the user.
Controllers handle user input. Views and controllers together comprise the user inter-
face. A change-propagation mechanism ensures consistency between the user interface
and the model.

The PAC model defines a structure for interactive software systems in the form of a
hierarchy of cooperating agents. Every agent is responsible for a specific aspect of the
application’s functionality and consists of three components: presentation, abstraction,
and control. This subdivision separates the human-computer interaction aspects of the
agent from its functional core and its communication with other agents [Pue93].

Although not the most quoted in current UI development, these models represent

5IDSS - Intelligent Decision Support System



CHAPTER 2. RESEARCH FOUNDATIONS 18

View


Model


Controller


User


Application


Figure 2.4: MVC -Model View Controller

Abstraction
 Presentation


User


Application

Control


Figure 2.5: PAC-Presentation-Abstraction-Control

the main results of previous research and the cornerstone of current mentalities. We
shall see the “heritage” of these principles int the (current) models that are analyzed
next.

2.3.2 XForms Model

XForms is the next generation of Web Forms [Rec03f]. It is based on XML [Rec03c]6

and, being a device independent description, it is intended to work with a variety of
standard or proprietary user interfaces.

There is a standard set of visual components, which can be used in other markup
languages, such as XHTML [W3C03], allowing interface description and form events
handling. The input data is, naturally, represented in XML.

In this model, the interface is organized into three layers: presentation, logic, and
data. The data layer defines a data model for the forms (e.g., XML Schemas). The
logic layer defines dependencies between fields. The presentation layer describes the
recent interface and the mappings to different devices [Pha00].

The main goals of XForms, can be enumerated as follows:

• Support for handheld, television, and desktop browsers, plus printers and scan-
ners;

• Richer user interface to meet the needs of business; consumer and device control

6Appendix B summarizes XML technology



CHAPTER 2. RESEARCH FOUNDATIONS 19

Proprietary

User


Interfaces


WML


XHTML


Xforms

User


Interface


Xforms

Model


Presentation Options


Figure 2.6: XForms architecture (adapted from [Rec03f])

applications;

• Decoupled data, logic and presentation;

• Improved internationalization;

• Support for structured data forms;

• Advanced forms logic;

• Multiple forms per page, and pages per form;

• Suspend and resume support;

• Seamless integration with other XML tag sets.

As we can see, XForms is mainly concerned with inter-operability features, inte-
gration needs and distributed cooperations. All these issues are associated with Web
technology, going towards a standardization of using browsers as interface engines.

This model is particularly important for the work described in this thesis, as it
provides a dialect to the widespread XML markup language used on user interface
description. We will use XHTML to present our VDM-SL specification tests [IFA00c,
Jon90].

2.3.3 The N-Tier Model

Although a recent model, the N-Tier model can also be considered in the context of the
Seeheim Model. Their principles are not very innovative and the scope does not offer
something particularly new, except for the fact of being suitable to Web technologies
and web programming.



CHAPTER 2. RESEARCH FOUNDATIONS 20

The main particularity of this model consists, in fact, on a clear separation of the
application in several layers (or Tiers), as follows:

• Presentation Tier, typically a client web browser

• Dynamic Presentation Logic Tier, usually done in the Web server using many
technologies (scripting, XML, Lets, etc.)

• Business Logic Tier, where all business objects and rules are implemented (using
for instance Java Beans [Mic96]).

• Data Access Tier, which works as a wrapper around data repositories (relational
databases, flat files, etc.)

• Backend System Integration Layer (often named Data Tier) which consists of
a distributed set of relational databases, integrated with the middle tier using
specific technologies (ex. JDBC [Mic03d]) as well as other legacy systems.

Figure 2.7 represents a distributed N-Tier model and current support technologies
and applications.

Client

(in remote browser station)


XSL/CSS

DXHTML/Flash


Lets/ActiveX


Presentation

(in Web container)


XMLServlet,

Servlets,JSP,


ASP.Net


Business Logic

(in Application container)


EJB,JMS,JINI

Web Services


.NET


Persistence

(in Database and/or Legacy

Systems)


XML

JDBC,


.NET ODBC

JavaSpace


Distributed N-Tier Model


Figure 2.7: N-Tier Model

This model will be further explored in section 2.6.2, where we discuss the N-Tier
architecture used in the Microsoft .Net architecture, in the J2EE Sun platform [Mic04c]
and in the Intel e-Business [eBC01] platform.

2.3.4 MIM Model

MIM is an abbreviation of Meta-Interface Model which extends the level of abstraction
of the Slinky model [org92]. MIM was created with the proper abstractions to describe
interfaces that can map into multiple and distinct types of devices [Pha00].



CHAPTER 2. RESEARCH FOUNDATIONS 21

We include the description of this model here, because it is the basis of the markup
specification language used in this work to describe user interfaces: the UIML [Pha00,
Vög03].

MIM divides the interface into three major components: presentation, logic, and
interface, the last one being divided into structure, style, content, and behavior, as
depicted in Figure 2.8.

Interface

Presentation


Structure


Style


Content


Behavior


Logic


Peers


Device/Platform

UI Metaphors


Applications/

Data Sources


Figure 2.8: Meta-Interface Model (adapted from [Pha00])

The logic component provides a canonical way for the user interface to commu-
nicate with an application, while hiding information about the underlying protocols,
data translation, method names, or location of the server machine.

The presentation component provides a canonical way for the user interface to
render itself, while hiding information about the widgets and their properties and event
handling.

The interface component describes the dialogue between the user and the applica-
tion using a set of abstract part, event, and method calls, that are device and application
independent.

Based upon the MIM model and able to describe generic interfaces that map into
multiple distinct devices connected to a wide range of application technologies, is the
UIML 2.0 [AH00], markup specification language for generic interfaces (see section
3.4 for a UIML description, providing more detailed information on this matter).

2.3.5 Other research in HCI modelling

HCI [Pan97] is a dynamic area of research. Recent studies describe important results
which are briefly reviewed below.

[Reh01a] revealed the fact that a lot of these applications violate basic HCI guide-
lines such as Norman’s design principles [Pop01]. More specifically, developers often
leave the user with too little control, do not provide appropriate feedback about what
the system is doing and fail to show appropriate constraints to the user [KR02, Nun01].

In [Reh01b], Kasim argues that, founded on the principle that “every object has
an output”, there is the continued possibility to work on new user interfaces models,
connecting the real to the virtual world with a VDU - Visual Display Unit.



CHAPTER 2. RESEARCH FOUNDATIONS 22

Another interesting point of view was presented in [JFMdM92], where Baar shows
the importance of “coupling” application design and user interface design. The main
argument is based on spending less time and effort on the development process, avoid-
ing the risk of building similar but not identical specifications during the development
process. In his opinion, the data model and user interface design may have a lot in
common, including objects, actions and attributes (and quite often, rules).

Recently, Geert in [Gee00] explored some formal modelling techniques in Human-
Computer Interaction, trying to evaluate these techniques according to the main UI
principles: completeness, applicability, validity and usability.

A recurrent theme is the possibility of automatically generating some user inter-
face parts (like direct forms) related to some database relations. There are already
some “engines” which work as “extractors” to some different representations (for ex-
ample XML) of all data model information, notably the Database-to-XML mapper
from Altova (http://www.altova.com).

Not completely disagreeing with these perspectives, we hope to contribute within
this work area to clarify some nuances and give some input to this cycle of continuing
development.

Trying to focus on the main goals of this work, we will approach the three main
phases of the user interfaces development process for computer applications, involving
models structured or not:

• The Specification, which should provide the definition of what one intends to do

• The Design, which should provide the representation of intended results

• The Interface Programming which should provide the execution of the final
work, the Interface.

2.4 User Interfaces Analysis and Specification

”User Interfaces are considered as one of the six core fields of Computer Science and
are regarded as the most critical area for organizational impact” [Mac96]

Any programmer does, even as a reflex of a memory exercise, a specification of
what he intends to execute. So, to specify can simply mean to opt.

Supported in more or less certified methods, rebounding or not the user interaction
during analysis, the verification or not of application interfaces, often referred to as
Legacy Systems, it will result in something that will support later phases of the devel-
opment process. This phase is usually called Specification, Prototyping, SRS - Sheet
of Requirements Specification, etc.

Problems arise in this initial phase because programmers have to cope with the
complete definition of a final application, including user interfaces and everything to
support it (e.g. storage information, integration rules, etc.). Any rigidness applied to
these processes can be harmful. Even more, development teams are often constituted
by only one person.



CHAPTER 2. RESEARCH FOUNDATIONS 23

References [Mye96, Mac96], describe several options to archive UI specifications.
Here we refer two of them which are actually very common and essentially related with
the main goal of this work: Application Frameworks and Interactive Specification.

• Application Frameworks, like the older X-Windows API or the recent Visual
Studio .Net [Mic04b] and J2EE [Mic04c], allow programmers to develop UI by
abstracting from the underlying platform. This means to work on program inter-
faces (and other parts) and have the same aspect in multiple platforms, allowing
some customization features.

• Interactive Specifications, often called Direct Manipulation [Shn97] (we will go
back to this later on section 2.4.2), allow programmers to develop UI by manip-
ulating objects on screen, using pointing devices. In this group we can include
prototyping tools, like the recent visual tools (PowerDesigner from Sybase, Code-
Warrior from MetroWorks, etc.), Wizard tools, etc., which allow assisted inter-
vention on developing particular interfaces (based on forms, grids, etc.), like
recent Visual Studio .Net in C# or Visual Basic .Net languages, and Graphical
Editors which enable, in a way, to develop an interface from a library of exist-
ing components (like DLL, OCX, Java Beans, etc.) and, in another way, some
important particular features used on debugging processes, data analysis, etc.
We should refer here the Microsoft OLAP Cube component which offers, for
instance, Data Warehousing features.

In the recent technology evolution, Remote Process and Peer-to-Peer7 solutions
are crucial elements in the development process. So a new complement to describe
Interactive Specification needs to be considered. We also need to consider new impor-
tant features for the programmers, allowing them to have their widgets library, some of
those remote components which should “work” in his computer. We are talking about
Web Services8, for instance.

Proceeding with our review, it is now important to describe more accurately some
common technologies or processes to carry out UI development. As mentioned when
listing the main goals of this work, it is important to focus on formal methods and
related technologies in this process, thus preparing for its exploration in the context of
this work.

2.4.1 Adaptable Interfaces

We already know that the User Interface (UI) allows the user of the software system
to interact with it. Being itself a kind of software system, with similar development
processes as other application types, it has a set of attributes or requirements - called
Non Functional Requirements (NFR in [Lec99, SC03], such as usability, reliability,
simplicity, ergonomics, etc. [Mye95], very hard to measure or to classify). Adaptabil-
ity is perhaps the most worrying property, due to the recent need to support several
emerging new devices.

7http://www.openp2p.com
8http://www.w3.org/2002/ws/



CHAPTER 2. RESEARCH FOUNDATIONS 24

Adaptation can be seen as the capacity of a system to react against changes in
its environment, which, as in almost all software systems, will be possible only if its
support architecture is also adaptable.

There are several studies in this area and some application solutions which deal
with this. We focus our attention on two of them. The first one is the XXL/XIBuild
[Lec96], an interactive Interface Builder based on Visual Programming. It is supported
by a particular specification language and allows for automated building of a graphical
user interface, easily converted to C/C++ code. It can represent all the interface in
text view (source code), graph view (abstract iconic in Figure 2.9) or widget view
(graphical user interface), where all user interaction will take place. We are talking
about Motif widgets9 and all adjacent rules and conditions10.

Figure 2.9: XXL/XiBuilder Visual Builder Graph View

The second one that deserves our attention is SA3 [SC03], where these concepts
are well explored, having resulted in a definition of adaptability as described in the
following paragraph:

“adaptation of a system (S ) is caused by change (δE ) from an old environment
(E ) to a new environment (E ′), and results in a new system (S ′) that ideally meets the
needs of its environment (E ′)” [SC03]

So, mathematically Adaptation is defined by the following finite function:

Adaptation : E × E ′ × S → S ′, where meets(S ′,need(E ′))

9http://www.motifdeveloper.com/widgets.html
10The most recent experiments with UMLi caused XXL to be almost forgotten



CHAPTER 2. RESEARCH FOUNDATIONS 25

where the Figure 2.10 explains the relationship between the various symbols de-
scribed above.

S
 E


E’
S’

meets


meets


S

 


E
 


Figure 2.10: Explanation of symbols in the definition of adaptation (adapted from [SC03])

From our point of view this behavior of reacting to environment changes reflects
the recent orientation of any one who worries with user interfaces. Putting a particular
application (legacy or not), available on Web support, on mobile devices via WAP, etc.,
translates this kind of interaction over existent interfaces. We are also convinced that
several adaptations on user interfaces of recent applications are made from the scratch
or result from traditional ad hoc development, without any model-based approaches
[FF93, BVE02, VBS01].

Later in this thesis we will show that these adaptations can be done in a systematic
way following rigorous methods and mechanisms. We must always be sensitive to the
fact that “to find the best component to use in a particular situation” is be a delicate
process.

2.4.2 Formal Methods and Specification

“Formal techniques have a defined syntax and semantics and therefore
ambiguity is completely eliminated” Andreas Gerstinger”[Ger01]

Among many definitions in the literature of a “formal method”, we chose the one
provided by the largest professional organization promoting the use of formal methods
- FME - Formal Methods Europe [FME03]:

“Formal Methods are mathematical approaches to software and system develop-
ment which support the rigorous specification, design and verification of computer
systems.”

2.4.2.1 Why are they not used more widely?

Andreas Gerstinger presents (in Chapter 2 of [Ger01]) an interesting overview about
formal methods, considering their foundations, classification and application criteria,
as well as the main particularities of common formal languages. This contributes to
highlight their numerous potential benefits.

However, there are a lot of assumptions which “delay” the application of this kind
of methods. Anthony Hall, in ”Seven myths of Formal Methods” [Hal90], on the appli-



CHAPTER 2. RESEARCH FOUNDATIONS 26

cation of a formal method (Z) to a large real problem, puts forward seven unjustified
stereotypes and refutes each one of them:

1. Perfect software results from formal methods

2. Formal methods mean program proving

3. Formal methods can only be justified for safety-critical systems

4. Formal methods are for mathematicians

5. Formal methods increase development costs

6. Clients cannot understand formal specifications

7. Formal methods have only been used for trivial systems.

On the one hand, Hall moderates overly optimistic “myths”, such as “formal meth-
ods can guarantee that programs are correct”. On the other hand, he argues that formal
methods do not involve complex mathematics, do not increase the cost of development
and are not incomprehensible to clients [Ste99].

Working on this cause, Brad Myers in [MHP00] comments on the unaccomplished
application of formal languages to UI development tools. As many other (formal or in-
formal) approaches like Transition Diagrams (mainly on Structure Analyzes), Parsers
for Context Free Grammars, etc, they looked very promising at first, but they did not
catch on for several reasons. Most of them are pointed out as a topic for future work.

There seems to be a lost opportunity, because the excellent work on using formal
languages for dialog based interfaces, was surmounted by interface styles based on
Direct Manipulation [Shn97], which have emerged meanwhile. Another reason could
be related to the difficulty to represent them using unordered operations (like Set oper-
ations), by contrast, they can easily be represented using sequences. So, the interfaces
should naturally appear with a rigid sequence of operations.

And last, the need to learn a new programming paradigm, putting the program-
mer against the need to understand new programming concepts, is a hard obstacle to
overcome.

2.4.2.2 Archetype: the necessary proof?

[MO85, Mar95] present an important step in reinforcing the application of formal
methods in software development. These works appeared on technological scenarios
where more rigorous mechanisms on defining entities, processes and their interaction
in graphical systems (and, in consequence, in user interfaces) became an important
demand.

They purport the idea of having, for each system, objects one has to work with,
and a corresponding object for its visualization. These visualization objects are like
semantic graphical representations [Mar95].

Object construction, a common operation in practically all interface “builders”,
induces the creation of standard abstract objects which could represent the same and



CHAPTER 2. RESEARCH FOUNDATIONS 27

consequently be transformed in concrete representations, following instantiation pro-
cesses, like those existing for class attributes, in the object oriented paradigm. These
abstract objects are called archetypes. These archetypes are formal and abstract repre-
sentations of geometrical objects.

These construction processes are supported by mathematic algebra operators, prin-
ciples and rules, as well as by inference mechanisms.

We can see this scenario as a presentation model where two main categories of
objects are defined. One, the Concrete Interaction Object - CIO, and the other, Abstract
Interaction Object - AIO. CIO represents a real object (e.g., list box, button, etc.),
being simple or composed by other simple objects (e.g., a list box). AIO consists
in an abstract representation of a particular CIO, from its presentation and behavior
viewpoints, independent from any support platform.

Later on, in section 5 of this document, will be presented an abstract representation
(in VDM-SL) of the table concrete object and applied some strategies for mapping that
are innate to the reverse engineering process. The sections which follow describe some
of these mappings.

2.4.2.3 Formal Specification

“As software continues to be used to control critical systems, it is increas-
ingly likely that software will be considered critical in order to achieve
mission goals. Consequently, ensuring the correctness of software be-
comes paramount in order to avoid catastrophic failures like that of the
Ariane 5” [GC99b]

Formal specification is a requirement specification written in a formal notation.
Being also applicable to specify interfaces for software applications, it is increasingly
a concern for many programmers and designers of software solutions (also called soft-
ware architects), as well as a need for whoever wants profitability and efficiency in the
development processes.

As advocated by FME, formal methods are techniques that embody the use of for-
mal specification languages which have a well defined syntax and semantics, founded
on mathematics. On the other hand, formal methods use calculation rules to analyze
a specification, to validate its consistency and correctness. The mathematical founda-
tions of formal methods prepare the path to automation [GC99a]. Against this concept
persists the idea that everything that has to do with mathematics is very “delaying” and
“boring”.

Due to the fact that several formal notations already exist it becomes difficult, for
programmers, to decide which to use in a certain phase of the development. It is
not assumed which universal formal notation must be used to specify all the differ-
ent development phases, especially because, development groups being constituted by
people with different technical qualifications, the option will be naturally conditioned.

Playing against preferences, particularities and advantages of known formal nota-
tions, the way to maintain the bridge between the “expected to get” and “what was



CHAPTER 2. RESEARCH FOUNDATIONS 28

really done”, seems to be to insure the interaction between notations.

This work resorts to a well-known and certified formal methodology VDM-SL (The
Vienna Development Method, ISO/IEC 13817-1), which has been applied to several
academic and industrial projects [IFA03].

2.4.2.4 Formal Reverse Engineering

Reverse or Inverse Engineering [MJS+00], can be understood as an analysis and iden-
tification process of all the existent sections and components of a program (and not
necessarily the entire program), as well as all interrelation types between them, work-
ing towards higher levels of abstraction. The scheme in Figure 2.11 depicts this process
over user interfaces.

Source

(html,xml,etc.)
 Engine
 Presentation


Model


Mapping rules

Reverse Eng.


options


Figure 2.11: User Interface Reverse Engineering

Further to this, the Reengineering process works towards a different implementa-
tion, after the system analysis, perception, knowledge and modification process [GC99a].

Compared with conventional Engineering, usually called Forward Engineering
[MJS+00, oRE03] (where one tries to move from high-level abstractions, logical and
implementation-independent designs, to the physical implementation of the system -
Figure 2.12), and applying it to Software Engineering (where, starting from high ab-
straction levels and implementation models based on prototypes, one intends to get
its real implementation), Reverse Engineering must appear supported by certificated
description forms of what one intends to analyze.

Presentation

Model


UI generator


Visual

Component


Library
 Windows UI


WML UI


HTML UI


…...


Figure 2.12: User Interface Forward Engineering

Let us consider the case of preparing a web site in order to make it accessible
from the widest range of computing devices or platforms, including browsers, PDAs11,

11Personal Digital Assistants



CHAPTER 2. RESEARCH FOUNDATIONS 29

SmartDevices, Mobile Phones, etc. One must prepare, not only the information, but
also the application front-end or user interface to those distinct devices. Exercises of
transforming HTML to WML, VoiceXml, etc. and viceversa, should become usual
and necessary.

Moving from one context to another could entail changes on one single or multiple
UI, by performing it by generation, conversion or even adaptation (as presented in
section 2.4.1) [VBS01]. We will see later (section 3.4) that UIML, after describing the
presentation and dialog specification (in a XML-based vocabulary), can be “converted”
to different platforms (Windows applications, Telephones, Palm Pilots, etc.), using
render code for Java, VoiceXML, WML, etc.

These transformations should be oriented by principles of consistency vs variabil-
ity, where one tries to get an acceptable compromise to respect the constraints of the
context and the consistency of UI; design vs run-time, allowing the transformation
during the development or during the execution; and at last, partial vs total transfor-
mations, where one tries to support only some parts of the next context [VBS01].

Focusing on formal methods application to Reverse Engineering, we can identify
two main phases in its process [GC93]:

• Phase 1 - Information extraction

• Phase 2 - Abstract representation of what has been extracted in phase 1

There are opinions which defend the organization of this process in more and dif-
ferent phases. However, we think that they can be modelled by this approximation.

All reasoning applied in this work is based on a Reverse Engineering process where
formal methods and mathematical principles will be used towards a rigorous semantic
approach to object visualization and manipulation in a User Interface development
process.

2.4.3 VDM-SL

This section provides a short overview of VDM-SL, abbreviation of Vienna Develop-
ment Method Specification Language.

2.4.3.1 Presentation

“It is particularly important to realize that specifying a model in any for-
mal notation does not bring with it the magic confirmation that the model
is correct. The algebra may be correct - but it may specify something quite
different from that originally intended”[Hop01]

VDM-SL, is a general purpose formal specification language (as is Z [Bow96] or
RSL [UI97]), working with high levels of abstraction and rigour, created at IBM Vi-
enna Research Laboratories - while formally defining the PL/I programming language
[IBM03].



CHAPTER 2. RESEARCH FOUNDATIONS 30

By supporting abstraction of data and functionality, VDM-SL was fully formal
(syntax and semantic) ISO standardized in 1996 [ISO96]. It offers a standard module
approach with imports, exports, parameterization and instantiation features.

Since its creation, VDM-SL has been refined and enhanced with a formal algebraic
model, having actually, like other methods (formal or not) its advantages and disad-
vantages.

If we look at the actual programming languages scenario, there are not so many
formal languages and many of them are specific for a particular area. Having as ini-
tial goal the specification of software systems, due to its expressiveness, VDM-SL has
been used to model a large number of other kinds of systems (not only computer sys-
tems) many of them classified as critical systems. The FME homepage12 contains an
application database with the details of application of VDM.

VDM is supported by one of the best tool suites - at time of writing - among formal
methods13. It is the IFAD VDM-SL Toolbox [IFA00a], which has been used in all tests
of this thesis.

As any traditional programming language and formal method notation, a VDM-SL
specification is basically a collection of type and function definitions. As an overview
of VDM-SL, we are going to describe their main characteristics.

2.4.3.2 VDM-SL characterization

A VDM-SL model consists of a static and a dynamic part. The static part contains the
data and type definitions, as well as an optional state of the system. The dynamic part
consists of functions which are either explicitly or implicitly defined, and operations
which can modify the state. Figure 2.13 depicts a typical VDM-SL module structure.

VDM-SL works with not so many basic data types. More precisely, numbers (nat,
nat1, int, real), boolean (bool), characters (char) and tokens (token). Constant values
are written as identifiers inside angle brackets (e.g. <Black>)

To define a type it is necessary a type symbol and a set of operators to manipulate
their values (mainly writing). Each operator must have a signature, listing its input and
output types. This operator can be total (applied to any domain element) or partial
(otherwise). A typical operator definition is as follows:

op : T1 × T2 × · · · × Tn → R

Appendix A describes all VDM-SL standard data types and associated operators.

There are also type constructors which allow for compound types. These construc-
tors support finite sets and sequences, mappings, records and optional values. Table
2.1 presents these constructors and respective VDM-SL notation.

12http://www.fmeurope.org
13Others tools are available, such as ”VDM Through Pictures”, from Oxford Science Park



CHAPTER 2. RESEARCH FOUNDATIONS 31

module <
module <
 module_name
module_name
 >
>


definitions
definitions


end
end
 <
<
module_name
module_name
 >
>


parameters
parameters

imports
imports

instantiations
instantiations

exports
exports

…
…


states
states

types
types

values
values

functions
functions

operations
operations

…
…


Interface
Interface


Definitions
Definitions


Figure 2.13: VDM-SL module structure

Constructor Description
set of Finite sets
seqof Finite sequences
map to Finite mappings
| Type Union

[ ] Optional Type
:: notation Record Types

Table 2.1: VDMl-SL constructors

We will provide several examples of these compound types in our UIML specifi-
cation (described in Chapter 4), as it is the case of String and ID, defined as follows:

String = Seq of char

ID : :String ;

A very important concept in VDM-SL is that of a type invariant. Each type defini-
tion can be equipped with a boolean expression called invariant which constrains the
inhabitants of a particular type. For instance, we can define a type PhoneNumber as
being a 9 digits telephone number. Its definition could be as follows,

Digit = char
inv d == d in set {’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’};

PhoneNumber = seq of Digit
inv pn == len pn=9;



CHAPTER 2. RESEARCH FOUNDATIONS 32

where the two invariants (inv) ensure the length of a phone number composed only by
digits. Although these are basic invariants, the ability to define specific invariants is
one of the most useful features of VDM-SL.

As referred before, there could be also a state in a VDM-SL specification, which is
equivalent to a set of global variables. This state can then be manipulated with specific
operations. The following VDM-SL code depicts one example of this:

state Contact of
Addresses: map Person to set of Address

end;

The dynamic part of a model contains the functions and operations14 of the specifi-
cation. The next VDM-SL excerpt below describes the implicit definition of the sqrt
mathematical function with precondition pre and postconditon (post) definition:

sqrt(x: real) r: real
pre x>=0
post x = r*r;

The precondition limits the input values x to positive or zero numbers, and the post-
condition states that sqrt is the converse of square.

In our specification (to be presented in Chapter 4) we have many explicit functions
definitions, in which the way calculations are performed, must be described. The next
excerpt of VDM-SL code defines the function length (from page 148):

length : (String | ID ) -> nat
length(x) == cases x:

mk_ID(s)->len(s),
others -> len(x)
end;

There are also important considerations about expressions (for functions) and state-
ments (for operations) which contribute to the high level of expressiveness of the
language. A detailed presentation of them can be found in the references [IFA00c,
Hop01].

Being not object oriented15, VDM-SL behaves as a model-based method more
suited for sequential applications, where it is not possible to implement inheritance.
This normally entails a larger number of code lines, as is clear in our specification of
UIML, whenever we define a new method.

2.5 User Interface Design

One must understand User Interface (UI) design as a process which can describe,
graphically or under any textual notation, the particularities and features for the UI.
Vijay [Mac96] forwards three possible models for the User Interface design:

14These differ from functions because of the possibility of changing the global state
15VDM++ [IFA00b], is an object oriented extension of VDM, not yet standardized.



CHAPTER 2. RESEARCH FOUNDATIONS 33

• Demonstrational Interfaces, where the programmer develops some typical ex-
amples of what is intended, continuing the development process with or without
a minimal interaction with the user [MCM+91]. This model results from sur-
mounting some difficulties found on the previous DMI16 model, where the end
user can manipulate objects directly on the screen, using devices like mouse or
keyboard. We can see a simple example of this in macro definitions on some
well known text editors (like Emacs or vim). Once a macro is defined, it can be
used repeatedly.

• Intelligent Interfaces, where appropriate artificial intelligence heuristics are ap-
plied to support end user decisions. We can have two possible scenarios: either
it accelerates the process, facilitating the selection or, being the wrong option,
the process will be delayed or hindered. An example of this kind of interfaces
exists in recent Office tools, as, for instance, is the case of Microsoft Word and
Excel, where, after writing a text, with some kind of spelling mistake, it can be
automatically corrected. The success obviously depends on the correction being
valid for the instance at hand.

• Distributed and Collaborative Interfaces, (often called Cooperative), represent
the support to several processes and users. They result, fundamentally, from
the emergence of computer networks, the availability of cooperative work and
consequent Client-Server applications on a distributed processing environment
with multiple kinds of interface, involving distributed components. These inter-
faces are very common in Database Applications where, the database being in a
remote computer allows each network computer to access.

With the current scenario of rapid Web proliferation, including mobile devices
PDAs, SmartDevices or Pocket PCs, wireless infrastructures, and so on, the ”old”
Client-Server applications become crucial, supported by a distributed process, justi-
fying the fusion of companies and their spaces and processes reorganization. We are
dealing with a typical process of system integration, inherent to the EAI17 and IAI18

areas, where a possible integration is directly based on interfacing. For instance, it
could be a rule, that all company users should use a browser as their main frontend
application. In this context, Nokia, one of the most popular mobile devices producer,
has issued an important message: “By 2003, more than a billion worldwide mobile
phone will be there”.

Today we know that Wireless technology, IP Telephony19, Internet220, IUNET21,
etc., work towards freeing users from physical or space limitations. We are in the
infancy of the next generation of communications technology and the UI will be there
too.

If we look to the technology state-of-the-art which supports current UI develop-
ment, this particularity of a new supporting model for interfaces is even clearer. Let us

16DMI - Direct Manipulation Interfaces [Shn97]
17EAI - Enterprise Application Integration [Lin00]
18IAI - Inter-Enterprise Application Integration
19http://www.internet-telephony.org
20http://www.internet2.edu
21http://www.iunet.net



CHAPTER 2. RESEARCH FOUNDATIONS 34

address this topic next.

Having analyzed other alternatives, e.g. CASE tools, Structure Analysis with their
DFD- Data Flow Diagrams and STD - State Transaction Diagrams, and even UML, we
are going to describe a small part of the most significant and interesting languages that
help in designing user interfaces. This is the UMLi [PP00], a specialization of UML -
Unified Modelling Language (http://www.omg.org). This object oriented methodology,
dealing graphically with objects and their relations, can be compared to our methodol-
ogy to describe interfaces, using markup terminology. This will be explored when we
present UIML, later in section 3.4.

2.5.1 UMLi

Because we are dealing with user interfaces design, the UML [Gro03c], the basis of
UMLi - Unified Modelling Language for Interactive Applications [dSP00], represents
one of the most significant methodologies for software design using object oriented
principles.

Although UML is a notation for creating software application designs in an object
oriented manner, the resultant application models describe few aspects of user ap-
plication interfaces. Thus, according to Object Management Group [OMG02], some
difficulties can be identified in the use of UML for modelling interactive applications:

• no UML diagram provides a notion for containment and enactment of interaction
objects (widgets);

• no UML diagram provides graphical identification for abstract roles that inter-
action objects can play in user interfaces (e.g., displaying information to users,
receiving information from users, triggering actions, etc.);

• the modelling of some categories of behavior commonly observed in interactive
systems (e.g., performing an activity in a repeatable way [repeatable behavior],
performing a set of activities in any order assuring that each activity will be
performed once [order independent behavior], etc.) is complex in behavioral
models of UML (e.g., in sequence diagrams, collaboration diagrams and activity
diagrams);

• the use of interaction objects to specify the dataflow between users and non-
interaction (domain) objects is difficult to specify and visualize in UML dia-
grams;

• UML diagrams, in general, become complex even in modelling very simple user
interfaces.

However, due to the great spread and acceptance of UML in the programmers
community, it makes sense to improve it, so as to be prepared for model interfaces.
This is UMLi rising [dSP03].

There is another Model-based User Interface Development Environment, consti-
tuting the MB-UIDE [Pin00] technologies group. This is considered a state-of-the-art



CHAPTER 2. RESEARCH FOUNDATIONS 35

approach to user interface development, which provides the capability to design and
implement user interfaces in a systematic way. However, current MB-UIDE technol-
ogy can only be used to design user interfaces and not applications.

So, UMLi aims to address the problem of designing and implementing user inter-
faces using a combination of UML and MB-UIDE techniques. Indeed, a MB-UIDE
that supports user interface models designed with UML will provide the necessary
integration between user interfaces and the underlying applications.

For instance, by having a single modelling notation, common structures and behav-
iors of user interfaces and their underlying applications can be shared at design time.
Furthermore, user interface developers can benefit from designing user interfaces in a
systematic, and almost standard way [PP00].

UMLi is a modelling language that extends UML providing the following addi-
tional facilities for user interface design:

• a new diagram for modelling UI presentations called user interface diagram.

• a new set of activity diagram constructors for modelling UI behavior.

• a tool, ARGOi [Gro03b], which supports UI presentations and respective behav-
ior modelling.

Figure 2.14 depicts an example of a user interface diagram ConnectUI (Connect
User Interface in figure), modelled using UMLi, where a user connects to the system
by providing his/her login and password.

Figure 2.14: ConnectUI - UMLi example of User Interface Diagram (generated using ARGOi
version 0.8.0)

In the diagram of this figure, ∇ - (Inputters) are responsible for receiving information
from users and 4 - (Displayers) are responsible for sending visual information to
users.

User interfaces specified in user interface diagrams are conceptual models of UI
presentations since they only specify abstract aspects of user interfaces that may be
relevant to understand the UI. For example, the ConnectUI container in the figure 2.14
does not say anything about:



CHAPTER 2. RESEARCH FOUNDATIONS 36

• layout (for instance, whether the Login displayer is going to be to the left or the
right of the Login Text, or whether the User Details container is going to be at
the top, at the left, at the right or at the bottom of the the ConnectUI);

• widget selection (for instance, if the OK action invoker is going to be a button,
a list, a combo box, etc.)

• toolkits and programming language.

In spite off the considerable effort to understand UML and consequently UMLi
(due to their large classes of diagrams and particular graphical notations on one hand,
and its object oriented rigor to describe structure and behavior, on the other hand), it is
accepted as an important alternative to achieve interface design.

2.6 User Interface Programming

Concerning interface design, it is hard to achieve correct forms for describing what
one intends to develop [MHP00]. A possible way and perhaps the most advantageous
is based on the higher-level tools currently available. This type of tools can provide an
important support in the interface design phase, which facilitates the organization of
the different components intended for its interface, also often facilitating the animation
of its behavior and interaction (e.g. tools of the UIMS22 group [Bra98, MHP00]).

Application


Higher-level Tools


Toolkit


Window System


Operating System


Figure 2.15: Components of user interface software (adapted from [Mye96])

Considering the architecture presented in [Mye96] for user interface software com-
ponents (Figure 2.15 depicts its division into various layers), one concludes that, cur-
rently, an equivalent division is present in several user interface programming method-
ologies. In the following we will try to explain this statement.

2.6.1 UI Programming Methods

Low-level/High-level/Visual Programming . In the beginning of computing, assem-
bly code or even ASCII code was the only way to get some graphical aspect on
interfaces. This kind of programming is still there, mainly for handling specific

22User Interface Management System



CHAPTER 2. RESEARCH FOUNDATIONS 37

purpose devices, where portability is not an important issue or even appropriate
compilers are not available. Currently, there are a lot of frameworks or tools
which provide programmers with excellent conditions to program, including
user interfaces, debugging and test mechanisms. It is a more high-level work
and the need of coding is often supported by direct manipulation of graphical
objects on the screen. Quite often, they also work as prototyping tools and even
interface builders. For instance the recent Visual Studio .NET [Mic04b] (the re-
lease of the current Visual Studio), the Kylix framework from Borland [Bor03],
the QT from TrollTech [Tro03], the Tcl/tk from Tcl/Tk consortium [Con03a].
This is why this kind of tools is known as IDE - Integrated Development Envi-
ronment.

Toolkit Programming . Uses object-oriented techniques for abstraction in user in-
terfaces building [Pha00]. As in high-level programming, graphical component
libraries are also available, allowing programmers to work independently of the
underlined platform abstracting all low-level details. Several code generators are
available and so, the programmer can spend more time in different issues, like
code documentation or even usability. Using technical terminology, toolkits are
the common API - Application Programming Interfaces, like MFC - Microsoft
Foundation Classes or JFC - Java Foundation Classes.

Web Programming . Encompasses all programming efforts in the Internet over the
Web. It is an important programming area and perhaps the most significant in
the next years. As mentioned above, we are dealing with scenarios of enterprise
integration, effort cooperation and distributed services. So,the remote access to
data and processes, should be, once more, at the core of everything.

Because the Internet communication infrastructure or any other, should support
all this, the technology needs to grow continuously, day after day, trying to han-
dle new requests from users. So, there are (and there should always be) a lot of
technologies to support this kind of programming, most often resulting in an hy-
brid style of programming [Pha00] where several different kinds of technology
may coexist.

Technologies like Java Applets/Servlets [Mic03d], Perl [Per03] and Python CGI
[Pyt03], Scripting with Javascript [Mic03f] or even Windows Scripting [VS03],
.Net ASP or JavaBeans [Mic03d], Embeb code [Gro03a], Webservices [Rec03d],
etc., are alternatives that programmers must select at all time. Recently a new
technology has appeared, not specifically for programming but to give different
features to the programmer: Markup languages [Luı́03].

New types of applications should also appear, as it is the case of emerging CMS
- Content Management Systems or even Fuzzy Search Engines such as Google
23, due to the current Web business concerns. Their interfaces scalability and
portability will be a central question [Fre03].

End-user Programming . This is one of the most promising areas of programming.
This statement can be argued whenever we look at the success of spreadsheets.

23http://www.google.com



CHAPTER 2. RESEARCH FOUNDATIONS 38

The primary reason for this success is that end users can program it (using
macros, formulas, etc.). However, this capacity is not present in all applications.

If we look at the current Web scenario, where everyone, without the need to
learn so much, can write a web page, we are in the presence of multiple static
information, where the consistency and up to date of the information is rather
weak. This is caused by the pages not being dynamic and with autonomous
behavior. The end user can not do it alone and will need the help of a specialist.

In the future, using scripting, CGI24 languages like Perl [Per03], the possibility
offered to have what the end user wants will be an important step [RSF97]. If
the user works only with appropriate interfaces, with customizable capacity to
go through its requirements, the complexity associated to the new technologies
stop being a problem.

We can see all this by looking at the new mobile devices (like PDAs, SmartDe-
vices, etc.), where display properties and communication capabilities disallow
sophisticated user interfaces. Image and voice (pure multimedia data channels)
will be the preferred user interfaces.

For instance, voice information does not have a “normal” user interface. Voice
Extensible Markup Language - VoiceXml [Rec04b], only describes audio dialogs
that feature synthesized speech.

Markup Languages . We have decided to single out markup languages because, be-
ing a significant area of programming concerns in our days, there is a lot to say
about it. Markup languages appeared a “long time ago” [Luı́03], with SGML
[Rec01b] being one of the milestones in its progress.

Its original main goal was to describe (using markup words) and preserve data.
Because there are precise rules based in text coding, this kind of languages pro-
vides high degrees of portability and consistency of data. A piece of text “goes”
faster over the network than does a piece of binary code and, if some part of the
information is damaged, the problem should not be so severe as in byte code.

All these factors explain their quick dissemination over the Web and acceptance
by almost all type of Internet applications.

Since the Web deals with high capacity user interfaces, XML markup languages
are also applied to describe them, allowing for the preservation of its portability.

Almost all new markup focus areas (there are a lot25) are applications of the eX-
tensible Markup Language -XML [Rec03c]. Following the W3C [Con03b] rec-
ommendation, only XML syntax rules are defined. The vocabulary used could
be created by anyone. This enables the proliferation of several new XML speci-
fications, for areas like Healthcare, Insurance, EGovernment, etc.

Markup descriptions can be easily ported to different platforms and are usually
device-independent. This new specification, appeared with XHTML [W3C03],

24CGI - Common Gateway Interface [Dev03]
25http://www.xml.org



CHAPTER 2. RESEARCH FOUNDATIONS 39

leading programmers to use markup only to describe content, having “visual-
ization” information on separate files, called stylesheets [Rec03a, Rec01a]. All
device-dependent information must reside in them.

This kind of formalism [W3C96], is an important step to a new generation of
programming techniques. In this work we are going to lean over this and exper-
iment the application of formal methods to specify markup languages.

Recent investments in large, expensive and complex solutions as CRM or ERP
provide evidence of the direction followed by many companies. The most important
points for any company that is client of these information systems, are the following:

• Users need fast access to summarized information (essential);

• Data should be supported by an architecture Warehouse (global vision);

• Good performance and maintenance (easiness and speed);

• Network support (distribution);

• Users need a natural vision of the data (perspective of the company);

• Analysis methods supporting forecasts;

• Multidimensional vision, including hierarchies;

• Easy access (e.g. spreadsheet).

• Logical access (following reasoning processes).

Everyday, new methodologies are being developed and tested with the intent of
satisfying many of these needs. Terms like OLAP, Fuzzy Logic, Data Mining, MDDB,
DSS, CRM, ERP, WebServices, etc., are common expressions or abbreviations, that
represent different forms of information processing, encompassing store mechanisms,
user interfaces features, etc.

It is difficult to find a complete description of all technologies and related paradigms
that translate the whole panoply of options to follow. Especially because, many of
the situations are nothing more than experiments or immature results from research
projects. This stops them to be considered a viable alternative.

2.6.2 N-Layer architecture

This section could also be called Layered Architecture, Layered Application or Multi-
Level Architecture, as mentioned in Enterprise Patterns Definitions [Mic03b]. In an-
other way we can see that there is some confusion on the usage of terms Tier and Layer.
So, N-Tier very often appears written as N-Layer. Following [Mic04a], a layer should
represent the Logical Application Structure and tier the Physical Distribution/Imple-
mentation onto the server infrastructure, which means that, in the deployment process,
application and infrastructure teams should map components to tiers.



CHAPTER 2. RESEARCH FOUNDATIONS 40

If we concentrate on the analysis of methods for developing recent applications,
we can clearly witness an “evolution”, in programming languages, in the architectures
or support models and even in the support tools to its development, predominantly
based on a multi-level architecture, a version perhaps more consistent and structured
of the program module concept. This can also be seen as a different perspective of the
Object Oriented paradigm and the creation of ComponentWare [BRSV99, BRSV98]
technology (explored in section 2.6.3.1).

In this structure, the basic concept related to the responsibility of “having to do
something”, should exist between each architecture layer, insuring their inter-operability.
In essence, some mechanisms are implemented to guarantee the consistency among
several levels.

The diagram of Figure 2.16 depicts a perspective of the evolution of the main
architectures available.

Figure 2.16: Generations of Architectures

In our days we are dealing with very complex distributed enterprise applications,
where the Web executes a kernel job. Being mainly supported by Web Services [Rec03d],
we can call it as Layered Services Applications. This notation is actually treated as a
new generation of architectures, named 4-Layered Services Application, where, in ad-
dition to the standard three layers, a set of foundation services (security, management
and communications) is set up which all layers can use [Mic03b].

Trying to concentrate on the goals of this study, it is important to analyze the
Presentation Layer - PL, present in recent architecture generations (identified as Gen-
eration III in 2.17).

Just as the Application Server layer bridges between the Repositories of informa-
tion (Databases, Data Centers, etc) and the layer where business rules are defined, the
- Business Layer, the PL bridges between the final user interface and the layer which
applies these business rules.



CHAPTER 2. RESEARCH FOUNDATIONS 41

Figure 2.17: N-Tier Architecture

Basically, this type of layers can be represented by three essential processes: Dis-
play, Communications and Data Synchronization.

The first, answers to the graphic elements and adjacent rules that constitute its
interface; the second, answers to the communication between the application (in the
server) and the user (the customer). The third, answers to the data update.

The identification of these entities is, in the general case, associated to methods or
classes created for their specific operation.

Nowadays, the companies that work with the new Information Technology (IT)
are forced to strongly invest in solutions able to answer to new demands, looking to
process efficiency or usability issues. The form of the available information and the
efficiency in extracting it from the system, is more and more regarded as critical.

The conventional methods of information management have become obsolete and
insufficient, forcing some restructuring in storage forms or in their access and ma-
nipulation mechanisms. The Relational tables and respective reports are no longer
preferred solutions.

2.6.3 Tools and Applications

2.6.3.1 Componentware

The idea of creating applications using dynamic integration of components, made and
compiled separately, was demonstrated in the system Andrew [Pal98] of Information
and Technology Center of Carnegie Mellon’s University. Components, ie, units with



CHAPTER 2. RESEARCH FOUNDATIONS 42

processing and interaction (input/output) capacities, become the main building block
for software construction. This is known as Componentware [BRS+00, BRSV98].

In spite of the existence of several technical concepts and tools for component-
oriented software engineering - CBD - Component Based Software Development [GeA02],
whose rules were inherited from Civil Architecture, on one side, and the Object Ori-
ented paradigm, on the other, the success of these sources could not be transferred for
this process of software development. This is due, fundamentally to the lack of a solid
methodology for componentware [BRSV99].

However, this is one of the areas of great expansion and interest in our days. One
works harder in the aim of getting certified mechanisms for all intervenients in this
process: the ones that develop (Component Developers) and those who use the com-
ponents (Component Users).

In [BRSV99, BRSV98], Klaus Bergner suggests that the design of such a method-
ology, should be centered around some fundamental concepts:

• A formal system model, to define, without ambiguity, terms and concepts.

• A technique to describe components, according to that formal system model;

• A model for the whole process, for the users or for components developers,
capable to organize the whole development process;

• Support Tools, for description or for supporting the development process.

If we port these concerns to the development of those components responsible for
dealing with user interfaces, we will realize that they are also important. For example,
a graphic drawing placed in a document should be controlled by a drawing component
whose behavior should be independent of the used component to write the text of
that document. This was the idea adopted by the main development entities, namely
Microsoft (in OLE, OCX and ActiveX technologies) [Mic03c], Apple (in OpenDoc
technology) [IAL03] and Sun (in JavaBeans technology) [Mic96].

The question arises: How to modularize software in small components, continuing
to guarantee the capacity of inter-operability and processing for who wants to use
them?

This work tries to explore the possibility of creating a kind of Visual Components
Library (see Chapter 4, on page 69) where a new component could be obtained by
composing several other known components. However, the experimentation comprises
only the specification phase (see our VDM specifications of Chapter 4)

2.6.3.2 SDL

The emergence of System Description Languages, abbreviated to SDL [MT97], has
extended visual programming with capabilities related to fault tolerance and feasibility.

Mainly used in hardware architectures description, SDL is a formal language that
allows programmers to model Finite States Machines [AF00] using processes, signs
and communication channels. Additionally, it is possible to enrich the models with



CHAPTER 2. RESEARCH FOUNDATIONS 43

data processing associating state transactions to the changes in variable values. This
combines a drawing system with a visual model.

Basically these tools allow for the graphic design of systems, using sequences of
visual components. This includes diagrams validation and code generation (usually
C). It is possible to animate the designed system, detecting ambiguities and inconsis-
tencies.

The tools based on SDL use MSC (abbreviation of Message Sequence Charts),
to define the interactions between components. MSC defines sequences of messages
exchanged among components, in a clear and readable form, helping in analyzing user
requirements.

Summing up, these tools work at a higher level of abstraction and stimulate com-
ponents reuse. The structure of SDL provides a mechanism for easy system documen-
tation and, consequently, has advantages to the process of it maintenance.

We will see later, in our contribution, that using the VDM formal language to
specify user interfaces (including methods and properties defined for operator compo-
sition), and using its integration with UML and using its Java code generation, we can
also simulate a design in a rigorous way.

2.6.3.3 RAD

As seen before, visual programming is still one of the main lines of activity and invest-
ment of large institutions working in software development. To get a fast and efficient
application development - RAD26 [vBMvR] in the terminology of the software Engi-
neering - it is important to reach and explore the state-of-the-art software development.
Tools such as Visual Studio from Microsoft, Delphi from Borland, JEEE from SUN,
etc., act in the development process of GUIs for applications, properly integrated with
support for database manipulation. This kind of applications is often called IDE27 (or
simply Frameworks).

Below we present a list of common and important frameworks, tools and support
technologies used to generate applications as well as user interfaces.

• Graphical User Interfaces Environment:

QT/QSA - QT Script Application - www.trolltech.com

GTK+ - Gnu Toolkit - www.gtk.org

XWindows/Motif - www.motifzone.com [Her91]

Delphi/Kylix - Borland for Linux - www.borland.com.uk/kylix

.NET Framework - Microsoft .Net - www.microsoft.com/net

Flash MX - Flash e XML - www.macromedia.com/software/flash

Tcl/tk - www.tcltk.com

Eclipse - www.eclipse.org

26RAD - Rapid Application Development
27IDE - Integrated Development Environment



CHAPTER 2. RESEARCH FOUNDATIONS 44

• Support technologies

FSM - Formal System Modeling

LIM - Lotus Interactor Model

ICO - Interactive Cooperative Objects Formalism (based on Petri Nets)

FP - Functional Programming

JML - Java Modelling Language - behavior interface specification

• Markup Languages

XwingML - Java Swing XML (read zwing-M-L)

BeanML - Bean Markup Language

UIML - User Interface Markup Language (see section 3.4)

2.7 Data description and manipulation

The importance of this area for this work arises from the functionalities which are
common to end users of this kind of applications.

As we saw before, in the End-user programming item, the decision maker (Man-
agers, Executive operators, CEO, etc.) should have efficient tools to manage its infor-
mation. This management could imply transformations on visual objects present in the
user interface. In current terminology, we are talking about interaction data and the
adaptability requirement analyzed in section 2.4.1.

So, we are going to explore the main features associated to interaction, data rep-
resentation and manipulation, as a forecast of interface components, often called In-
teraction Objects - IO. As we know from class definitions (in the Object Oriented
Programming paradigm [Bja91]), a class instance - object, inherits from its class, prop-
erties and methods to manipulate it. These concepts will be of significant interest in
our reasoning.

We proceed to briefly addressing the Multidimensional Data Models [Fer00], im-
portant concept applied to Data Mining, Multidimensional Analysis - MDA [MK97,
Bus02] and Online Analytical Processing - OLAP [SCJS01, Nig01] application areas,
mainly wherever we try to manipulate interaction data.

2.7.1 Multidimensional Analysis

Multidimensional analysis [Nig01, HM01] offers to users greater levels of perspicacity
in capturing the knowledge contained in databases and following the analyst mental
model, by reducing confusion and limiting incorrect interpretation. Once a structure of
multidimensional support is set up, the processing speed is superior to other structures
of databases.

In the case of companies (the users), the information presents a multidimensional
feature, strongly related and nested. For example, in forecasting the sales of a product
in multiple areas it would not be correct if patterns of purchases of the past, as well as
the new products foreseen for each area, were not considered.



CHAPTER 2. RESEARCH FOUNDATIONS 45

This multidimensional information, many called as heterogeneous multidimen-
sional hierarchies or schemas [HM01], resides in legacy systems, in spreadsheets, in
relational databases, etc. In this way, they are necessary mechanisms that allow ob-
taining information from different sources and to offer the work group the capacity of
observing them in a convenient perspective. With the intention of respecting existing
solutions, the multidimensional analysis system needs to transform the structure of the
incoming information of those sources.

In the case of text files (in flat format) data analysis requires the presence of meta-
information (e.g. Data Dictionaries), so as to know the format and structure of the
target data.

On the other hand, in the treatment of Relational Databases - RDB, its replication
for a Multidimensional Database (hereafter abbreviated to MDDB) is not necessary
(nor desirable).

Multidimensional data models categorize data as being either facts, which means
data values and eventual attributes, or as being dimensions, that categorize the facts
and are mostly textual [Fer00]. The model of a MDDB is an array of n-dimensions as
depicted in Figure 2.18 (often called Hypercube or collection of related cubes [TC04]).
Although the term “cube” implies three dimensions, a cube can have any number of
dimensions.

8


4
 5


Pedro
 Paulo


black


white


Ford
 2


3


Fiat


Vendors


Model

Color


SALES VOLUMES


Figure 2.18: HyperCube

Each dimension is associated to a hierarchy of consolidation levels of data. For
example, a dimension “time” can have a hierarchy with levels day, month or year.
A dimension works as an index of identification of values in the array. Each array
position, corresponding to the intersection of all dimensions, is a cell.

The variables (also designated by measures or metrics) in a multidimensional array
correspond to the columns of the related tables. The values of each variable correspond
to the values of the columns of the same tables, variables being virtual values calcu-
lated from values stored in those tables. However, the virtual variables are treated by
the system, in same way as all other variables.

The set of meta-information provides the mapping of RDB columns and lines to
multidimensional array dimensions and cells. It can also contain rules for data consol-
idation of hierarchies in each dimension.



CHAPTER 2. RESEARCH FOUNDATIONS 46

For example, some changes in “time” dimension could be,

days ⇒ weeks

days ⇒ months ⇒ year
(2.1)

Data consolidation in each of these levels can take place.

Once a data dictionary defines a data source, its dimensions, its attributes and
hierarchies, all variables and virtual variables calculation formulae, become crucial to
all this process of information translation. On the other hand, the previous definition of
location and format of the data through meta-information is another important feature.

Multidimensional analysis, as it is the case of the Multidimensional Databases
[MK97], should provide a group of operations, namely Multidimensional Views (Queries),
Rotation, Ranging, Rolling-Up, Drilling-Down28, Hierarchy, Reach Through. Besides
these operations, multi-user support is required in a client-server architecture.

With the purpose of illustrating all these concepts and operators, we will give an
example of a particular Car Sales Database with three dimensions of data. Figure
2.19 depicts the database structure (relational and multidimensional) which supports
this problem.

Figure 2.19: Relation versus Multidimensional Model

2.7.1.1 Multidimensional Views: Queries

High levels of information structuring in a multidimensional array translate into simple
and intuitive queries. For example, in our case, to know the volume of sales for model,
for each vendor, such a query would be:

PRINT total(Sales KEEP Model Vendor)

The result could be presented by the following two dimensional table (matrix):

28some of the bibliography denote the same operators with Roll-up and Drill-down



CHAPTER 2. RESEARCH FOUNDATIONS 47

Vendor
Model Paulo Pedro An a
Ford 5 4 7
Fiat 0 8 7
Opel 0 3 8

Table 2.2: A two dimensional table

Trends and comparisons can easily be made from this kind of output. To get the
same result with a SQL query over a relational database, we would have to type:

select model, vendor, sum(sales)
from volume_vendas
group by model, vendor
order by model, vendor

and the result would be:

Model Vendor Sum(Sales)
Ford Paulo 5
Ford Pedro 4
Ford Ana 7
Fiat Paulo 0
Fiat Pedro 8
Fiat Ana 7
Opel Paulo 0
Opel Pedro 3
Opel Ana 8

Table 2.3: Relational SQL query result

As we can see, the results are less intuitive and more extensive. No trends emerge.

2.7.1.2 Rotation

Looking to a multidimensional array is similar to observing a spreadsheet. After an
operation takes place, users often wish to see the outcome from a different viewpoint.
For example, if the result of the initial operation gets Sales of Models for automobile
Color, to get Sales for Color and for Model, the user would have to repeat the initial
query.

In a multidimensional array this functionality is obtained in an easy and fast way
through dimension Rotation. Figure 2.20 depicts the result of applying this operation.

In case the number of dimensions increases, the number of possible views also
increases, being equal to n*(n-1), for n the number of dimensions.



CHAPTER 2. RESEARCH FOUNDATIONS 48

13
 3
 0


8
 0
 7


0
 0
 11


M
o

d
el


Model


Ford


Fiat


Opel


black
 white
 blue


0
 8
 13


0
 0
 3


11
 7
 0


C
o

lo
r


Color


Ford
Fiat
Opel


black


white


blue

90º


SALES VOLUMES


Figure 2.20: Multidimensional Rotation

2.7.1.3 Ranging

The essence of ranging consists on selecting a part of the existent elements in each one
of the dimensions. In our example, some instances of data ranging could be:

• select Ford and Fiat on Model dimension

• select Pedro and Paulo on Vendor dimension

• select Black and White on Color dimension

Figure 2.21 depicts these operations.

Figure 2.21: Ranging operation

Once ranging takes place, the resulting array can be manipulated as if it was a new
one. All possible operations can be applied again. This operation is often called as
data dicing, because smaller subsets of the original data are created.

2.7.1.4 Hierarchies, Rolling-Up and Drilling-Down

As it was said above, the need to view the same data or results from different perspec-
tives is a natural one. Differences can be found either in the ordering of the different
dimensions or in the level of information detail that one intends to see.



CHAPTER 2. RESEARCH FOUNDATIONS 49

Back to our example, for instance, it can be interesting to see the volume of sales at
District level. In case the result is not sufficiently clear, it can be interesting to analyze
the same values now associated to each Vendor which operates in that District. So, a
relationship exists between the volume of sales at the Vendor and the volume of sales
at District level. In this case the volume of sales at District level corresponds to the
sum of all volumes of sales for each Vendor on that District.

The technology of multidimensional databases is especially prepared to work with
this type of natural relationships. Two independent dimensions can be created (one
for Vendor and another for District). More efficiently, two related aggregations can be
defined over the same dimension (for example, dimension Sales Region). The illustra-
tion in Figure 2.22 depicts this perspective, showing a schema and instance hierarchy
[HM01], inside of the Sales Region dimension.

Figure 2.22: Schema and instance for the Sales Region dimension

Hierarchies definition allows for detailed analysis at different levels inside each
dimension. The process which allows to go down or to rise in hierarchy levels of
a particular dimension is called Rolling-Up and Drilling-Down, respectively. Figure
2.23 illustrates these two concepts.

3
 0


8


Pedro
 Paulo


black


white


Ford


8


0
 7


4
 5
 7


Ana


blue


Fiat


Opel


7


8


7


Vendor


Model


Color


8
 3


7


Barcelos
 Viana


black


white


Ford


8


12
 4


blue


Fiat


Opel


City


11


15


Norte


black


white


Ford


blue


Fiat


Opel


Region


16


8


4


3


8


13

3


7


11


Figure 2.23: Rolling-Up and Drilling-down

Although Figure 2.23 depicts directly the Rolling-up operator across the hierarchy
Sales (Vendor → City → Region), on the reverse direction we get the result of the
Drilling-down operator.

Each view, defined by the levels chosen for each dimension, can be rotated or “fil-
tered” (with Ranging) just as we described previously. As similar process on relational



CHAPTER 2. RESEARCH FOUNDATIONS 50

context would demand rebuilding the queries for each new view. In Figure 2.22 we
show the importance of hierarchies in data representation. A summarizing process is
associated to each “slice” of information structure. These summarizing processes are
supported by distributive aggregate functions. A distributive aggregate function can be
computed on a whole set or on each its disjoint subsets [GCB+97]. SUM, MAX and
COUNT are examples of distributive functions.

Assuming S a set and Si parts of S, the expression (2.2) illustrates the distributive
behavior of the SUM function.

S ≡S1 ∪ S2 ∪ .. ∪ Sn

SUM (s) ∼=SUM (SUM (s1),SUM (s2), ...,SUM (sn))
(2.2)

2.7.1.5 Reach-through

This feature consists in obtaining the information detail which generated a particular
result. That is, the possibility of, after a summarizing operation or aggregation, show-
ing the details (to any level) that could justify that such result exists. This operation
can be performed by interacting with the Drilling-Down mechanism.

2.7.2 OLAP

Information technology producers are dealing with the new challenge of building sys-
tems which can offer strategic and tactical decision procedures to those who must
manage and decide (managers, supervisors, etc.), based on global and real data.

This kind of Decision Support Systems - DSS [Ma98], are frequently referred to
as OLAP systems [Nig01], the abbreviation of On-Line Analytical Processing, which
offers intuitive, fast and flexible manipulation of information.

In general, OLAP systems should: (1) support complex user requirement analysis,
(2) analyze the data from different perspectives (dimensions), and (3) support complex
analysis on large data sets (atomic data).

There are two basic OLAP system architectures: Multidimensional OLAP - MDOLAP
and Relacional OLAP- ROLAP [Nig01]. The former uses multidimensional databases
as support, while the second manipulates data directly on relational databases. Both
architectures implement analysis features of similar levels. However, MDOLAP imple-
ments this capability on top of previous access to metrics or stored values. In ROLAP,
measures only exist if they are stored, otherwise they will have to be calculated.

Other OLAP attributes, such as Dimension (number of dimensions) and the Atom-
icity (atomic data volume) are significant to the applicability of each one of the archi-
tectures.

OLAP systems are mainly related with reading and aggregating large heteroge-
neous data sets, trying to unveil relationships or patterns (patterns) from data. Such
dynamic multidimensional analysis of consolidated data supports all features presented
earlier in section 2.7.1 - Multidimensional Analysis.

To conclude this description of methods for knowledge discovery in information



CHAPTER 2. RESEARCH FOUNDATIONS 51

systems, one must say that, although the goals are the same, DataMining should not
ne confused with OLAP and Decision Support, because these technologies, as we have
presented, use a deductive reasoning. They need the user intervention to generate
queries or formulate hypotheses. By contrast, DataMining techniques use induction,
working in a way similar to Artificial Intelligence, where the user looks for a model to
discover previous patterns and foresee future behaviors.

2.8 User Interfaces Evaluation

User interfaces evaluation and feedback are final steps which should analyze the final
outcome of the interface design. As we can see in UI properties (section 2.2), this
phase must guarantee that properties are present and must measure them qualitatively.
This can be a very hard and complex task.

As seen previously in section 2.3.5, [Reh01a] reveals that a lot of applications
(all of them with UI) violate basic HCI guidelines. So the scenario is not auspicious
and, naturally, the work to be done should continue harder, more tests and evaluations
processes will be needed.

[Mac96] describes the main problems present in these processes, which explain
why current research focus this area. We can also see that formal methods appear
as a way to get some systematic tests and, because of their rigor, to get interesting
measures. The main problems are:

1. Lack of systematic approaches for testing

2. Validity, consistency and reliability of these approaches

3. Too many evaluation dimensions

4. Variety in specification

5. Evaluation costs

6. Adaptability to various environments

7. Extensibility to advances in technology

8. Adaptability to multiple devices

Along this work we make contributions to the body of work on the first problem
presented above, applying VDM TestCoverage and Invariants proof features to analyze
and certify UI formal specifications.

2.9 Conclusions

The aim of this chapter was to present the main and most recent technological concerns
and contributions for user interfaces design.



CHAPTER 2. RESEARCH FOUNDATIONS 52

This chapter offered arguments to analyze methodologies, technologies and frame-
works suitable to UI design, and also described the main UI properties that must be
implemented under HCI models.

It should be clear now that all main phases of the process: analysis and specifi-
cation, design and evaluation, can be supported by different technologies and tools,
where the programmer needs to work the interfaces and data under distinct and in-
dependent processes. From several existing UI programming methods, the markup
paradigm appeared as an important alternative, allowing data description and repre-
sentation.

Describing the VDM language, this chapter showed the applicability of VDM-SL
as an important contribute against the unaccomplished application of formal methods
on UI specification, following its rigor and capacity to model real problems.

In the next chapter we will see in more detail the importance and applicability of
markup languages for user interface description.



Chapter 3

Markup Languages for User
Interface description

3.1 Presentation

Over the past few years, there have been a number of industrial and academic initiatives
to standardize many data types towards application interoperability. However, it seems
that the same did not happen in the interface design area.

It is relieving to know that the W3C - World Wide Web Consortium [Con03b]
and OASYS - Organization for the Advancement of Structured Information Systems
[OAS03] have worked towards the great dissemination of XML and of some stan-
dards for application interoperability (like SOAP1) and several XML applications for
multiple distinct areas2. Focusing on our main goal, there are already several XML
applications aiming user interface specifications3.

EAI4 [Lin00]is a scientific group concerned with application integration which
alerts for the importance of user interfaces in the overall integration process. However,
due to the non existence of a standard to describe and manipulate interaction data,
a great opportunity is being lost. It is well-known that user-interface “engineering”
was deferred to second level in previous computing models [PE02b]. So, there is a
great opportunity for better interface design support, both at operation and evaluation
levels. In dealing with standard methods and technologies with some concerns for
sharing and reusing, caution, rules and concepts are required. If we wish to share
information (of any type) across different information systems it is important to have
these assumptions [BCMS02] in mind and, in particular, a standard ontology to rely
on.

In the following sections we are going to present some of this work, trying to
show its importance and influence in state-of-the-art software engineering. Our work
research has been concerned with UIML, one of these efforts, which we will describe
later in some detail.

1SOAP - Simple Object Access Protocol
2http://xml.coverpages.org/xmlApplications.html
3http://xml.coverpages.org/userInterfaceXML.html
4EAI - Enterprise Application Integration

53



CHAPTER 3. MARKUP LANGUAGES FOR USER INTERFACE DESCRIPTION54

3.2 XIML - eXtensible Interface Markup Language

The XIML - eXtensible Interface Markup Language is concerned with defining a com-
mon representation and manipulation operators for interaction data [PE02b]. As ar-
gued by the XIML Organization [For], “. . . it can provide a standard mechanism for ap-
plication and tools to interchange interaction data and to inter-operate with integrated
user-interface engineering processes, from design, to operation, to evaluation. . . ”.

3.2.1 Scope

This markup language is concerned with the description of abstract, concrete and re-
lational interface data items, as well as features to design, operate and organize such
data in the context of user interface engineering.

3.2.2 Requirements

As a new proposed representation methodology, there are requirements in terms of
notation, scope and underlying support technologies, which can be summarized as
follows:

• a central repository of data, enabling a storage mechanism for interaction data;

• a comprehensive lifecycle support, enabling support functionality throughout the
whole user interface development process;

• abstract and concrete elements - allowing for the representation of abstract and
concrete (implementation level) interface data;

• relational support - for the various interface elements;

• Underlying technology - on the one hand, this must be supported by a technology
adopted by recent computing models - XML is clearly one of it; on the other
hand, it must coexist with existing methodologies and tools (for compatibility).

3.2.3 Structure

Figure 3.1 presents the main structure of the XIML language, characterized for an
hierarchy of distinct object types.

In its most basic sense, XIML is an organized collection of interface elements that
are categorized into one or more major interface components [PE02b]. As is usual in
XML markup language types, there is not a limit for the number and type of elements.
However, its specification predefines five basic interface components, namely task,
domain, user, dialog and presentation.

Tasks (and subtasks) capture the business process and/or user tasks that the inter-
face supports. An example can be “Enter Address”, for instance.

The domain component is an organized collection of data objects and classes of
objects that is structured into a hierarchy. An example could be “Address”, for in-
stance.



CHAPTER 3. MARKUP LANGUAGES FOR USER INTERFACE DESCRIPTION55

XIML


Components
 Relations
 Attributes


Elements
 Statements
 Definitions


Figure 3.1: Basic structure of XIML language (adapted from [PE02b])

The user component defines a hierarchy a tree of users and associated character-
istics.

The presentation component defines a hierarchy of interaction elements (concrete
objects) that communicate with users in an interface. Examples of these are a pushbut-
ton, a slide or even an ActiveX [PSM+03] control.

The dialog component defines a structured collection of elements that determine
the possible interaction actions (“Click”, “OnMouseOver”, etc.) as also specifies the
flow among those interaction actions that constitute the allowable navigation of the
user interface.

To summarize, the first three of these components can be characterized as contex-
tual and abstract, while the last two can be described as implementational and concrete.
Components are then mapped into elements (widgets [Mic03a] are an example of such
concrete representations). It is also possible to define other components, because of
the extensibility of these languages.

A relation in XIML is a definition or a statement that links any two or more XIML
elements either within one component or across components. For example,“Data type
A is displayed with Presentation Element B or Presentation Element C” (relation in
italic) is a link between a domain-component element and a presentation component
element. XIML supports relation definitions that specify the canonical form of a rela-
tion, and relation statements that specify recent instances of relations. However, XIML
does not specify the semantics of those relations [PE02b, PE02a].

Attributes are features or properties of elements to which values of several types
can be assigned . These attributes follow the XML attribute definition rules, that is,
they are pairs of name-values.

3.2.4 Importance

In order to evaluate the importance and usefulness of XIML, we have tried to find
recent projects supported and eventually test results. However, both are difficult to
find, because most are non academic projects.

Anyway, the promoters [For] of this language announce its applicability to several
significant issues [PE02a] in computer science:



CHAPTER 3. MARKUP LANGUAGES FOR USER INTERFACE DESCRIPTION56

• Hand coded representation of interfaces

• Multi-platform interface development

• Intelligent interaction management

• Task modelling

• Reverse engineering

Taking these “may-be” advantages into account, our assessment of the XIML lan-
guage, underscores its concern with logical separation of user interface and its im-
plementation, as previous computing models announced [Mar95], and its intention to
respond to multiple devices, enabling a rendering process of the XIML interface defi-
nition to different platforms (PDA, Web browser, etc.)

3.2.5 Remarks

We will see later on, as also announced by XIML promoters, that XIML is “similar”
to UIML, the markup language analyzed later in section 3.4. Maybe the difference
is the context of each one, XIML being more an industrial initiative against the more
academic flavour of UIML. This fact may justify the “separation” between them.

Anyway, there is insufficient bibliography available and source code examples to
explore! A little privacy would be better.

3.3 XUL - XML-based User-interface Language

We shall avoid re-inventing the wheel [Con02]

XUL, which must be pronounced as zool, stands for XML-based User Interface
Language. This cross platform way for describing user interface [Rec03c], was first
built by the Mozilla project5 to be used in their Mozilla web-browser. Before this work
was carried out, there was almost “nothing” available. Many W3C standards appeared
as consequence of this work, such are the case of XML 1.0, HTML 4.0 [Rec04a];
Cascading Style Sheets (CSS) [Rec03a] 1 and 2; Document Object Model (DOM)
Levels 1 and 2 [Rec03b]; and JavaScript 1.5 [Mic03f], including ECMA-262 Edition
3 (ECMAscript) [Hel03].

For all these contributions, this language was very expressive and relevant dur-
ing a particular period. It was the first significant documented effort to represent and
describe user interfaces focused mainly on Web applications.

3.3.1 Scope

Created by Mozilla, XUL is used mainly to construct the graphical user interface for
the Mozilla browser client. Because it is XML-based, all XUL components could

5http://www.mozilla.org



CHAPTER 3. MARKUP LANGUAGES FOR USER INTERFACE DESCRIPTION57

be reused for any other browser, since there exists an appropriate parser. It is not a
meta-language. It describes directly widgets or graphical objects.

For cross-platform applications it is crucial to have a set of technologies which
hide operating system dependent logic from the application logic. Mozilla and XUL
together allow for this [Pla03].

3.3.2 Requirements

All requirements are directly associated to the Mozilla browser platform. It must be
possible to represent not only basic UI controls (such as Menus, Command buttons,
TextBox) but also more comprehensive composite widgets, such as Tree widget, Com-
boBox, and File Picker, etc. All XML processors for XUL must support Unicode
encoding [Che99].

The XUL Consortium [Rec03c], created XUL as being:

• Standard Compliant. Both existing internationalization solutions and new pro-
posals shall be taken into consideration.

• Simple. The solution shall be easy to implement, and will integrate seamlessly
with core development.

• Portable. The majority of Mozilla modules are platform-independent (available
on Unix, Windows, Macintosh and others) .

• Extensible. Having in mind that a solution adopted now might not be valid in
the future, they created it flexible enough to support future extension.

• Separable. Resources shall be placed into external files (as done with CSS files).

• Consistent. Same schema solutions for different modules.

• Dynamic binding. Some of the resources requiring translation may be dynamic,
usually because they require string composition, e.g., “installing item 5 of 10”.

• Validatable. The result shall be easily validated by translators.

• Invisible. As much as possible, the standard tools that create English UI should
emit files ready to XUL authoring process.

• Efficient. The implementation of the solution shall not cause any consequent
application problems (performance, memory, etc.).

As a XML-based language, XUL has adhered to the W3C XML1.0 standard spec-
ification and follows the syntax rules defined there. In particular,

• all events and attributes must be written in lowercase;

• all strings must be double quoted, including those for attributes values;

• every XUL element must use close tags (either <tag>< /tag> or <tag/ > for
empty elements), to be a valid document;



CHAPTER 3. MARKUP LANGUAGES FOR USER INTERFACE DESCRIPTION58

• all attributes must have a value.

A main concern in the design of this language has been its capacity to be Scriptable
(changes without recompilation), and to support multiple platforms - Cross-platform
and Customizable using RDF6 [Moz03] technology.

3.3.3 Structure

A typical XUL file can contain standard XML elements, XUL specific elements, style
information (CSS), HTML, and JavaScript functions. Having a window element as
root all XUL interface must be defined inside it. Typically, a XUL interface is a com-
bination of menubars, toolbars and content areas, like window [Con02]. So, there
could be:

• XML declarations and elements

• UI elements and tags (Menus,ComboBox,Tree widget, etc.)

• HTML markups

• Style and layout (using CSS)

• Script functions (using Javascript)

• Chrome URLs (top level window which contains groups of UI elements of var-
ious types)

Being a user interface describing language, XUL supports directly objects descrip-
tion and representation. The bulleted list which follows describes the supported widget
types [Moz03]:

• windows

• box

• menus and menubars

• toolboxes and toolbar

• tab widget

• checkbox

• titled buttons

• scrollbar

• splitter

• progessmeter

6RDF - Resources Description Framework, not explored in this document.



CHAPTER 3. MARKUP LANGUAGES FOR USER INTERFACE DESCRIPTION59

Let us see an example, adapted from [Moz03], which represents a particular win-
dow with a XUL Grid element (in form format):

Listing 3.1: XUL User Interface example

<? xml v e r s i o n =” 1 . 0 ” ?>
2 <? xml - s t y l e s h e e t hre f =” chrome : / / g l o b a l / s k i n ” type =” t e x t / c s s ” ?>

<!DOCTYPE window>

4 <window i d =” by l u f e r ” t i t l e =” M o z i l l a XUL Example ”
xmlns : html=” h t t p : / / www. w3 . org / 1 9 9 9 / xhtml ”

6 xmlns=” h t t p : / / www. m o z i l l a . o rg / k e y m a s t e r / g a t e k e e p e r / t h e r e . i s . on ly . x u l ”
s t y l e =” background - c o l o r : # cc9933 ; ”

8 width=” 300 ” h e i g h t =” 215 ” o n l o a d =” centerWindowOnScreen ( ) ”>
<s c r i p t type =” a p p l i c a t i o n / x - j a v a s c r i p t ”

10 s r c =” chrome : / / g l o b a l / c o n t e n t / d i a l o g O v e r l a y . j s ” />
<vbox a l i g n =” c e n t e r ”>

12 < l a b e l va lue =” ” />
< l a b e l s t y l e =” f o n t - w e i g h t : bo ld ; f o n t - s i z e : 1 2 p t ”

14 va lue =”XUL example f o r UI ” />
< l a b e l va lue =” ” />

16 <image s r c =” ” />
< / vbox>

18 <g r i d>

<columns><column f l e x =” 1 ” /><column f l e x =” 2 ” />< / columns>
20 <rows>

<row a l i g n =” c e n t e r ”>
22 < l a b e l va lue =” T i t l e ” />

<t e x t b o x i d =” t i t l e - t e x t ” o n i n p u t =” T e x t b o x I n p u t ( t h i s . i d ) ” />
24 < / row>

<row a l i g n =” c e n t e r ”>
26 < l a b e l va lue =” Author ” />

<t e x t b o x i d =” a u t h o r - t e x t ” o n i n p u t =” T e x t b o x I n p u t ( t h i s . i d ) ” />
28 < / row>

<row a l i g n =” c e n t e r ”>
30 < l a b e l va lue =” About ” />

<t e x t b o x i d =” about - t e x t ” o n i n p u t =” T e x t b o x I n p u t ( t h i s . i d ) ” />
32 < / row>

< / rows>
34 < / g r i d>

<vbox a l i g n =” c e n t e r ”>
36 < l a b e l va lue =” ” />

< l a b e l s t y l e =” f o n t - w e i g h t : bo ld ; ” va lue =” Simple XUL Window example
38 f o r D e s c r i b i n g User I n t e r f a c e s ” />

< l a b e l va lue =” ” />
40 <image s r c =” x f l y . g i f ” />

<b u t t o n l a b e l =” t e s t ” oncommand=” a l e r t ( ’ H e l l o World ’ ) ; ” />
42 < / vbox>

< / window>

Figure 3.2 depicts the Mozilla output for this XUL sample:

3.3.4 Importance

As stressed in our previous analysis of XIML, the expressiveness of a particular lan-
guage must reflect into their use or application. In case of XUL this is clearly demon-
strated by looking at the consequences of its creation. Several current XML “assump-
tions” arise from such work, mainly the recent XML standard, release 1.0.

From a technological perspective, XUL is:

• a XML language with an abstract notation distant from usual languages like
Java, HTML, etc;



CHAPTER 3. MARKUP LANGUAGES FOR USER INTERFACE DESCRIPTION60

Figure 3.2: XUL window example

• with clearly separations of interface contents from its structure;

• with clearly separations of business logic from the presentation logic, as many
UI models advise [Mar95].

This turns this language into a significant reference, which guarantees its porta-
bility across platforms. As in other languages, in XUL the designer can concentrate
work only on interface layout and ergonomic questions, leaving other responsibilities
to other programmers.

3.3.5 Remarks

XUL looks at time of writing like an abandoned initiative, apparent from the lack of
recent events or published results. However, one can see that several other languages
share XUL as their foundation (UIML is one of them). The rigid relation to Mozzila
could be the cause for this almost “hang on” moment. On the one hand, many people
use different browsers and on the other hand, there is not sufficient information about
XUL portability and support.

3.4 UIML - User Interface Markup Language

“One application, multiple User Interfaces” [Vög03]

UIML, abbreviation of User Interface Markup Language, has been proposed by
Harmonia (http://www.harmonia.com) since 1998, as a XML-language to describe
user interface elements and respective behavior.

3.4.1 Scope

Following their principle “one application, multiple interfaces”, the main reason for
this investment resides in the fact that it is important to use the required information



CHAPTER 3. MARKUP LANGUAGES FOR USER INTERFACE DESCRIPTION61

in any output device (Phone, PDA, etc.) [AA01]. In short, developers describe the
UI regardless of its concrete future platform. The existing rendering mechanism spe-
cific for the selected platform does the rest, generating the intended interface, be it
HTML for Web browsers, or WML for WAP [For03] devices, or VoiceXml [Rec04b]
for multimedia devices, or CHTML [Rec98a] for devices like SmartDevices or PDA,
etc.

3.4.2 Requirements

Following Harmonia [Har98], the main reasons for the UIML initiative, are as follows:

• UIML is a XML-based Meta-Language. As in XML, there is no specific tag
name directly associated to a concrete visual component (ListBox, PushButton,
etc.). It allows the possibility to constitute a specific vocabulary for describing
its concreteness. In this way, UIML can be adapted to almost any platform.

• UIML can be transformed (“transcoded”) to any imperative language like C++,
Java, Tcl/Tk, as well to any known Markup language as XHTML, WML, etc.

• UIML enables a multiple description of interface and respective behavior with-
out the need to appeal to auxiliary technologies like Javascript, Embedded lan-
guages, etc.

In other words, what we can say about UIML is that:

• there are no specific tags like <pushbutton>, <listbox>, etc.

• there exists a particular set of restrict tags but only for describing UI structure,
always far from concrete representation.

• a specific vocabulary is necessary to make it “talk”, ie, to allow for final code
generation - Rendering process - to the intended platform.

• one does not need to change UIML to handle a new device. It will only be
necessary to get its particular vocabulary.

3.4.3 Structure

Any UIML document structure is restricted to its DTD (listed in appendix C of this
document) or XSchema . Let us analyze an example of UIML in order to better under-
stand its structure.

Listing 3.2: UIML Hello World example (adapted from [AH02])

<? xml v e r s i o n =” 1 . 0 ” ?>
2 <!DOCTYPE uiml PUBLIC ” - / / Harmonia / / DTD UIML 3 . 0 D r a f t / / EN”

” h t t p : / / u iml . o rg / d t d s / UIML3 0a . d t d ”>
4 <uiml>

< i n t e r f a c e>

6 <s t r u c t u r e>

<p a r t i d =” TopHel lo ”>
8 <p a r t i d =” h e l l o ” c l a s s =” h e l l o C ” />



CHAPTER 3. MARKUP LANGUAGES FOR USER INTERFACE DESCRIPTION62

< / p a r t>
10 < / s t r u c t u r e>

<s t y l e>
12 <p r o p e r t y p a r t -name=” TopHel lo ” name=” r e n d e r i n g ”>C o n t a i n e r

< / p r o p e r t y>

14 <p r o p e r t y p a r t -name=” TopHel lo ” name=” c o n t e n t ”>H e l l o
< / p r o p e r t y>

16 <p r o p e r t y p a r t - c l a s s =” h e l l o C ” name=” r e n d e r i n g ”>S t r i n g
< / p r o p e r t y>

18 <p r o p e r t y p a r t -name=” h e l l o ” name=” c o n t e n t ”>H e l l o World !
< / p r o p e r t y>

20 < / s t y l e>
< / i n t e r f a c e>

22 <p e e r s> . . . < / p e e r s>
< / u iml>

Should we intend to represent the target platform, the corresponding <peers>
element must be defined. For instance, if one intends to generate an interface to a
WAP device (e.g. mobile phone), the peers element will be that of Listing 3.3 and
the respective WML rendering result (using Harmonia WML render) should be that
represented on Listing 3.4.

Listing 3.3: WML <peers> example

<p e e r s>
2 <p r e s e n t a t i o n name=”WML”>

<component name=” C o n t a i n e r ” maps - t o =”wml : c a r d ”>
4 <a t t r i b u t e name=” c o n t e n t ” maps - t o =”wml : c a r d . t i t l e ” />

< / component>
6 <component name=” S t r i n g ” maps - t o =”wml : p ”>

<a t t r i b u t e name=” c o n t e n t ” maps - t o =”PCDATA” />
8 < / component>

< / p r e s e n t a t i o n>

10 < / p e e r s>

Listing 3.4: WML rendering result

<? xml v e r s i o n =” 1 . 0 ” ?>
2 <!DOCTYPE wml PUBLIC ” - / /WAPFORUM/ / DTD WML 1 . 0 / / EN”

” h t t p : / / www. wapforum . org /DTD/ wml . xml ”>
4 <wml>

<c a r d t i t l e =” H e l l o ”>
6 <p>H e l l o World !< / p>

< / c a r d>

8 < / wml>

As we can see, an UIML document is a typical XML document, with a normal
“prolog” and a XML tree started by root element called uiml. This and all other rules
for document structuring are presented on its associated DTD (appendix C). Let us
describe the main UIML elements a little more:

• in prolog, there must be a reference to the UIML DTD;

• As <uiml> (the root element) child elements, there are:

– an (optional) <header> element (there is none in this example) which
records metadata about the document;

– an (optional) <interface> element in which the interface parts, their struc-
ture, content, style, and behavior must be described;



CHAPTER 3. MARKUP LANGUAGES FOR USER INTERFACE DESCRIPTION63

– an (optional) <peers> element which must map from each property and
event name used to a presentation toolkit and to the application logic:

– an (optional) <template> element which allows for reusing UIML frag-
ments:

Considering this, a typical UIML document can have the structure of Listing 3.5.

Listing 3.5: Typical UIML document

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”ISO -8859 -1 ” ?>
2 <!DOCTYPE uiml PUBLIC

” - / / Harmonia / / DTD UIML 2 . 0 D r a f t / / EN” ” UIML2 0e . d t d ”>
4 <uiml>

< i n t e r f a c e>

6 <s t r u c t u r e> . . .< / s t r u c t u r e>

<s t y l e> . . .< / s t y l e>
8 <c o n t e n t> . . .< / c o n t e n t>

<b e h a v i o r> . .< / b e h a v i o r>
10 < / i n t e r f a c e>

<p e e r s>
12 < l o g i c> . . .< / l o g i c>

<p r e s e n t a t i o n> . . .< / p r e s e n t a t i o n>

14 < / p e e r s>
<t e m p l a t e> . . .< / t e m p l a t e>

16 < / u iml>

Because UIML will be used on most experiments of this thesis, it is important
to have more details about each element of an UIML specification. In Chapter 4 it
is possible to make a detailed analysis of all UIML specification [AH02] elements.
Figures 3.3, 3.4 and 3.5 depict the hierarchy of main UIML elements (release 3.0):
uiml, peers and interface (the appendix D of this document depicts the complete UIML
hierarchy).

uiml


head


meta


peers
 template
interface


Figure 3.3: The uiml element

3.4.4 Importance

UIML appears to be an easy-to-use markup language, independent from any concrete
representation or device platform, helping those programmers who find it hard to adopt
a particular programming paradigm (like OO, logic programming or others), or less
technical information to support a particular device, to go further. Our understanding
of the main advantages of UIML is as follows:

• it allows developers or programmers to implement UI for almost any device
without the need to completely understood the respective API;



CHAPTER 3. MARKUP LANGUAGES FOR USER INTERFACE DESCRIPTION64

interface


structure
 style
 content
 behavior


rule


action


call


constant


condition


event


property


reference


equal


part


iterator


op


repeat


Figure 3.4: The peers element

peers


presentation
 logic


d-class


d-property


d-param


d-component


d-method


script


event
 listener


Figure 3.5: The interface element

• it provides a clear separation of programming logic and end user UI require-
ments, working for the specialization and maximization of working team capac-
ity.

• it enables a UI description without knowing a particular programming language
(UIML is almost a natural text language).

• the portability and internationalization are ensured thanks to XML.

• it provides important security possibilities, because there is only one document
to deal with.

• it allows for rapid prototyping of UI.

• it provides support for future technologies.



CHAPTER 3. MARKUP LANGUAGES FOR USER INTERFACE DESCRIPTION65

At the moment, there are eleven vocabularies available (e.g, Java AWT, WML,
HTML, etc.) [Org98]. However, research are under way on a Generic Vocabulary
which should allow the conversion of generic terms to a particular toolkit. The main
features of this new vocabulary are based on (a) the possibility to describe any UI for
a family of devices and (b) being generic enough to be used without having expertise
in all multiple platforms and toolkits within the family [APQA02].

There is, however, an important handicap: at time of writing, UIML is not yet a
recognized standard.

3.4.5 Remarks

In section 2.3.4 we anticipated that UIML is an outcome of the Meta-Interface Model.
Figure 2.8 on page 21 shows the proximity of UIML architecture and that model.

It has become a significant markup language to describe user interfaces, with a
substantial expressiveness on UI development. It has advanced greatly once Harmo-
nia and UIML.org proposed a Technical Committee to OASIS [OAS03], towards a
standardization process.

There is a clear separation of content, structure and style, and the ability to ren-
der to any specific UI language, allowing for the canonical representation7 of any UI
suitable for mapping to existing languages [Hel03].

UIML could combine with other existent initiatives inheriting their most interesting
features and developing new nonexistent ones. In what follows we present a possible
comparison of UIML with other significant markup languages. Later, in Chapter 4, we
will see the application of UIML on user interface specification and description.

3.5 Relationship between UIML and other UI Markup lan-
guages

From the above we can conclude that there are a few technologies enabling user in-
terface description. In this context, we must highlight Web applications and Markup
languages.

Markup languages can be justified by (a) being familiar for the Web community;
(b) reducing the amount of necessary expertise; (c) giving direct support to Web-based
applications;(d) Leveraging XML and (e) reducing the number of distinct technologies
to assimilate [PA99].

Web applications are relevant because (a) they run on HTML browsers available
for a variety of platforms; (b) they are accessible over the Internet and (3) they are
simple and easy to build.

Figure 3.6 shows where UIML can be placed with respect to portability and ab-
straction capabilities.

Let us now take a look at the most significant XML-based markup technologies,

7 A canonical representation can be seen as a metaphor-independent enumeration of the parts, behav-
iors, content and style of user interface [AH02].



CHAPTER 3. MARKUP LANGUAGES FOR USER INTERFACE DESCRIPTION66

Level of

Abstraction


Portability


Mot/Intel


C++/WFC


Java/JFC


SpeechML

XUL
 WML


UIML


Figure 3.6: Portability of UIML (adapted from [PA99])

dealing with user interfacing, and see how UIML compares with them [Hel03].

3.5.0.1 UIML and XUL

XUL and UIML have several key similarities and it is difficult to say which of them is
the source of the other [Hel03]:

Similarities:

• Both are XML-based;

• Both provide desktop platform portability by abstracting the user interface defi-
nition away from concrete languages such as Java, C++, or HTML.

• Both provide ease of localization, customization, and personalization by sepa-
rating content from structure.

• Both separate the business logic from the presentation logic.

Differences:

• The programmer must combine XUL, JavaScript, XBL, CSS, and DTD of string
bundles, while UIML packages everything into a language.

• UIML is a meta-language.

• UIML seeks to break the definition of a user interface into its six fundamental
components: structure, content, style, behavior, presentation, and logic.

• Vocabulary is not a part of the UIML specification and can be customized for
whatever domain and/or widget set is appropriate to the target application.

3.5.0.2 UIML and AUIML

AUIML - Abstract User Interface Markup Language8 was developed by IBM, with the
main goal to allow UI designers to develop the interface independently of any concrete

8http://xml.coverpages.org/userInterfaceXML.html



CHAPTER 3. MARKUP LANGUAGES FOR USER INTERFACE DESCRIPTION67

device specific realizations.

As AUIML has a specific vocabulary using tags like<group>,<choice>,<caption>,
and <string> to represent data [Luy01], a new vocabulary can be defined for UIML
that maps directly to AUIML’s tag set. This will allow UIML to easily represent any
interface that can be defined in AUIML [Hel03].

At the time of writing AUIML looks a standby initiative.

3.5.0.3 UIML and XIML

As seen in section 3.2, XIML and UIML seem to be both overlapping and complemen-
tary at the same time. The overall goal of both languages is to serve as a universal,
canonical language for specifying user interfaces on computing devices. However,
XIML’s emphasis on the early design level, generic components of a user interface
and UIML’s ability as a meta-language to apply to late-design and implementation
leaves room for both languages to complement each other [Hel03].

However, XIML has an important “joker” over UIML. It is prepared to deal with
interaction context data to support knowledge-based system functions and has a clear
separation of interface description from its rendered platform. Is this or not an advan-
tage?

3.5.0.4 UIML and XForms

In section 2.3.2 (pag. 18) we could see the relevance of XForms in Web Programming.
On the other hand, we could analyze the actual expressiveness of UIML as another
expressive and significant language which operates over user interfaces. It seems, in a
first analysis, that they are very similar technologies. Thus, it is very important to try
and compare them.

Basically, UIML provides flexibility in form and function that can be used to rep-
resent any UI. So, UIML can be used to define interfaces that represent, not only the
XForms sections of the UI, but also the XHTML [W3C03] in which the XForms tags
are embedded [Rec03f].

Without trying to select a “winner”, there are some situations where these lan-
guages work differently:

• XForms allows great advances on web forms, including remote process;

• UIML would be capable of defining a canonical representation of any UI.

• UIML can be used to serve as an intermediary so that transformers designed
by one researcher from a language or model to UIML can be used in conjunc-
tion with transformers designed by another researcher from UIML to another
language or model [Vög03]. XForms is not powerful enough to allow that.

• UIML provides strict separation of the user interface elements (we could find it
in section 2.3.4 (on page 20) when we presented the model MIM) . This does
not happen in XForms.



CHAPTER 3. MARKUP LANGUAGES FOR USER INTERFACE DESCRIPTION68

• UIML describes connection methods between the UI and whatever the UI in-
tends to interact with. In particular, UIML should describe the wiring of the UI
to business logic that uses a procedure call model or a Web services server that
uses SOAP; or a web server using HTTP GET and PUTs; or a publish/subscribe
protocol using events to push content to the UI; and so on [Vög03]. In contrast,
XForms builds on the HTTP GET/PUT model of the Web.

• Because of its extensibility, UIML allows any UI metaphor [Mar95]. XForms is
restricted to the web-forms model of interaction.

• UIML should represent the real world, allowing for descriptions of UIs ex-
pressed using almost free vocabulary abstractions rather than the selected fu-
ture support (language, visual components, etc.). XForms is conditioned by its
restricted notation.

• UIML should support behaviors, so that much of the JavaScript in traditional
web pages can be described in a device-independent form. In contrast, XForms
uses XEvents [Rec03e].

3.5.0.5 Remarks

UIML has been identified with some other languages and even several work groups
like W3C, HCI, WAI - Web Accessibility Initiative, DIWG - W3C Device Independence
Working Group, etc. For a deeper perspective of these relationships, see [Hel03].

We can also confirm that UIML does not walk alone on this path, ignoring all other
initiatives. For instance, in the current UIML version (3.0) it is even better to use
XForms with UIML than to work directly with HTML.

Being UIML an XML schema targeted to serve as an universal interchange format
to represent any UI - regardless of UI metaphor, language, operating system and de-
vice [Pha00], we decided to explore it more deeply. If this work focused only web
applications the decision could be different.

XUL was also explored because of its easy and clear representation of visual com-
ponents, allowing us to ignore more complex details and to analyze direct mapping of
interaction objects. However if we need more abstraction, XUL is not enough. So the
choice of UIML followed.



Chapter 4

UIML Formal Specification

“The design objective of the UIML is to provide a canonical representation
of any UI suitable for mapping to existing languages.”1

The specification of a user interface system should agree with an IDL - Interface
Description Language2, able to describe each visual component of a Visual Compo-
nent Library (VCL), its behavior (actions), channels, interaction and in and out rela-
tionships.

The UIML should not be considered a pure VCL because it “works” away from
any concrete representation. However it can be understood as so in the sense that it
describes visual components that can be represented in a concrete graphical environ-
ment.

The purpose of this chapter is to formally define, in VDM-SL notation, (recall
section 2.4.3), the specification of the graphic elements of the UIML visual component
library, including system properties and operationality.

For our intention to evaluate the components behavior and operationality (ease of
use, ergonomics, etc.), it is important to animate the specification and the application
using prototyping models. The VDMTOOLS [IFA00c] application will support this
simulation process.

4.1 VDM-SL Specification

4.1.1 Terminologies

This section presents the main definitions of UIML 3.0 specification, as described in
[AH02].

Application: Wherever we speak of building an UI , the UI itself along with the
underlying logic that implements the functionality visible through the interface
is called the application.

1UIML3.0 Language Specification. Harmonia, Inc.
2Acronym IDL arises in systems integration terminology

69



CHAPTER 4. UIML FORMAL SPECIFICATION 70

Canonical Representation: An UI metaphor-independent enumeration of the parts,
behaviors, content, and style of a user interface.

End-user: The person that uses the application.

Application Logic: Code that is part of the application but not part of the UI . In a
three-tier system architecture model (section 2.6.2 on page 39), the application
logic is the middle layer that mediates communication between the database and
presentation layers.

Device: A device is a physical object with which an end-user interacts using an UI ,
such as a PC or a Smart Device.

UI Toolkit: A toolkit is the markup language or software library upon which the UI
of an application runs. Harmonia [Har98] uses the word “toolkit” to mean both
markup languages that are capable of representing UI (e.g., Wireless Markup
Language - WML [For03], HTML [Rec04a], and VoiceXML [Rec04b]) as well
as APIs for imperative programming languages (e.g., Java AWT, Java Swing
[Mic03e], Microsoft Foundation Classes [Mis99]).

Platform: A platform is a combination of a device, an operating system (OS) and
an UI toolkit. An example of a platform is a PC running Windows on which
applications use the Java Swing [Mic03e] toolkit. Another example is a cellular
phone running a manufacturer-specific OS and a WML [For03] render.

Rendering: Is the process of converting a UIML document into a form that can be
displayed (e.g., through sight or sound) to an end-user, and with which an end-
user can interact. Rendering can be accomplished in two ways:

• By compiling UIML into another language (e.g., WML, Java), which al-
lows for displaying and interacting with the UI described in UIML. Com-
pilation might be accomplished by XSL [Rec01a, Rec99b], or by a pro-
gram written in a traditional programming language (like Perl [Per03], for
instance).

• By interpreting UIML, meaning that a program reads UIML and makes
calls to an API that displays theUI and allows interaction. Interpretation is
the same process that a Web browser uses when presented with an HTML
document.

Rendering engine: Software that performs the actual process or rendering a UIML
document. It could be a StyleSheet (for instance, written in XSL [Rec01a]), a
script (for instance, written in Perl [Per03, Dev03]) or a simple compiled pro-
gram (for instance, written in C ] [SJ03]).

UI Widget: UIML describes how to combine UI widgets. The term widget is tra-
ditionally used in conjunction with a graphical UI. However UIML uses it in
a more general sense, to mean presentation of elements in the context of any
UI paradigm. For example, a widget might be a component in the Microsoft
Foundation Classes or Java Swing toolkits, or a card or a text field in a WML
document.



CHAPTER 4. UIML FORMAL SPECIFICATION 71

Method: UIML vocabulary uses the term method in generically referring to any code
entity (that uses a language other than UIML) that a rendering engine can in-
voke, and which may optionally return a value. Examples include functions,
procedures, and methods in an object-oriented language, database queries, and
directory accesses.

4.1.2 Presentation

UIML can be viewed as a meta or extensible language, analogous to XML. UIML does
not contain specific tags to a particular UI toolkit (e.g., <WINDOW> or <MENU>).
Instead, it uses a set of generic tags (e.g., <part>, <property>).

As mentioned earlier on in section 3.4, page 60, UIML captures the elements that
are common to any UI: the UI parts, events that occur for which parts, presentation
style, content, and interconnection to the application logic. UIML authors specify
instance and class names of their own choice for interface parts, events, and methods.

The UIML document specifies a mapping from those names to names that are
vocabulary specific to a particular target platform. For example, if the target is Java
AWT, the vocabulary might consist of the “java.awt” and “java.awt.event” class names,
such as “JFrame”, “JMenu” and “JButton”. If the target is WML, the vocabulary might
be tag names such as “card”, “select” and “input”. The vocabulary of target platforms
is not a part of UIML. That vocabulary only appears in UIML as the value of attributes
in UIML. Thus UIML only needs to be standardized once, and different constituencies
of end users can define vocabularies that are suitable for various toolkits independently
of UIML.

In addition to creating vocabularies for particular toolkits (e.g., Java AWT), a vo-
cabulary for generic classes of toolkits (e.g., mapping to any graphical UI) could be
devised.

4.2 UIML Overview

In the sequel, we are going now to describe the main parts of a typical UIML document,
their importance and interoperability.

4.2.1 The Structure of an UIML Document

In UIML version 3.0, an UI is a set of interface elements with which the end-user
interacts. Each interface element is called a part; just as an automobile or a computer
is composed of a variety of parts, so is an UI. The interface parts may be organized
differently for different categories of end-users and different families of devices. Each
interface part has content (e.g., text, sounds, images) used to communicate information
to the end-user. Some interface parts can receive input from the end-user. This is
usually achieved through the use of interface artifacts like a scrollable selection list,
pressable button, etc. Since the artifacts vary from device to device, the actual mapping
(rendering) between an interface part and the associated artifact (widget) is done using



CHAPTER 4. UIML FORMAL SPECIFICATION 72

either a <presentation> element or a special <property> element in the <style>
element.

My definition of an user interface in UIML should provide answers for the follow-
ing five questions:

• What parts comprise the UI?

• What presentation style for each part (rendering, font size, color, etc.)?

• What contents for each part (text, sounds, image, etc.)?

• What is the behavior of each part?

• How to connect to the outside world? (business logic, data sources, UI toolkit)

As we could see in Chapter 2.3.4 (page 20), UIML is based on the MIM model
[Pha00].

4.2.2 UIML document

A typical UIML 3.0 document is composed of two main parts:

1. A prolog identifying the XML language version, encoding, and the location of
the UIML 3.0 document type definition (DTD). The next excerpt illustrates this
prolog:

<?xml version="1.0"?> <!DOCTYPE UIML PUBLIC "-//Harmonia//DTD UIML
3.0 Draft//EN" http://uiml.org/dtds/UIML3_0a.dtd">

2. The root element of the document, which is the uiml tag:

<uiml xmlns=’http://uiml.org/dtds/UIML3_0a.dtd’> ... </uiml>

The <uiml> element contains four child elements:

(a) An optional header element giving some more metadata about the docu-
ment:

<head> ... </head>

The <head> element will be discussed in Section 4.3.3.2.

(b) An optional element that allow for reusing UIML fragments:

<template> ... </template>

This element will be discussed in section 4.3.6.2.

(c) An optional UI description, which describes the parts comprising the UI ,
and their structure, content, style, and behavior:

<interface> ... </interface>



CHAPTER 4. UIML FORMAL SPECIFICATION 73

This element will be described in section 4.3.4.3.

(d) An optional element that describes the mapping of classes and names used
in the UIML document to a UI toolkit and to the application logic:

<peers> ... </peers>

The discussion of the <peers> element will take place in section 4.3.5.1.

Listing 4.1 presents a UIML structured document. Listing 4.2 provides an example
of a <peers> specification preparing for the WML [For03] code generation. Having
this, the WML output code would be as presented in Listing 4.3.

Listing 4.1: UIML “Hello World” example

<? xml v e r s i o n =” 1 . 0 ” ?>
2 <!DOCTYPE uiml PUBLIC ” - / / Harmonia / / DTD UIML 3 . 0 D r a f t / / EN”

” h t t p : / / u iml . o rg / d t d s / UIML3 0a . d t d ”>
4 <uiml>

< i n t e r f a c e>

6 <s t r u c t u r e>

<p a r t i d =” TopHel lo ”>
8 <p a r t i d =” h e l l o ” c l a s s =” h e l l o C ” />

< / p a r t>
10 < / s t r u c t u r e>

<s t y l e>
12 <p r o p e r t y p a r t -name=” TopHel lo ” name=” r e n d e r i n g ”>C o n t a i n e r

< / p r o p e r t y>

14 <p r o p e r t y p a r t -name=” TopHel lo ” name=” c o n t e n t ”>H e l l o
< / p r o p e r t y>

16 <p r o p e r t y p a r t - c l a s s =” h e l l o C ” name=” r e n d e r i n g ”>S t r i n g
< / p r o p e r t y>

18 <p r o p e r t y p a r t -name=” h e l l o ” name=” c o n t e n t ”>H e l l o World !
< / p r o p e r t y>

20 < / s t y l e>
< / i n t e r f a c e>

22 <p e e r s> . . . < / p e e r s>
< / u iml>

Listing 4.2: UIML “Hello World” example - WML <peers> description

<p e e r s>
2 <p r e s e n t a t i o n name=”WML”>

<component name=” C o n t a i n e r ” maps - t o =”wml : c a r d ”>
4 <a t t r i b u t e name=” c o n t e n t ” maps - t o =”wml : c a r . t i t l e ” />

< / component>
6 <component name=” S t r i n g ” maps - t o =”wml : p ”>

<a t t r i b u t e name=” c o n t e n t ” maps - t o =”PCDATA” />
8 < / component>

< / p r e s e n t a t i o n>

10 < / p e e r s>

Listing 4.3: UIML “Hello World” example - WML output”

<? xml v e r s i o n =” 1 . 0 ” ?>
2 <!DOCTYPE wml PUBLIC ” - / /WAPFORUM/ / DTD WML 1 . 0 / / EN”

” h t t p : / / www. wapforum . org /DTD/ wml . xml ”>
4 <wml>

<c a r d t i t l e =” H e l l o ”>
6 <p>H e l l o World !< / p>

< / c a r d>

8 < / wml>



CHAPTER 4. UIML FORMAL SPECIFICATION 74

Our next example is a case study dealt with in detail in this work: a Stack UIML speci-
fication. This classic example [Oli02] is well known as having several different UIML
elements. We will provide simulated UIML code excerpts where required, always
refering source code lines.

Conceptually, the stack problem is a simple one. Its interface is mainly supported
by methods Push , Pop, Top and Empty , where:

• Push - adds a new element;

• Pop - removes the top element;

• Top - shows the first element;

• Empty - tests if the stack is empty.

In Appendix H, we present the complete VDM-SL specification, as presented in [Oli02].
Figure 4.1 shows the UIML Java rendered for our stack UIML specification, which is
presented in Listing 4.4. This is an excerpt of the complete UIML specification of the
Stack interface available from Appendix G.1 in this document.

Figure 4.1: Stack Java/UIML interface

Listing 4.4: UIML Stack Interfaces specification

< i n t e r f a c e>

2 <s t r u c t u r e>

<p a r t i d =” Top ” c l a s s =” JFrame ”>
4 <s t y l e>

<p r o p e r t y name=” l a y o u t h g a p ”>10< / p r o p e r t y>

6 <p r o p e r t y name=” l a y o u t v g a p ”>25< / p r o p e r t y>

< / s t y l e>
8 <p a r t i d =” Labe l ” c l a s s =” J L a b e l ” />

<p a r t i d =” S c r o l l P a n e ” c l a s s =” J S c r o l l P a n e ”>
10 <p a r t i d =” L i s t ” c l a s s =” J L i s t ” />

< / p a r t>
12 <p a r t i d =” B u t t o n P a n e l ” c l a s s =” J P a n e l ”>

<p a r t i d =” AddButton ” c l a s s =” J B u t t o n ” />
14 <p a r t i d =” RemoveButton ” c l a s s =” J B u t t o n ” />

<p a r t i d =” TopBut ton ” c l a s s =” J B u t t o n ” />
16 <p a r t i d =” C l e a r ” c l a s s =” J B u t t o n ” />

< / p a r t>
18 < / p a r t>

< / s t r u c t u r e>



CHAPTER 4. UIML FORMAL SPECIFICATION 75

<s t y l e>
22 <p a r t i d =” Top” c l a s s =” JFrame ”>

. . .
24 < / p a r t>

< / s t y l e>

<b e h a v i o r>
28 <r u l e>

. . .
30 < / r u l e>

< / i n t e r f a c e>

<p e e r s>
34 < l o g i c>

. . .
36 < / l o g i c>

<p r e s e n t a t i o n base=” J a v a 1 . 3 Harmonia 1 . 0 ” />
38 < / p e e r s>

< / u iml>

In summary, the skeleton of a UIML document can be approached as presented in
Listing 4.5:

Listing 4.5: Skeleton of a UIML document

<? xml v e r s i o n =” 1 . 0 ” ?>
2 <!DOCTYPE uiml PUBLIC

” - / / Harmonia / / DTD UIML 3 . 0 D r a f t / / EN” ” h t t p : / / u iml . o rg / d t d s / UIML3 0a . d t d ”>
4 <uiml xmlns = ’ h t t p : / / u iml . o rg / d t d s / UIML3 0a . dtd ’>

<head> . . . < / head>
6 <t e m p l a t e> . . . < / t e m p l a t e>

< i n t e r f a c e> . . . < / i n t e r f a c e>

8 <p e e r s> . . . < / p e e r s>
< / u iml>

4.2.3 UIML Namespaces

UIML is designed to work with existing standards. These include other markup lan-
guages that specify platform-dependent formatting (i.e., HTML for text, WML for
Wap, etc.). XML Namespaces remove the problem of recognition and collisions be-
tween elements and attributes of two or more markup vocabularies in the same file. All
<uiml> elements and attributes are inside the uiml namespace, identified by the URI
http : //uiml .org/dtds/UIML3 0a.dtd . Note that this URI has not been activated
yet. The next two examples show this behavior. The excerpt which follows combines
UIML and HTML vocabularies:

<uiml:UIML xmlns:uiml=’http://uiml.org/dtds/UIML3_0a.dtd’>
<uiml:interface>

<uiml:structure>
<uiml:part uiml:name="A"/>

</uiml:structure>
<uiml:style>

<uiml:property uiml:name="content" uiml:part-name="A">
<html:em xmlns:html=’http://www.w3.org/TR/REC-html40’
>Emphasis</html:em>
</uiml:property>



CHAPTER 4. UIML FORMAL SPECIFICATION 76

</uiml:style>
</uiml:interface>
</uiml:uiml>

The above code can be simplified by making UIML the default namespace, as follows:

<UIML xmlns=’http://uiml.org/dtds/UIML3_0a.dtd’> <interface>
<structure>

<part name="A"/>
</structure>
<style>

<property name="content" part-name="A">
<html:em xmlns:html=’http://www.w3.org/TR/REC-html40’
>Emphasis</html:em>
</property>

</style>
</interface>
</uiml>

To learn more about XML Namespaces please, refer to [Con00].

4.2.4 UIML Elements

Table 4.1 provides an overview of all elements in UIML and an index to where they
are discussed in the remainder of this chapter. The UIML 3.0 DTD is presented in
Appendix C.

Figures 4.2, 4.3 and 4.4, depict the hierarchy of main UIML elements: <uiml>,
<interface> and <peers>. However, the complete UIML 3.0 hierarchy elements is
depicted on Appendix D of this document.

uiml


head


meta


peers
 template
interface


Figure 4.2: <uiml> hierarchy

4.3 UIML Formalization

4.3.1 Considerations

In this section we describe informally all UIML elements and attributes and then pro-
pose a corresponding formal specification (in VDM-SL notation).



CHAPTER 4. UIML FORMAL SPECIFICATION 77

Element Purpose Page
<action> Perform an action if the condition of a rule is true 98
<behavior> Specify rules for runtime behavior 93
<by-default> Set of actions to be executed when op conditional is unde-

fined
105

<call> Call a function or method external to UIML document 100
<condition> Specify a condition for a rule 96
<constant> Define a constant value 92
<content> Specify a set of constant values 90
<d-class> Maps class names that can be used for parts and events to

an UI toolkit
111

<d-component> Maps a name used in a call element to application logic
external to UIML document

110

<d-method> Maps a method to a callable method or function in the API
of the application logic

112

<d-param> Defines a single formal parameter to a d-method 114
<d-property> Maps a property name, for parts or events, to methods in

an UI toolkit that get and set the properties value
112

<equal> Compares the value of an event with another value 96
<event> Specify a runtime UI event 97
<head> A container for metadata information 80
<interface> A container for the interface description 83
<iterator> A tag controlling the number of times a virtual tree con-

tained in a repeat element is replicated.
101

<logic> A container for computation components 109
<meta> Define a piece of metadata as a name/value pair 81
<op> Define a conditional expression or operation 98
<param> Actual parameter used in a call element 105
<part> Specify a single interface part 86
<peers> Mapping from property and event names to UI toolkit 107
<presentation> A container for presentation components 108
<property> Specify an interface property 89
<reference> Reference a constant 93
<repeat> Groups parts which are repeated one or more times in a

user interface
100

<restructure> Modify the current virtual tree of parts 102
<rule> A condition/action pair 95
<script> A container for executable script code 115
<structure> Specify an interface physical structure 84
<style> Specify a set of style properties for the interface 88
<template> A container for reusing UIML elements 116
<uiml> Top-level element in each UIML document 79
<when-true> Set of actions to execute when op condition is true 104
<when-false> Set of actions to execute when op condition is false 104

Table 4.1: UIML elements



CHAPTER 4. UIML FORMAL SPECIFICATION 78

interface


structure
 style
 content
 behavior


rule


action


call


constant


condition


event


property


reference


equal


part


iterator


op


repeat


Figure 4.3: <interface> hierarchy

Whenever a new element is introduced in the remainder of the document, we first
give the appropriate DTD fragment. Then a succinct description precedes the corre-
sponding VDM-SL specification. Some examples related to our case study will be also
presented. In the VDM-SL specification [Hop01], for types and functions identifiers,
we adopt the well known “camel” (or Pascal)3 notation convention, i.e., the Name-
Name format. If an identifier name has more than one tag, every tag (except the first)
starts with a capital letter. Selectors of compound types all start with lowercase letters.

4.3.2 VDM-SL Types and common UIML attributes

To get the mathematical accuracy of the intended formalization, this VDM-SL specifi-
cation is supported by finite Sequences (ié seq of in VDM), thus respecting the order
of UIML elements instantiation. In the next step of the process, an abstraction process
will transform every element to be supported by other - more abstract - model.

module UIMLSpec

exports all

definitions

String = char+;

First of all, some common attributes common to several UIML elements:

3http : //www .cob.sjsu.edu/johnsonf /notation.htm



CHAPTER 4. UIML FORMAL SPECIFICATION 79

peers


presentation
 logic


d-class


d-property


d-param


d-component


d-method


script


event
 listener


Figure 4.4: <peers> hierarchy

ID : : String ;
SourcesModes = UNION | CASCADE | REPLACE | APPEND;
ExportOptions = HIDDEN | OPTIONAL | REQUIRED;
SourceElements = Behavior | D-class | D-component | Constant |

Interface | Logic | Part | Peers | Presentation | Property | Rule | Script |
Structure | Style | Content | Restructure;

Member = Peers | Interface | Template;
WhereOptions = FIRST | LAST | BEFORE | AFTER;

Other required types are:

InterfaceElements = Structure | Style | Content | Behavior ;
TypesOptions : : type : (INPUT | OUTPUT | INOUT | NONE);

4.3.3 UIML top elements

4.3.3.1 The <uiml> element

DTD

<!ELEMENT uiml (head?, (peers | interface| template)*)>

Description

The UIML element is the root element in a UIML document. It has no attributes.



CHAPTER 4. UIML FORMAL SPECIFICATION 80

<uiml>...</uiml>

Usually, one uiml element equates to one file, in much the same way that there
is one HTML element per file when developing HTML-based applications. However,
other arrangements are possible. For example, the uiml element might be retrieved
from a database or the elements contained within the uiml element might be stored in
multiple files.

When multiple markup vocabularies are used within the same UIML file, then the
UIML Namespace must be specified as follow:

<uiml xmlns=’http://uiml.org/dtds/UIML3_0a.dtd’>...</uiml>

The VDM-SL specification of this is as follows:

Uiml : : head : [Head ]
members :Member∗

inv uiml 4 uniqueIDs (uiml) ∧
validProperties (uiml);

Predicates uniqueIDs and validProperties are defined in pages 118 and 142 respec-
tively of this document.

4.3.3.2 The <head> element

DTD

<!ELEMENT head (meta)*>

Description

UIML The <head> element contains metadata about the current UIML document.
Elements in the <head> element are not considered part of the interface, and have no
effect on the rendering or operation of the UI. The UIML element

<head>...</head>

is used by UIML authoring tools to store information about the document (e.g.,
author, date, version, etc) and other proprietary information.

VDM-SL Specification

Head : :meta :Meta∗;



CHAPTER 4. UIML FORMAL SPECIFICATION 81

Along with head, peers (described in Section 4.3.5.1, page 107), interface (de-
scribed in Section 4.3.4.3, page 83) and template (described in Section 4.3.6.2, page
116) elements, compose the main top elements of all UIML DTD.

4.3.3.3 The <meta> element

DTD

<!ELEMENT meta EMPTY>

<!ATTLIST meta
name NMTOKEN #REQUIRED
content CDATA #REQUIRED

>

Description

The meta element has the same semantics as the meta element in HTML. It de-
scribes a single piece of metadata about the current UIML document. This may in-
clude author information, date of creation, etc.The name attribute specifies the meta-
information and the content attribute its content.

Example

<head>
<meta name="lufer" content="UIML Simple Stack"/>
<meta name="Date" content="July, 2003"/>
<meta name="Description" content= ‘‘This is an example
of how to use the UIML to specify real problems."/>

</head>

VDM-SL Specification

Meta : :name : String
content : String

4.3.4 Interface description

This section describes the elements that go inside the interface element, their attributes,
and their syntax. Examples from our case study are provided.



CHAPTER 4. UIML FORMAL SPECIFICATION 82

4.3.4.1 Overview

The interface element contains a sequence of four elements: structure, style, content,
and behavior:

<interface>
<structure> </structure>
<style> </style>
<content> </content>
<behavior> </behavior>

</interface>

• The structure element enumerates a set of interface parts and their organization
for various platforms.

• The style element defines the values of various properties associated with inter-
face parts (analogous to style sheets for HTML).

• The content element gives the words, sounds, and images associated with in-
terface parts to facilitate internationalization or customization of UIs to various
user groups.

• The behavior element defines which UI events should be acted on and what
should be done.

4.3.4.2 Attributes common to multiple elements

Before explaining each of the elements presented in Table 4.1 (page 77), we first de-
scribe some attributes that are used in several elements.

The id and class Attributes: The <part>, <event>, and <call> elements in UIML
may have an id and a class attribute.

The id attribute assigns a unique identifier to an element, i.e., no two elements
can have the same id within the same UIML document (see Section 4.4).

The class attribute assigns a class name to an element. Any number of elements
may be assigned the same class name.

The use of the attribute class is based on the CSS [3] concept of a class: it
specifies an object type, while the element id uniquely identifies an instance of
that type. A style associated with all instances of a class is associated with all
elements that specify the same value for their class attribute; a style associated
with a specific instance of a class is associated with any elements that specify
the same value for their id attribute.

The source and how Attributes: Certain uiml elements (behavior, d component, d class,
d method, constant, content, interface, logic, part, peers, presentation, property,
rule, script, structure, and style) may contain a source attribute. Like HTML,
the source attribute specifies a link from the UIML document to a Web resource



CHAPTER 4. UIML FORMAL SPECIFICATION 83

named by a URI. However, the reason for using a link in UIML differs from
HTML.

A source attribute can refer to two things:

• A URI to a resource that does not contain UIML code. In this case, the file
can be textual (e.g. HTML) or binary (e.g., JPEG). This case is analogous
to the IMG tag in HTML; for instance:

<constant id="Logo"
source="http://uiml.org/UIMLLogo.jpg"/>

• A URI to a resource that does contain UIML code. The UIML code is in-
serted into the element that contains the source (templates rules). Inserting
code has several uses as will be explained in Section 4.3.6:

– Splitting an UI definition into several UIML documents

– Creating a library of reusable UI components

– Achieving the cascading behavior of CSS style sheets.

The URI may either be an element in the same document where the source
appears, or in a different document:

– URI names the same document. The two elements must either have
the same tag or the URI must name a template element.
<style name="Simple"> ... </style>
<style name="Complex" source="#Simple" how="cascade">
...
</style>

– URI names another document. Again, the two elements must either
have the same tag or the URI must name a template element.
<part name="Dialog"
source=
"http://uiml.org/templates/Dialog.uiml#SimpleDialog"
how="replace"
/>

A how attribute of cascade achieves behavior similar to cascading in
CSS, while replace allows a UIML document to be split into multiple
files.

The export Attribute: The export attribute is used in the context of templates. See
Section 4.3.6 for details.

4.3.4.3 The <interface> Element

DTD

<!ELEMENT interface (structure|style|content|behavior)*>
<!ATTLIST interface

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional">



CHAPTER 4. UIML FORMAL SPECIFICATION 84

Description

All uiml elements that describe the interface are contained in the interface element.
The interface element describes an UI , not the interaction of the UI and the applica-
tion logic. The UIML can employ various interface technologies (e.g., voice, graphics,
and 3D).

An interface is composed of four elements: structure (see Section 4.3.4.4), style
(see Section 4.3.4.5), content (see Section 4.3.4.6), and behavior (see Section 4.3.4.7).

VDM-SL Specification

Interface : : intele : InterfaceElements∗

id : [ID ]
source : String
how : [SourcesModes]
export : [ExportOptions]

inv i 4 uniqueIDs (i);

4.3.4.4 The <structure> Element

Just as a bridge over a river is a structure that consists of many parts (e.g., steel
beam, bolts), an UI consists of a structure (its organization) and many parts (e.g.,

widgets). [Har02].

DTD

<!ELEMENT structure (part*)>
<!ATTLIST structure

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional">

Description

An application program can have an UI with one or more organizations associated
with it. By “organization” we mean the set of UI widgets that are present in the
interface, and the relationship of those widgets to each other when the interface is
rendered. The relationship might be spatial (e.g., in a graphical UI) or temporal (e.g.,
in a voice interface).

The structure element defines the initial organization of the interface represented
by the UIML document. This organization can be envisioned as a virtual tree of parts
with each part associated content, behavior, etc. attached to it.

All interface description must include at least one structure description.

There may be more than one structure element, each representing a different orga-
nization of the interface (thus in the PC and voice interface example above, there are
two structure elements). Each structure element is given a unique name.



CHAPTER 4. UIML FORMAL SPECIFICATION 85

If a UIML document contains more than one structure element, then a UIML render
must select by id exactly one structure element and ignore all other structure elements.
The structure element whose id matches the supplied id is then used, and all other
structure elements are ignored. If the supplied id does not match the id attribute of any
structure, or if no id is supplied, then the last <structure> element appearing in the
UIML document must be used.

For example,

<structure id="ComplexUI">
<part class="c2" id="n3">

<part class="c1" id="n2"/>
</part>
</structure

<structure id="SimpleUI">
<part class="c1" id="n1"/>

</structure>

<structure id="default">
<part class="c1" id="n1"/>
<part class="c2" id="n2"/>

</structure>

VDM-SL Specification

Structure : : parts : Part∗

id : [ID ]
source : String
how : [SourcesModes]
export : [ExportOptions]

inv s 4 uniqueIDs (s);

Example

In our Stack example, we can clearly see the structure element. Several part ele-
ments are present, each one with appropriate properties id and class .

<structure>
<part id="Top" class="JFrame">
<style>

<property name="layout_hgap">10</property>
<property name="layout_vgap">25</property>

</style>
<part id="Label" class="JLabel"/>
<part id="ScrollPane" class="JScrollPane">

<part id="List" class="JList"/>
</part>
<part id="ButtonPanel" class="JPanel">



CHAPTER 4. UIML FORMAL SPECIFICATION 86

<part id="AddButton" class="JButton"/>
<part id="RemoveButton" class="JButton"/>
<part id="TopButton" class="JButton"/>
<part id="Clear" class="JButton"/>

</part>
</part>

</structure>

Dynamic Structure

The question remains as to how this initial virtual tree can be modified over the
lifetime of the interface. Several types of dynamics exist in user interfaces. The three
types that can be represented in UIML are described below:

• Content is dynamically supplied when the UI is rendered. This is handled by
the reference element in Section 4.3.4.6.

• The virtual tree of UI parts is modified during the lifetime of an UI. See the
restructure element in Section 4.3.4.7.

• The UI contains a sub-tree of parts that is repeated 1 or more times, where the
number of times is determined at render time. This is the purpose of the repeat
element (see Section 4.3.4.7).

The <part> Element

DTD

<!ELEMENT part (style?, content?, behavior?, part*, repeat*)>
<!ATTLIST part

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional"
class NMTOKEN #IMPLIED
where (first|last|before|after) "last"
where-part NMTOKEN #IMPLIED>

Description

Each part element corresponds either to one UI widget or to nothing (null). It is
sometimes useful to associate a part with nothing; for example, a part might be needed
for a large screen UI , but be omitted from a small device screen. In the former case,
the part corresponds to an UI widget, and in the later case the part corresponds to
nothing.

Parts may be nested to represent an hierarchical relationship of parts. Let a and b
denote two part elements. If part b is nested inside part a, and both a and b correspond
to UI widgets (i.e., neither a nor b correspond to null), then the UI widget b must be
“contained in” widget a, where “contained in” is defined in terms of the UI toolkit.

For example, the Java Swing [Mic03e] toolkit has a notion of containers and com-
ponents. Containers contain other containers or components, forming a hierarchy. Or,



CHAPTER 4. UIML FORMAL SPECIFICATION 87

in a voice-based language, the oral equivalent of menus can be nested, again forming
a hierarchy.

Each part must be associated with a single class. However, if multiple structure
elements exist, then a part can be associated with a different class in each structure
(see the example in 4.3.4.4). When the interface is rendered, only one structure is used
(as discussed in “Description” under 4.3.4.4); thus, a part is always associated with a
unique class.

UIML allows the style, content, and behavior information associated with a partic-
ular part to be specified within the part itself. Usually, this information is specified in
the corresponding style, content, and behavior elements.

VDM-SL Specification

Part : : style : [Style]
content : [Content ]
behavior : [Behavior ]
parts : Part∗

repeats : Repeat∗

id : [ID ]
source : String
how : [SourcesModes]
export : [ExportOptions]
class : String
where : [WhereOptions]
where-part : String

inv p 4 uniqueIDs (p);

Example

Below we can see that there is a style member of part id = "Top". Also we can
see that the part id = "ButtonPanel" has several parts inside it.

<part id="Top" class="JFrame">
<style>

<property name="layout_hgap">10</property>
<property name="layout_vgap">25</property>

</style>
<part id="Label" class="JLabel"/>
<part id="ScrollPane" class="JScrollPane">

<part id="List" class="JList"/>
</part>
<part id="ButtonPanel" class="JPanel">

<part id="AddButton" class="JButton"/>
<part id="RemoveButton" class="JButton"/>
<part id="TopButton" class="JButton"/>
<part id="Clear" class="JButton"/>

</part>
</part>



CHAPTER 4. UIML FORMAL SPECIFICATION 88

4.3.4.5 The <style> Element

DTD

<!ELEMENT style (property*)>
<!ATTLIST style

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional">

Description

The style element contains a list of properties and values that are used to render the
interface. Such as in CSS [Rec03a] and XSL [Rec01a] specifications, UIML properties
specify attributes of how the interface will be rendered on various devices, such as
fonts, colors, layout, and so on.

There must be at least one style element, and there may be more than one. There
is normally one style element for each toolkit to which the UIML document will be
mapped. For a given toolkit, there may be multiple style elements serving a variety
of purposes: to generate different interface presentations for accessibility, to support
a family of similar but not identical devices (e.g., phones that differ in the number
of characters that their displays support), to support different target audiences (e.g.,
children versus adults), and so on.

Style sheets may also use the mechanism for cascading (deeply described in [AH02]).
However, unlike CSS and XSL, the style sheet is used to achieve device independence.

VDM-SL Specification

Style : : property : Property∗

id : [ID ]
source : String
how : [SourcesModes]
export : [ExportOptions]

inv s 4 uniqueIDs (s);

Example
In this UIML fragment of our Stack specification, we can see more than one prop-

erty as members of style element. For instance, in this example the single part named
“Top” has size 380× 230.

<style>
<property part-name="Top" name="size">380,230</property>
<property part-name="Top" name="location">100,100</property>
<property part-name="Top" name="layout">javax.swing.BoxLayoutY</property>
<property part-name="Top" name="title">Stack manipulation</property>



CHAPTER 4. UIML FORMAL SPECIFICATION 89

....
<property part-name="List" name="content">
<constant model="list">

<constant id="1" value="1"/>
<constant id="2" value="2"/>
<constant id="3" value="3"/>
<constant id="4" value="4"/>

</constant>
</property>

</style>

In the next UIML fragment, we can see more than one property as members of
style element. In this example with property name instantiated with Java properties
layout hgap and layout vgap of Java Frame class.

<style>
<property name="layout_hgap">10</property>
<property name="layout_vgap">25</property>

</style>

The <property> Element

DTD

<!ELEMENT property (#PCDATA|constant|property|reference|call|iterator)*>
<!ATTLIST property

name NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional"
part-name NMTOKEN #IMPLIED
part-class NMTOKEN #IMPLIED
event-name NMTOKEN #IMPLIED
event-class NMTOKEN #IMPLIED

>

Description

A property associates a name and value pair with a part, event (see Section 4.3.4.7),
or call (see Section 4.3.4.7). For example, an UI part named “button” might be asso-
ciated with a property name “color” and value ”blue”. The property element provides
the syntax to make the association between the name color and value blue with the
part button.

Property names are not defined by the UIML specification. This is a powerful
concept, because it permits UIML to be extensible: one can define whatever property
names are appropriate for a particular device. For example, a “color” might be a useful
property name for a device with a screen, while “loudness” might be appropriate for a
voice-based device.

Instead property names are defined by the peers element (see Section 4.3.5.1).
Normally whoever creates a UIML document does not define the property names. In-
stead, someone else defines a set of properties. For example for the Java AWT UI



CHAPTER 4. UIML FORMAL SPECIFICATION 90

toolkit, the peers element simply specifies an URI that defines those property names.
The compiler or interpreter that renders UIML should also access this URI to map
property names in the UIML document to the desired UI toolkit.

Thus to use UIML one needs both a copy of this specification and a document
defining the property names used in a particular peers element.

VDM-SL Specification

Property : : property : (String | Constant | Property | Reference | Call | Iterator)
∗

name : [String ]
source : [String ]
how : [SourcesModes]
export : [ExportOptions]
p-name : [String ]
p-class : [String ]
e-name : [String ]
e-class : [String ]

inv p 4 uniqueIDs (p);

Example

The excerpt below of our case study shows the sequence of Constant elements
members of Property.

<property part-name="List" name="content">
<constant model="list">

<constant id="1" value="1"/>
<constant id="2" value="2"/>
<constant id="3" value="3"/>
<constant id="4" value="4"/>

</constant>
</property>

In the example below of UIML property, the name attribute is instantiated with
layout vgap and value 25.

<property name="layout_vgap">25</property>

4.3.4.6 The <content> Element

DTD

<!ELEMENT content (constant*)>
<!ATTLIST content

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional">



CHAPTER 4. UIML FORMAL SPECIFICATION 91

Description

A part in an UI can be associated with various contents such as words, characters,
sounds or images. UIML permits separation of the content from the structure in an
UI . Separation is useful when different contents should be displayed under different
circumstances. For example, anUI might display the content in English or Portuguese.
Or an UI might use different words for an expert versus a novice user, or different
icons for a color-blind user. UIML can express this.

Normally one would set the content associated with an UI part through the prop-
erty element, as in the following example:

<structure>
....
<part id="AddButton" class="JButton"/>
....

</structure>
<style>

....
<property part-name="AddButton" name="text">
Push
</property>
....

</style>

In the UIML Stack fragment above, the JButton text is hard-wired to the string
“Push”. Suppose we wanted to internationalize the interface. In this case UIML allows
the value of a property to be what a programmer would think of as a variable reference
using the Reference element:

<style>
<property part-name="AddButton" name="text">

<reference constant-name="AddButtonText"/>
</property>

</style>

The reference element refers to a constant-name, which is defined in the content
element in a UIML document. The important fact is that there may be multiple content
elements in a UIML document, each with a different name. When the interface is
rendered, one of the content elements is specified, and the content elements inside are
then used to satisfy the referenced element.

VDM-SL Specification

Content : : constant : Constant∗

id : ID
source : String
how : [SourcesModes]
export : [ExportOptions]

inv c 4 uniqueIDs (c);



CHAPTER 4. UIML FORMAL SPECIFICATION 92

The <constant> Element

DTD

<!ELEMENT constant (constant)*>
<!ATTLIST constant

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional"
model Model #IMPLIED
value Value #IMPLIED>

Description

Constant elements contain the actual text strings, sounds, and images associated
with UI parts from the part element. Each constant element is identified by an id
attribute and is referred to by the reference element.

The following example shows how to create constant elements that point to a
string. Similarly, you can create constants that point to images, video clips, binary
files, and other objects.

<constant model="list">
<constant id="1" value="1"/>
<constant id="2" value="2"/>
<constant id="3" value="3"/>
<constant id="4" value="4"/>

</constant>

The constant element can also be used to represent literal strings used inside the
condition element (see Section 4.3.4.7). For example:

<condition>
<equal>

<event part-name="inYear" class="filled"
name="content"/>

<constant>2000</constant>
</equal>

</condition>

VDM-SL Specification

Constant : : constant : (Constant)
∗

id : [ID ]
source : String
how : [SourcesModes]
export : [ExportOptions]
model : String
value : String

inv c 4 uniqueIDs (c);



CHAPTER 4. UIML FORMAL SPECIFICATION 93

The <reference> Element

DTD

<!ELEMENT reference EMPTY>
<!ATTLIST reference

constant-name NMTOKEN #IMPLIED
url-name NMTOKEN #IMPLIED>

Description

The reference element refers to the value of the constant element specified by the
constant-name attribute.

There are several uses for references:

• The same text string might be used in two or more places in a UIML document.
In this case a constant element can be defined containing the string and anywhere
the string is required (e.g., as values of a property) the reference element can
be used. Thus, if we can modify the text in the constant element, the change
propagates to all the places in the UIML document that is referred to.

• Often an interface part is initialized to contain several text strings, and when an
event later occurs for the part, an equal element tests to see which text string
the end user selected in triggering the event (for example, lists and choices in
Java SWING contain multiple text items). In this case, a constant element can
be defined in the content section, and then the part’s values can be initialized in
the style section using a property element containing a reference element as its
value. In the behavior element, the rule element handling events for the part can
test whether the item selected corresponded to the constant element by using a
reference element. An example of this appears in Section 4.2.2.

The semantics of a reference element is to replace the element with the constant el-
ement whose id attribute matches the constant-name attribute of the reference element.
Or, if the url-name attribute is specified, to replace the constant element contained
within the document located by the URI given as the value of the url-name attribute.
If no such element exists, then the UIML document cannot be rendered.

VDM-SL Specification

Reference : : constant-name : String
url -name : String

4.3.4.7 The <behavior> Element

DTD



CHAPTER 4. UIML FORMAL SPECIFICATION 94

<!ELEMENT behavior (rule*)>
<!ATTLIST behavior

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional">

Description

The behavior element describes what happens when an end-user interacts with a
user interface. For example, the behavior element might describe what happens when
an end-user presses a button. The behavior element also describes when and how
the user interface invokes methods (recall from Section 4.1.1 that a method refers to
functions, procedures, database queries, and so on.)

The behavior element contains a sequence of rules. Each rule contains a condition
and a list of actions. Whenever a condition holds, the associated action is performed.
If conditions for more than one rule hold simultaneously, there is an algorithm to de-
termine the order of execution, as follows.

• UIML allows two types of conditions. The first is true when an event occurs
(e.g., a button is pressed). The second is true when an event occurs and the
value of some data associated with the event is equal to a certain value (e.g., a
list selection is made and the selected item is “1”, the first condition element in
the stack example in Section 4.2.2.

• Actions can be internal to the UIML document – specifying a change in a prop-
erty value – or external – invoking a method in a script, program, or object.

A unique aspect of UIML is that events are also described in a device-independent
fashion, by giving each event a name and identifying the class to which it belongs. As
we discussed for parts, the UI implementor uses instance and class names of his/her
choice for events, and those names are mapped to an event in the underlying platform
in the style element. For example, the end user might use the class “selection” and the
style element for a graphical UI maps “selection” to a “mouse click” event.

In UIML you can specify the following behavior:

• Assign a value to a part property.

• Call an external function or method.

• Fire an event.

VDM-SL Specification



CHAPTER 4. UIML FORMAL SPECIFICATION 95

Behavior : : rules : Rule∗

id : [ID ]
source : String
how : [SourcesModes]
export : [ExportOptions]

inv b 4 uniqueIDs (b);

Example

Next example shows the behavior of button AddButton. The action performed will
be addElement once it is pressed.

<behavior>
<rule>
<condition>

<event part-name="AddButton" class="actionPerformed"/>
</condition>
<action>

<call name="stack.addElement"/>
</action>

</rule>
...

</behavior>

The <rule> Element

DTD

<!ELEMENT rule (condition,action)?>
<!ATTLIST rule

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional">

Description

The rule element defines a binding between a condition element and an action
element. Whenever the condition element within the rule is satisfied, then any elements
inside the action element are executed sequentially (i.e., property assignment, external
function or method call, or event firing).

VDM-SL Specification

Rule : : condition : Condition
action :Action
id : [ID ]
source : String
how : [SourcesModes]
export : [ExportOptions]

inv r 4 uniqueIDs (r);



CHAPTER 4. UIML FORMAL SPECIFICATION 96

Example

Continuing the previous example, there is a rule for each event which we need to
support. As written before, the action addElement, inside Java module stack.java, will
be executed when the button AddButton is pressed.

<rule>
<condition>

<event part-name="AddButton" class="actionPerformed"/>
</condition>
<action>

<call name="stack.addElement"/>
</action>

</rule>

The <condition> Element

DTD

<!ELEMENT condition (equal|event|op)>

Description

The condition element contains as a child either an event element or a Boolean ex-
pression. The action element associated with this condition by the parent rule element
is executed whenever either the event named in the event element fires or the Boolean
expression in the equal or op evaluates to true.

VDM-SL Specification

Condition : : type : (Equal | Event | Op);

Example

This example shows the condition to execute some action. Everything happens
during event contentsChanged supported on List part. Afterwards the action to take is
described. In this example, the text of part Label changes to “An element was Pushed.”.

<condition>
<event part-name="List" class="contentsChanged"/>

</condition>
<action>

<property part-name="Label" name="text">
An element was Pushed.
</property>

</action>

The <equal> Element

DTD



CHAPTER 4. UIML FORMAL SPECIFICATION 97

<!ELEMENT equal (event,(constant|property|reference|op))>

Description

The equal element is a Boolean expression with value true or false. Every equal
element must have exactly two children. Each child must be a constant, property,
reference, or op element. The semantics of equal are as follows. Whenever the two
children named in the equal element resolve to the same value then the equal element
has value true. Otherwise the equal element has value false.

VDM-SL Specification

Equal : : event : Event
other : Constant | Property | Reference | Op

inv e 4 uniqueIDs (e);

The <event> Element

DTD

<!ELEMENT event EMPTY>
<!ATTLIST event

name NMTOKEN #IMPLIED
part-name NMTOKEN #IMPLIED
part-class NMTOKEN #IMPLIED
class NMTOKEN #IMPLIED>

Description

The event element is used in two contexts:

• As the child of a condition element. The parent condition is satisfied whenever
the event occurs.

• As the child of an action element. The event is fired.

VDM-SL Specification

Event : :name : String
p-name : String
p-class : String
class : String

Example

This example shows the declaration of event contentsChanged. This element is
part of a condition element (as described before). This event occurs when any changes
happen on List items.



CHAPTER 4. UIML FORMAL SPECIFICATION 98

<rule>
<condition>

<event part-name="List" class="contentsChanged"/>
</condition>
<action>

<property part-name="Label" name="text">
Contents changed.
</property>

</action>
</rule>

The <op> Element

DTD

<!ELEMENT op (constant|property|reference|call|op|event)*>
<!ATTLIST op

name CDATA #REQUIRED>

Description

The op element allows multiple complex logic conditions to be expressed inUIML.
In the previous examples simple conditions were used to control whether or not el-
ements under action have been executed. The simplicity of the previous examples
allows for only one condition to hold true, usually this was reserved to check if a par-
ticular event has occurred. Even with the functionality introduced with the equal tag,
an author can only evaluate two different conditions; furthermore, the equal tag pro-
vides a limited logical condition, testing only if two values are equal. However, with
the op element, basic logical conditions (less than, greater than, equal, not equal, and,
or) may be expressed along with the ability to structure complex condition statements
involving multiple values.

The name attribute of op describes the conditional applied to the expression that
you wish to create. The value of the name attribute can either be symbols representing
operators or the written name of the operator itself.

The introduction of op element brings upon instances where certain actions may
want to be defined as a result from the evaluation of the op element. Three new ele-
ments when-true, when-false, by-default have been introduced to define a set of actions
when a conditional is found to be true, false, or undefined. The elements are found as
children of action.

VDM-SL Specification

Op : : type : (Constant | Property | Reference | Call | Op | Event)
∗

name : String
inv op 4 uniqueIDs (op);

The <action> Element



CHAPTER 4. UIML FORMAL SPECIFICATION 99

DTD

<!ELEMENT action (((property|call|restructure)*, event?)|(when-true?,
when-false?,by-default?))>

Description

Action elements contain one or more elements that are executed in the order they
appear in the UIML document. Each element can be either a property element to
set a property of an element, a call element, which invokes code (e.g., a function or
method), a restructure element to restructure an interface (see <restructure>, page
102), an event element to fire another event, or a when-true, when-false, by-default
element to determine a set course of actions depending on the value of the conditional
expressed in the condition element (see <bydefault>, page 105, <whentrue>, page
104 and <whenfalse>, page 104). The event element, if present, must be the last
element inside the action. As result of this, you can only fire one event within the
action element.

VDM-SL Specification

ActionType1 : : type : (Property | Call | Restructure)
∗

event : [Event ]
ActionType2 : :whentrue : [When-true]

whenfalse : [When-false]
bydefault : [By-default ]

Action = ActionType1 | ActionType2
inv a 4 uniqueIDs (a);

Example

The two following rule examples show the action performed under a particular
condition. The former shows the internal execution of some operation (change text
Label). The second one shows the activation by a call element of an external method
or function (addElement in class stack) (see <call>, page 100).

<rule>
<condition>

<event part-name="List" class="contentsChanged"/>
</condition>
<action>

<property part-name="Label" name="text">
Contents changed.
</property>

</action>
</rule>

<rule>
<condition>



CHAPTER 4. UIML FORMAL SPECIFICATION 100

<event part-name="AddButton" class="actionPerformed"/>
</condition>
<action>

<call name="stack.addElement"/>
</action>

</rule>

The <call> Element

DTD

<!ELEMENT call (param*)>
<!ATTLIST call

name NMTOKEN #IMPLIED>

Description

The call element is an abstraction of any type of code invocation (that uses a lan-
guage other than UIML). The code is referred to in this specification as a method,
which in Section 4.1.1 is defined to include functions, procedures, and methods in an
object-oriented language, database queries, and directory accesses.

The UIML philosophy on specifying function calls is to allow the UIML author
to freely choose a set of names for widgets, events, and functions referred to in the
<interface> section. Each of these names is then mapped in the peers section to
implementing entities (e.g., Swing user-interface components, methods in memory or
remote object instances, entry points in remote procedures, functions in user scripts,
etc.).

VDM-SL Specification

Call : : params : Param∗

name : String

Example

We can see in the example bellow the calling of an external method addElement,
of stack Java class. If the method or function demands values as arguments, the param
element allows for this (see 4.3.4.7).

<action>
<call name="stack.addElement"/>

</action>

The <repeat> Element

DTD

<!ELEMENT repeat (iterator,part*)>



CHAPTER 4. UIML FORMAL SPECIFICATION 101

Description

A repeat element must enclose one iterator element and a set of one or more part
elements. The part elements denoted as children of the repeat element are repeated
with their children a number of times as determined by the iterator element. The
repeat element parent part element will not be repeated.

A repeat element has the following legal children, ordering of the children does
not matter:

• Each repeat element must have one and only one iterator child. The iterator
element denotes how many times the specified interface components will be
repeated. If more than one iterator child is defined than the implementation
must produce a warning and use the last iterator defined in textual order.

• Each repeat must have one or more part elements as children. These part ele-
ments represent the components to be repeated. If the components are named
(i.e. have a defined name attribute), then each repetition of the part will have
“ #” appended onto the part name, where # is the integer representation of this
iteration.

Nested repeats are allowed, meaning that a repeat can be a child of another part
element descendant of repeat (not just the first level children). This allows for the
dynamic construction of more complicated interface elements such as tables and static
depth trees.

VDM-SL Specification

Repeat : : iterator : Iterator
parts : Part∗

The <iterator> Element

DTD

<!ELEMENT iterator (#PCDATA|constant|property|call)>
<!ATTLIST iterator

id NMTOKEN #REQUIRED>

Description

The iterator element defines the number of times the interface components should
be repeated. Iterator elements can have only one child, which can be of four forms:

• A text string

• A call element

• A property element



CHAPTER 4. UIML FORMAL SPECIFICATION 102

• A constant element

The form of the child is irrelevant as long as it resolves to an integer value N .
This integer N is then used as the maximum number of iterations that the repeat will
perform, counting from 1 to N . Note that the step value for an iterator element is
currently always 1.

The iterator element can be used in property and param elements to provide an
integer value representing the iteration number that is currently processing. In this
way, the iterator element behaves very similarly to the property element.

It is important to note that an iterator is defined within the scope of the repeat
it is a child of. Thus, no other iterator elements may have the same id if they are
defined within a descendent of the current repeat. This also implies that an iterator
whose repeat is an ancestor of another iterator can be accessed within the scope of the
descendent iterator.

VDM-SL Specification

IteratorOptions = String | Constant | Property | Call ;
Iterator : : iterator : IteratorOptions

id : ID
inv iter 4 uniqueIDs (iter);

Example

<uiml>

<part class=JDialog>
<repeat>

<iterator id=i>10</iterator>
<part class = JCheckBox>

<style>
<property name=text>

<iterator id=i/>
</property>

</style>
</part>

</repeat>
</part>

</uiml>

The example above illustrates the two uses of the iterator element and would result
in the appearance of a JDialog containing ten JCheckBoxes. The JCheckBoxes would
be numbered 1 to 10.

The <restructure> Element

DTD



CHAPTER 4. UIML FORMAL SPECIFICATION 103

<!ELEMENT restructure (template)?>
<!ATTLIST restructure

at-part NMTOKEN #IMPLIED
how (union|cascade|replace|delete) replace
where (first|last|before|after) last
where-part NMTOKEN #IMPLIED
source CDATA #IMPLIED>

Description The restructure element provides a way for the UI to change as a result

of some condition being met. Most conditions include (but are not limited to) user
interactions. For example, using the Java AWT/Swing vocabulary for UIML, an UI

containing a window with a button and a panel is described as follows:

<structure>
<part class="JFrame" name="F">

<part class="JButton" name="B"/>
<part class="JPanel" name="A"/>

</part>
</structure>

Suppose that, when the initial UI is displayed, we want only the button to appear.
When the user clicks the button, the panel appears. We would use the restructure
element to define the necessary changes within theUI to remove the button and display
the panel.

The semantics of UIML are changed to include the concept of a virtual UI tree.
During the lifetime of an UI , the parts comprising the UI may change. (All parts that
exist but are invisible to an end user are still part of the tree.) The parts present in the
UI have a hierarchical relationship, therefore forming a tree. At any moment during
the UI lifetime, one could enumerate the tree of parts that currently exist, and this
is the virtual UI tree. Each node in this tree corresponds to a part element in the UI
generated by UIML. We call the tree “virtual” because it may or may not be physically
represented as a data structure on a computer, depending on how a rendering engine is
implemented.

UIML adds nodes using the restructure tag. (The restructure tag is so-named be-
cause it modifies the structure section’s representation in the virtual UI tree.) The
restructure tag can only appear inside an action element in UIML.

The restructure element may not contain a body if one of the following holds:

• The source attribute is present

• how=“delete” is present

Otherwise, the restructure element must contain a body, and that body must con-
tain exactly one template element, which must contain exactly one part element that
matches the part specified in the at-part attribute.

VDM-SL Specification



CHAPTER 4. UIML FORMAL SPECIFICATION 104

Restructure : : template : [Template]
at-part : String
how : UNION | CASCADE | REPLACE | DELETE

where : [WhereOptions]
where-part : String
source : String

inv r 4 uniqueIDs (r);

The <when-true> Element

DTD

<!ELEMENT when-true ((property|call)*,restructure?,op?,equal?,event?)>

Description

The when-true element defines a set of actions to be executed when a conditional
expression defined by the element op evaluates to true.

VDM-SL Specification

When-true : : type : (Property | Call)
∗

restructure : [Restructure]
op : [Op]
equal : [Equal ]
event : [Event ]

The <when-false> Element

DTD

<!ELEMENT when-false ((property|call)*,restructure?,op?,equal?,event?)>

Description

The when-false element defines a set of actions to be executed when a conditional
expression defined by the element op evaluates to false.

VDM-SL Specification

When-false : : type : (Property | Call)
∗

restructure : [Restructure]
op : [Op]
equal : [Equal ]
event : [Event ]



CHAPTER 4. UIML FORMAL SPECIFICATION 105

The <by-default> Element

DTD

<!ELEMENT by-default ((property|call)*,restructure?,op?,equal?,event?)>

Description

The by-default element defines a set of actions to be executed when the evaluation
of a conditional expression defined by the element op results to be undefined.

VDM-SL Specification

By-default : : type : (Property | Call)
∗

restructure : [Restructure]
op : [Op]
equal : [Equal ]
event : [Event ]

The <param> Element

DTD

<!ELEMENT param
(#PCDATA|property|reference|call|op|event|constant|iterator)>
<!ATTLIST param

name NMTOKEN #IMPLIED>

Description

This element describes a single parameter of the call described by the parent call
element. Note that all parameters are character strings. See <dparam>, pag 114,
for details on the conversion of the arguments to the types required by the formal
parameters of the method being called.

If the number of param elements equals the number of formal parameters in the
method being called, then the following hold:

• The name attribute is optional, and is ignored by the rendering engine if present.

• The order of param elements within the call element must match the order of
the formal parameters in the method being called.

Otherwise, there must be fewer param elements than formal parameters in the
method being called, and the following holds:

• The name attribute is required on all param elements.



CHAPTER 4. UIML FORMAL SPECIFICATION 106

• The name attribute must be used by the rendering engine to match each param
element to a formal parameter in the method being called.

A param element must have exactly one child.

VDM-SL Specification

ParamType = String | Property | Reference | Call | Op | Event |
Constant | Iterator ;

Param : : type : ParamType
name : String

Example

Our stack example is a simple one and does not illustrates parameter utilization.
The value added by the Push method is automatically generated. Suppose that Push
method has a value argument ele (this value must be inserted from the interface), which
must be added to the top of stack. This assumption can be specified by using the
following UIML code. We denote the presence of a param element in the call element
named ele. This value comes from part TextField of the interface.

<rule>
<condition>

<event part-name="AddButton" class="actionPerformed"/>
</condition>
<action>

<call name="stack.addElement">
<param name="ele">
<property part-name="TextField" name="text"/>

</param>
</call>
<property part-name="TextField" name="text"></property>

</action>
</rule>

4.3.5 Peer Components

These are UIML property values to specific tags or objects in the target platform:

<peers>
<presentation name="Java-AWT">

<component name="MenuItem" maps-to="java.awt.MenuItem">
...

</presentation>
...

<peers>

In summary, UIML uses three levels of names for interface parts and events. The
first is chosen by the UIML author. The second name is in the style element and maps



CHAPTER 4. UIML FORMAL SPECIFICATION 107

the mnemonic to an abstract widget name (e.g., MenuItem). The second level allows
a mapping from one abstract set of names (e.g., BigWindow) to multiple platforms
(e.g., MFC or Java Swing) without modifying the rest of the interface description.
Finally, the third name in the peers element is part of a toolkit-specific vocabulary and
maps the abstract widget name to a name of a widget from the target platform (e.g.,
java.awt.TextField).

4.3.5.1 The <peers> Element

DTD

<!ELEMENT peers (presentation|logic)*>
<!ATTLIST peers

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional">

Description

To allow extensibility, UIML includes a peers element that defines mappings from
class UIML:

• The presentation element contains mappings of part and event classes, property
names, and event names to an UI toolkit. This mapping defines a vocabulary
to be used with a UIML document, such as a vocabulary of classes and names
for VoiceXML. Normally, a UIML author does not write a presentation element,
but instead uses names in a UIML document that have been defined in the list of
vocabularies at http://uiml.org/toolkits (in element <presentation>, page 108,
we discuss vocabularies).

• The logic element maps names and classes used in call elements to application
logic external to the UIML document. In large-scale software development, the
logic element is defined once to represent the API of the application logic (typi-
cally as a template element), and then included in each UI for the project.

The following excerpt of UIML code tries to show this.

<peers>
<presentation
name="Java" source="http://uiml.org/toolkits/Java20Swing.ui"/>
<presentation
name="wml" source="http://uiml.org/toolkits/wml.ui"/>

...
<logic
name="Java" source="http://uiml.org/apps/CalendarApp.logic"/>
<logic name="Scripts"
source="http://uiml.org/apps/scripts/CalendarApp.logic"/>

</peers>



CHAPTER 4. UIML FORMAL SPECIFICATION 108

VDM-SL Specification

Peers : : prelog : (Presentation | Logic)
∗

id : [ID ]
source : String
how : [SourcesModes]
export : [ExportOptions]

inv p 4 uniqueIDs (p);

Example

In our example we need a peers component to map all evoked external methods:
removeElement, addElement, Top and Clear. As we are working with Java Swing
components, and using an Harmonia Java UIML render release, the presentation refers
Java 1.3 Harmonia 1.0.

<peers>
<logic>

<component id="stack" maps-to="stack">
<method id="removeElement" maps-to="removeTopElement"/>
<method id="addElement" maps-to="Push"/>
<method id="Top" maps-to="Top"/>
<method id="Clear" maps-to="Clear"/>

</component>
</logic>
<presentation base="Java_1.3_Harmonia_1.0"/>

</peers>

4.3.5.2 The <presentation> Element

DTD

<!ELEMENT presentation (d-class*)>
<!ATTLIST presentation

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional"
base CDATA #REQUIRED>

Description

Every UIML document uses a vocabulary. The vocabulary defines the legal class
names that can be used for parts and events in a UIML document, as well as the legal
property names. The formal definition of a vocabulary is done through a presentation
element containing d -class elements (element <d-class>, page 111). Each d -class
element defines a legal class name.

At present, the list of standard vocabularies is posted on http://uiml.org/toolkits, in
the form of a set of presentation templates that may be included into UIML documents.



CHAPTER 4. UIML FORMAL SPECIFICATION 109

VDM-SL Specification

Presentation : : dclass :D-class∗

id : [ID ]
source : String
how : [SourcesModes]
export : [ExportOptions]
base : String

inv pres 4 len (pres.base) > 0 ∧ uniqueIDs (pres);

Example

As remarked in the previous example, we are working with an Harmonia Java
UIML render release. So, the presentation element refers Java 1.3 Harmonia 1.0.

<peers>
....
<presentation base="Java_1.3_Harmonia_1.0"/>

</peers>

4.3.5.3 The <logic> Element

DTD

<!ELEMENT logic (d-component*)>
<!ATTLIST logic

id NMTOKEN #IMPLIED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional">

Description

The logic element describes how the UI interacts with the underlying logic that
implements the functionality apparent in the interface. The underlying logic might be
implemented by middleware in a three tier application, or it might be implemented
by scripts in some scripting language, or it might be implemented by a set of objects
whose methods are invoked as the end user interacts with the UI , or by some combi-
nation of these, or in other ways.

Thus, the logic element acts as the glue between an UI described in UIML and
other code. It describes the calling conventions for methods in application logic that
the UI invokes. Examples of such functions include objects in languages such as C++
or Java, CORBA objects, programs, legacy systems, server-side scripts, databases, and
scripts defined in various scripting languages.

VDM-SL Specification



CHAPTER 4. UIML FORMAL SPECIFICATION 110

Logic : : dcomponent :D-component∗

id : [ID ]
source : String
how : [SourcesModes]
export : [ExportOptions]

inv l 4 uniqueIDs (l);

Example

The logic element in our Stacks case study describes the underlying Java func-
tions which will be used. This Java functions are implemented in a separate module
(stack.class).

<logic>
<d-component id="stack" maps-to="stack">

<d-method id="removeElement"
maps-to="removeTopElement"/>

<d-method id="addElement" maps-to="Push"/>
<d-method id="Top" maps-to="Top"/>
<d-method id="Clear" maps-to="Clear"/>

</d-component>
</logic>

4.3.5.4 Subelements of presentation and logic

The <d-component> Element

DTD

<!ELEMENT d-component (d-method)*>
<!ATTLIST d-component

id NMTOKEN #REQUIRED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional"
maps-to CDATA #IMPLIED
location CDATA #IMPLIED>

Description

The d -component (a child of logic only) acts as a container for application meth-
ods (e.g., a class in an object oriented language). A d -component contains d -methods .

The maps-to attribute specifies the platform-specific type of component or con-
tainer that is being bound. The location attribute gives additional information (e.g., an
URI) that is used by the rendering engine to locate the widget, event, or application
class at runtime.

VDM-SL Specification



CHAPTER 4. UIML FORMAL SPECIFICATION 111

D-component : : dmethod :D-method∗

id : ID
source : String
how : [SourcesModes]
export : [ExportOptions]
maps-to : String
location : String

Example

Below, the local methods removeTopElement, Push, Top and Clear are mapped to
Java methods removeElement, addElement, Top and Clear, respectively.

<d-component id="stack" maps-to="stack">
<d-method id="removeElement" maps-to="removeTopElement"/>
<d-method id="addElement" maps-to="Push"/>
<d-method id="Top" maps-to="Top"/>
<d-method id="Clear" maps-to="Clear"/>

</d-component>

The <d-class> Element

DTD

<!ELEMENT d-class (d-method*, d-property*, event*, listener*)>
<!ATTLIST d-class

id NMTOKEN #REQUIRED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional"
maps-to CDATA #REQUIRED
maps-type (attribute | tag | class) #REQUIRED
used-in-tag (event | listener | part) #REQUIRED>

Description

The d -class (a child of presentation only) element binds a name used in the ren-
dering property of a part or an event element elsewhere in the interface to a component
that is part of the presentation toolkit.

The maps-to attribute specifies the platform-specific type of the component or con-
tainer that is being bound.

VDM-SL Specification



CHAPTER 4. UIML FORMAL SPECIFICATION 112

mapsTypes = ATTRIBUTE | TAG | CLASS;
used -in-tagTypes = EVENT | PART | LISTENER;
D-class : : dmethod :D-method∗

dproperty :D-property∗

event : Event∗

listener : Listener∗

id : ID
source : String
how : [SourcesModes]
export : [ExportOptions]
maps-to : String
maps-type :mapsTypes
used -in-tag : used -in-tagTypes

The <d-property> Element

DTD

<!ELEMENT d-property (d-method*,d-param*)>
<!ATTLIST d-property

id NMTOKEN #REQUIRED
maps-type (attribute|getMethod|setMethod|method) #REQUIRED
maps-to CDATA #REQUIRED
return-type CDATA #IMPLIED>

Description

The d-property element specifies the mapping between the name appearing in a
property element and the associated methods that assign or retrieve a value for the
property.

VDM-SL Specification

D-property : : dmethod :D-method∗

dparam :D-param∗

id : ID
maps-type : (ATTRIBUTE | GETMETHOD | SETMETHOD | METHOD)
maps-to : String
return-type : String

inv dpro 4 length (dpro.id) > 0 ∧ length (dpro.maps-to) > 0;

The <d-method> Element

DTD

<!ELEMENT d-method (d-param*, script?)>



CHAPTER 4. UIML FORMAL SPECIFICATION 113

<!ATTLIST d-method
id NMTOKEN #REQUIRED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional"
maps-to CDATA #REQUIRED
return-type CDATA #IMPLIED>

Description

The d-method element describes a method in the external application logic or pre-
sentation toolkit in terms of its optional formal parameters and optional return value.

The maps-to attribute specifies the name that is being bound. The value of maps-to
points to the name of an actual method that can be executed. The method can represent
a toolkit method (if it is inside a presentation element), an application method (if it is
inside a logic element), or scripting code (with scripting nested inside the d-method
element).

The method element supports three different execution models:

1. The method represents a remote (outside the render) executable code. This code
executes outside the sandbox of the render and is treated like a black box. The
render will package all the parameters, send them to the server executing the
code (which can be on the same machine or across the network), and wait for a
reply. Here is an example:

<d-component name="Math" maps-to="myClass.Math.CommonRoutines">
<d-method name="findMean" maps-to="calcMean">

<d-param name="a"/>
<d-param name="b"/>

</d-method>
</d-component>

2. The method represents a local script. This script is embedded inside the method
and is executed within the sandbox of the render. If the maps-to attribute for the
component is missing, this means that all the code is local. Here is an example:

<d-component name="Math">
<d-method name="findMean" maps-to="calcMean">

<d-param name="a"/>
<d-param name="b"/>
<script type="text/javascript">

<![CDATA[
calcMean(int a, int b) {
return (a+b)/2;
}

]]>
</script>

</d-method>
</d-component>



CHAPTER 4. UIML FORMAL SPECIFICATION 114

3. The method represents a combination of the above. This is useful if you want
to do some error checking locally before calling a remote method or manipulate
the result after it is returned. The semantics of how to do this are under revision
[Har02].

VDM-SL Specification

D-method : : dparam :D-param∗

script : [Script ]
id : ID
source : String
how : [SourcesModes]
export : [ExportOptions]
maps-to : String
return-type : String

The <d-param> Element

DTD

<!ELEMENT d-param (#PCDATA)>
<!ATTLIST d-param

id NMTOKEN #IMPLIED
type CDATA #IMPLIED>

Description

Describes a single formal parameter of the function described by the parent method
element. Note that all parameters are character strings. It is up to some intermediary to
convert parameters from character strings to other data types (e.g., integer or Boolean)
if required.

The order of param elements within the method element is significant. This order
must correspond to the order in which the parameters were originally declared in the
external application. For example, if we have

<d-param>23</d-param>

which is mapped to the parameter of function f (double) in this Java class

public class Demo {
static void f(double);

}

then string “23” is converted by some intermediary to type double in Java.

VDM-SL Specification



CHAPTER 4. UIML FORMAL SPECIFICATION 115

D-param : : data : String
id : [ID ]
type : String

4.3.5.5 The <script> Element

DTD

<!ELEMENT script (#PCDATA)>
<!ATTLIST script

id NMTOKEN #REQUIRED
source CDATA #IMPLIED
how (union | cascade | replace) "replace"
export (hidden | optional | required) "optional"
type NMTOKEN #IMPLIED>

Description

The script element contains a program written in the scripting language identified
by the type attribute (this is similar to the script element in HTML 4.0).

VDM-SL Specification

Script : : data : String
id : ID
source : String
how : [SourcesModes]
export : [ExportOptions]
type : String

inv scri 4 uniqueIDs (scri);

4.3.6 Templates - Reusable Interface Components

UIML templates enables interface implementors to design parts or to make their entire
UI reusable as a component in another UI . For example, many UI for electronic
commerce applications include a credit-card entry form. If such a form is described
in UIML as a template, then it can be reused multiple times either within the same UI
or across another UI . This reduces the amount of UIML code needed to develop an
UI and also ensures a consistent presentation across enterprise-wide UI . End users
tend to make fewer mistakes and are more efficient when presented with familiar UI
([AH02] describes all template rules).



CHAPTER 4. UIML FORMAL SPECIFICATION 116

4.3.6.1 The <listener> Element

DTD

<!ELEMENT listener EMPTY>
<!ATTLIST listener

class NMTOKEN #IMPLIED
attacher CDATA #IMPLIED>

Description

listener records that a name defined with d-class used-in-tag=“listener” should be
attached as a listener to the d -class , which contains this listener element.

VDM-SL Specification

Listener : : class : String
attacher : String

4.3.6.2 The <template> Element

DTD

<!ENTITY % SourceElements "
(behavior|d-class|d-component|constant|content|interface|
logic|part|peers|presentation|property|rule|script|
structure|style|restructure)">

<!ELEMENT template %SourceElements;>
<!ATTLIST template

id NMTOKEN #IMPLIED>

Description

The template element permits several handy shortcuts when writing UIML. It al-
lows

• one fragment of UIML to be inserted in multiple places in a UIML document,

• one UIML document to include a UIML fragment from another document, and

• style and other elements to be cascaded, in a manner analogous to the CSS
specification.

Templates work as follows. Most elements (see SourceElements list) can contain
the source attribute; call such an element E . The source attribute names a template



CHAPTER 4. UIML FORMAL SPECIFICATION 117

element (either within the same document or in another document). The template
named must contain an element of the same type as the element E (i.e., have the same
tag name). The source attribute causes the body of the element inside the template to
be combined with the body of E.

The section “Rules for Templates” of [Har02], describes the rules to control how
this combining is done.

VDM-SL Specification

Template : : src-ele : SourceElements
id : ID

inv t 4 uniqueIDs (t);

4.4 Invariants

4.4.1 Overview

Invariants are conditions on datatypes which must be preserved before or after execu-
tion of a particular function or event involving such datatypes. Some conditions are
naturally preserved by VDM-SL notation and definitions of its basic types, like String.

We also must know that the use of a DTD to certify the XML structure represents
an important way to ensure the consistency of the UIML document, although there are
some other situations which require explicit control. In the following we describe the
main invariants involved in the UIML specification:

1. No two elements can have the same id within the same UIML document
The predicate uniqueID checks this;

2. In a reference element there must be one constant-name attribute
Ensured by VDM-SL operators;

3. The equal element must have exactly two children
Ensured by VDM-SL operators;

4. An attribute element must have a name attribute
Ensured by VDM-SL operators;

5. The call element has one mandatory attribute, name
Ensured by VDM-SL operators;

6. There must be at least one style element
Ensured by VDM-SL operators;

7. A param element must have exactly one child
Ensured by VDM-SL operators;



CHAPTER 4. UIML FORMAL SPECIFICATION 118

8. The condition element must have only one child
Ensured by VDM-SL operators.

9. The property attribute part-name must refer an existing part ID attribute;

10. The event attribute part-name must refer an existing part ID attribute;

11. The constant ID must be declared of const-name on reference element;

12. Part class name must be defined in d-class.ID;

13. property attribute name must be defined in d-property attribute part-name;

14. The event attribute name must be defined in d-class attribute ID;

15. the d-method type attribute must be defined in d-class ID attribute.

In the sequel, we will describe the predicates which preserve these invariants.

4.4.2 Auxiliary Data Types

CountID = ID
m
→ N;

UIMLMembers : :P : Peers∗

I : Interface∗

T : Template∗

PropertyType = String | Constant | Property | Reference | Call |
Iterator | Op | Event ;

UIMLElements = Uiml | Peers |
Behavior | D-class | D-component | Constant |

Interface | Logic |
Part | Presentation | Property | Rule | Script |

Structure | Style |
Content | Restructure | Equal | Op | Iterator |

Template |
ActionType1 | ActionType2

4.4.3 The uniqueness of ID’s

4.4.3.1 Function uniqueIDs

Specification:



CHAPTER 4. UIML FORMAL SPECIFICATION 119

uniqueIDs :UIMLElements → B

uniqueIDs (t) 4

cases t :
mk-Uiml (-, -) →

rng allIDs (t) = {1},
mk-Peers (-, -, -, -, -)→

rng peersIDs ([t ], {7→}) = {},
mk-Presentation (-, -, -, -, -, -)→

rng preslogIDs ([t ], {7→}) = {1},
mk-Logic (-, -, -, -, -)→

rng preslogIDs ([t ], {7→}) = {1},
mk-Part (-, -, -, -, -, -, -, -, -, -, -, -)→

rng partsIDs ([t ], {7→}) = {1},
mk-Equal (-, -) →

rng equalIDs (t , {7→}) = {1},
mk-Op (-, -) →

rng opIDs ([t ], {7→}) = {1},
mk-Constant (-, -, -, -, -, -, -)→

rng constantsIDs ([t ], {7→}) = {1},
mk-Property (-, -, -, -, -, -, -, -, -)→

rng propertiesIDs ([t ], {7→}) = {1},
mk-Restructure (-, -, -, -, -, -)→

rng restructureIDs (t , {7→}) = {1},
mk-Iterator (-, -) →

rng iteratorIDs (t , {7→}) = {1},
mk-Style (-, -, -, -, -)→

rng styleIDs (t , {7→}) = {1},
mk-Content (-, -, -, -, -)→

rng contentIDs (t , {7→}) = {1},
mk-Behavior (-, -, -, -, -)→

rng behaviorIDs (t , {7→}) = {1},
mk-Interface (-, -, -, -, -)→

rng interfaceIDs ([t ], {7→}) = {1},
mk-Template (-, -) →

rng templatesIDs ([t ], {7→}) = {1},
mk-Rule (-, -, -, -, -, -)→

rng rulesIDs ([t ], {7→}) = {1},
others → true

end;

Description:

Tests the uniqueness of identity attributes in a UIML document.

Calls:

allIDs ,peersIDs ,preslogIDs ,partsIDs ,equalIDs ,opIDs ,constantsIDs , propertiesIDs ,
restructureIDs ,iteratorIDs ,styleIDs ,contentIDs ,behaviorIDs ,interfaceIDs ,



CHAPTER 4. UIML FORMAL SPECIFICATION 120

templatesIDs ,rulesIDs

4.4.3.2 Function allIDs

Specification:

allIDs :Uiml → CountID

allIDs (u) 4

let memb =
split (u.members,mk-UIMLMembers ([], [], [])),

pid = peersIDs (memb.P , {7→}),
iid = interfacesIDs (memb.I , pid) in

templatesIDs (memb.T , iid);

Description:

Counts the occurrences of each id in an UIML document.

Calls:

split ,peersIDs ,interfaceIDs ,templatesIDs

4.4.3.3 Function peersIDs

Specification:

peersIDs : Peers∗ × CountID → CountID

peersIDs (sp, ci) 4

if sp = []
then ci
else let pe = hd (sp) in

let cp = addMunion (pe.id , ci),
cprelog = preslogIDs (pe.prelog , cp) in

peersIDs (tl (sp), cprelog);

Description:

Counts the occurrences of each id in a peers element.

Calls:

addMunion ,preslogIDs



CHAPTER 4. UIML FORMAL SPECIFICATION 121

4.4.3.4 Function preslogIDs

Specification:

preslogIDs : (Presentation | Logic)
∗
× CountID → CountID

preslogIDs (spl , ci) 4

if spl = []
then ci
else let pl = hd (spl),

cpi = addMunion (pl .id , ci) in
cases pl :

mk-Presentation (-, -, -, -, -, -)→
let cdc = dclassesIDs (pl .dclass, cpi) in
preslogIDs (tl (spl), cdc),

mk-Logic (-, -, -, -, -)→
let cdc = dcomponentsIDs (pl .dcomponent , cpi) in
preslogIDs (tl (spl), cdc)

end;

Description:

Counts the occurrences of each id in a presentation and logic elements.

Calls:

addMunion ,dclassesIDs ,dcomponentsIDs

4.4.3.5 Function dcomponentsIDs

Specification:

dcomponentsIDs :D-component∗ × CountID → CountID

dcomponentsIDs (sdc, ci) 4

if sdc = []
then ci
else let dc = hd (sdc) in

let cdc = dcomponentIDs (dc, ci) in
dcomponentsIDs (tl (sdc), cdc);

Description:

Counts the occurrences of each id in a dcomponent sequence.

Calls:

dcomponentIDs



CHAPTER 4. UIML FORMAL SPECIFICATION 122

4.4.3.6 Function dcomponentIDs

Specification:

dcomponentIDs :D-component × CountID → CountID

dcomponentIDs (dc, ci) 4

let cdc = addMunion (dc.id , ci) in
dmethodsIDs (dc.dmethod , cdc);

Description:

Counts the occurrences of each id in a dcomponent element.

Calls:

addMunion ,dmethodsIDs

4.4.3.7 Function dclassesIDs

Specification:

dclassesIDs :D-class∗ × CountID → CountID

dclassesIDs (sdc, ci) 4

if sdc = []
then ci
else let dc = hd (sdc) in

let cdc = dclassIDs (dc, ci) in
dclassesIDs (tl (sdc), cdc);

Description:

Counts the occurrences of each id in a dclass sequence.

Calls:

dclassIDs

4.4.3.8 Function dclassIDs

Specification:



CHAPTER 4. UIML FORMAL SPECIFICATION 123

dclassIDs :D-class × CountID → CountID

dclassIDs (dc, ci) 4

let cdc = addMunion (dc.id , ci),
cdm = dmethodsIDs (dc.dmethod , cdc) in

dpropertiesIDs (dc.dproperty , cdm);

Description:

Counts the occurrences of each id in a dclass element.

Calls:

addMunion ,dmethodsIDs ,dpropertiesIDs

4.4.3.9 Function dmethodsIDs

Specification:

dmethodsIDs :D-method∗ × CountID → CountID

dmethodsIDs (sdm, ci) 4

if sdm = []
then ci
else let dm = hd (sdm) in

let cdm = dmethodIDs (dm, ci) in
dmethodsIDs (tl (sdm), cdm);

Description:

Counts the occurrences of each id in a dmethod sequence.

Calls:

dmethodIDs

4.4.3.10 Function dmethodIDs

Specification:

dmethodIDs :D-method × CountID → CountID

dmethodIDs (dm, ci) 4

let cdm = addMunion (dm.id , ci) in
dparamsIDs (dm.dparam, cdm);



CHAPTER 4. UIML FORMAL SPECIFICATION 124

Description:

Counts the occurrences of each id in a dmethod element.

Calls:

addMunion ,dparamsIDs

4.4.3.11 Function dparamsIDs

Specification:

dparamsIDs :D-param∗ × CountID → CountID

dparamsIDs (sdp, ci) 4

if sdp = []
then ci
else let dp = hd (sdp) in

let cdp = addMunion (dp.id , ci) in
dparamsIDs (tl (sdp), cdp);

Description:

Counts the occurrences of each id in a dparams sequence.

Calls:

addMunion

4.4.3.12 Function dpropertiesIDs

Specification:

dpropertiesIDs :D-property∗ × CountID → CountID

dpropertiesIDs (sdp, ci) 4

if sdp = []
then ci
else let dp = hd (sdp) in

let cdp = addMunion (dp.id , ci),
cdm = dmethodsIDs (dp.dmethod , cdp),
cdpar = dparamsIDs (dp.dparam, cdm) in

dpropertiesIDs (tl (sdp), cdpar);



CHAPTER 4. UIML FORMAL SPECIFICATION 125

Description:

Counts the occurrences of each id in a dproperty sequence.

Calls:

addMunion ,dmethodsIDs ,dparamsIDs

4.4.3.13 Function usedintagIDs

Specification:

usedintagIDs : (Event | Part)× CountID → CountID

usedintagIDs (ep, ci) 4

cases ep :
mk-Part (-, -, -, -, -, -, -, -, -, -, -, -)→ partIDs (ep, ci),
others → ci

end;

Description:

Counts the occurrences of each id in a used-in-tag attribute.

Calls:

partIDs

4.4.3.14 Function partsIDs

Specification:

partsIDs : Part∗ × CountID → CountID

partsIDs (sp, ci) 4

if sp = []
then ci
else let p = hd (sp) in

let cp = partIDs (p, ci) in
partsIDs (tl (sp), cp);

Description:

Counts the occurrences of each id in a part sequence.



CHAPTER 4. UIML FORMAL SPECIFICATION 126

Calls:

partIDs

4.4.3.15 Function partIDs

Specification:

partIDs : Part × CountID → CountID

partIDs (p, ci) 4

let cs = addMunion (p.id , ci),
cc = contentIDs (p.content , cs),
cb = behaviorIDs (p.behavior , cc) in

partsIDs (p.parts, cb);

Description:

Counts the occurrences of each id in a part element.

Calls:

addMunion ,contentIDs ,behaviorIDs ,partsIDs

4.4.3.16 Function contentIDs

Specification:

contentIDs : Content × CountID → CountID

contentIDs (c, ci) 4

let cc = addMunion (c.id , ci) in
constantsIDs (c.constant , cc);

Description:

Counts the occurrences of each id in a content element.

Calls:

addMunion ,constantsIDs



CHAPTER 4. UIML FORMAL SPECIFICATION 127

4.4.3.17 Function constantsIDs

Specification:

constantsIDs : Constant∗ × CountID → CountID

constantsIDs (sc, ci) 4

if sc = []
then ci
else let c = hd (sc) in

let cc = addMunion (c.id , ci),
cc1 = constantsIDs (c.constant , cc) in

constantsIDs (tl (sc), cc1);

Description:

Counts the occurrences of each id in a constant sequence.

Calls:

constantsIDs ,addMunion

4.4.3.18 Function behaviorIDs

Specification:

behaviorIDs : Behavior × CountID → CountID

behaviorIDs (b, ci) 4

let cb = addMunion (b.id , ci) in
rulesIDs (b.rules, cb);

Description:

Counts the occurrences of each id in a behavior element.

Calls:

addMunion ,rulesIDs

4.4.3.19 Function rulesIDs

Specification:



CHAPTER 4. UIML FORMAL SPECIFICATION 128

rulesIDs : Rule∗ × CountID → CountID

rulesIDs (sr , ci) 4

if sr = []
then ci
else let r = hd (sr) in

let cr = addMunion (r .id , ci),
cc = conditionIDs (r .condition, cr) in

rulesIDs (tl (sr), cc);

Description:

Counts the occurrences of each id in a constant sequence.

Calls:

addMunion ,conditionIDs

4.4.3.20 Function conditionIDs

Specification:

conditionIDs : [Condition]× CountID → CountID

conditionIDs (c, ci) 4

if c = nil
then ci
else cases c.type :

mk-Equal (-, -) → equalIDs (c.type, ci),
mk-Op (-, -) → opIDs (c.type.type, ci)

end;

Description:

Counts the occurrences of each id in a condition element.

Calls:

equalIDs ,opIDs

4.4.3.21 Function actionIDs

Specification:



CHAPTER 4. UIML FORMAL SPECIFICATION 129

actionIDs : [Action]× CountID → CountID

actionIDs (a, ci) 4

if a = nil
then ci
else cases a :

mk-ActionType1 (-, -) → pcrsIDs (a.type, ci),
mk-ActionType2 (-, -, -) →

let cwt = whentrueIDs (a.whentrue, ci),
cwf = whenfalseIDs (a.whenfalse, cwt) in

bydefaultIDs (a.bydefault , cwf )
end;

Description:

Counts the occurrences of each id on action element.

Calls:

pcrsIDs ,whentrueIDs ,whenfalseIDs ,bydefaultIDs

4.4.3.22 Function equalIDs

Specification:

equalIDs : Equal × CountID → CountID

equalIDs (e, ci) 4

cprIDs (e.other , ci);

Description:

Counts the occurrences of each id on equal element.

Calls:

cprIDs

4.4.3.23 Function cprIDs

Specification:



CHAPTER 4. UIML FORMAL SPECIFICATION 130

cprIDs : (Constant | Property | Reference)× CountID → CountID

cprIDs (cpr , ci) 4

cases cpr :
mk-Constant (-, -, -, -, -, -, -)→ constantsIDs ([cpr ], ci),
mk-Property (-, -, -, -, -, -, -, -, -)→ propertiesIDs ([cpr ], ci)

end;

Description:

Counts the occurrences of each id on (Constant — Property — Reference)
elements.

Calls:

constantsIDs ,propertiesIDs

4.4.3.24 Function pcrsIDs

Specification:

pcrsIDs : (Property | Call | Restructure)
∗
× CountID → CountID

pcrsIDs (pcr , ci) 4

if pcr = []
then ci
else let h = hd (pcr) in

cases h :
mk-Property (-, -, -, -, -, -, -, -, -)→

let cp = propertiesIDs ([h], ci) in
pcrsIDs (tl (pcr), cp),

mk-Call (-, -)→
let cp = paramsIDs (h.params, ci) in
pcrsIDs (tl (pcr), cp),

mk-Restructure (-, -, -, -, -, -)→
let ct = templatesIDs ([h.template], ci) in
pcrsIDs (tl (pcr), ct)

end;

Description:

Counts the occurrences of each id on (Property — Call — Restructure)
elements.

Calls:

propertiesIDs ,paramsIDs ,templatesIDs



CHAPTER 4. UIML FORMAL SPECIFICATION 131

4.4.3.25 Function propertiesIDs

Specification:

propertiesIDs : Property∗ × CountID → CountID

propertiesIDs (sp, ci) 4

if sp = []
then ci
else let p = hd (sp) in

let cp = propertytypesIDs (p.property , ci) in
propertiesIDs (tl (sp), cp);

Description:

Counts the occurrences of each id on property sequence.

Calls:

propertytypeIDs

4.4.3.26 Function propertytypesIDs

Specification:

propertytypesIDs : PropertyType∗ × CountID → CountID

propertytypesIDs (sp, ci) 4

if sp = []
then ci
else let p = hd (sp) in

cases p :
mk-Constant (-, -, -, -, -, -, -)→

let cp = addMunion (p.id , ci),
cc = constantsIDs ([p], cp) in

propertytypesIDs (tl (sp), cc),
mk-Property (-, -, -, -, -, -, -, -, -)→

let cp = addMunion (p.id , ci),
cps = propertiesIDs ([p], cp) in

propertytypesIDs (tl (sp), cps),
mk-Call (-, -)→

let cc = paramsIDs (p.params, ci) in
propertytypesIDs (tl (sp), cc),

mk-Iterator (-, -) →
let cp = addMunion (p.id , ci),

cit = iteratorIDs (p.iterator , cp) in
propertytypesIDs (tl (sp), cit)

end;



CHAPTER 4. UIML FORMAL SPECIFICATION 132

Description:

Counts the occurrences of each id in a PropertyType element.

Calls:

addMunion ,constantsIDs ,propertiesIDs ,paramsIDs , iteratorIDs

4.4.3.27 Function iteratorIDs

Specification:

iteratorIDs : (Constant | Property | Call)× CountID → CountID

iteratorIDs (i , ci) 4

cases i :
mk-Constant (-, -, -, -, -, -, -)→

let cp = addMunion (i .id , ci) in
constantsIDs ([i ], cp),

mk-Property (-, -, -, -, -, -, -, -, -)→
let cp = addMunion (i .id , ci) in
propertiesIDs ([i ], cp),

mk-Call (-, -) →
paramsIDs (i .params, ci)

end;

Description:

Counts the occurrences of each id in an Iterator element.

Calls:

addMunion ,constantsIDs ,propertiesIDs ,paramsIDs

4.4.3.28 Function paramsIDs

Specification:

paramsIDs : Param∗ × CountID → CountID

paramsIDs (sp, ci) 4

if sp = []
then ci
else let p = hd (sp),

cp = paramIDs (p.type, ci) in
paramsIDs (tl (sp), cp);



CHAPTER 4. UIML FORMAL SPECIFICATION 133

Description:

Counts the occurrences of each id in a param sequence.

Calls:

paramIDs

4.4.3.29 Function paramIDs

Specification:

paramIDs : ParamType × CountID → CountID

paramIDs (p, ci) 4

cases p :
mk-Constant (-, -, -, -, -, -, -)→ constantsIDs ([p], ci),
mk-Property (-, -, -, -, -, -, -, -, -)→ propertiesIDs ([p], ci),
mk-Call (-, -) → paramsIDs (p.params, ci),
mk-Iterator (-, -) →

let cp = addMunion (p.id , ci) in
iteratorIDs (p.iterator , cp)

end;

Description:

Counts the occurrences of each id in a param element.

Calls:

addMunion ,constantsIDs ,propertiesIDs ,paramsIDs ,iteratorIDs

4.4.3.30 Function opIDs

Specification:



CHAPTER 4. UIML FORMAL SPECIFICATION 134

opIDs : PropertyType∗ × CountID → CountID

opIDs (sp, ci) 4

if sp = []
then ci
else let p = hd (sp) in

cases p :
mk-Constant (-, -, -, -, -, -, -)→

let cp = addMunion (p.id , ci),
cc = constantsIDs ([p], cp) in

opIDs (tl (sp), cc),
mk-Property (-, -, -, -, -, -, -, -, -)→

let cp = addMunion (p.id , ci),
cps = propertiesIDs ([p], cp) in

opIDs (tl (sp), cps),
mk-Call (-, -)→

let cc = paramsIDs (p.params, ci) in
opIDs (tl (sp), cc),

mk-Op (-, -) →
let co = opIDs (p.type, ci) in
opIDs (tl (sp), co),

mk-Iterator (-, -) →
let cp = addMunion (p.id , ci),

cit = iteratorIDs (p.iterator , cp) in
opIDs (tl (sp), cit)

end;

Description:

Counts the occurrences of each id in an op element.

Calls:

addMunion ,constantsIDs ,propertiesIDs ,iteratorIDs ,paramsIDs

4.4.3.31 Function whentrueIDs

Specification:

whentrueIDs : [When-true]× CountID → CountID

whentrueIDs (w , ci) 4

if w = nil
then ci
else let cpc = pcIDs (w .type, ci),

cr = restructureIDs (w .restructure, cpc),
ce = equalIDs (w .equal , cr) in

opIDs (w .op.type, ce);



CHAPTER 4. UIML FORMAL SPECIFICATION 135

Description:

Counts the occurrences of each id in a when-true element.

Calls:

restructureIDs ,equalIDs ,opIDs ,pcIDs

4.4.3.32 Function pcIDs

Specification:

pcIDs : (Property | Call)
∗
× CountID → CountID

pcIDs (pc, ci) 4

if pc = []
then ci
else let p = hd (pc) in

cases p :
mk-Property (-, -, -, -, -, -, -, -, -)→

let cp = propertiesIDs ([p], ci) in
pcIDs (tl (pc), cp),

mk-Call (-, -)→
let cc = paramsIDs (p.params, ci) in
pcIDs (tl (pc), cc)

end;

Description:

Counts the occurrences of each id in sequence of property or call elements.

Calls:

propertiesIDs ,paramsIDs

4.4.3.33 Function whenfalseIDs

Specification:



CHAPTER 4. UIML FORMAL SPECIFICATION 136

whenfalseIDs : [When-false]× CountID → CountID

whenfalseIDs (w , ci) 4

if w = nil
then ci
else let cpc = pcIDs (w .type, ci),

cr = restructureIDs (w .restructure, cpc),
ce = equalIDs (w .equal , cr) in

opIDs (w .op.type, ce);

Description:

Counts the occurrences of each id on when-false element.

Calls:

restructureIDs ,equalIDs ,opIDs ,pcIDs

4.4.3.34 Function bydefaultIDs

Specification:

bydefaultIDs : [By-default ]× CountID → CountID

bydefaultIDs (w , ci) 4

if w = nil
then ci
else let cpc = pcIDs (w .type, ci),

cr = restructureIDs (w .restructure, cpc),
ce = equalIDs (w .equal , cr) in

opIDs (w .op.type, ce);

Description:

Counts the occurrences of each id on by-default element.

Calls:

restructureIDs ,equalIDs ,opIDs ,pcIDs

4.4.3.35 Function restructureIDs

Specification:



CHAPTER 4. UIML FORMAL SPECIFICATION 137

restructureIDs : Restructure × CountID → CountID

restructureIDs (r , ci) 4

templateIDs (r .template, ci);

Description:

Counts the occurrences of each id on restrucure element.

Calls:

templateIDs

4.4.3.36 Function interfacesIDs

Specification:

interfacesIDs : Interface∗ × CountID → CountID

interfacesIDs (si , ci) 4

if si = []
then ci
else let p = hd (si),

cid = interfaceIDs (p.intele, ci) in
interfacesIDs (tl (si), cid);

Description:

Counts the occurrences of each id in an Interface sequence.

Calls:

interfaceIDs

4.4.3.37 Function interfaceIDs

Specification:



CHAPTER 4. UIML FORMAL SPECIFICATION 138

interfaceIDs : InterfaceElements∗ × CountID → CountID

interfaceIDs (si , ci) 4

if si = []
then ci
else let p = hd (si) in

cases p :
mk-Structure (-, -, -, -, -)→

let cp = addMunion (p.id , ci),
cc = structureIDs (p, cp) in

interfaceIDs (tl (si), cc),
mk-Style (-, -, -, -, -)→

let cp = addMunion (p.id , ci),
cps = styleIDs (p, cp) in

interfaceIDs (tl (si), cps),
mk-Content (-, -, -, -, -)→

let cp = addMunion (p.id , ci),
cc = contentIDs (p, cp) in

interfaceIDs (tl (si), cc),
mk-Behavior (-, -, -, -, -)→

let cb = addMunion (p.id , ci),
co = behaviorIDs (p, cb) in

interfaceIDs (tl (si), co)
end;

Description:

Counts the occurrences of each id in an Interface Type sequence.

Calls:

addMunion ,structureIDs ,styleIDs ,contentIDs ,behaviorIDs

4.4.3.38 Function templatesIDs

Specification:

templatesIDs : Template∗ × CountID → CountID

templatesIDs (s, ci) 4

if s = []
then ci
else let t = hd (s),

cid = templateIDs (t , ci) in
templatesIDs (tl (s), cid);

Description:



CHAPTER 4. UIML FORMAL SPECIFICATION 139

Counts the occurrences of each id in a sequence of template element.

Calls:

templateIDs

4.4.3.39 Function templateIDs

Specification:



CHAPTER 4. UIML FORMAL SPECIFICATION 140

templateIDs : Template × CountID → CountID

templateIDs (t , ci) 4

let aux = addMunion (t .id , ci) in
cases t .src-ele :

mk-Behavior (-, -, -, -, -)→
behaviorIDs (t .src-ele, aux ),

mk-Structure (-, -, -, -, -) →
structureIDs (t .src-ele, aux ),

mk-Style (-, -, -, -, -)→
styleIDs (t .src-ele, aux ),

mk-Content (-, -, -, -, -)→
contentIDs (t .src-ele, aux ),

mk-Constant (-, -, -, -, -, -, -)→
constantsIDs ([t .src-ele], aux ),

mk-Property (-, -, -, -, -, -, -, -, -)→
propertiesIDs ([t .src-ele], aux ),

mk-Peers (-, -, -, -, -)→
peersIDs ([t .src-ele], aux ),

mk-Presentation (-, -, -, -, -, -)→
preslogIDs ([t .src-ele], aux ),

mk-Logic (-, -, -, -, -)→
preslogIDs ([t .src-ele], aux ),

mk-Part (-, -, -, -, -, -, -, -, -, -, -, -)→
partsIDs ([t .src-ele], aux ),

mk-Restructure (-, -, -, -, -, -)→
restructureIDs (t .src-ele, aux ),

mk-Interface (-, -, -, -, -)→
interfaceIDs ([t .src-ele], aux ),

mk-Rule (-, -, -, -, -, -)→
rulesIDs ([t .src-ele], aux ),

mk-Script (-, -, -, -, -, -)→
scriptIDs (t .src-ele, aux ),

mk-D-class (-, -, -, -, -, -, -, -, -, -, -)→
dclassIDs (t .src-ele, aux ),

mk-D-component (-, -, -, -, -, -, -)→
dcomponentIDs (t .src-ele, aux )

end;

Description:

Counts the occurrences of each id on template element.

Calls:

behaviorIDs ,structureIDs ,styleIDs ,contentIDs ,constantsIDs , propertiesIDs ,peersIDs ,
preslogIDs ,partsIDs ,restructureIDs ,interfaceIDs , rulesIDs ,scriptIDs ,dclassIDs ,
dcomponentIDs



CHAPTER 4. UIML FORMAL SPECIFICATION 141

4.4.3.40 Function structureIDs

Specification:

structureIDs : Structure × CountID → CountID

structureIDs (s, c) 4

let aux = addMunion (s.id , c) in
partsIDs (s.parts, aux );

Description:

Counts the occurrences of each id in a structure element.

Calls:

addMunion ,partsIDs

4.4.3.41 Function scriptIDs

Specification:

scriptIDs : Script × CountID → CountID

scriptIDs (s, c) 4

addMunion (s.id , c);

Description:

Counts the occurrences of each id in a script element.

Calls:

addMunion

4.4.3.42 Function styleIDs

Specification:

styleIDs : Style × CountID → CountID

styleIDs (s, c) 4

let aux = addMunion (s.id , c) in
propertiesIDs (s.property , aux );



CHAPTER 4. UIML FORMAL SPECIFICATION 142

Description:

Counts the occurrences of each id in a style element.

Calls:

addMunion ,propertiesIDs

4.4.4 Attribute part-name must refer an existing part ID attribute

Invariant 9 - The property attribute part-name must be defined in ID attribute of part
elements

The same reasoning must be applied to invariants 10,11,12,13, 14 and 15.

We must remember that several elements do not have part-name attributes. So they
can be ignored.

4.4.4.1 Function validProperties

Specification:

validProperties :Uiml → B

validProperties (u) 4

let memb = split (u.members,mk-UIMLMembers ([], [], [])),
sPN = interfacesPN (memb.I , {}),
sPId = interfacesIDs (memb.I , {7→}) in

∀ x ∈ sPN ·
mk-ID (x ) ∈ dom (sPId);

Description:

Verify if all properties of an UIML document are correct.

Calls:

split ,interfacesPN ,interfacesIDs

4.4.4.2 Function interfacesPN

Specification:



CHAPTER 4. UIML FORMAL SPECIFICATION 143

interfacesPN : Interface∗ × String-set → String-set
interfacesPN (si , ss) 4

if si = []
then ss
else let p = hd (si),

cid = interfacePN (p.intele, ss) in
interfacesPN (tl (si), cid);

Description:

Verify if all part-name properties of all interfaces are correct.

Calls:

interfacePN

4.4.4.3 Function interfacePN

Specification:

interfacePN : InterfaceElements∗ × String-set → String-set
interfacePN (si , ss) 4

if si = []
then ss
else let i = hd (si) in

cases i :
mk-Structure (-, -, -, -, -)→

let sPN = partsPN (i .parts, ss) in
interfacePN (tl (si), sPN ),

mk-Style (-, -, -, -, -)→
let sPN = stylePN (i .property , ss) in
interfacePN (tl (si), sPN ),

others → interfacePN (tl (si), ss)
end;

Description:

Verify if all part-name of interface elements are correct.

Calls:

partsPN ,stylePN



CHAPTER 4. UIML FORMAL SPECIFICATION 144

4.4.4.4 Function partsPN

Specification:

partsPN : Part∗ × String-set → String-set
partsPN (sp, ss) 4

if sp = []
then ss
else let p = hd (sp) in

let sPN = stylePN (p.style.property , ss),
pPN = partsPN (p.parts, sPN ) in

partsPN (tl (sp), pPN );

Description:

Verify if all part-name of all part elements are correct.

Calls:

stylePN

4.4.4.5 Function stylePN

Specification:

stylePN : Property∗ × String-set → String-set
stylePN (s, ss) 4

if s = []
then ss
else let p = hd (s) in

let sPN = propertiesPN (p.property , ss) in
stylePN (tl (s), sPN );

Description:

Verify if all part-name of all property elements of style elements are cor-
rect.

Calls:

propertiesPN



CHAPTER 4. UIML FORMAL SPECIFICATION 145

4.4.4.6 Function propertiesPN

Specification:

propertiesPN : Property∗ × String-set → String-set
propertiesPN (sp, ss) 4

if sp = []
then ss
else let p = hd (sp),

cp = propertytypesPN (p.property , {p.p-name} ∪ ss) in
propertiesPN (tl (sp), cp);

Description:

Verify if all part-name of each property sequence are correct.

Calls:

propertytypesPN

4.4.4.7 Function propertytypesPN

Specification:

propertytypesPN : PropertyType∗ × String-set → String-set
propertytypesPN (sp, ss) 4

if sp = []
then ss
else let p = hd (sp) in

cases p :
mk-Property (-, -, -, -, -, -, -, -, -)→

let cps = propertytypesPN ([p], ss) in
propertytypesPN (tl (sp), cps),

mk-Call (-, -)→
let cc = paramsPN (p.params, ss) in
propertytypesPN (tl (sp), cc)

end;

Description:

Verify if all part-name of each property type sequence are correct.

Calls:

paramsPN



CHAPTER 4. UIML FORMAL SPECIFICATION 146

4.4.4.8 Function paramsPN

Specification:

paramsPN : Param∗ × String-set → String-set
paramsPN (sp, ss) 4

if sp = []
then ss
else let p = hd (sp),

pn = paramPN (p.type, ss) in
paramsPN (tl (sp), pn);

Description:

Verify if all part-name of each param element are correct.

Calls:

paramPN

4.4.4.9 Function paramPN

Specification:

paramPN : ParamType × String-set → String-set
paramPN (p, ss) 4

cases p :
mk-Property (-, -, -, -, -, -, -, -, -)→

propertytypesPN ([p], ss),
mk-Call (-, -) → paramsPN (p.params, ss),
mk-Iterator (-, -) → iteratorPN (p, ss)

end;

Description:

Verify if all part-name of each param element are correct.

Calls:

propertytypesPN ,paramsPN ,iteratorPN



CHAPTER 4. UIML FORMAL SPECIFICATION 147

4.4.4.10 Function iteratorPN

Specification:

iteratorPN : IteratorOptions × String-set → String-set
iteratorPN (i , ss) 4

cases i :
mk-Property (-, -, -, -, -, -, -, -, -)→

propertytypesPN ([i ], ss),
mk-Call (-, -) → paramsPN (i .params, ss)

end;

Description:

Verify if all part-name of each param element are correct.

Calls:

propertytypesPN ,paramsPN

4.4.5 Auxiliary Functions

4.4.5.1 Function split

Specification:

split :Member∗ ×UIMLMembers → UIMLMembers

split (m, spit) 4

if m = []
then spit
else let x = hd (m) in

cases x :
mk-Peers (-, -, -, -, -)→

split (tl (m),
mk-UIMLMembers (spit .P y [x ], spit .I , spit .T )),

mk-Interface (-, -, -, -, -)→
split (tl (m),

mk-UIMLMembers (spit .P , spit .I y [x ], spit .T )),
mk-Template (-, -) →

split (tl (m),
mk-UIMLMembers (spit .P , spit .I , spit .T y [x ]))

end;

Description:

Splits the three different members of uiml element in different bags.



CHAPTER 4. UIML FORMAL SPECIFICATION 148

Calls:

Standard VDM-SL only

4.4.5.2 Function addMunion

Specification:

addMunion : [ID ]× CountID → CountID

addMunion (id , sid) 4

if id = nil
then sid
else if sid = {7→}

then id 7→ 1 ⇀
else if id ∈ dom sid

then id 7→ sid (id) + 1 ⇀ m
⋃

({id} −C sid)
else id 7→ 1 ⇀ m

⋃
sid ;

Description:

The data type CountID maps IDs to its number of occurrences. The func-
tion adds a new ID to an existing CountID.

Calls:

Standard VDM-SL only

4.4.5.3 Function length

Specification:

length : (String | ID) → N

length (x ) 4

cases x :
mk-ID (s) → len (s),
others → len (x )

end

Description:

Returns string length of Id, Source, Class, Model and Value attributes.

Calls:



CHAPTER 4. UIML FORMAL SPECIFICATION 149

Standard VDM-SL only

end UIMLSpec

4.5 Remarks

Once formalized, the UIML VDM-SL specification represents one of the main goals of
this work. During this process, several direct interactions with Harmonia (Dr. Marc.
Adams4 and Dr. James Helms5 were necessary, because of some inconsistencies in the
UIML language definitions.

Due to the extension of UIML language, some particularities were not considered
on this work. Mainly rules associated to template and property elements.

Now we are going to test the resultant VDM-SL specification, using a table object,
that is the focus of the next chapter.

4mabrams@harmonia.com
5jhelms@harmonia.com



Chapter 5

Case study: Table IO

5.1 Overview

With the advent of personal computers (vulg. laptop) everybody should be nowadays
familiar with spread-sheets and the tabular presentation of data on a computer screen.
However, data reality is not always 2-dimensional. This entails the need for data-
analytical processing, often disguised in the GUI for improved user friendliness.

In this chapter, we address the UIML specification and animation of such a basic
GUI component - the tabular graphical interaction component.

The process will start by defining an abstract VDM-SL model for a table and by cre-
ating new functional methods (operators, functions and transformers) under the UIML
specification of Chapter 4, mainly methods to support the most common features of
OLAP technology (section 2.7.2).

5.2 Fundamentals of Table IO Formalization

Our case study — a Table as an interaction IO object — is very common in many
GUIs, for direct structure data display, for immediate calculus framework like spread-
sheets [JNZM93], Data Mining, statistical analysis, etc.

5.2.1 Considerations

When we talk about usual table visual components, we are referring to a bi-dimensional
structure, a rectangle of cells, with a specific height and width. Nevertheless, we will
see that more dimensions can arise.

In the literature, reference [Nig01] regards as a dimension to the set of columns
or rows, having a structure graphically represented by a cube (as we have seen in the
section 2.7.2). Each cube face represents a particular set of three dimensions. This
makes it easy to understand why this kind of structure is called a Multidimensional
Structure.

Figure 5.1 depicts an example of this kind of cube. Looking at any of its faces, we
see a table, considered as a structure with two or even three dimensions (in case where

150



CHAPTER 5. CASE STUDY: TABLE IO 151

cells values are considered a dimension). Using the standard terminology, a table can
be seen as a Cross Tab View or Data Matrix.

8


4
 5


Pedro
 Paulo


black


white


Ford
 2


3


Fiat


Vendors


Model

Color


SALES VOLUMES


Figure 5.1: Sales volumes HyperCube

Informally, table contents are spread into units called cells disposed in rows and
columns. Each cell is referred to by a pair of values (r , c), where r and c are the row
and column numbers, respectively. There is a diversity of operations covering cells,
rows and columns, as well as a large possibility of contents: literal values, equations,
etc.

It is possible to enumerate several common basic attributes, properties and opera-
tors, which support table behavior, and organize them in three main classes: operators,
functions and transformers [GLS96]. Section 5.3 summarizes these concepts. Because
of its extension, we will only explore some of them in this work.

Using a mathematical notation, a tentative tabular model can be represented by a pair:

T = 〈N ,V 〉

where

N : represents a finite set of names (relations and attributes)

V : represents the set of possible values

Graphically, a table can be described as a set of singular cells, each uniquely de-
termined by a pair (r , c) of the Cartesian product N × N, corresponding to row and
column identifiers, respectively. Each cell should host either a value v ∈ V or no
value (Table 5.1). To support no values we will use a special symbol⊥ (read novalue).
In this way, to represent all possible displayable symbols, we will use S = N ∪ V .
where V = N ∪ {⊥}.

Let VA be the the set of natural values for column A. To also include the ⊥ value,
we define:

V ⊥
A = VA ∪ {⊥}

In case of more than one column, say B, expression



CHAPTER 5. CASE STUDY: TABLE IO 152

SUN Microsystems Stock

Price
Month low high

Jan 2001 25.438 34.875
Dec 2000 26.938 45.875
Nov 2000 ⊥ 56.532

Table 5.1: Example of table data display

V ⊥
A ×V ⊥

B

denotes the set of all values associated to all possible combinations of columns A and
B, where

A× B = {(a, b) | a ∈ A ∧ b ∈ B} (5.1)

It may seem a little strange to justify this new value ⊥. We will see this in a more
detailed way when exploring transformer operators.

We do not intend to create, prove or improve a tabular algebra, as does [GLS96].
However, we will try to show how several different perspectives of data can be dis-
played, by just using a combination of known operators.

Distinct possibilities to manipulate and eventually transform a table to hold new
operators/results, or even map to a different type of IO, is the main topic of the follow-
ing section.

5.2.2 Table model

Resorting to SETs mathematical notation [Hal60], the following definition for 2-
dimensional tables

T ∼= (N× N) → S (5.2)

makes sense: for each Row and Column pair (r , c) ∈ N × N, there is an associated
value v ∈ S where, as seen above, ⊥∈ S . Alternatively, T can be made into a finite
partial map via isomorphism

(B + 1)A ∼= A⇀ B (5.3)

(read the exponential as a functional space, + as disjoint union and 1 = {⊥}):

T ∼= (N× N) ⇀ V (5.4)



CHAPTER 5. CASE STUDY: TABLE IO 153

The fact the finite mappings are special cases of finite binary relations1,

A⇀ B E 2A×B
fdp (5.5)

enables us to refine (5.2) into

T E 2(N×N×V ) (5.6)

which works as convenient (albeit redundant) definition of Table IO: a set of triples
Row, Column and Value, i.e, a set of cells.

Moreover, from different instances of a particular table, we can see that the number
of columns stands invariable, contrary to the number of rows which can be more or
less, depending of data display.

Let us focus on the original finite mapping definition (5.2). We know that the
number of columns or rows in a table could be characterized as dynamic. Should we
need operators to give the total number of elements in a table t ∈ T , we can compute
card(dom(t)), where card(s) denotes the cardinality of a finite set s and dom(t)
denotes the domain of definition of a partial finite map t . Alternatively, from facts

(A× B) ⇀ C E A⇀ (B ⇀ C ) (5.7)

2A
Eelems A∗ (5.8)

(where elems(l) returns the set of elements of sequence s) and equation (5.5), we can
apply the following transformations to (5.4),

T E N ⇀ (N ⇀ V )

E N ⇀ (N×V )∗

E (N× (N×V )∗)∗ (5.9)

Regarding the last expression above, (N × V )∗ can be seen as the list of columns
and (N× (N×V )∗)∗ as the list of table rows.

Tables (5.2, 5.3, 5.4, 5.5), depict some table structures for different cases of data
representation.

Month Low High
Jan 2001 25.438 34.875

Dec 2000 26.938 45.875
Nov 2000 ⊥ 56.532

Figure 5.2: Sales :Month ⇀ Low ×High

Month High
Jan 2001 25.438
Dec 2000 26.938
Nov 2000 ⊥

Figure 5.3: Sales :Month ⇀ High

In the sequel we will focus on formalizing the behaviour associated with our table
model using the VDM-SL specification language, as earlier on in this document. As
we will see, the domain of our table model can be single (represented by String) or
composed elements (in our VDM-SL represented by Exp) using SET constructors,

1For details on the E-ordering on data models, see e.g. [Oli92]



CHAPTER 5. CASE STUDY: TABLE IO 154

Month Color High
Jan 2001 Red 14.275
Dec 2000 Blue 12.600
Nov 2000 Gray ⊥

Figure 5.4: Sales :Month × Color ⇀ High

North South Total
Paul 140

Mary 720
Sophy 210

Figure 5.5: Sales :North⊕South ⇀
Total

Cartesian Products (A × B), Unions (A + B), Finite Functions (A ⇀ B), Sets (set
of Exp), Sequences (seq of Exp)2, etc.

Let us now relate this abstract model of a table with the UIML VDM-SL model
presented earlier on.

In almost all common GUI applications, table components are used “inside” an-
other component, usually named the container object, like frames , forms , etc, so a
table must be considered as part of the defined GUI.

After analyzing several UIML fragments which describe table objects (Appendix
G.2 presents an example), a conclusion can be clearly reached: in UIML notation, a
simple table can be defined by expression (5.10), derived from the UIML part element:

Table ∼= Style × Part∗ × (ID + 1) (5.10)

where Style , being optional, behaves as the table’s graphical information, Part ∗ lists
the table rows and ID is an optional, unique table identifier. We will substitute Part
by Parr , Style by Styt and ignore table identifiers 3. So, we rewrite:

Table ∼= Styt × Par∗r (5.11)

From the UIML VDM-SL specification, a part element (page 86) is defined, using
abbreviated names, as:

Par ∼= Sty × Con × Beh × Par ∗ × Rep∗ × ID × Satt (5.12)

Considering that we are working with simple tables, we will ignore Content (Con),
Behavior (Beh), Repeat (Rep) and remainder attributes (Satt ). So we define UIML
part element Parr which abbreviates (5.12) to

Parr ∼= Styr × Par∗c × ID (5.13)

and describes table rows. In this expression, Par ∗c models the Column set and Styr

supports row graphic information.

Parc — also derived from part element — is defined as follows:

Parc ∼= Styc × Par∗ × ID

In the same line of thought, Par ∗ will represent all cells .

2seq of Exp is pretty printed as Exp∗ in VDM-SL
3Subscript r, t, c stand for: t - table, r - row and c - column.



CHAPTER 5. CASE STUDY: TABLE IO 155

Summarizing this process, the three equations which model our UIML table are:

Table ∼= Styt × Par∗r (5.14)

Parr ∼= Styr × Par∗c × ID (5.15)

Parc ∼= Styc × Par∗ × ID (5.16)

Looking now to the style element and recalling the corresponding UIML definition
(page 88), it is defined as:

Sty ∼= Pro∗ × (ID + 1)× Satt

Again we can ignore optional attributes and abbreviate this definition into

Sty ∼= Pro∗

where Pro models the UIML property element (page 89). Finally, Pro can restrict
itself to only its attribute name and respective value. Considering this, Pro is defined
as:

Pro ∼= Name × String

The following UIML code fragment represents an example of this model:

<part id="col_x" class="Th">
<style>

<property name="content">SPANISH</property>
</style>

</part>

To conclude our reasoning, it is important to consider the following transformation
rules:

1. Suppose datatype is a sequence of tuples defined as follows:

NT = (A× · · · × ID × · · · × B)∗

If the order in the sequences can be ignored, NT can be rewritten as

NT = P(A× · · · × ID × · · · × B)

2. If there is a factor in Cartesian product A × · · · × B which can determine any
other, such as ID in equation,

NT = (A× · · · × ID × · · · × B)∗ (5.17)

inv l == uniqueIDs(l)

it is possible to further refine NT as follows,

NT E (N ⇀ ID)× (ID ⇀ (A× · · · × B)) (5.18)



CHAPTER 5. CASE STUDY: TABLE IO 156

the first map capturing the sequence order and the functional dependency being
recorded by the second map. In case where the order can be ignored, the first
map can be deleted and NT can be refined as,

NT = ID → (A× · · · × B) (5.19)

3. In case the expressions considered above are of type

NT = (A× ID × B + · · ·+ C × ID ×D)∗

inv l == uniqueIDs(l)

and considering the distributive property of Cartesian product

A× (B + C ) ∼= (A× B) + (A× C ) (5.20)

NT can be rewritten into

NT = (ID × (A× B + · · ·+ C ×D))∗

inv l == uniqueIDs(l)

whereby, via equation (5.17), NT can be converted into

NT = ID → (A× B + · · ·+ C ×D) (5.21)

Note that Parr defined by equation (5.13) and Par ∗r are instances of equation
(5.17). From equation (5.19), Par ∗r can be refined into

Par∗r
∼= ID → Styr × Parc

The same reasoning can be applied to Par ∗c . By renaming Par ∗r by Rows and Par∗c
by Cols, our table model can finally be specified as follows:

Table ∼= Styt × Rows (5.22)

Rows ∼= ID ↪→ Styr × Cols (5.23)

Cols ∼= ID ↪→ Styc × Part (5.24)

Sty ∼= Pro∗ (5.25)

Pro ∼= Name ×Value (5.26)

To get some practical insight on this model and its representation in UIML, we will
proceed to its animation in VDM-SL.



CHAPTER 5. CASE STUDY: TABLE IO 157

5.3 Table VDM-SL specification

This section presents the specification of the most common OLAP methods (functions,
operators or transformers), grouped as general, multidimensional or auxiliary methods.
To better understand their behavior, these methods can be considered as attributes if
they support column and row characteristics (ex. column name, column width, etc.);
operators if they work with table structure (addRow, delRow, etc.); functions if they
support data calculus (sum, avg, sort, etc.) or even transformers if they manipulate
the original table structure (hideCol, drill-down, rotation, etc.).

Considering operators which can change the original table structure, like adding
and removing rows or columns, their most common impact results in a new different
table.

As an implementation detail, we use a “mark” in Style the element of T, Cols and
Rows elements of our VDM-SL specification. Every time one intends to identify a
particular row or column, this mark can be used. We shall see that several operators
will use it.

The tables which follow summarize all implemented methods, followed by their
detailed specification analysis.

General table methods

These methods support common table features such as column, row and table proper-
ties as well as table structure manipulation.

Method Description Page
mkTable creates an empty table 160
rows returns the number of rows 161
hideRow hides a particular row 161
showRows shows all hiding rows 162
delRow removes a table row 163
addRow adds a new table row 163
getRows returns the table rows 164
rowValues returns all row values 164
colValues returns all column values 165
project returns a partial table 165
rowcolValues returns a set of row/column values 166
addCols adds a set of columns 167
addCol adds a new empty column 168
hideCol hides a column 169
showCol renders a particular column visible 170
getCols returns a column set 170
getColsIds returns all column ID 171
setCell sets a new cell value 171
getCellValue returns a cell value 172
getCell returns a cell value and style information 172



CHAPTER 5. CASE STUDY: TABLE IO 158

Multidimensional methods

These methods support multidimensional analysis operations, a set of OLAP important
features.

Operator Description Page
rotate executes a table rotation, changing rows by columns 174
average calculates the average of a particular column (‘slice and dice’) 175
mda calculates a column multidimensional analysis 176
collect allows correlation between columns 177
rollUp associates an upper hierarchy value 179
rollColsHier allows the preservation of previous hierarchy value 180
parent returns the previous value of a hierarchy 181
children returns all direct hierarchy children 182
family returns all hierarchy members 182
childrenOf returns all children of a particular element 183
drillDown executes a drill-down over a particular column 184
drillColsHier gets details for a particular column value 184
consolidate applies a total function to a Set of values (high order VDM func-

tion)
185

summarize applies a binary function to a Set of values (high order VDM
function)

185

Auxiliary methods

These methods are called in others methods.

Method Description Page
markRow marks a particular table row 189
unmarkRows unmarks all marked table rows 189
addColsRows adds a new empty column 168
sum binary function which calculates the sum of a set numbers 186
avg binary function which calculates the average of a set numbers 187
max determines the maximum of two values 187
min determines the minimum of two values 188
t2troll converts between table formats 190
applyMon applies the function to all elements 190
ff 2set gets one set element 191
mda2rows converts a mda result to rows 191
mda2table converts a mda result to table 192
setApplyElems applies a binary function to each set element 193
setApply applies a function to a set 193
map2set converts a mapping function to set 194
map2map remove duplicate mapping elements 194
set2seq converts a set to string (sequence) 195
visibleRows counts only unmarked rows 195
outHtml exports the table data to HTML 196
outUiml exports the table data to UIML, using HTML vocabulary 196
outUimlJ exports the table data to UIML, using JAVA vocabulary 197

As suggested in [MO85], we have defined a kind of archetype with signatures and
definitions of main table OLAP operators. Perhaps this work could contribute towards
a table specification algebra [GLS96].



CHAPTER 5. CASE STUDY: TABLE IO 159

Let us now analyze the VDM-SL specification itself.

module UIMLSpecTab

imports

from IO all ,

from UIMLSpec all

exports all

definitions
String = UIMLSpec‘String ;
Nat = N;
ID = String ;
Rid = String ;
Tid = String ;
Cid = String ;

Hier = Value
m
→ Hier ;

T = Style × Rows;

Rows = Rid
m
→ (Style × Cols);

Cols = Cid
m
→ (Style ×Value);

Style = Pro-set;
Pro = String ×Value;
Value = [String | Nat | B | char | Z | R]

We shall now explore more deeply all defined operators. All definitions will be
applied to our “working case” depicted in next table VDM specification, which repre-
sents a 3 × 4 table sales information of vehicles for a particular color, mark and year.
This particular example4 will be explored again in section 5.3.6 (page 206).

4This example could be created using functions mkTable, addRows and addCol. Because of its exten-
sion, we decided to define it directly as a VDM-SL data value.



CHAPTER 5. CASE STUDY: TABLE IO 160

values
t0 = mk- ({}, {7→});
t = mk- ({},

"r3" 7→ mk- ({},
"Mark" 7→ mk- ({mk- ("content","Austin")},"Austin"),
"Color" 7→ mk- ({mk- ("content","Red")},"Red"),
"Qty" 7→ mk- ({mk- ("content","12")}, 12),
"Year" 7→ mk- ({mk- ("content","2004")}, 2004) ⇀),

"r2" 7→ mk- ({},
"Mark" 7→ mk- ({mk- ("content","Ford")},"Ford"),
"Color" 7→ mk- ({mk- ("content","Red")},"Red"),
"Qty" 7→ mk- ({mk- ("content","75")}, 75),
"Year" 7→ mk- ({mk- ("content","2002")}, 2002) ⇀),

"r1" 7→ mk- ({},
"Mark" 7→ mk- ({mk- ("content","Ford")},"Ford"),
"Color" 7→ mk- ({mk- ("content","Black")},"Black"),
"Qty" 7→ mk- ({mk- ("content","100")}, 100),
"Year" 7→ mk- ({mk- ("content","2002")}, 2002) ⇀) ⇀)

This can be represented graphically as:

Figure 5.6: Sales table information

5.3.1 General table methods

5.3.1.1 Function mkTable

Specification:

mkTable : Style × Rows → T

mkTable (s, r) 4

mk- (s, r);

Description:

mkTable(s, rows) creates an empty table. It prepares the workspace with
the table header, for instance.

Calls:



CHAPTER 5. CASE STUDY: TABLE IO 161

Standard VDM-SL only

For example, the creation of a default table, with no rows and no graphical in-
formation (background color, cell spacing, etc.), could be obtained by the following
expression:

mkTable("dT", {}, {| - >});

Our table t could start its construction using:

mkTable(,"r1" | - > mk(,"Mark" | - > mk(,"Ford")));

(recall that mk is an internal VDM-SL operator to construct records types [Hop01]).

We shall now focus on row operators, where processes like adding, hiding and
getting row values are modeled.

5.3.1.2 Function rows

Specification:

rows : T → Nat

rows (t) 4

visibleRows (t .#2);

Description:

rows(t) returns the number of rows. It only counts those rows which are
not “marked”.

Calls:

visibleRows (page 195)

Only rows not marked are “counted”. Should we have no premise of “rows marked”,
the count would be directly given by card(t .#2) in our previous VDM-SL specifica-
tion.

In our example, expression5:

rows(t1)

will return 3;

5In VDM-Tools this can be observed with command print rows(t1).



CHAPTER 5. CASE STUDY: TABLE IO 162

5.3.1.3 Function hideRow

Specification:

hideRow : T × Rid → T

hideRow (t , rid) 4

mk- (t .#1,markRow (t .#2, rid ,"h"))
pre rid ∈ dom (t .#2)

;

Description:

hideRow(t,rid) hides a particular Row in table t .

Calls:

markRow (page 189)

As previously mentioned, this operator marks the style of a specific row (Rid) with
an h (as one can see in the third row of above VDM-SL code). In this way, row does
not “appear” in subsequent operations, like rows , which counts table rows. It uses the
auxiliary function markRow (page 189).

5.3.1.4 Function showRows

Specification:

showRows : T → T

showRows (t) 4

mk- (t .#1, unmarkRows (t .#2));

Description:

showRows(t) shows all hidden rows.

Calls:

unmarkRows(page189)

This is the “converse” of hideRow. It performs a kind of “rollback”, rendering all
rows “visible” again. So, one would expect the following property to hold:

showRows(hideRow(t , rid)) = t (5.27)



CHAPTER 5. CASE STUDY: TABLE IO 163

Note, however, that given sets A and B , in general,

(A ∪ B)-B = A-B 6= A (5.28)

(A-B) ∪ B = A ∪ B 6= A (5.29)

Therefore, the equality in equation (5.28) hols only in case A ∩ B = ∅. Concerning
(5.29), equality holds in case B ⊆ A.

In consequence, property (5.27) fails when t already has some hidden rows. Equa-
tions (5.28) and (5.29) show this in relating set-difference (-) with hideRow and set-
union (∪) to showRows.

5.3.1.5 Function delRow

Specification:

delRow : T × Rid → T

delRow (t , rid) 4

mk- (t .#1, {rid} −C t .#2);

Description:

delRow(t, rid) removes table rows.

Calls:

Standard VDM-SL only

In our example, expression

delRow(t ,"r1")

will remove all the information concerning Black Ford , and consequently, expression
rows(t) will now return 2 (see figure 5.7).

Figure 5.7: delRow operation result



CHAPTER 5. CASE STUDY: TABLE IO 164

5.3.1.6 Function addRow

Specification:

addRow : T × Rid × Style → T

addRow (t , rid , sty) 4

mk- (t .#1, t .#2 m
⋃
rid 7→ mk- (sty , {7→}) ⇀);

Description:

addRow(t,rid,s) adds a new table row width graphical information.

Calls:

Standard VDM-SL only

So, the second row of our case study could have been created by the expression:

addRow(t ,"r2", {})

considering no style (graphical) information (third argument is {}).

The next operator rowValues gets all specific row values present in the table. Formally,
the specification is similar to colValues, thinking now in terms of horizontal values.

5.3.1.7 Function rowValues

Specification:

rowValues : T × Rid → Value-set
rowValues (t , rid) 4

{t .#2 (rid).#2 (ci).#2 | ci ∈ dom (t .#2 (rid).#2)}
pre rid ∈ dom (t .#2)

;

Description:

rowValues(t,rid) returns all values in rid .

Calls:

Standard VDM-SL only

In our example, the expression:

rowValues(t ,"r1")

will return the set {"100","2002","Ford","Black"}.



CHAPTER 5. CASE STUDY: TABLE IO 165

5.3.1.8 Function getRows

Specification:

getRows : T → Rows

getRows (t) 4

t .#2;

Description:

getRows(t) gets table rows. It works as an auxiliary function.

Calls:

Standard VDM-SL only

We will see an example of getRows application under unmarkRows auxiliary func-
tion description (on page 189).

The same reasoning is applicable to columns. Hiding columns, selecting column
data, adding columns, etc., are also necessary operators. Let us now analyze some of
them.

Focusing on the Projection operator of Relational Algebra, which gives all values for
a specific table column, we have created the colValues operator.

5.3.1.9 Function colValues

Specification:

colValues : T × Cid → Value-set
colValues (t , cid) 4

{t .#2 (ri).#2 (cid).#2 | ri ∈ dom (t .#2)};

Description:

collValues(t,cid) returns all values in column cid

Calls:

Standard VDM-SL only

In our example, expression:

colValues(t ,"Mark")

will return the set {Ford ,Austin}. Remember that there are two values Ford . But, as
we are working with set expressions, this redundancy is eliminated.

Another instance of the traditional projection operator could be supported for the
following method project .



CHAPTER 5. CASE STUDY: TABLE IO 166

5.3.1.10 Function project

Specification:

project : T × Cid -set → T

project (t , scid) 4

if scid = {}
then t
else mk- (t .#1,map2map[Rid ,Style,Cols]

(
getRows (mk- (t .#1, {rid 7→ mk- (t .#2 (rid).#1,

{cid 7→ getCell (t , rid , cid) | cid ∈
scid}) |

rid ∈ dom (t .#2)})),
{7→}));

Description:

project(t,sc) returns a partial table

Calls:

map2map (page 194), getRows (page 164), getCell (page 172)

In our example, expression:

project(t , {"Mark"})

will return a single column table with the Mark column information, as depicted in
Figure 5.8.

Figure 5.8: Single column project operation

Otherwise, the following expression will return all information of Mark and Qty,
in a two column table (Figure 5.9):

project(t , {"Mark","Qty"})

Unlike colValues , which returns a set of values, this project operator returns a
new table (sub-table) formed by the selected columns.

We must remember now the operator rowValues (specified in page 164), which
does the same as this one, but working with horizontal values.



CHAPTER 5. CASE STUDY: TABLE IO 167

Figure 5.9: Multiple column project operation

5.3.1.11 Function rowcolValues

Specification:

rowcolValues : Rows × Cols × Cid → Value-set
rowcolValues (r , c, cid) 4

{r (x ).#2 (cid).#2 | x ∈ dom (r) · (dom (c) C r (x ).#2) = c};

Description:

rowcolValues(rows, cols, cid) returns a particular set of column values
for a particular set of rows

Calls:

Standard VDM-SL only

Let us now consider the operators addCols , addCol and addNCol , which allow for
column insertion. The last one allows for the insertion of a new column in a particular
position (N ). The corresponding signatures are:

addCols : Table ∗ Cols → Table

addCol : Table ∗ Cid ∗ Style → Table

addNCol : Table ∗ Col ∗N → Table

Let us explore addCol and addCols . The same modelling decision applies to addNcol .

5.3.1.12 Function addCols

Specification:

addCols : T × Cols → T

addCols (t , sc) 4

mk- (t .#1, addColsRows (t .#2, sc));

Description:



CHAPTER 5. CASE STUDY: TABLE IO 168

addCols(t, cols) adds a set of columns information (value and graphical
information) to table

Calls:

addColsRows (page 168)

In our example, the ”Mark” column could have been created using the following ex-
pression (considering no row cell values):

addCols(t , {"Mark" | - > {}})

5.3.1.13 Function addCol

Specification:

addCol : T × Cid × Style → T

addCol (t , cid , sty) 4

mk- (t .#1,
t .#2 † {rid 7→ mk- (t .#2 (rid).#1,

t .#2 (rid).#2 m
⋃
cid 7→ mk- (sty ,"") ⇀) |

rid ∈ dom (t .#2)});

Description:

addCol(t, cid, s) adds a new empty column to table

Calls:

Standard VDM-SL only

In our example, the “Color” column could have been created using expression:

addCol(t ,"Color", {})

From the following expression,

addCol(t ,"Color", {}) ∼= addCols(t , {"Color" | - > {}})

we can see that addCol is an instance of addCols .

Considering this, the creation of our table (without cell values) could have been made
by the following expression:

addCol(addCol(addCol(mkTable("Sales", {}, {| - >}),"Mark"),"Color"),"Qty")

Figure 5.10 depicts the result of applying addCol(t ,"Vendor") to our initial table.



CHAPTER 5. CASE STUDY: TABLE IO 169

Figure 5.10: New column applying addCol

5.3.1.14 Function addColsRows

Specification:

addColsRows : Rows × Cols → Rows

addColsRows (rs, sc) 4

{x 7→ mk- (rs (x ).#1, (rs (x ).#2) m
⋃
sc) | x ∈ dom (rs)};

Description:

addColsRows(rows,cols) is an auxiliary function used by addCols .

Calls:

Standard VDM-SL only

As we have seen in the specification of row operators, it should be possible to hide
some table information. The method hideCol is specified for this purpose. In these
situations, the original table state must not be changed.

5.3.1.15 Function hideCol

Specification:

hideCol : T × Cid → T

hideCol (t , cid) 4

mk- (t .#1,
t .#2 † {rid 7→ mk- (t .#2 (rid).#1, t .#2 (rid).#2 †

cid 7→ mk-
(
t .#2 (rid).#2 (cid).#1 ∪
{mk- ("h","0")},
t .#2 (rid).#2 (cid).#2) ⇀) |

rid ∈ dom (t .#2)});

Description:



CHAPTER 5. CASE STUDY: TABLE IO 170

hideCol(t,cid) hides a particular column on table t . As in hideRow func-
tion, a ”mark” h is activated on style attribute.

Calls:

Standard VDM-SL only

For instance, expression:
hideCol(t ,"Mark")

will hide vehicle mark information in our running example. The table will keep only
two columns visible.

An operator which does the reverse of hideCol can be inferred from it. Let us call
it showCol . Our reasoning concerning showRows and hideRow (page 161) should be
considered here too. So, property

showCol(hideCol(t , ci), ci) = t

is not be always valid.

5.3.1.16 Function showCol

Specification:

showCol : T × Cid → T

showCol (t , cid) 4

mk- (t .#1,
t .#2 † {rid 7→ mk- (t .#2 (rid).#1, t .#2 (rid).#2 †

cid 7→ mk-
(
t .#2 (rid).#2 (cid).#1 \
{mk- ("h","0")},
t .#2 (rid).#2 (cid).#2) ⇀) |

rid ∈ dom (t .#2)});

Description:

showCol(t, cid) renders visible the column Cid . It is the converse function
of hideCol .

Calls:

Standard VDM-SL only



CHAPTER 5. CASE STUDY: TABLE IO 171

5.3.1.17 Function getCols

Specification:

getCols : Rows × Cid -set → Cols-set
getCols (r , scid) 4

let cols = λ ri : Rid · (scid C r (ri).#2) in
{cols (ri) | ri ∈ dom r};

Description:

getCols(rows, cols) returns a particular column set.

Calls:

Standard VDM-SL only

5.3.1.18 Function getColsIds

Specification:

getColsIds : T → Cid -set
getColsIds (t) 4

⋃
{dom (t .#2 (rid).#2) | rid ∈ dom (t .#2)};

Description:

getColsIds(t) returns all column ID.

Calls:

Standard VDM-SL only

If we intend to set or get values to/from a specific cell, the next functions will be
useful.

5.3.1.19 Function setCell

Specification:

setCell : T × Rid × Cid ×Value → T

setCell (t , rid , cid , v) 4

mk- (t .#1, t .#2 †
rid 7→ mk- (t .#2 (rid).#1,

t .#2 (rid).#2 †
cid 7→ mk- (t .#2 (rid).#2 (cid).#1, v) ⇀) ⇀);



CHAPTER 5. CASE STUDY: TABLE IO 172

Description:

setCell(t, rid, cid, v) set a new value v to a particular cell.

Calls:

Standard VDM-SL only

In our example, the values for column Mark could have been by the following
expressions:

t1 = setCell(t ,"r1","Mark","Ford")

t2 = setCell(t1,"r2","Mark","Ford")

t3 = setCell(t2,"r3","Mark","Austin")

In the same way, to get the respective values, one can use the function getCellValue ,
defined as follows.

5.3.1.20 Function getCellValue

Specification:

getCellValue : T × Rid × Cid → Value

getCellValue (t , rid , cid) 4

if t = mk- ({}, {7→})
then nil
else t .#2 (rid).#2 (cid).#2;

Description:

getCellValue(t, rid, cid) returns the value of a particular cell.

Calls:

Standard VDM-SL only

Considering this, the following expression should be correct:

getCellValue(setCell(t ,"r2","Qty", 123),"r2","Qty") = 123



CHAPTER 5. CASE STUDY: TABLE IO 173

5.3.1.21 Function getCell

Specification:

getCell : T × Rid × Cid → (Style ×Value)
getCell (t , rid , cid) 4

mk- (t .#2 (rid).#2 (cid).#1, t .#2 (rid).#2 (cid).#2);

Description:

getCell(t, rid, cid) returns all cell information.

Calls:

Standard VDM-SL only

5.3.2 Towards Multidimensional Analysis

5.3.2.1 Overview

As we have seen in section 2.7.1, a dimension is a perspective or view of a specific
dataset. A different view of the same data is an alternative dimension. A system that
supports simultaneous, alternative views of datasets is said to be multidimensional.
Dimensions are typical categories such as time, accounts, regions, markets, budgets,
and so on. Each dimension contains additional categories that could have various
relationships one to another.

Considering this, many aspects motivate current advances on database technolo-
gies or more clearly, on Data Center technologies. Questions related to storage capac-
ity are well-known (replication, clustering, etc.), but in what it concerns to demand, we
may say that it is still evolving. Issues like forecasting, comparative analysis, “What-
if” analysis, etc., are very important and demand support.

Spreadsheet manipulation, arranging and storing related data, summarizing data,
partitioning repositories, results from multidimensional databases and respective mul-
tidimensional analysis, like OLAP [Ma98]. This will be the context that we will ex-
plore in the formal specification which follows. Our table example should be used
again to animate these operators.

VDM-SL has a particular feature which supports this kind of operation. We are
referring to high order VDM [IFA00c, Hop01] functions6 which offer polymorphic
properties, ie, the same definition allows operations over different data types. Infor-
mally, summarizing data, for instance, results from applying some calculus over a
dataset, like sum , maximum , etc. It should be possible to work with any data type.
The symbol @ in the next expressions, represent type parameters.

Supposing that we need to analyze the data display from different points of view,
i.e, organizing data under different criteria, such as:

6Functions can receive others functions as arguments



CHAPTER 5. CASE STUDY: TABLE IO 174

• Calculate the total of values for a specific expression (column)

• Rotate the whole table, i.e, change columns by rows

• See more or less details for a specific expression

• Consolidate data

• Apply some calculus to all elements on a specific expression

We are going through OLAP [Ma98, SCJS01] rules and procedures, dealing with
Multidimensional Databases [Nig01] and Data Mining [MK97] questions.

As mentioned in section 2.7.2, operations like Rotation, Roll -Up/Drill -Down ,
Slicing , Consolidate , etc., seem to be useful and worthwhile table features. Next we
will try to illustrate some of them.

5.3.2.2 Function rotate

Specification:

rotate : T → T

rotate (t) 4

let ri ∈ dom (t .#2) in
let cols = t .#2 (ri).#2 in
mk- (t .#1,

{ci 7→ mk- (t .#2 (ri).#1,
{r 7→ t .#2 (r).#2 (ci) | r ∈ dom (t .#2)}) |

ci ∈ dom (cols)});

Description:

rotate(t) performs a table rotation, changing rows by columns.

Calls:

Standard VDM-SL only

As mentioned in section 2.7.1, rotation is a most useful OLAP feature. On a mul-
tidimensional 2 × 2 × 2 representation, as illustrated by the hypercube of Figure 5.1
(page 151), there are 8 cells corresponding to the 8 records in an equivalent relational
representation. A desired analysis may require any combination of dimensions to be
reported. So one should be able to “rotate” the cube data view to allow the visualiza-
tion of all faces.

This method should be idempotent:

rotate(rotate(t)) = t



CHAPTER 5. CASE STUDY: TABLE IO 175

Figure 5.11: Result of rotation

Figure 5.11 shows the application of this method in our Sales example.

Even if this behavior looks simple, there are in fact several situations to explore.
Because this is not in the scope of this thesis, all other situations will not be worked
out here. Note that a rotation is sometimes referred to as dataslicing because each
rotation yields a different slice or two dimensional table of data [Nig01].

Now suppose that we want to simplify some data, calculate or group some values,
etc. This is the purpose of OLAP Roll -Up/Drill -Down and Consolidate operators.
In our work, the consolidate operator applies some unary operators to all elements in
a dataset. We are talking about usual operations like sum; count , average , etc.

5.3.2.3 Functions Slice and Dice

Quite often, the dataset must be scoped down to a subset grouping, formed by smaller
tables, rows or column subsets. It is the area of Ranging operations, in OLAP ter-
minology, many times called also by “slice and dice” calculations. In our experience,
we can assume that these operations are supported by functions colValues (page 165),
rowValues (page 164) and even partition (another name for the project method (page
165).

5.3.2.4 Function averag

Specification:

averag : T × Cid → Z

averag (t , cid) 4

avg ({t .#2 (ri).#2 (cid).#2 | ri ∈ dom (t .#2)})
pre cid ∈ getColsIds (t)

Description:

average(t,cid) calculates the average of a particular column.

Calls:

avg (page 187), getColsIds (page 171)



CHAPTER 5. CASE STUDY: TABLE IO 176

Considering our table t , expression

averag(t ,"Qty")

will return 62.

Let us consider now the following auxiliary VDM type to be used in next functions.

ColRelatedSimple = ((Cid ×Value)-set)
m
→ (Cid

m
→ Value)

5.3.2.5 Function mda

Specification:

mda[@A] : T×Cid -set×Cid×(@A→ @A)×Value → ColRelatedSimple

mda (t , scid , cid , f , v) 4

let rows = getRows (t) in
applyMon[@A] (collect (rows, getCols (rows, scid), {7→}, cid), f , v)

Description:

mda(cids, cid, func, null value) calculates a multidimensional analysis
over a particular column, using a particular function.

Calls:

applyMon (page 190), collect (page 177), getRows (page 164), getCols
(page 170)

As mentioned earlier on, multidimensional analysis is a feature which allows for
data analysis over dimensions and calculations over datasets. These calculations should
be supported by usual mathematical functions, e.g. addition.

Considering this, we will see that the mda method implements this feature for a
particular set of binary functions.

This method uses high order VDM properties (identified by character @), which
allow for polymorphic properties, ie, support several data types (integer, booleans,
etc.) as arguments.

Our next example shows its application to integer (int) data types, using as argu-
ment the sum binary operation,

mda[int ](t , {"Qty","Mark","Color"},"Qty", sum, 0)



CHAPTER 5. CASE STUDY: TABLE IO 177

which should perform a sum over the Qty column, getting the respective Qty sum
over Mark and Color vehicle.

If we intend to get Qty for each Mark vehicle, ignoring its color, we can use the
following expression:

mda[int ](t , {"Qty","Mark"},"Qty", sum, 0)

Figure 5.12 depicts this example, where value 175 results from adding 100 to 75
(both Ford vehicle quantities).

Figure 5.12: Result of applying mda

Sometimes it is important to identify relations between column or rows. For in-
stance, to analyze the sales quantity of vehicles for a particular color, get the most
sold vehicle mark; etc. These kind of relations can be achieved by the method which
follows.

ColRelated = ((Cid ×Value)-set)
m
→ (Cid

m
→ Value-set)

5.3.2.6 Function collect

Specification:



CHAPTER 5. CASE STUDY: TABLE IO 178

collect : Rows × Cols-set× ColRelated × Cid → ColRelated

collect (sr , scol1,m, cid) 4

if scol1 = {}
then m
else let x ∈ scol1 in

let y = {cid} −C x ,
z = {cid}C x ,
sc = ff 2set [Cid ,Style,Value] (y) in

if sc ∈ dom (m)
then let v = getOne[Value-set] (rng (m (sc))) in

if z = {7→}
then collect (sr , scol1 \ {x},m †

sc 7→ cid 7→ rowcolValues (sr , y , cid) ⇀⇀,
cid)

else let setv = getOne[Cid ×Value] (ff 2set [Cid ,Style,Value] (z )),
col = setv .#1,
v1 = setv .#2 in

collect (sr , scol1\{x},m †sc 7→ col 7→ v∪{v1}⇀⇀, cid)
else if z = {7→}

then collect (sr , scol1 \ {x},m m
⋃

sc 7→ cid 7→ rowcolValues (sr , y , cid) ⇀⇀,
cid)

else let col = getOne[Cid ×Value] (ff 2set [Cid ,Style,Value] (z )).#1,
v = getOne[Cid ×Value] (ff 2set [Cid ,Style,Value] (z )).#2 in

collect (sr , scol1\{x},m m
⋃
ff 2set [Cid ,Style,Value] (y) 7→

col 7→ {v}⇀⇀, cid)

Description:

collect(rows,cols,colr,cid) allows for the correlation among columns

Calls:

ff 2set (page 191), getOne (page 191), colValues (page 165)

Suppose one intends to know all different sale quantities for each vehicle’s color. This
can be obtained by evaluating:

collect(getRows(t), getCols(getRows(t), {"Qty","Color"}), {| - >},"Qty")

and the result should be:

Red → {12, 75}

Black → {100}



CHAPTER 5. CASE STUDY: TABLE IO 179

Supposing now one intends to know detailed information about all vehicle sale by
mark. A possible expression could be:

collect(getRows(t), getCols(getRows(t), {"Qty","Mark"}), {| - >},"Qty")

and the result should be:

Ford → {75, 100}

Austin → {12}

Consider now the next VDM types to be used in following functions.

TRoll = Style × RowsRoll ;

RowsRoll = Rid
m
→ (Style × ColRoll);

ColRoll = Cid
m
→ (Style ×Value ×Value∗)

5.3.2.7 Function rollUp

Specification:

rollUp : TRoll ×Hier × Cid → TRoll

rollUp (t , h, cid) 4

mk- (t .#1,
{ri 7→ mk- (t .#2 (ri).#1,

rollColsHier (t .#2 (ri).#2, h, cid)) |
ri ∈ dom (t .#2)})

Description:

rollUp(t,h,c) associates an upper hierarchy value

Calls:

rollColsHier (page 180)

As referred to in section 2.7.1, roll -up operations allow for simplification of data
representation.

To model a roll -up process, there must be a hierarchical representation of data
which have to be related. For instance,

values
h = "Region" 7→

"North" 7→ "Porto" 7→ {7→},"Braga" 7→ {7→}⇀,
"Middle" 7→ "Coimbra" 7→ {7→}⇀,
"South" 7→ "Lisboa" 7→ {7→}⇀⇀⇀;



CHAPTER 5. CASE STUDY: TABLE IO 180

describes such relation between country, region and city. Interpreting them, for in-
stance, we can say that Porto and Braga cities are in North. In this case, Region is the
hierarchy top.

Considering this, let us analyze a roll -up application over table

th = mk- ({},

"r4" 7→ mk- ({},
"City" 7→ mk- ({},"Porto"),
"Qty" 7→ mk- ({}, 100),
"Type" 7→ mk- ({}, 12) ⇀),

"r3" 7→ mk- ({},
"City" 7→ mk- ({},"Braga"),
"Qty" 7→ mk- ({}, 75),
"Type" 7→ mk- ({}, 13) ⇀),

"r2" 7→ mk- ({},
"City" 7→ mk- ({},"Lisboa"),
"Qty" 7→ mk- ({}, 12),
"Type" 7→ mk- ({}, 14) ⇀),

"r1" 7→ mk- ({},
"City" 7→ mk- ({},"Coimbra"),
"Qty" 7→ mk- ({}, 10),
"Type" 7→ mk- ({}, 15) ⇀) ⇀)

which can be graphically depicted by Figure 5.13,

Figure 5.13: Sales per region

Representing quantities (Qty) by region, expression

rollUp(t2troll(th), h,"City")

can be successively applied until the top of hierarchy is reached ( auxiliary function
t2troll is defined on page 190). Each rollUp operation applies an aggregating function
(sum in this case). Figure 5.14 shows the outcome of successive rollUp applications.

5.3.2.8 Function rollColsHier

Specification:



CHAPTER 5. CASE STUDY: TABLE IO 181

(a)
 (b)
 (c)


Figure 5.14: rollUp process: these figures depict two rollUp iterations: (a) initial dataset; (b)
first rollUp over Qty; (c) second rollUp.

rollColsHier : ColRoll ×Hier × Cid → ColRoll

rollColsHier (sc, h, cid) 4

if (sc = {7→} ∨ h = {7→})
then sc
else {ci 7→ mk- (sc (ci).#1, sc (ci).#2, []) | ci ∈ dom (sc) \ {cid}} m

⋃

cid 7→ mk- (sc (cid).#1, parent (h, sc (cid).#2), [sc (cid).#2] y

sc (cid).#3) ⇀

Description:

rollColsHier(cols, h, c) allows for the preservation of previous hierarchy
value

Calls:

parent (page 181)

In this case, the following expression

rollColsHier(t2troll(th)("Sales").#2("r1").#2, h,"Qty")

returns

{
"Qty" |-> mk_({},nil,[100]),
"City" |-> mk_({},"Porto",[]),
"Type" |-> mk_({},12,[])

}

LLGraph = Value
m
→ Value

Hier2LLGraph :Hier → LLGraph

Hier2LLGraph (t) 4

merge {let tt = t (x ) in
{y 7→ x | y ∈ dom tt} m

⋃
Hier2LLGraph (tt) |

x ∈ dom t};



CHAPTER 5. CASE STUDY: TABLE IO 182

5.3.2.9 Function parent

Specification:

parent :Hier × Cid → Value

parent (h, v) 4

if (h = {7→} ∨ ¬ v ∈ dom (Hier2LLGraph (h)))
then nil
else let x = Hier2LLGraph (h) in

x (v);

Description:

parent(h,cid) returns the previous value of a hierarchy of values.

Calls:

Standard VDM-SL only

In our example, expression
parent(h,"Porto")

will return “North”.

5.3.2.10 Function children

Specification:

children :Hier → Value-set
children (h) 4

⋃
({dom (x ) | x ∈ rng (h)});

Description:

children(h) returns all direct children of hierarchy h .

Calls:

Standard VDM-SL only

Example: expression
children(h)

returns

{ "South","North","Center" }



CHAPTER 5. CASE STUDY: TABLE IO 183

5.3.2.11 Function family

Specification:

family :Hier → Value-set
family (h) 4

dom (h) ∪
⋃

({family (hi) | hi ∈ rng (h)});

Description:

family(h) return all members of hierarchy h .

Calls:

Standard VDM-SL only

Again in our running example, expression

family(h)

returns

{"South","Braga","North","Porto","Middle","Lisboa","Region","Coimbra"}

5.3.2.12 Function childrenOf

Specification:

childrenOf :Hier ×Value → Value-set
childrenOf (h, v) 4

if v ∈ dom (h)
then dom (h (v))
else

⋃
({childrenOf (hi , v) | hi ∈ rng (h)});

Description:

childrenOf(hier,value) returns all children of a particular hierarchy ele-
ment

Calls:

Standard VDM-SL only

The expression
childrenOf (h,"North")

returns



CHAPTER 5. CASE STUDY: TABLE IO 184

{"Braga","Porto" }

It can be also important to be able to get details of a particular result. Thus the
following drill -down operator.

5.3.2.13 Function drillDown

Specification:

drillDown : TRoll × Cid → TRoll

drillDown (t , cid) 4

mk- (t .#1,
{ri 7→ mk- (t .#2 (ri).#1,

drillColsHier (t .#2 (ri).#2, cid)) |
ri ∈ dom (t .#2)});

Description:

drillDown(t,c) performs a drill-down over column specified

Calls:

drillColsHier (page 184)

A drill -down operation like,

drillDown(rollUp(t2troll(th), h,"City"),"City")

will restore the initial table.

Rolling-up and drill-down are seen as OLAP complementary operations, so they
must respect the property

drillDown(rollUp(t , h, v), v) = t

5.3.2.14 Function drillColsHier

Specification:

drillColsHier : ColRoll × Cid → ColRoll

drillColsHier (sc, cid) 4

if sc = {7→}
then {7→}
else {ci 7→ mk- (sc (ci).#1, sc (ci).#2, [sc (ci).#2]) | ci ∈ dom (sc) \

{cid}} m
⋃

cid 7→ mk- (sc (cid).#1, hd (sc (cid).#3), tl (sc (cid).#3)) ⇀;



CHAPTER 5. CASE STUDY: TABLE IO 185

Description:

drillColsHier(cols,column) gets details for a particular column value

Calls:

Standard VDM-SL only

This operation does the reverse of rollColsHier (on page 180). It restores the
original hierarchy value.

5.3.2.15 Function consolidate

Specification:

consolidate[@A,@B ] : T × Cid × (@A→ @B)×@B → @B
consolidate (t , cid , f ,n) 4

if t = mk- ({}, {7→})
then n
else let cols = {t .#2 (ri).#2 (cid).#2 | ri ∈ dom (t .#2)} in

setApply [@B ,Z] (f , cols, 0);

Description:

consolidate(t, cid, f, nullValue) applies a total function (e.g. sum) to set
s.

Calls:

setApply (page 193)

This method uses high order VDM function feature, which allows polymorphic
properties, ie, support several types as arguments. By applying consolidate to our
example, we can calculate the average of all Qty values using expression

consolidate[int , int ](t ,"Qty", avg , 0)

yielding 62.3. To work with binary operations (maximum -max or minimum -min), we
create the summarize method.

5.3.2.16 Function summarize

Specification:



CHAPTER 5. CASE STUDY: TABLE IO 186

summarize[@A,@B ] : T × String × (@A×@A→ @B)×@B → @B
summarize (t , cid , f ,n) 4

if t = mk- ({}, {7→})
then 0
else let colvalues = {t .#2 (ri).#2 (cid).#2 | ri ∈ dom (t .#2)} in

setApplyElems[@B ] (f , colvalues,n);

Description:

summarize(t, cid, f, nullValue) applies a binary function (e.g. max) to all
set s elements.

Calls:

setApplyElems (page 193)

Suppose that we need to “get the largest quantity sold”. Interpreting this as evalu-
ating the maximum Qty in our table, with the following expression

summarize[int , int ](t ,"Qty",max , 0)

we yield the intended sales quantity.

The data volume in a repository is often very high. Because people need to decide
quickly and efficiently, it will be more efficient to work only with a part of such data. It
is the context of Partitioning databases, where a single large table is split into smaller
ones, thereby improving response time for queries and other processes [Nig01]. The
initial table information structure should result from the union of all those parts.

This operation is supported by function partition and it is implemented using
project operator (page 165).

As mentioned earlier on, many other operators could be explored. We can enumer-
ate some of the most usual [Nig01]:

• Pivoting rows and columns

• Ranging a data subset

• Suppressing missing values (like null , zero, etc)

• Ranking and comparing

• Sorting and filtering

Because of the extension of such a specification, we did not work them out.

5.3.2.17 Aggregating functions

These functions are created just to be used in combination with consolidate or summa-
rize functions, described before. We are talking about traditional aggregate operations
on relational database algebra, such as sum, avg, min, max, etc.



CHAPTER 5. CASE STUDY: TABLE IO 187

5.3.2.18 Function sum

Specification:

sum : Z-set → Z

sum (s) 4

setApplyElems[Z] (λ x : Z, y : Z · x + y , s, 0)
pre card (s) > 0

;

Description:

sum(set) is a binary function which calculates the sum of a set of numbers

Calls:

Standard VDM-SL only

5.3.2.19 Function avg

Specification:

avg : Z-set → Z

avg (s) 4

let tot = setApplyElems[Z] (λ x : Z, y : Z · x + y , s, 0) in
tot/card (s)

pre card (s) > 0
;

Description:

avg(set) is a binary function which calculates the average of a non empty
set of numbers

Calls:

Standard VDM-SL only

5.3.2.20 Function max

Specification:



CHAPTER 5. CASE STUDY: TABLE IO 188

max : Z× Z → Z

max (x , y) 4

if x > y

then x
else y ;

Description:

max(int,int) determines the maximum of two values

Calls:

Standard VDM-SL only

5.3.2.21 Function min

Specification:

min : Z× Z → Z

min (x , y) 4

if x < y

then x
else y ;

Description:

min(int,int) determines the minimum of two values

Calls:

Standard VDM-SL only

5.3.3 Auxiliary functions

5.3.3.1 Function toStr

Specification:

toStr :Value → String

toStr (v) 4

[v ];

Description:



CHAPTER 5. CASE STUDY: TABLE IO 189

Convert a Value to String.

Calls:

Standard VDM-SL only

5.3.3.2 Function markRow

Specification:

markRow : Rows × Rid × String → Rows

markRow (r , rid , s) 4

r † rid 7→ mk- (r (rid).#1 ∪ {mk- (s,"0")}, r (rid).#2) ⇀
pre rid ∈ dom (r)

;

Description:

markRow(Rows, rowId, mark) marks row rid on a table. It can be used
for hiding rows, for example.

Calls:

Standard VDM-SL only

5.3.3.3 Function unmarkRows

Specification:

unmarkRows : Rows → Rows

unmarkRows (r) 4

{x 7→ mk- (r (x ).#1 \ {mk- ("h","0")}, r (x ).#2) | x ∈ dom (r)};

Description:

unmarkRows(r) unmarks all table rows. It can be used to show/hide rows,
for example. It works like an auxiliary function.

Calls:

Standard VDM-SL only



CHAPTER 5. CASE STUDY: TABLE IO 190

Having this, the next expression must be also valid:

unmarkRows(markRow(getRows(t),"Color","h")) = t

5.3.3.4 Function t2troll

Specification:

t2troll : T → TRoll

t2troll (t) 4

if t = mk- ({}, {7→})
then mk- ({}, {7→})
else mk- (t .#1, {ri 7→ mk- (t .#2 (ri).#1,

{ci 7→ mk-
(
t .#2 (ri).#2 (ci).#1,
t .#2 (ri).#2 (ci).#2, []) |

ci ∈ dom (t .#2 (ri).#2)}) |
ri ∈ dom (t .#2)});

Description:

t2troll(table) converts between table formats

Calls:

Standard VDM-SL only

5.3.3.5 Function applyMon

Specification:

applyMon[@A] : ColRelated × (@A→ @A)×Value → ColRelatedSimple

applyMon (m, f ,n) 4

if m = {7→}
then {7→}
else {x 7→ {ci 7→ setApply [@A,Z] (f ,m (x ) (ci),n) |

ci ∈ dom (m (x ))} |
x ∈ dom m};

Description:



CHAPTER 5. CASE STUDY: TABLE IO 191

applyMon(Cols, f, null value) applies the function f to all Cols elements

Calls:

setApply (page 193)

5.3.3.6 Function ff 2set

Specification:

ff 2set [@A,@B ,@C ] : @A
m
→ (@B ×@C ) → (@A×@C )-set

ff 2set (m) 4

if m = {7→}
then {}
else {mk- (x ,m (x ).#2) | x ∈ dom (m)};

Description:

ff2set( f) converts to set a mapping function.

Calls:

Standard VDM-SL only

5.3.3.7 Function getOne

Specification:

getOne[@A] : (@A)-set → @A
getOne (s) 4

let x ∈ s in
x

pre s 6= {}
;

Description:

getOne(s) gets one of the element set.

Calls:

Standard VDM-SL only



CHAPTER 5. CASE STUDY: TABLE IO 192

5.3.3.8 Function mda2rows

Specification:

mda2rows : ColRelatedSimple ×Value → Rows

mda2rows (m, v) 4

if m = {7→}
then {7→}
else let x ∈ dom (m) in

let f ∈ dom (m (x )) in
v 7→ mk- ({}, {y .#1 7→ mk- ({}, y .#2) | y ∈ x} m

⋃
f 7→

mk- ({},m (x ) (f )) ⇀) ⇀ m
⋃

mda2rows ({x} −Cm, v + 1);

Description:

mda2rows(cols) converts a mda result to Rows .

Calls:

Standard VDM-SL only

5.3.3.9 Function mda2table

Specification:

mda2table : Rows → T

mda2table (r) 4

mk- ({}, r);

Description:

mda2table(rows) converts a mda result to Table .

Calls:

Standard VDM-SL only

5.3.3.10 Function mda2html

Specification:



CHAPTER 5. CASE STUDY: TABLE IO 193

mda2html : ColRelatedSimple × String → B

mda2html (m, f ) 4

if m = {7→}
then true
else outHtml (mda2table (mda2rows (m, 0)),

f , 0);

Description:

mda2html(cols) writes to HTML format a mda result.

Calls:

mda2rows (page 191), mda2table (page 192), outHtml (page 196)

5.3.3.11 Function setApplyElems

Specification:

setApplyElems[@A] : (@A×@A→ @A)×@A-set×@A→ @A
setApplyElems (f , s,n) 4

if s = {}
then n
else let x ∈ s in

f (x , setApplyElems[@A] (f , s \ {x},n));

Description:

setApplyElems(function, set, nullValue) applies the binary function f to
each element of Set s. It works as an auxiliary function.

Calls:

Standard VDM-SL only

5.3.3.12 Function setApply

Specification:

setApply [@A,@B ] : (@A-set → @B)×@A-set×@B → @B
setApply (f , s,n) 4

if s = {}
then n
else f (s);



CHAPTER 5. CASE STUDY: TABLE IO 194

Description:

setApply(function, set, nullValue) applies function f to set s .

Calls:

Standard VDM-SL only

5.3.3.13 Function map2set

Specification:

map2set [@A,@B ] : @A
m
→ @B → (@A×@B)-set

map2set (m) 4

if m = {7→}
then {}
else let i ∈ dom (m) in

{mk- (i ,m (i))} ∪map2set [@A,@B ] ({i} −Cm);

Description:

map2set(map) converts a mapping function to sets.

Calls:

Standard VDM-SL only

5.3.3.14 Function map2map

Specification:

map2map[@A,@B ,@C ] : (@A
m
→ (@B × @C )) × (@A

m
→ (@B × @C ))

→ @A
m
→ (@B ×@C )

map2map (m1,m2) 4

if m1 = {7→}
then m2
else let x ∈ dom (m1) in

if (m1 (x ) ∈ rng (m2))
then map2map[@A,@B ,@C ] ({x} −Cm1,m2)
else map2map[@A,@B ,@C ] ({x} −Cm1,m2 m

⋃
x 7→ m1 (x ) ⇀);

Description:



CHAPTER 5. CASE STUDY: TABLE IO 195

map2map(map1,map2) removes duplicate elements in mapping map1.

Calls:

Standard VDM-SL only

5.3.3.15 Function set2seq

Specification:

set2seq :Value-set → Value∗

set2seq (s) 4

if s = {}
then []
else let x ∈ s in

[x ] y set2seq (s \ {x});

Description:

set2seq(set) converts a Set of values to String.

Calls:

Standard VDM-SL only

5.3.3.16 Function visibleRows

Specification:

visibleRows : Rows → Nat

visibleRows (r) 4

card {x | x ∈ dom (r) · ¬mk- ("h","0") ∈ (r (x ).#1)};

Description:

visibleRows(rows) is an auxiliary function to count only unmarked rows.

Calls:

Standard VDM-SL only



CHAPTER 5. CASE STUDY: TABLE IO 196

5.3.4 Pretty print functions

The functions in this subsection allow for outputting the result of all previous methods.
It is possible to have UIML, HTML or Java output.

5.3.4.1 Operation outHtml

Specification:

outHtml : T × String ×Value → [B]
outHtml (t , f , v) 4

IO ‘fecho (f ,"\n", START) ∧
let x ∈ dom (t .#2) in
((if v = 1

then IO ‘fecho (f ," < TRbgcolor = ’gray ’ > \n < TD > . < /TD >
", APPEND)

else IO ‘fecho (f ," < TRbgcolor = ’gray ’ > ", APPEND)) ∧
∀ ci ∈ dom (t .#2 (x ).#2) ·

(if (mk- ("h","0") 6∈ (t .#2 (x ).#2 (ci).#1))
then (IO ‘fecho (f ," < TD > " y ci y " < /TD >

\n", APPEND))
else true)) ∧

IO ‘fecho (f ," < /TR > \n", APPEND) ∧
∀ ri ∈ dom (t .#2) ·

(if (mk- ("h","0") 6∈ (t .#2 (ri).#1))
then ((if v = 1

then IO ‘fecho (f ," < TR >< TDbgcolor = ’gray ’ >
"y ri y " < /TD > \n", APPEND)

else IO ‘fecho (f ," < TR > \n", APPEND)) ∧
∀ ci ∈ dom (t .#2 (ri).#2) ·

(if (mk- ("h","0") 6∈ (t .#2 (ri).#2 (ci).#1))
then (IO ‘fecho (f ," < TD > ", APPEND) ∧

IO ‘fecho (f , t .#2 (ri).#2 (ci).#2, APPEND) ∧
IO ‘fecho (f ," < /TD > \n", APPEND))

else true))
else true) ∧
IO ‘fecho (f ," < /TR > \n", APPEND);

Description:

outHtml(t, fileName) exports table data to HTML.

Calls:

Standard VDM-SL only



CHAPTER 5. CASE STUDY: TABLE IO 197

Note that all previous HTML figures of our example which depict method appli-
cation results, were generated with outHtml.

5.3.4.2 Operation outHtmlValue

Specification:

outHtmlValue :Value × String → [B]
outHtmlValue (v , f ) 4

IO ‘fecho (f , v , START);

Description:

outHtmlValue(Value, fileName) writes single result to file.

Calls:

Standard VDM-SL only

5.3.4.3 Operation outUiml

Specification:



CHAPTER 5. CASE STUDY: TABLE IO 198

outUiml : T × String → [B]
outUiml (t , f ) 4

IO ‘fecho (f ," <?xmlversion = ’1.0’? > \n", START) ∧
fWrite (f ," <!DOCTYPEuimlPUBLIC ’-//UIT//DTDUIML" y

"2.0Draft//EN ’\n") ∧
fWrite (f ,"’UIML20g .dtd ’ > \n") ∧
fWrite (f ," < uiml > \n") ∧
fWrite (f ," < interface > \n") ∧
fWrite (f ," < structure > \n") ∧
fWrite (f ," < partid = ’top’class = ’Html ’ > \n") ∧
fWrite (f ," < partid = ’body ’class = ’Body ’ > \n") ∧
fWrite (f ," < partclass = ’Table’ > \n") ∧
fWrite (f ," < style > \n") ∧
fWrite (f ," < /style > \n") ∧
let x ∈ dom (t .#2) in
(fWrite (f ," < partid = ’Theader ’class = ’Tr ’ > \n") ∧
∀ ci ∈ dom (t .#2 (x ).#2) ·

(fWrite (f ," < partclass = ’Th’ > \n") ∧
fWrite (f ," < style > \n") ∧
fWrite (f ," < propertyname = ’content ’ > " y ci y " <

/property > \n") ∧
fWrite (f ," < /style > \n") ∧
fWrite (f ," < /part > \n"))) ∧

fWrite (f ," < /part > \n") ∧
∀ ri ∈ dom (t .#2) ·

(fWrite (f ," < partid = ’" y ri y "’class = ’Tr ’ > \n") ∧
∀ ci ∈ dom (t .#2 (ri).#2) ·

(if (mk- ("h","0") 6∈ (t .#2 (ri).#2 (ci).#1))
then (fWrite (f ," < partclass = ’Td ’ > \n") ∧

fWrite (f ," < style > \n") ∧
fWrite (f ," < propertyname = ’content ’ > ") ∧
fWrite (f , t .#2 (ri).#2 (ci).#2) ∧
fWrite (f ," < /property > \n") ∧
fWrite (f ," < /style > \n") ∧
fWrite (f ," < /part > \n"))

else true)) ∧
fWrite (f ," < /part > \n") ∧
fWrite (f ," < /part > \n") ∧
fWrite (f ," < /part > \n") ∧
fWrite (f ," < /part > \n") ∧
fWrite (f ," < /structure > \n") ∧
fWrite (f ," < /interface > \n") ∧
fWrite (f ," < peers > \n") ∧
fWrite (f ," < presentationhow = ’replace’source =

’HTML3.2H armonia1.0.uiml#vocab’" y

"base = ’HTML3.2H armonia1.0’/ > \n") ∧
fWrite (f ," < /peers > \n") ∧
fWrite (f ," < /uiml > ");



CHAPTER 5. CASE STUDY: TABLE IO 199

Description:

outUiml(Table, fileName) exports the table data to UIML.

Calls:

Standard VDM-SL only

5.3.4.4 Operation outUimlJ

Specification:



CHAPTER 5. CASE STUDY: TABLE IO 200

outUimlJ : T × String ×Value → [B]
outUimlJ (t , f , a) 4

IO ‘fecho (f ," <?xmlversion = ’1.0’? > \n", START) ∧
fWrite (f ," <!DOCTYPEuimlPUBLIC ’-//UIT//DTDUIML" y

"2.0Draft//EN ’\n") ∧
fWrite (f ,"’UIML20g .dtd ’ > \n") ∧
fWrite (f ," < uiml > \n") ∧
fWrite (f ," < interface > \n") ∧
fWrite (f ," < structure > \n") ∧
(if a = 1
then fWrite (f ,"\t < partid = ’f ’class = ’JApplet ’ > \n")
else fWrite (f ,"\t < partid = ’f ’class = ’JFrame’ > \n")) ∧
fWrite (f ,"\t\t < partid = ’s1’class = ’JScrollPane’ > \n") ∧
fWrite (f ,"\t\t\t < partclass = ’JTable’ > \n") ∧
fWrite (f ,"\t\t\t < /part > \n") ∧
fWrite (f ,"\t < /part > \n") ∧
fWrite (f ," < style > \n") ∧
fWrite (f ,"\t < propertypart-name = ’f ’name = ’size’ > 200, 150 <

/property > \n") ∧
fWrite (f ,"\t < propertypart-name = ’t1’name =

’preferredScrollableViewportSize’ > 300, 150 < /property > \n") ∧
fWrite (f ,"\t < propertypart-name = ’t1’name = ’columnNames’ >

\n") ∧
fWrite (f ,"\t < constantmodel = ’list ’ > \n") ∧
let x ∈ dom (t .#2) in
(∀ ci ∈ dom (t .#2 (x ).#2) ·

(if (mk- ("h","0") 6∈ (t .#2 (x ).#2 (ci).#1))
then (fWrite (f ,"\t\t < constantvalue = ’"y ci y"’/ > \n"))
else true)) ∧

fWrite (f ,"\t < /constant > \n") ∧
fWrite (f ,"\t < /property > \n\n") ∧
fWrite (f ,"\t < propertypart-name = ’t1’name = ’content ’ > \n")∧
fWrite (f ,"\t < constantmodel = ’table.rowMajor ’ > \n") ∧
∀ ri ∈ dom (t .#2) ·

(if (mk- ("h","0") 6∈ (t .#2 (ri).#1))
then (fWrite (f ,"\t < constant > \n") ∧

(∀ ci ∈ dom (t .#2 (ri).#2) ·
(if (mk- ("h","0") 6∈ (t .#2 (ri).#2 (ci).#1))
then (fWrite (f ,"\t < constantvalue = ’") ∧

fWrite (f , t .#2 (ri).#2 (ci).#2) ∧
fWrite (f ,"’/ > \n"))

else true)) ∧
fWrite (f ,"\t < /constant > \n"))

else true ∧ fWrite (f ,"\t < /constant > \n")) ∧
fWrite (f ,"\t < /constant > \n") ∧
fWrite (f ," < /property > \n") ∧
fWrite (f ," < /style > \n") ∧
fWrite (f ," < /interface > \n")∧ fWrite (f ," < peers > \n")∧
fWrite (f ," < presentationbase = ’Java1.3H armonia1.0’/ >

\n") ∧
fWrite (f ," < /peers > \n") ∧
fWrite (f ," < /uiml > ")



CHAPTER 5. CASE STUDY: TABLE IO 201

Description:

outUimlJ(Table, fileName) exports table T to Java UIML vocabulary.

Calls:

Standard VDM-SL only

5.3.4.5 Operation fWrite

Specification:

fWrite : String × String
o
→ [B]

fWrite (fn, ui) 4

IO ‘fecho(fn, ui , APPEND)

Description:

fwrite(s,fn) writes the string s in file fn .

Calls:

IO ‘fecho

5.3.5 AST Conversion

The functions which follow allow for the type conversion between UIMLSpecTab and
UIMLSpec, as well as relative expressions.

To support this conversion, we need the following sub-conversion functions:

UIMLSpecTab‘Table → UIMLSpec‘Uiml

UIMLSpecTab‘Row → UIMLSpec‘Part

UIMLSpecTab‘Col → UIMLSpec‘Part

UIMLSpecTab‘Style → UIMLSpec‘Property

Function TU2U allows some animation to the process, preparing the UIML for
HTML output.



CHAPTER 5. CASE STUDY: TABLE IO 202

5.3.5.1 Function TU 2U

Specification:

TU 2U : T → UIMLSpec‘Uiml
TU 2U (t) 4

if t = mk- ({}, {7→})
then mk-UIMLSpec‘Uiml (nil , [])
else mk-UIMLSpec‘Uiml (nil ,

[toInter ([
toStru ([

toPart

(
toSty ([toPro ("1","border")]), [
toPart (toSty (TS2P (t .#1)),TR2P (t .#2),"Th")],
"Table")])])]);

Description:

Exports a UIMLSpecTab Table element to UIMLSpec uiml element

Calls:

toInter , toStru , toPart , toPro, toPart , TS2P , TR2P

5.3.5.2 Function TS2P

Specification:

TS2P : Style → UIMLSpec‘Property∗

TS2P (p) 4

if p = {}
then []
else let x ∈ p in

[toPro (x .#2, x .#1)] y

TS2P (p \ {x});

Description:

Auxiliary function to convert UIMLSpecTab‘Style into UIMLSpec‘Property
elements.

Calls:

Standard VDM-SL only



CHAPTER 5. CASE STUDY: TABLE IO 203

5.3.5.3 Function TR2P

Specification:

TR2P : Rows → UIMLSpec‘Part∗

TR2P (r) 4

if r = {7→}
then []
else let x ∈ dom (r) in

[toPart (nil , [
toPart (toSty (TS2P (r (x ).#1)),

TC2P (r (x ).#2),"Td")],
"Tr")] y

TR2P ({x} −C r);

Description:

Auxiliary function to convert UIMLSpecTab‘Rows into sequences of UIML-
Spec‘Part elements.

Calls:

TS2P , TC2P , toPart ,toSty

5.3.5.4 Function TC2P

Specification:

TC2P : Cols → UIMLSpec‘Part∗

TC2P (c) 4

if c = {7→}
then []
else let x ∈ dom (c) in

[toPart (toSty (TS2P (c (x ).#1)), [],"Td")] y

TC2P ({x} −C c);

Description:

Auxiliary function to convert UIMLSpecTab‘Cols into sequences of UIML-
Spec‘Part elements.

Calls:

toPart , toSty , TS2P



CHAPTER 5. CASE STUDY: TABLE IO 204

5.3.5.5 Function toPro

Specification:

toPro : String × String → UIMLSpec‘Property
toPro (v , c) 4

mk-UIMLSpec‘Property ([v ], c,"", nil , nil ,"","","","");

Description:

Auxiliary function to construct an UIMLSpec‘Property element.

Calls:

Standard VDM-SL only

5.3.5.6 Function toSty

Specification:

toSty :UIMLSpec‘Property∗ → UIMLSpec‘Style
toSty (p) 4

mk-UIMLSpec‘Style (p, nil ,"", nil , nil );

Description:

Auxiliary function to construct an UIMLSpec‘Style element.

Calls:

Standard VDM-SL only

5.3.5.7 Function toStru

Specification:

toStru :UIMLSpec‘Part∗ → UIMLSpec‘Structure
toStru (sp) 4

mk-UIMLSpec‘Structure (sp, nil ,"", nil , nil );

Description:

Auxiliary function to construct an UIMLSpec‘Structure element.



CHAPTER 5. CASE STUDY: TABLE IO 205

Calls:

Standard VDM-SL only

5.3.5.8 Function toPart

Specification:

toPart : [UIMLSpec‘Style] × UIMLSpec‘Part∗ × String →
UIMLSpec‘Part

toPart (sty , sp, cl) 4

mk-UIMLSpec‘Part (sty , nil , nil , sp, [], nil ,"", nil , nil , cl , nil ,"");

Description:

Auxiliary function to construct an UIMLSpec‘Part element.

Calls:

Standard VDM-SL only

5.3.5.9 Function toInter

Specification:

toInter :UIMLSpec‘Structure∗ → UIMLSpec‘Interface
toInter (s) 4

mk-UIMLSpec‘Interface (s, nil ,"", nil , nil )
end UIMLSpecTab

Description:

Auxiliary function to construct an UIMLSpec‘Interface element.

Calls:

Standard VDM-SL only

Considering this, to get an UIMLSpec specification of our t example table, we use
expression



CHAPTER 5. CASE STUDY: TABLE IO 206

UIMLSpecTab‘TU 2U (UIMLSpecTab‘t)

For it to be rendered with Harmonia rendering engine, we evaluate expression

VDM 2UIML‘toFileHTML(UIMLSpecTab‘TU 2U (UIMLSpecTab‘t),"t.uiml")

where toFileHTML is a method defined on VDM2UIML “tool”, presented in Appendix
E.2.

5.3.6 UIML visualization

This section describes our work on UIML visualization which was performed in two
main phases: first, generate UIML from VDM-SL; second, generate HTML from UIML.
These are phases a) and b) respectively in Figure 5.15.

Figure 5.15: UIML Visualization process

One of the main announced features of UIML [Pha00] is its possibility to be ren-
dered to a different platform under a very simple process. Considering this, we are
going to make all referred transformations over tables using also native UIML render-
ing mechanisms.

As we can see in our table specification, there is an auxiliary operator which ex-
ports to HTML the resulted specification calculus: this is the outHtml (page 196) oper-
ator.

Let us consider again our information table t of page 160:

Listing 5.1: VDM-SL Sales table

t = mk ({} ,
2 {

” r1 ” | ->mk ({} ,{
4 ” Mark ” | ->mk ({} , ” Ford ” ) ,

” Co lo r ” | ->mk ({} , ” Black ” ) ,
6 ” Qty ” | ->mk ({} , ” 100 ” ) ,

” Year ” | ->mk ({} , ” 2002 ” )
8 } ) ,



CHAPTER 5. CASE STUDY: TABLE IO 207

” r2 ” | ->mk ({} ,{
10 ” Mark ” | ->mk ({} , ” Ford ” ) ,

” Co lo r ” | ->mk ({} , ” Red” ) ,
12 ” Qty ” | ->mk ({} , ” 75 ” ) ,

” Year ” | ->mk ({} , ” 2002 ” )
14 } ) ,

” r3 ” | ->mk ({} ,{
16 ” Mark ” | ->mk ({} , ” A u s t i n ” ) ,

” Co lo r ” | ->mk ({} , ” Red” ) ,
18 ” Qty ” | ->mk ({} , ” 12 ” ) ,

” Year ” | ->mk ({} , ” 2004 ” )
20 } )

}
22 ) ;

and its HTML representation in Figure 5.16 after applied the HTML pretty print out-
Html:

Figure 5.16: Result of applying outHtml operator

The same can be done with the UIML pretty print outUiml (page 197), which gener-
ates UIML as depicted on Listing 5.2.

Listing 5.2: UIML table code generated by outUiml

<? xml v e r s i o n = ’ 1 . 0 ’ ?>
2 <!DOCTYPE uiml PUBLIC ’ - / / UIT / / DTD UIML 2 . 0 D r a f t / / EN’

’ UIML2 0g . dtd ’>
4 <uiml>

< i n t e r f a c e i d = ’ S a l e s ’>
6 <s t r u c t u r e>

<p a r t i d = ’ top ’ c l a s s = ’Html ’>
8 <p a r t i d = ’body ’ c l a s s = ’Body ’>

<p a r t i d = ’ S a l e s ’ c l a s s = ’ Table ’>
10 <s t y l e>

< / s t y l e>
12 <p a r t i d = ’ Theader ’ c l a s s = ’ Tr ’>

<p a r t c l a s s = ’Th ’>
14 <s t y l e>

<p r o p e r t y name= ’ c o n t e n t ’>Colo r< / p r o p e r t y>

16 < / s t y l e>
< / p a r t>

18 <p a r t c l a s s = ’Th ’>
<s t y l e>

20 <p r o p e r t y name= ’ c o n t e n t ’>Mark< / p r o p e r t y>

< / s t y l e>
22 < / p a r t>

<p a r t c l a s s = ’Th ’>
24 <s t y l e>

<p r o p e r t y name= ’ c o n t e n t ’>Qty< / p r o p e r t y>

26 < / s t y l e>
< / p a r t>

28 < / p a r t>
<p a r t i d = ’ r3 ’ c l a s s = ’ Tr ’>



CHAPTER 5. CASE STUDY: TABLE IO 208

30 <p a r t c l a s s = ’Td ’>
<s t y l e>

32 <p r o p e r t y name= ’ c o n t e n t ’>Red< / p r o p e r t y>

< / s t y l e>
34 < / p a r t>

<p a r t c l a s s = ’Td ’>
36 <s t y l e>

<p r o p e r t y name= ’ c o n t e n t ’>A u s t i n< / p r o p e r t y>

38 < / s t y l e>
< / p a r t>

40 <p a r t c l a s s = ’Td ’>
<s t y l e>

42 <p r o p e r t y name= ’ c o n t e n t ’>12< / p r o p e r t y>

< / s t y l e>
44 < / p a r t>

< / p a r t>
46 <p a r t i d = ’ r2 ’ c l a s s = ’ Tr ’>

<p a r t c l a s s = ’Td ’>
48 <s t y l e>

<p r o p e r t y name= ’ c o n t e n t ’>White< / p r o p e r t y>

50 < / s t y l e>
< / p a r t>

52 <p a r t c l a s s = ’Td ’>
<s t y l e>

54 <p r o p e r t y name= ’ c o n t e n t ’>Ford< / p r o p e r t y>

< / s t y l e>
56 < / p a r t>

<p a r t c l a s s = ’Td ’>
58 <s t y l e>

<p r o p e r t y name= ’ c o n t e n t ’>75< / p r o p e r t y>

60 < / s t y l e>
< / p a r t>

62 < / p a r t>
<p a r t i d = ’ r1 ’ c l a s s = ’ Tr ’>

64 <p a r t c l a s s = ’Td ’>
<s t y l e>

66 <p r o p e r t y name= ’ c o n t e n t ’>Black< / p r o p e r t y>

< / s t y l e>
68 < / p a r t>

<p a r t c l a s s = ’Td ’>
70 <s t y l e>

<p r o p e r t y name= ’ c o n t e n t ’>Ford< / p r o p e r t y>

72 < / s t y l e>
< / p a r t>

74 <p a r t c l a s s = ’Td ’>
<s t y l e>

76 <p r o p e r t y name= ’ c o n t e n t ’>100< / p r o p e r t y>

< / s t y l e>
78 < / p a r t>

< / p a r t>
80 < / p a r t>

< / p a r t>
82 < / p a r t>

< / s t r u c t u r e>

84 < / i n t e r f a c e>

<p e e r s>
86 <p r e s e n t a t i o n how= ’ r e p l a c e ’ s o u r c e = ’HTML 3 . 2 Harmonia 1 . 0 . u iml # vocab ’

base = ’HTML 3 . 2 Harmonia 1 . 0 ’ />
88 < / p e e r s>

< / u iml>

The outcome of rendering this UIML fragment with Harmonia rendering engine
u2h [Har98] is the HTML table depicted in Figure 5.17.

This sequence of processes shows one of the possibilities to render HTML from



CHAPTER 5. CASE STUDY: TABLE IO 209

Figure 5.17: Result of applying u2h render to table.uiml

UIML of Figure 5.15, here illustrated for our table model. It is important to render
UIML using our main UIML specification. This is the main topic of the chapter which
follows.

5.4 Summary

This Chapter constitutes an important contribute of the outcome of this work. It de-
scribes a practical case of graphical objects formalization, using a table as the case
study. It describes how VDM-SL can be used to formally specify the state and methods
of this kind of objects.

Having considered the basic table operations (such as row/column manipulation)
and the basic OLAP operators (such as Filter or roll/drill), it was possible to experiment
the application of such objects on multidimensional analysis processes, responding to
different criteria of data visualization.

All the results were mapped to UIML and then rendered to HTML, focusing their
immediate visualization via normal web browser. The great capabilities of VDM-SL
(as is the case of High-Order functions) on one hand, and the capability of reuse or
combine objects, on the other, were determinant for the reached outcomes. It was
possible to see how a new method can be defined using existent ones. The rigor of
used specification, ensured this.

Although this case of study can not be enough to support a general conclusion,
we are sure that it subscribes the possibility and importance to work towards a Visual
Component Library.

Next chapter will slightly present the main developed tools as well as the created
animation prototype.



Chapter 6

Prototype and Supporting Tools

Recall from previous chapters that we have two main VDM-SL specifications, one,
UIMLSpec, specifies the original UIML language (Chapter 4) and the other corre-
sponding to the abstract model of a particular visual object, a table graphical object
model (Chapter 5).

In this chapter we describe how to animate such specifications using the VDM
tools. We will develop a prototype to animate the OLAP features and test the resultant
VDM-SL specifications.

6.1 Prototype

In order to experiment the animation of VDM methods, mainly OLAP functions, we
have decided to create a HTML prototype whereby we can visualize all table trans-
formations. This application uses our VDM specifications, UIMLSpec and UIML-
SpecTab. From CGI HTML forms behavior, the VDM-SL methods are called, then
UIML is generated and rendered again to HTML. Figure 6.1 depicts the architecture
of our prototype and Figure 6.2 depicts its front-end.

Figure 6.1: Prototype architecture

As we can see from Figure 6.2, the methods prototyped are:

• Rotate

• Partitioning and Projection

• Get and Set column

• Summarize

210



CHAPTER 6. PROTOTYPE AND SUPPORTING TOOLS 211

Figure 6.2: VDM/UIML integration prototype

• Consolidate

• Multidimensional analysis

• Hide, Show, Add, Delete columns and rows

• Roll-Up and Drill-Down

The results can be seen in Java Applets too. Appendix F presents this prototype with
more detail.

6.2 Supporting tools

Recall the schema of Figure 1.6, in Chapter 1. Each of the four depicted phases
transcoding, abstraction, validation and rendering, is supported by auxiliary tools
which facilitate its application. In the sequel we shall explore their main features.

6.2.1 Phase 1 - Transcoding UIML to VDM-SL

The main goal of this phase (seen as the first one) is to obtain a formal representation
(in VDM-SL) of UIML source code. In formal terms, to obtain an AST 1 in VDM-SL.
So, transcoding (or transforming) an UIML document to a new VDM-SL one, demands

1AST - Abstract Syntax Tree



CHAPTER 6. PROTOTYPE AND SUPPORTING TOOLS 212

a kind of parsing grammar which directs the code generation for each UIML (XML)
tag. Since UIML is a XML markup language, it is possible to create a processing style
sheet (with XSLT technology) to support this transformation.

As previously described in sections 2.4.3 (page 29) and 4.3.2 (page 78), the VDM-
SL formal specification must model each UIML element.

Considering again the <uiml> DTD element (section 4.3.3.1, page 79)

<!ELEMENT UIML (head?, (peers | interface | template)∗) >

and respective VDM-SL model (page 79),

UIML : : head : [Head ] member :Members∗

since the Member is type defined in VDM-SL as:

Member = Peers | Interface | Template

the XSL template which allows it transcoding process is defined as follows:

Listing 6.1: XSL template to “transcode” <uiml> element
<x s l : t e m p l a t e match=” uiml ”>VDM2UIML‘ u i m l 2 s t r ( mk UIMLSpec ‘ Uiml (

2 <x s l : i f t e s t =” c o u n t ( head )=0 ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( head ) &g t ; 0 ”>

4 <x s l : apply - t e m p l a t e s s e l e c t =” head ” /> ,
< / x s l : i f>

6 <x s l : i f t e s t =” c o u n t ( i n t e r f a c e | p e e r s | t e m p l a t e ) = 0 ”> [ ] ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( i n t e r f a c e | p e e r s | t e m p l a t e ) &g t ; 0 ”>

8 [<x s l : f o r - each s e l e c t =” i n t e r f a c e | p e e r s | t e m p l a t e ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />

10 <x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>
< / x s l : f o r - each>]

12 < / x s l : i f> ) )
< / x s l : t e m p l a t e>

To help in understanding this process, Listing 6.2 shows the resulting VDM-SL
code of our previous UIML Hello example (page 73).

Listing 6.2: Excerpt of UIML Hello example

2 uiml = mk UIMLSpec ‘ Uiml ( n i l , mk UIMLSpec ‘ I n t e r f a c e ({
mk UIMLSpec ‘ S t r u c t u r e ({ mk UIMLSpec ‘ P a r t ( {

4 mk UIMLSpec ‘ P a r t ( { n i l l } , mk UIMLSpec ‘ Name ( ” h e l l o ” ) ,
n i l l ,

6 <REPLACE> , mk UIMLSpec ‘ C l a s s ( ” h e l l o C ” ) )
} , mk UIMLSpec ‘ Name ( ” TopHel lo ” ) ,

8 n i l l ,
<REPLACE> , n i l l )

10 } , n i l l ,

12 . . . .
)

Appendix E.1 depicts the source code of this style sheet (uiml2vdm.xsl) responsible
for all this transcoding process. The structure of this type of documents is clear and
easily understood. Readers unfamiliar with this technology should consult some XSL
technical reference, for instance [Rec01a, Rec99b].



CHAPTER 6. PROTOTYPE AND SUPPORTING TOOLS 213

6.2.2 Pretty Print

Developed directly in VDM-SL, this tool - vdm2uiml.vdm - works as a script2 and
executes a parsing process over VDM-SL specifications. It generates a correspondent
UIML syntax for each specified element. Listing 6.3 is an extract of this module, and
shows the uiml2vdm, a VDM function which generates the <uiml> element.

Listing 6.3: Extract of vdm2uiml VDM-SL script
1 u i m l 2 s t r : UIMLSpec ‘ Uiml -> UIMLSpec ‘ S t r i n g
2 u i m l 2 s t r ( u i ) == PI ˆ
3 ”<uiml>” ˆ
4 h e a d 2 s t r ( u i . head ) ˆ
5 members2s t r ( u i . members ) ˆ
6 end doc ;
7 }

Recalling our initial Hello example, in this case using hello.vdm which has re-
sulted from transcoding UIML to VDM, we can see that the application of vdm2uiml
shall generates the UIML document of Listing 6.4:

Listing 6.4: UIML generated from vdm2uiml VDM “script”
1 <? xml v e r s i o n = ’1 .0 ’ e n c o d i n g = ’ ISO -8859 -1 ’?>
2 <uiml>
3 < i n t e r f a c e>

4 <s t r u c t u r e>

5 <p a r t c l a s s = ’ ’ where = ’ l a s t ’ >

6 <p a r t c l a s s = ’ he l loC ’ where = ’ l a s t ’ >< / p a r t>
7 < / p a r t>
8 < / s t r u c t u r e>

9 <s t y l e>< / s t y l e>
10 < / i n t e r f a c e>

11 <p e e r s>
12 <p r e s e n t a t i o n base = ’ ’> < / p r e s e n t a t i o n>

13 < / p e e r s>
14 < / u iml>

Appendix E.2 contains the complete source code of this VDM pretty print module.
To better understand how this module really works, the main syntax characteristics of
VDM-SL must be present (described in section 2.4.3).

6.2.3 Phase 2 - Verifier

The verifier is a tool which was developed to support the validation phase (depicted
on Figure 1.6, on Chapter 1) of our process.

This validation process aims at generating UIML from VDM-SL code, correspond-
ing to the transcoding reverse process. It allows us to test the consistency of the gener-
ated VDM-SL code along the transcoding process, verifying the “similarity” between
both UIML code.

Because of the extension of this process, it was simplified appealing to some VDM-
SL methods, mainly TabUIML2UIML method (UIMLSpecTab VDM-SL specification),
which converts between specifications, and toFile (VDM2UIML VDM-SL module).
Next section 6.2.5 will focus also on this topic.

2VDM2UIML VDM-SL module



CHAPTER 6. PROTOTYPE AND SUPPORTING TOOLS 214

6.2.4 Phase 3 - Abstraction

This phase of our process has not been completely developed. All reasoning implicit
in it is sketched in Chapter 7. The process starts from the table VDM-SL abstraction
towards the creation of a visual components library.

This work should show that it is possible to perform transformations by calcula-
tion. Then it is necessary to find different candidate implementation objects. This is a
natural property of adaptable interfaces.

In our case study, the idea stays as “it is possible to get a new UIML interface
description” which represents the same. Chapter 7 will address this idea and its main
guidelines.

6.2.5 Phase 4 - Rendering UIML

Markup languages are by their nature declarative, which means that a runtime mech-
anism (interpreter, script or other) must be present, which decides what and how to
render them for a particular supporting platform [BHW02].

As a markup language, UIML uses the <style> element to specify the binding of
the markup description to the semantics, to control the rendering process. Recently,
some scripting features like assignment and comparison operations can be directly
supported in the markup language. This happens already with XSLT without compro-
mising its portability.

Considering this, to get an application UI, is necessary to render the UIML to the
desired platform. We use the actual UIML rendering engines, from Harmonia3, which
supports several platforms (Desktop PC, handheld PC, Cell phone, PDA and others)
with several languages (JAVA, HTML, WML, VoiceXml, etc.), rendering widgets and
events specified in UIML <presentation> elements.

If we choose HTML as the destination platform and use our operators to gener-
ate HTML directly (ex. outHtml method), for instance, we risk to deface the whole
process. Considering the existing UIML renders [AA01] which allow HTML, Java,
WML, etc., code generation, we can also generate UIML from our specification and
then experiment to apply these renders too.

Let us consider a table example t . If we use the following expression:

outUiml(t ,"table.uiml")

we will get the file table.uiml with UIML code for our table (as referred in section
5.3.6).

In another way, table t can be converted to our UIML VDM-SL specification which,
using our vdm2uiml module, can be converted to UIML and rendered to the target
platform.

As mentioned already, in order to convert our table specification (UIMLSpecTab) to
our base specification (UIMLSpec), we created function TabUIML2UIML. Some other
functions are available to convert also Rows (and Columns) and Style types, to Parts

3http://www.harmonia.com



CHAPTER 6. PROTOTYPE AND SUPPORTING TOOLS 215

and Property UIML elements respectively, as referred to in Section 5.3.5. Considering
this, the expression

UIMLSpecTab‘TabUIML2UIML(UIMLSpecTab‘t)

will result in an UIML element corresponding to our table t .

Once in the UIML code, the following shell commands will respond for the rest of
the process:

1. u2h table.uiml table.html

Generates HTML code for browser platforms. The render u2h works over
HTML vocabulary.

2. u2ji table.uiml table.java

Generates Java code associated to UIML descriptions, ready to be used on Java
platforms. The u2ji render works over Java vocabulary.

3. u2w table.uiml table.wml

Generates WML code for WAP devices. The render u2w works over WML

vocabulary.

For those who dislike using shell commands, Harmonia has a JAVA utility - Liq-
uidUI UIML Browser (Figure 6.3), which allows for rendering to several platforms.

Figure 6.3: Harmonia LiquidUI UIML browser

Our example can only be observed on browser platforms, because (for the sake of
simplicity) we only worked with HTML vocabulary. A result of applying u2h (shell
command 1) to our case study can be observed in Figure 5.17 (on page 209).

There is also the possibility to generate Harmonia “General vocabulary” [Pha00],
which allows the conversion to several platforms independently of base vocabularies.
Because of some of its limitations we avoided using it.



Chapter 7

Conclusions and Future Work

7.1 Overview

It is a fact of all times that humans react and decide upon data perceived by their eyes.
Thus the “must see to believe” legend...

Although not such a religious matter for software designers, this entails a need
to worry about the way users see and use the application software they create, which
has grown enormously in complexity in recent years: as technology grows up, so do
user’s requirements. Human Computer Interaction (HCI) has thus become an impor-
tant branch of Computer Science.

This dissertation focus on the design of graphical user interfaces which support
state-of-the-art software applications. For the sake of rigor, it addresses the appli-
cation of formal methods to recent UI markup language support technologies. The
application of formal modelling techniques to user interface development imposes sci-
entific rigor along the development process as a whole: specification, validation and
transformation.

To better achieve its research aims, this work has been organized in the following
steps:

• Review of the state of the art;

• Identification of recent UI models, available specifications, designs and pro-
gramming tools;

• Analysis of available UI markup languages;

• Study of the application of formal methods to specify and develop UI layers;

Two main questions have triggered the research:

1. How does one take advantage of user interface graphical objects and associated
features?

2. How does one adapt available user interfacing tools to new platforms? By de-
veloping “from scratch” or by reusing from a Visual Component Library?

216



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 217

To answer these questions, it was found important to identify the most recent ad-
vances in user interface properties, model analysis and specification, designs, program-
ming and evaluation.

Web-technologies were found to be central to this research area. As a matter of
fact, the advent of the web information processing model and newly associated busi-
ness paradigms has led to increased interest in the separation of UI from its supporting
platform and the multi-level organization of programming methods, with specialized
working teams lead by a system architect.

In this context, one can also appreciate the strength of markup language applica-
tions in UI development. XML, although recent, is spreading and becoming by and
large accepted as a standard way to ensure data portability among systems. So, why
not use it in UI development?

Considering the three main initiatives in this context — UIML, XIML and XUL
— at time of writing, UIML was the technology selected to address in detail in this
work due to some important shortcomings of the other two.

UIML (the acronym of User Interface Markup Language) has been proposed by
Harmonia Inc. as a XML-language to describe user interface elements and respective
behavior. Under the “one application, multiple interface” principle, it looked perfect to
support our goals. It is an easy-to-use markup language (thus inheriting all XML fea-
tures) supported by a well structured Document Type Definition (DTD). Moreover, it is
an OASIS standardization proposal and it allows for UI definition and implementation
regardless the intended final device.

However, as it happens with other technologies, the loose (informal) semantics of
the UIML markup language can lead it to a hard option for UI programmers. UI is a
large and complex technology area, once it deals with humans and human needs. Al-
though a well structured and almost natural textual language, its extensibility with
<part> and <peers> elements, its dynamic behavior with <structure> elements,
its multimodal support with <interface> elements, its capacity to integrate custom
vocabularies with <presentation> elements and reusable interface components with
<template> elements, UIML has become a complex and large syntax to assimilate.
Large UIML source code modules are required to implement even simple UI designs.

Semantically, UIML authors have decided to define several conflict resolution poli-
cies (such as those concerning <property> elements) and to assume several behavior
rules. Most of these are left to final rendering mechanisms or even external applica-
tions. This is where rigor of the UIML design process is compromised.

Our awareness of this problem is the main motivation for the idea of using formal
methods: the need of rigor in the specification and validation processes.

For this purpose we resorted to VDM-SL, an ISO standard and general purpose for-
mal specification language, which is among the best supported at tool level, to specify
UIML. Chapter 4 describes this specification work.

Thanks to VDM-SL datatype invariant support, we could complement the specifi-
cation with some invariants, corresponding to main UIML semantic properties, such as
id uniqueness (XML does not control this restriction sufficiently well) and the fact that
attribute part-name must refer to an existing part id attribute. This was implemented
with VDM-SL auxiliary functions. Thanks to the possibility of using the IFAD VDM-



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 218

Tools, under the academic licence granted to the University of Minho, it was possible
to animate the resultant specifications as well as to perform tests on the validity of the
invariants defined.

Because of the comprehensiveness of UIML, the VDM-SL specification results
naturally in a quite large and hard to manipulate document1.

Our main experiments have to do with the specification of a table graphical object
— a very common user interface component in almost any kind of software interface.
It was important to analyze, on the one hand, its UIML abstract VDM-SL representa-
tion and, on the other hand, its behavior in supporting OLAP features. The outcome
of tablular, OLAP-like operations such as projection, column/row insertion, rotation,
etc. can be exported to HTML, UIML canonical representation and Java Applets.

The whole conversion from VDM-SL to UIML/HTML/JAVA, and vice-versa, is
supported by a XML Stylesheet (uiml2vdm) and VDM-SL predicates (as are the case
of outHtml, outUiml and outUimlJ). The stylesheet uiml2vdm does not support all
UIML syntactic definitions.

Our case study behaved as a simulation or prototype platform and proved the ap-
plicability of VDM to animate prototypes and the role of rigor in the achieved UIML
formal specification, even using only a few UIML elements. However simple, this case
study was enough to provide evidence of the potential and substantial complexity of
the UIML specification.

7.2 Discussion and Future Research

Our research on user interface development has revealed an interesting and very com-
plex area. Despite the existence of several research projects focused on this, there are
still questions which remain unanswered.

One of these questions is as basic as follows: are markup languages, even devel-
oped with up-to-date technology, the best way to support this process? Further than a
portable and platform independent description technique, XML subscribes to an enor-
mous vocabulary set, which demands parser and validation mechanisms. As a “swirl”,
this can be characterized as a “déjà vu”, but now with different actors?

Our UIML VDM-SL specification leads us to believe that there is room for some
conceptual simplification. This conclusion is sustained by observing the achieved ab-
stract specification, where several replicated elements and repeated patterns can be
identified.

Considering this, an interesting path for future work is that of UIML’s refactoring
process towards a simpler specification.

Another interesting topic for future developments is that of creating a formal Vi-
sual Component Library (VCL). Our table specification is but the beginning of one
such repository of useful graphical interaction objects (IO objects). Over such a repos-
itory one should be able to build new interfaces just by combining/reusing available
components. Once made available, a VCL would contribute to answering another rel-
evant question: “What is the best IO object able to represent this particular piece of

1Most of this is due to the absence of inheritance mechanisms in VDM-SL.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 219

data?”, Ideally, a “matching” process should become available for searching the library
and retrieving all adequate components.

As a matter of fact, our research has included some work along these two vectors
— UIML abstract syntax refactoring and visualization. However, the outcome cannot
be regarded as finished work. Despite their incompleteness, perhaps our results can
still be useful to anyone wishing to pursue them. This explains why we have decided
to include them as sections 7.2.1 and 7.2.2 which follow.

Readers uninterested in the details which follow should jump straight to our final
remarks in section 7.3. Anyway, our motivation for formal methods in this work can
be perceived in section 7.2.1 better than anywhere else in this dissertation — this is
where we actually reason about the specification and deviate from current specification
practice using informal notation, where such reasoning is not mathematically sound.

7.2.1 UIML formal specification refactoring

Our UIML formal specification (in VDM-SL) allows us to go further and apply trans-
formations rules supported by SETS [Oli98, Hal60, Hal01] theory.

Considering all UIML elements specified in Chapter 4, it is possible to define a
system of mathematical equations which represent them. Towards this target, let us
assume the following notation considerations:

1. UIML elements will be abbreviated as presented in Table 7.1;

2. String type elements will be denoted by symbol S ;

3. The VDM type X = A | B will be written in SETS as X ≡ A+ B .

4. Every VDM record structure will be abstracted by SETS tuples. So record
X : : a :A b : B will be transformed into tuple A× B .

Considering this, a first mathematical equational system representing all UIML
elements is defined as follows:



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 220

Abbrev=UIML Abbrev=UIML

U = Uiml

H = Head

Met = Meta

S = String

Int = Interface

Str = Structure

Pro = Property

Ref = Reference

Ca = Call

Ev = Event

Cot = Constant

Ite = Iterator

Beh = Behavior

Dcl = D-class

Dcm = D-component

Dpr = D-property

Dpa = D-param

Dmt = D-method

Log = Logic

Per = Peers

Tem = Template

Par = Part

Pre = Presentation

Rul = Rule

Scr = Script

Res = Restructure

Sty = Style

Con = Content

Rep = Repeat

Cod = Condition

Act = Action

Pa = Param

WT = When-true

WF = When-false

BD = By-default

Lis = Listener

Table 7.1: Abbreviations for UIML element names

U ∼= H × (Int + Per + Tem)∗ (7.1)

H ∼= Met∗ (7.2)

Met ∼= S × S (7.3)

Int ∼= (Str + Sty + Con + Beh)× (ID + 1)× S3attr (7.4)

Str ∼= Par∗ × (ID + 1)× S3attr (7.5)

Par ∼= Sty × Con × Beh × Par ∗ × Rep∗ × (ID + 1)× S6attr (7.6)

Sty ∼= Pro∗ × (ID + 1)× S3attr (7.7)

Pro ∼= (S + Cot + Pro + Ref + Ca + Ite)∗ × S8attr (7.8)

Con ∼= Cot∗ × (ID + 1)× S3attr (7.9)

Cot ∼= Cot∗ × (ID + 1)× S5attr (7.10)

Ref ∼= S × S (7.11)

Beh ∼= Rul∗ × (ID + 1)× S3attr (7.12)

Rul ∼= Cod ×Act × (ID + 1)× S3attr (7.13)

Cod ∼= Eq + Ev +Op (7.14)

Eq ∼= Ev × (Cot + Pro + Ref ) (7.15)



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 221

Ev ∼= S × S × S × S (7.16)

Op ∼= (Cot + Pro + Ref + Ca +Op + Ev)∗ × S (7.17)

Act ∼= (Pro + Ca + Res)∗ + (WT ×WF × BD) (7.18)

Ca ∼= Pa∗ × S (7.19)

Rep ∼= Ite × Par∗ (7.20)

Ite ∼= (S + Cot + Pro + Ca)× (ID + 1) (7.21)

Res ∼= Tem × S4attr (7.22)

WT ∼= (Pro + Ca)∗ × Res ×Op × Eq × Ev (7.23)

WF ∼= (Pro + Ca)∗ × Res ×Op × Eq × Ev (7.24)

BD ∼= (Pro + Ca)∗ × Res ×Op × Eq × Ev (7.25)

Pa ∼= (S + Pro + Ref + Ca +Op + Ev + Cot + Ite)× S (7.26)

Per ∼= (Pre + Log)∗ × (ID + 1)× S3attr (7.27)

Pre ∼= Dcl∗ × (ID + 1)× S4attr (7.28)

Log ∼= Dcm∗ × (ID + 1)× S3attr (7.29)

Dcm ∼= Dmt∗ × ID × S5attr (7.30)

Dcl ∼= Dmt∗ ×Dpr∗ × Ev∗ × Lis∗ × ID × S6attr (7.31)

Dpr ∼= Dmt∗ ×Dpa∗ × ID × S3attr (7.32)

Dmt ∼= Dpa∗ × Scr × ID × S5attr (7.33)

Dpa ∼= S × (ID + 1)× S (7.34)

Scr ∼= S × (ID + 1)× S4attr (7.35)

Lis ∼= S × S (7.36)

Tem ∼= (Beh +Dcl +Dcm + Cot + Int + Log + Par + Per+ (7.37)

Pre + Pro + Ru + Scr + Str + Sty + Con + Res)× S

From this mathematical system which represents all UIML element dependencies,
it is possible to identify some particular occurrences, such as replicated definitions,
expression patterns and mapping candidates.

Because text (string) is the type of the majority of attributes, we have decided to
simplify some of the equations, by grouping attributes into Sattr (S3attr ,S4attr ,S5attr ,S6attr ,
S8attr ). Attribute ID is considered in isolation because of its role in the overall refer-
ential integrity. Wherever ID is optional, we use (ID + 1).

Let us now recall some important notions concerning such a transformation pro-
cess.

7.2.1.1 Sets and Sequences

Sets2 in VDM -SL notation are represented by type constructor set of, for instance,
set of A (A-set in pretty printed VDM-SL) must be read as set of A elements. In SETS
notation, one writes 2A. So,

2Do not confuse Sets with SETS: the first one refers to a set of elements, while the second one refers
to a theory.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 222

set of A ∼= 2A

Sequences in VDM-SL notation are represented by type constructor seq of, having
seq of A interpreted as sequence of A elements (A-seq in pretty printed VDM-SL). In
SETS notation, sequences are represented by A*. So,

seq of A ∼= A∗

Sets and Sequences are related by refinement,

2A ≤elems A
∗ (7.38)

demanding the acceptance of the following two conditions:

• s ∈ A∗ is an ordered sequence

• s ∈ 2A has no repeated elements

7.2.1.2 Replicated elements

Let S denote any datatype (e.g. string). This cartesian product S × S × · · · × S can
be abbreviated by exponential S n :

Sn ∼=

n
︷ ︸︸ ︷

S × S × S × · · · × S (7.39)

where n ∈ N. Considering this and working with mathematical variables substitution,
many expressions should have their arity reduced.

7.2.1.3 Mapping transformations

Our analysis of UIML shows that some of the elements result from composition of
different type elements. As happens in a database normalization, there exist elements
which have some particular element in their composition which can determine the
others. This means that this element is unique and can identify a particular instance of
that object. This happens in those sequences of UIML elements which have a required
(ID + 1).

To understand all these properties, please recall the mapping model transformation
properties described in previous section 5.2.2.

7.2.1.4 SETS patterns

In the previous system of equations 7.1 to 7.37, one can identify some expressions
which are common to several equations. For example, there are several instances of
the following expressions:



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 223

• Bn

• B∗ × C n

• B∗ × C ×Dn

So, it could be really possible that one equation could be an instance of another
one. This can be easily identified in equations (7.23), (7.24) and (7.25). All of them
can be considered as modelling the same.

Let us analyze equations (7.9) and (7.10) for instance, having to do with Content
and Constant elements, respectively:

Con ∼= Cot∗ × (ID + 1)× S3attr

Cot ∼= Cot∗ × (ID + 1)× S5attr

Since S3attr ≤ S5attr , i.e, all attributes of Con element are also attributes of Cot
elements, we can denote that one equation can be an instance of the other. In this way
both equations ((7.9) and (7.10)) can be substituted by a new one. For instance, a new
element called anyCont can be defined as:

anyCont ∼= Cot∗ × (ID + 1)× S5attr

In practice, this can be viewed as a different UIML element called anyContent ,
with attributes to distinguish between Constant or Content . For example, in UIML

specification 3.0, <constant> elements are defined as:

<constant id="Cat" value="Cat"/>
<constant id="Dog" value="Dog"/>
<constant id="Mouse" value="Mouse"/>

and <content> elements as:

<content id="Portugues">
<constant id="Cat">Gato</constant>
<constant id="Dog">Cão</constant>
<constant id="Mouse">Rato</constant>

</content>

Both could now be represented by anyContent elements:

<anyContent type="const" id="Cat" value="Cat"/>
<anyContent type="const" id="Dog" value="Dog"/>
<anyContent type="const" id="Mouse" value="Mouse"/>
<anyContent type="cont" source="Portugues" id="Cat" value="Gato"/>
<anyContent type="cont" source="Portugues" id="Dog" value="Cão"/>
<anyContent type="cont
‘‘ source="Portugues" id="Mouse" value="Rato"/>

Continuing this reasoning, there could be some more equations which can “disap-
pear”, being a particular instance of others.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 224

7.2.1.5 Applying abstraction

Let us now try to perform some mapping transformations .

Being in mind what was explained in section 7.2.1.3, let us consider some elements
as a study case for this propose.

7.2.1.5.1 <uiml> element :

Let us abstract the <uiml> element and its member elements. Following previous
assumptions, we shall structure our reasoning in two steps:

1. Mathematical equations

Uiml ∼= Head × (Interface + Peers + Template)∗

Head ∼= Meta∗

Meta ∼= String × String

2. Abbreviating names (following Table 7.1)

U ∼= H × (Int + Per + Tem)∗

H ∼= Met∗

Met ∼= S × S

From the equation system of page 219, we are going now to find some relevant
patterns in most equations.

7.2.1.5.2 <interface> element :

As referred in previous equation (7.4, page 220), the interface element is defined
by

Int ∼= (Str + Sty + Con + Beh)∗ × (ID + 1)× S3attr (7.40)

In the VDM -SL specification, Ie (InterfaceElements) is a type defined by

InterfaceElements = Structure | Style | Content | Behavior

That is,

Ie ≡ Str + Sty + Con + Beh

once names are abbreviated.

On the other hand, we see that Str ,Sty ,Con and Beh are elements with (A × · · · ×
ID · · · × B) structure. So, Ie , can be rewritten as:

Ie ≡ (ID × Strinf + ID × Styinf + ID × Coninf + ID × Behinf )

where Behinf abstracts the remainder element information.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 225

By applying properties (5.17) (page155) and (5.20), (5.21) (page 156), and ignoring
Int attributes, equation (7.40) is rewritten into

Int ∼= ID ↪→ Intinf

Intinf
∼= (Strinf + Styinf + Coninf + Behinf )

These final equations, mean the same as the originalVDM specification. Interface
can have several Structure, Style, Content or Behavior elements, all of them identified
by an unique identifier (ID+1).

The same reasoning should be applied to other UIML elements, like Structure ,
Content ,Constant ,Behavior ,Rule , Iterator ,Peers , Logic,D-component ,D-class ,
D-property , D-method , D-param and Script .

7.2.1.5.3 A practical example :

Listing 7.1 shows an UIML fragment which describes a Java AWT Frame contain-
ing a Java AWT Label:

Listing 7.1: UIML code to describe a Java AWT label
<s t r u c t u r e>

<p a r t i d =” TopHel lo ” c l a s s =” Frame ”>

<s t y l e>
6 <p r o p e r t y name=” r e n d e r i n g ”>Frame< / p r o p e r t y>

<p r o p e r t y name=” t i t l e ”>Example UI< / p r o p e r t y>

8 <p r o p e r t y name=” r e s i z a b l e ”> t r u e< / p r o p e r t y>

<p r o p e r t y name=” l a y o u t ”>j a v a . awt . FlowLayout< / p r o p e r t y>

10 <p r o p e r t y name=” background ”>b l u e< / p r o p e r t y>

<p r o p e r t y name=” f o r e g r o u n d ”>w h i t e< / p r o p e r t y>

12 <p r o p e r t y name=” s i z e ”>500 ,100< / p r o p e r t y>

<p r o p e r t y name=” l o c a t i o n ”>100 ,100< / p r o p e r t y>

14 < / s t y l e>

16 <p a r t name=”L” c l a s s =” Labe l ”>
<s t y l e>

18 <p r o p e r t y name=” t e x t ”>Sample l a b e l .< / p r o p e r t y>

< / s t y l e>
20 < / p a r t>

< / p a r t>

<s t r u c t u r e>

It is easy to find in this code instances of the equations (7.5), (7.6), (7.7) and (7.8).

The diagram of Figure 7.1 presents an informal interpretation of this UIML excerpt.

Note that the first property has attribute name=“rendering” and value text “Frame”.
These name attribute and value text (string) are members of S n in equation (7.8).

Considering the involved equations, let us analyze this piece of code in more detail:

Equation (7.5):

Str ∼= Par∗ (7.41a)

To simplify, the structure element has no attributes;



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 226

structure


part


part
 ID
 class


style


property


name
 string


part


style


property


name
 string


Figure 7.1: Example of <uiml> hierarchy elements

Equation (7.6):

Par ∼= Sty × Par × S × S (7.41b)

Here S × S represent (ID + 1) and class attributes;

Equation (7.7):

Sty ∼= Pro∗ (7.41c)

To simplify, the style element has no attributes;

Equation (7.8):

Pro ∼= S × S (7.41d)

Here, the first S represents the value text (string), while the second one represents the
name attribute;

Grouping all, we have:

Str ∼= Par∗ (7.42a)

Par ∼= Sty × Par × S × S (7.42b)

Sty ∼= Pro∗ (7.42c)

Pro ∼= S × S (7.42d)

and, by replacing Sty and Pro, we have



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 227

Str
′ ∼= Par

′

(7.42e)

Par
′ ∼= 2S×S × Par

′

(7.42f)

where 2N×T could be converted in N ↪→ T .

Considering equations (7.42a) to (7.42d) we can anticipate a change inUIML no-
tation, with particular tags names, to describe the same. For instance,

<structure>
<PART id="TopHello" class="Frame" title="Example UI"
resizable="true" layout="java.awt.FlowLayout"
background="blue" foreground="white"
size="500,100" location="100,100">

<PART id="L" class="Label" text="Sample label."/>
</PART>

</structure>

So we can see the recursiveness of part elements having a new part elements inside
of it.

Comparing this code to the original one, it is obvious that it is more concise and
perhaps, more intuitive. The translation between this and original UIML can be me-
chanically implemented.

7.2.2 Tool support for language refactoring

The extension of UIML renders any attempt to do manual transformations as calculated
above impracticable.

Resorting to some automated process will be useful. Starting from an VDM-SL
AST, applying a set of transformations properties, towards a new, abstractly changed
AST, is the focus of VooDooM [AS04] automated refinement tool. This shows the
applications of Haskel3 and Strafunski4 functional strategies. Haskel and its powerful
data type system, provides a natural way for defining abstract syntax. On top of it,
the Strafunsky library implements functional strategies for generic traversals. From its
definition, “generic functions that can traverse into terms of any type” it looks adequate
to perform complex AST manipulation. Moreover, some Haskel libraries are available
for markup languages, namely HaXML5.

The reader is referred to [AS04] for results and conclusions, about the applica-
tion of functional strategies to write specific transformation operators, without being
concerned with all AST complexity.

So, perhaps a similar process can be applied to UIML refactoring.

3http://www.haskell.org/
4http://www.cs.vu.nl/Strafunski/
5http://www.cs.york.ac.uk/fp/HaXml/



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 228

7.2.3 IO Visualization

Our research has focused on formalizing Interaction Objects behavior such as the
table object presented in Chapter 5. No less important is the possibility of integration
or application of existent distinct UI objects, such as ListBoxes , Frames , etc. to get
our data display more accurate.

This question was deeply explored in several research initiatives [JNZM93, GLS96],
and from their results, we can deduce the existence of significant problems on UI gen-
erators, mainly on selecting components. The automatic selection of UI objects could
not be the best choice.

Considering this part of our reasoning and experience, it is important to show how
a composition or a particular use of an UI component library can have different results.

In practice, this is captured by the question “How can we represent graphically
these data?” or “How can we select the best UI object, if there is one?”.

This section presents some thoughts on an Abstract visualization process based on
graphical attributes and eventual refinement on expressions intended for visualization.
The whole experience starts from the basic elements of our abstraction process, in
the context of which our table object was considered. We refer to elements such as
Exp in our VDMType definitions (on page 159) which could represent expressions
of type A × B , A ↪→ B and constants (Numbers and Strings). Here, a table and
all its components (rows, columns and cells) will be graphically represented around a
hypothetical rectangle.

7.2.3.1 Abstract visualization

Along this representative process we will work with a simple table object, having spe-
cific graphical information ignored, exploring the possibility of composing new repre-
sentation forms after some reasoning over initial expressions. In practice, this means
that a certain component could be replaced by another one, which could represent the
same.

Let us assume a rectangle as being the main visible shape of our visualization pro-
cess, and let visualizing be our operator, which can “represents” several different types
of expressions. The homomorphic behavior of this operator is described as follows:

visualizing(Expi θ Expj ) = visualizing(Expi) φ visualizing(Expj )

where φ represents the visual semantics of θ. The interpretation is that visualizing
a composite objects must be equivalent to composing the visualization of each of its
parts.

Starting with the basic elements of our model, Figure 7.2, describes the visualiza-
tion of each possible expression.

Considering this, we will analyze how different terms (expressions) can be visual-
ized. Just as a particular instance of concrete element representations, we can assume
that:



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 229

A


Exp
 visualizing(Exp)


AxB


A+B


A*


A+


A->B


A


A
 B


A
 B


A

B


A


A


label; textBox


GUI


label; textBox


radioButton


listBox; comboBox


listBox; comboBox


table


Figure 7.2: Abstract and Concrete graphical visualization of basic elements

• Simple (numerical or textual constant) expressions, can be represented by label
objects;

• As A∗ in SETS notation is a sequence of A elements, the known listBox object
can display it;

• The same can be said about A+;

• According to this reasoning, A+B can be represented by a radioButton object,
evaluating to A or B data values;

• A× B can be represented by two label objects;

• A ↪→ B , as seen before, can be represented by a table object.

What has influenced this kind of mapping from abstract to concrete graphical rep-
resentations? Let us take A∗ as an example.

In a sequence, the order of its elements is relevant. Position 1 must be occupied
by element a1, position 2 element by a2, and so on, until all elements are positioned.
This reminds us of an array (Figure 7.3).

a
0
 a
1
 a
n


a
0


a
1


a
n


(a)


(b)


Figure 7.3: A∗ seen as an array

As happens with array , it is possible to have operators to manipulate it, such
as, giving a value for a particular array position (in programming language notation



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 230

v = array [i ]); getting all values stored in it (elems(array)); getting the next free (i );
etc.

Looking at Figure 7.3, we can see that (a) and (b) represent the same, being (b) a
rotation or a vertical perspective of (a).

Now, how do we represent arbitrarily composite expressions (terms), such as e.g. A×
B × C , A× B) ↪→ C , A ↪→ (B + C ), etc.?

Let us analyze some examples.

7.2.3.1.1 Example 1 :

Suppose we want to have a GUI element or elements to represent the following ex-
pression:

E1 : (A× B) ↪→ C

We can see that it is an instance of A ↪→ B , substituting A by (A × B). So,
according to our abstract graphical representation,

visualizing(E1) ∼= visualizing(Exp ↪→ C )

giving a possible aspect showed on Figure 7.4. It is only necessary to know how to
represent Exp, which is A× B .

?
 C


Figure 7.4: (Exp ↪→ C ) representation

Looking again to our abstract graphical symbols (Figure 7.2), there is a direct
representation of A× B . So, our final representation is:

B
 C
A


Figure 7.5: (A× B) ↪→ C

7.2.3.1.2 Example 2 :

Suppose we want to visualize values of type expression:

E2 : A ↪→ D × (B ↪→ C )

Once more, this is an instance of A ↪→ B . The part which must be explored now
is the mapping’s range. So,

visualizing(E2) ∼= visualizing(A ↪→ Exp)



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 231

As before, a possible representation is shown in Figure 7.6. Now it is necessary to
know how to represent Exp, which is D × (B ↪→ C )).

A
 ?


Figure 7.6: (A ↪→ Exp) representation

As D × (B ↪→ C ) is an instance of (A × B), having B substituted by B ↪→ C

and instance of A ↪→ B , the final representation will be

A
 D
 B
 C


Figure 7.7: A ↪→ D × (B ↪→ C ) representation

7.2.3.1.3 Example 3 :

Looking now at expression

E3 : A ↪→ D × CB

at first sight it looks quite strange, because we have no visualization for C B . From
SETS properties, we know that

CB ≤ B ↪→ C

In this way, E3 can be considered as an instance of E2 (example 2).

visualizing(E3) ∼= visualizing(E2)

7.3 Final Remarks

So we reach our final conclusion: although UIML is a recent domain-specific markup
language, based on XML description, having associated DTD and XMLschema , it
comprehends perhaps an excessive set of structures. Large code files will be necessary
to specify what is intended.

So, trying to “say the same in fewer words” will be better. The UIML creators
work hard towards this. They are working on a more “simple and generic UIML”
which is called UIML Shorthand [Har98].

Finally we would like to mention the opportunity and usefulness of this work to
Harmonia on analyzing this kind of problems, as referred in this email message from
Dr. Marc Adams:

...The inconsistencies in the draft spec will be very helpful to the OASIS UIML
technical committee, so please make a list of them for the TC.

I’ll look forward to receiving a draft release — you are doing a very interesting
topic.



Bibliography

[AA01] Mir Farooq Ali and Marc Adams. Simplifying Construction on Multi-
Platform User Interfaces Using UIML, 2001.

[AAN03] S. Apostolos, T. Antonis, and S. Nick. Digital Typography Using Latex.
Springer-Verlag, 2003.

[ABB+97] David Atkins, Thomas Ball, Michael Benedikt, Glenn Bruns, Kenneth
Cox, Peter Mataga, and Kenneth Rehor. Experience with a Domain Spe-
cific Language for Form-based Services. In ACM, pages 37–50, 1997.
http://citeseer.nj.nec.com/atkins97experience.html.

[AF00] Mehmet Altinel and Michael J. Franklin. Efficient Filter-
ing of XML Documents for Selective Dissemination of In-
formation. In The VLDB Journal, pages 53–64, 2000.
http://citeseer.nj.nec.com/altinel00efficient.html.

[AH00] Marc Abrams and James Helmes. User Interface Markup Language
UIML Specification. UIML Version 2.0, 2000.

[AH02] Marc Abrams and James Helmes. User Interface Markup Language
UIML Specification. UIML Version 3.0, 2002.

[And] Derek J. Andrews. An Overview of VDM–SL.

[APQA02] Mir Farooq Ali, Manuel Pérez-Quiñones, and Marc Adams. Building
Multi-Platforms User Interfaces with UIML, 2002.

[AS04] Tiago M. L. Alves and Paulo F. A. Silva. Automated refining tool. Tech-
nical report, Universidade do Minho, 2004.

[BCMS02] Trevor Bench-Capon, Grant Malcolm, and Michael Shave. Seman-
tics for Interoperability: relating ontologies and schemata, 2002.
http://gunther.smeal.psu.edu/17827.html.

[BHW02] Judith Bishop, R Nigel Horspool, and Basil Worrall. Experience with in-
tegrating Java with new technologies: C#, XML and web services. Com-
puter Science Department, 2002.

[Bja91] Stroustrup Bjarne. What is Object-Oriented Programming?, 1991.
http://www.research.att.com/ bs/whatis.pdf.

232



BIBLIOGRAPHY 233

[Bor03] Borland. Kylix, 2003. http://www.borland.com/kylix/.

[Bow96] Prof. Jonathan Bowen. Formal Specification and Documentation using
Z: A Case Study Approach. Thomson Publishing, 1996.

[Bra98] Myers Brad. A brief history of Human Computer Interaction Technol-
ogy, 1998. http://citeseer.nj.nec.com/myers98brief.html.

[BRS+00] Klaus Bergner, Andreas Rausch, Marc Sihling, Alexander Vilbig, and
Manfred Broy. A Formal Model for Componentware. In Gary T. Leav-
ens and Murali Sitaraman, editors, Foundations of Component-Based
Systems, pages 189–210. Cambridge University Press, New York, NY,
2000. http://citeseer.nj.nec.com/bergner00formal.html.

[BRSV98] Klaus Bergner, Andreas Rausch, Marc Sihling, and Alexander Vilbig.
An Integrated View On Componentware - Concepts, Description Tech-
niques, and Development Process. In IASTED 98, Proceedings of
IASTED Conference on Software Engineering, pages 77–82. IEEE, 1998.
http://citeseer.nj.nec.com/bergner98integrated.html.

[BRSV99] Klaus Bergner, Andreas Rausch, Marc Sihling, and Alexander Vilbig.
Componentware – Methodology and Process. In CBSE ’99 Proceedings
of the International Workshop on Component-Based Software Engineer-
ing. IEEE, 1999. http://citeseer.nj.nec.com/238431.html.

[Bus02] Warehouses For Business. Creating High Quality e-Data - Warehouses
for Business, 2002. http://citeseer.ist.psu.edu/534668.html.

[BVE02] Laurent Bouillon, Jean Vanderdonckt, and Jacob Eisenstein.
Model-Based Approaches to Reengineering Web Pages, 2002.
http://citeseer.nj.nec.com/bouillon02modelbased.html.

[Byn98] Bill Bynum. Latex Thesis Guide, 1998.

[Che99] Tao Cheng. XUL - Creating Localizable XML GUI, 1999.

[Con00] XML Consortium. XML NameSpaces, 2000.
http://www.w3.org/2000/xmlns/.

[Con02] XUL Consortium. XML-based User Interface Language, 2002.
http://www.mozilla.org/projects/xul/.

[Con03a] The TCL/TK Consortium. Tool Command Language - TCL/TK, 2003.
http://www.tcl.tk/.

[Con03b] W3C Consortium. World Wide Web Consortium, 2003.
http://www.w3c.org.

[Cyp93] Allan Cypher. Watch What I Do: Programming by Demonstration, 1993.

[Dev03] Web Developers. Common Gateway Interface, 2003.
http:www.wdvl.com/Authoring/CGI.



BIBLIOGRAPHY 234

[dSP00] Paulo Pinheiro da Silva and Norman W. Paton. User Interface Mod-
elling with UML. In H. Kangassalo, H. Jaakkola, and E. Kawaguchi,
editors, Proc. 10th European-Japanese Conference on Information Mod-
elling and Knowledge Bases, Saariselkä (Finland), 2000. IOS Press, Am-
sterdam, 2000. http://citeseer.nj.nec.com/dasilva00user.html.

[dSP03] Paulo Pinheiro da Silva and Norman W. Paton. Improving UML Sup-
port for User Interface Design: A Metric Assessment of UMLi, 2003.
http://citeseer.nj.nec.com/pinheirodasilva03improving.html.

[eBC01] Intel eB̃usiness Center. N-tier Architecture Improves Scalability, Avail-
ability and Ease of Integration. Infrastructure Best Practices, 2001.
http://citeseer.nj.nec.com/robert83using.html.

[Fer00] Carpani Fernando. Multidimensional Models: A State of Art., 2000.
http://www.fing.edu.uy/inco/pedeciba/ bibliote/reptec/TR0012.pdf.

[FF93] Martin R. Frank and James D. Foley. Model-based User Inter-
face Design by Example and by Interview. In ACM Symposium
on User Interface Software and Technology, pages 129–137, 1993.
http://citeseer.nj.nec.com/article/frank93modelbased.html.

[FME03] FME. Formal Methods Europe, 2003. http://www.fmeurope.org/.

[For] XIML Forum. eXtensible Interface Markup Language.
http://www.ximl.org.

[For03] Wap Forum. Wireless Markup Language, 2003.
http://www.wapforum.org/what/technical.htm.

[Fre03] Jeff Freund. Interface Scalability, 2003. http://www.cmswatch.com/.

[GC93] Gerald C. Gannod and Betty H. C. Cheng. A Two-Phase Approach
to Reverse Engineering Using Formal Methods. In Formal Meth-
ods in Programming and Their Applications, pages 335–348, 1993.
http://citeseer.nj.nec.com/gannod93twophase.html.

[GC99a] Gerald C. Gannod and Betty H. C. Cheng. A Formal Approach for Re-
verse Engineering: A Case Study. In Working Conference on Reverse En-
gineering, pages 100–111, 1999. http://citeseer.nj.nec.com/212304.html.

[GC99b] Gerald C. Gannod and Betty H.C. Cheng. A Formal Approach for Re-
verse Engineering: A Case Study, 1999.

[GCB+97] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don
Reichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data
Cube: A Relational Aggregation Operator Generalizing Group-By,
Cross-Tab, and Sub-Totals. J. Data Mining and Knowledge Discovery,
1(1):29–53, 1997.

[GeA02] Miguel Goulão and Fernando Brito e Abreu. From Objects to Compo-
nents: a Quantitative Approach, 2002.



BIBLIOGRAPHY 235

[Gee00] Haan Geert. ETAG - A Formal Model of Competence Knowledge for
User Interface Design. PhD thesis, Vrije Universiteit, 2000.

[Ger01] Andreas Gerstinger. Improvement of Requirements and Test Cases in
a Network Node for Air Traffic Control with the Vienna Development
Method. Master’s thesis, Institute for Software Technology, TU-Graz,
Austria, March 2001. Supervisor: Peter Lucas and Bernhard Aichernig.

[GLS96] Marc Gyssens, Laks V. S. Lakshmanan, and Iyer N. Subramanian.
Tables as a Paradigm for Querying and Restructuring. In Sym-
posium on Principles of Database Systems, pages 93–103, 1996.
http://citeseer.nj.nec.com/gyssens96tables.html.

[Gro03a] Apache Group. Embperl, 2003. http://perl.apache.org/embperl/.

[Gro03b] OMG Object Management Group. ARGOi, 2003.
http://www.cs.man.ac.uk/img/umli/tutorial/short-tutorial01.html.

[Gro03c] OMG Object Management Group. UML - Unified Modelling Language,
2003. http://www.uml.org.

[Hal60] Paul Halmos. Naive Set Theory. Princeton, 1960.

[Hal90] Anthony Hall. Seven Myths of Formal Methods. IEEE Softw., 7(5):11–
19, 1990.

[Hal01] Paul Halmos. Wikipedia - The free Encyclopedia, 2001.
http://en.wikipedia.org/wiki/Naive set theory.

[Har98] Inc. Harmonia. Harmonia inc., 1998. http://www.harmonia.com/.

[Har02] Inc. Harmonia. User Interface Markup Language UIML Specification.
Technical report, Harmonia Inc., 2002.

[Hel03] James Helmes. The Relationship of the UIML 3.0 Spec. to other Stan-
dards/Working Groups, 2003.

[Her91] Jürgen Herczeg. A Design Environment for Graphical User Interfaces,
1991. http://citeseer.ist.psu.edu/342583.html.

[HM01] Carlos A. Hurtado and Alberto O. Mendelzon. Reasoning about Summa-
rizability in Heterogeneous Multidimensional Schemas. In Proceedings
of the 8th International Conference on Database Theory, pages 375–389.
Springer-Verlag, 2001.

[Hop01] K. Hopper. VDM-SL - a tutorial, 2001.

[IAL03] IBM, Apple, and Lotus. OpenDoc Tehnology, 2003.

[IBM03] IBM. Enterprise PLI - Language Reference, 2003.
http://publibfi.boulder.ibm.com/epubs/pdf/ibm3lr20.pdf.



BIBLIOGRAPHY 236

[IFA00a] IFAD. VDMTools - VDM-SL Toolbox User Manual - V3.6. Technical
report, IFAD, 2000. http://www.ifad.dk.

[IFA00b] IFAD. VDMTools - The IFAD VDM++ language - V6.6. Technical
report, IFAD, 2000. http://www.ifad.dk.

[IFA00c] IFAD. VDMTools - The IFAD VDM-SL language - V3.6. Technical
report, IFAD, 2000. http://www.ifad.dk.

[IFA03] IFAD. IFAD Company, 2003. http://www.ifad.com.

[ISO96] ISO. ISO/IEC 13817-1: Information technology – Programming lan-
guages, their environments and system software interfaces – Vienna De-
velopment Method – Specification Language – Part 1: Base language,
1996.

[JBK89] J. Grollmann J. Burgstaller and F. Kapsner. On the Software Structure of
User Interface Management Systems, 1989.

[JFMdM92] Dennis J. M. J., James D. Foley, Kevin E. Mullet, and Charles A.van
der Mast. Coupling application design and user interface de-
sign. Technical Report DUT-TWI-92-03, Georgia Institute of
Tehcnology and Sun Microsystems, Delft, The Netherlands, 1992.
http://citeseer.nj.nec.com/baar91coupling.html.

[JNZM93] Jeff A. Johnson, Bonnie A. Nardi, Craig L. Zarmer, and James R. Miller.
ACE: building interactive graphical applications. Communications of the
ACM, 36(4):40–55, 1993.

[Jon90] Cliff B. Jones. Systematic Software Development using VDM.
Prentice-Hall, Upper Saddle River, NJ 07458, USA, 1990.
http://citeseer.nj.nec.com/jones95systematic.html.

[KP88] G. Krasner and S. Pope. A Description of the Model-View-Controller
User Interface Paradigm in the Smalltalk-80 system. Journal of Object
Oriented Programming, 1(3):26–49, 1988.

[KR02] George Coulouris Kasim Rehman, Frank Stajano. Inter-
facing with the Invisible Computer, 2002. http://www-
lce.eng.cam.ac.uk/ kr241/Paper260702.pdf.

[Lam94] Leslie Lamport. LaTeX: A Document Preparation System (2nd Edition).
Addison-Wesley Professional, 1994.

[Lec96] Eric Lecolinet. XXL: A Dual Approach for Building User Interfaces.
In ACM Symposium on User Interface Software and Technology, pages
99–108, 1996. http://citeseer.nj.nec.com/lecolinet96xxl.html.

[Lec99] Eric Lecolinet. XXL: A Visual+Textual Environ-
ment for Building Graphical User Interfaces, 1999.
http://citeseer.nj.nec.com/lecolinet99xxl.html.



BIBLIOGRAPHY 237

[LFJ95] Nigay L., Jambon F., and Coutaz J. Formal Specification of Multimodal-
ity. CHI’ 95 Workshop, 1995.

[Lin00] David S. Linthic. Enterprise Application Integration. Addison Wesley,
2000.

[Luı́03] Ferreira G. Luı́s. No passado...será XML, 2003.

[Luı́04] Ferreira G. Luı́s. Formalizing Markup Languages for User Interface,
2004. Technical Report - 44 pages.

[Luy01] Kris Luyten. XML en User Interfaces, 2001.
http://lumumba.luc.ac.be/kris/courses/ui/.

[Ma98] Yao Ma. Data Warehousing, OLAP, and Data Mining: An Integrated
Strategy for Use at FAA, 1998. http://citeseer.nj.nec.com/ma98data.html.

[Mac96] Vijay Machiraju. A Survey on Research in Graphical Interfaces, August
1996.

[Mar95] F. M. Martins. Métodos Formais na Concepção e Desenvolvimento de
Sistemas Interactivos. University of Minho, 1995. Ph. D. thesis (in Por-
tuguese).

[MB86] Brad A. Myers and William Buxton. Creating Highly-Interative and
Graphical User Interfaces by Demonstration, August 1986.

[McE04] Chris McEvoy. Usability Views, 2004. www.usabilityviews.com.

[MCM+91] Brad A. Myers, Allen Cypher, David Maulsby, David C. Smith, and Ben
Shneiderman. Demonstrational interfaces: Coming soon? In Proceed-
ings of the SIGCHI conference on Human factors in computing systems,
pages 393–396. ACM Press, 1991.

[MHP00] Brad Myers, Scott E. Hudson, and Randy Pausch. Past,
Present and Future of User Interface Software Tools, 2000.
http://citeseer.nj.nec.com/231861.html.

[Mic96] Sun Microsystems. Javabeans v1.0, 1996. http://java.sun.com/beans.

[Mic03a] McLennan Michael. Incr Widgets, 2003.
http://incrtcl.sourceforge.net/iwidgets/.

[Mic03b] Microsoft. Layered Application, 2003.
http://msdn.microsoft.com/architecture/patterns/ArcLayeredApplication.

[Mic03c] Microsoft. Microsoft, 2003. http://www.microsoft.com/.

[Mic03d] Sun Microsystems. The Java Language, 2003. http://java.sun.com/.

[Mic03e] Sun Microsystems. The Java Swing API, 2003.
http://java.sun.com/products/jfc/tsc/.



BIBLIOGRAPHY 238

[Mic03f] Sun Microsystems. The Javascript Script Language, 2003.
http://www.javascript.com.

[Mic04a] Microsoft. Community Resources for Architecture and Design, 2004.
http://www.gotdotnet.com/team/architecture.

[Mic04b] Microsoft. Visual Studio .Net, 2004.
http://msdn.microsoft.com/vstudio/.

[Mic04c] Sun Microsystems. J2EE - Java 2 Platform Enterprise Edition, 2004.
http://java.sun.com/j2ee/.

[Mig97] Encarnação Miguel. Models of Human-Computer Interaction, 1997.
www.gris.uni-tuebingen.de/gris/proj/guis/Papers/DISS.

[Mis99] Misosoft. Microsoft Foundations Classes, 1999.
http://msdn.microsoft.com/library/.

[MJS+00] Hausi A. Muller, Jens H. Jahnke, Dennis B. Smith, Margaret-Anne D.
Storey, Scott R. Tilley, and Kenny Wong. Reverse engineering: a
Roadmap. In ICSE — Future of SE Track, pages 47–60, 2000.
http://citeseer.nj.nec.com/muller00reverse.html.

[MK97] R. Michalski and K. Kaufman. Data Mining and Knowledge Dis-
covery: A Review of Issues and a Multistrategy Approach, 1997.
http://citeseer.nj.nec.com/article/michalski97data.html.

[ml98] XML-DEV mailing list. Simple API for XML, 1998.
http://www.w3c.org/TR/xslt.

[MO85] F. M. Martins and J. N. Oliveira. Graphics Programming with
‘Archetypes’ — A Preliminary Study. In Proceedings of the EURO-
GRAPHICS’85 Conference, pages 401–412, Nice, France, September
1985.

[Moz03] Mozdev.org. O’ REILLY’S creating applications with mozzila, 2003.
http://books.mozdev.org/chapters/index.html.

[MT97] Nenad Medvidovic and Richard N. Taylor. A Framework for Classify-
ing and Comparing Architecture Description Languages. In M. Jazayeri
and H. Schauer, editors, Proceedings of the Sixth European Software En-
gineering Conference (ESEC/FSE 97), pages 60–76. Springer–Verlag,
1997. http://citeseer.nj.nec.com/medvidovic97framework.html.

[Mye95] Brad A. Myers. User Interface Software Tools, March 1995.
http://citeseer.nj.nec.com/myers93user.html.

[Mye96] Brad A. Myers. UIMS, Toolkits, Interface Builders, May 1996.
http://www.cs.cmu.edu/ bam.

[NB02] Walsh Norman and Stayton Bob. DocBook XSL Stylesheet Documenta-
tion, 2002.



BIBLIOGRAPHY 239

[Nig01] Pendse Nigel. Multidimensional data structures, 2001.
http://www.olapreport.com/MDStructures.htm.

[Nun01] Nunes D. Nuno. Object Modeling for User-Centered Development and
User Interface Design: The Wisdom Approach, 2001. Ph. D. thesis.

[OAS03] OASIS. Organization for the Advancement of Structured Information
Standards, 2003. http://www.oasis-open.org/.

[Oli92] J. N. Oliveira. A Reification Calculus for Model-Oriented Software
Specification. Formal Aspects of Computing, Vol.2, 1-23, 1992.

[Oli98] J. Nuno Oliveira. Métodos Formais de Programação. Departamento de
Informática, Universidade do Minho, 1998.

[Oli02] J. Nuno Oliveira. EVDM: a LATEX style extending article.sty+vdmsl-
2e.sty. Technical report, Dep. Informática, Universidade do Minho, Por-
tugal, 2002. http://www.di.uminho.pt/ jno.

[Oli03] J. Nuno Oliveira. An introduction to Data Refinement. Formal Methods
II, 2003.

[oM03] University of Maryland. Guide to Usability for Software Engineers,
2003. http://www.otal.umd.edu/guse/.

[OMG02] OMG. Object Management Group, 2002. http://www.omg.org/.

[oRE03] WCRE Working Conference on Reverse Engineering. Reengineering
Forum, 2003. http://reengineer.org/.

[org92] UIMS org. A metamodel for the runtime architecture of an interactive
system: the UIMS tool developers workshop. SIGCHI Bull., 24(1):32–
37, 1992.

[Org98] UIM Org. Oasis UIML technical committee, 1998. http://www.oasis-
open.org/committees/uiml/.

[Ovi99] Sharon Oviatt. Designing the User Interface for Multimodal Speech and
Pen-based Gesture Applications, 1999.

[PA99] Constantinos Phanouriou and Marc Abrams. Using XML to Build User
Interfaces, 1999. http://www.uiml.org/.

[Pal98] A.J. Palay. The Andrew Toolkit - An Overview. In Winter Usenix Tech-
nical Conference, 1998.

[Pan97] Markopoulos Panagiotis. A compositional model for the formal specifi-
cation of user interface software. PhD thesis, Queen Mary and Westfield
College - University of London., 1997.

[PE02a] Angel Puerta and Jacob Eisenstein. XIML: A Common Representation
for Interaction Data, 2002.



BIBLIOGRAPHY 240

[PE02b] Angel Puerta and Jacob Eisenstein. XIML: A Universal Language for
User Interfaces, 2002. http://citeseer.nj.nec.com/587490.html.

[Per03] Perl.org. The Perl Language, 2003. http://www.perl.org/.

[Pfa85] G.E. Pfaff. User Interface Management Systems: Proceedings of the
Seeheim Workshop, 1985.

[Pha00] Constantinos Phanouriou. UIML: A Device-Independent User Interface
Markup Language, 2000.

[Pin00] Paulo Pinheiro da Silva. User Interface Declarative Models and
Development Environments: A Survey. In Ph. Palanque and
F. Paternò, editors, Proceedings of DSV-IS2000, volume 1946 of
LNCS, pages 207–226, Limerick, Ireland, June 2000. Springer-Verlag.
http://citeseer.nj.nec.com/article/dasilva00user.html.

[Pla03] XUL Planet. XML User Interface Language XUL, 2003.
http://www.xulplanet.com.

[Pop01] Paul Pop. Design Principles of Human-Computer Interaction, 2001.

[PP00] Paulo Pinheiro da Silva and Norman W. Paton. UMLi: The Unified Mod-
eling Language for Interactive Applications. In Andy Evans, Stuart Kent,
and Bran Selic, editors, UML 2000 - The Unified Modeling Language.
Advancing the Standard. Third International Conference, York, UK, Oc-
tober 2000, Proceedings, volume 1939, pages 117–132. Springer, 2000.
http://citeseer.nj.nec.com/article/dasilva00umli.html.

[PSM+03] Michael Palermo, Darshan Singh, Steve Mohr, Pieter Siegers, and Chris
Knowles. Professional ASP.NET 1.0 XML with C#. Wrox Press, 2003.

[Pue93] Angel R. Puerta. The study of models of intelligent interfaces. In Intel-
ligent User Interfaces, pages 71–78, 1993.

[Pyt03] Python.org. The Python Language, 2003. http://www.python.org/.

[Rec98a] W3C Recommendation. Compact HTML for Small Information Ap-
pliances, 1998. http://www.w3c.org/TR/1998/NOTE-compactHTML-
19980209/.

[Rec98b] W3C Recommendation. DTD - Document Type Definition, 1998.
http://www.w3.org/XML/1998/06/xmlspec-report-v21.htm.

[Rec99a] W3C Recommendation. XML Path Language (XPath) 1.0, 1999.
http://www.w3.org/TR/xpath.

[Rec99b] W3C Recommendation. XSL Transformations XSLT, 1999.
http://www.w3c.org/TR/xslt.

[Rec01a] W3C Recommendation. Extensible Stylesheet Language XSL Version
1.0, 2001. http://www.w3c.org/style/xsl/.



BIBLIOGRAPHY 241

[Rec01b] W3C Recommendation. Standard Generalized Markup Language, 2001.
http://www.w3c.org/Markup/sgml/.

[Rec01c] W3C Recommendation. XML Schema, 2001.
http://www.w3c.org/XML/Schema.

[Rec02] W3C Recommendation. XML Pointer Language (XPointer), 2002.
http://www.w3.org/TR/xptr/.

[Rec03a] W3C Recommendation. Cascading Style Sheets, level 2 CSS2 Specifi-
cation, 2003. http://www.w3c.org/style/css/.

[Rec03b] W3C Recommendation. Document Object Model, 2003.
http://www.w3c.org/DOM/.

[Rec03c] W3C Recommendation. Extensible Markup Language XML Version 1.0,
2003. http://www.w3.org/TR/REC-xml.

[Rec03d] W3C Recommendation. Web services, 2003.
http://www.w3c.org/DesingIssues/WebServices.html/.

[Rec03e] W3C Recommendation. XEvents, 2003. http://www.w3.org/TR/xml-
events/.

[Rec03f] W3C Recommendation. XForms 1.0, 2003.
http://www.w3c.org/Markup/Forms/.

[Rec04a] W3C Recommendation. Hypertext Markup Language HTML, 2004.
http://www.w3c.org/TR/html401/.

[Rec04b] W3C Recommendation. Voice eXtensible Markup Languages - Version
2.0, 2004. http://www.w3c.org/TR/2004/REC-voicexml20-20040316/.

[Reh01a] Kasim Rehman. 101 Ubiquitous Computing Applications, 2001.
http://www-lce.eng.cam.ac.uk/ kr241/html/101-ubicomp.html.

[Reh01b] Kasim Rehman. A Graphical User Interface for the Real World, 2001.

[RSF97] Sébastien Romitti, Charles Santoni, and Philipe François. A design
methodology and a prototyping tool to dedicate to adaptive interface gen-
eration. UI4All, 1997. http://ui4all.ics.forth.gr/ui4all97/.

[SC03] Nary Subramanian and Lawrence Chung. Adaptable User Interface Gen-
eration, 2003.

[Sch01] Schomaker. Software structure of UIMS, 2001.
http://hwr.nici.kun.nl/ miami/taxonomy/node83.html.

[SCJS01] Chun S., Chung C., Lee J., and Lee S. Dynamic Update Cube
for Range-Sum Queries. The VLDB Journal, pages 521–530, 2001.
http://citeseer.nj.nec.com/chun01dynamic.html.



BIBLIOGRAPHY 242

[Shn97] Ben Shneiderman. Direct Manipulation for Comprehensible, Predictable
and Controllable User Interfaces. In Intelligent User Interfaces, pages
33–39, 1997. http://citeseer.nj.nec.com/shneiderman97direct.html.

[SIG] ACM SIGCHI. Curricula for human-computer interaction.
http://sigchi.org/cdg/index.html.

[SJ03] Jonh Sharp and Jon Jagger. Microsoft Visual C# .NET Step by Step. Step
by STep. Microsoft, 2003.

[Ste99] Zeil J. Steven. Formal Specification – Invariants.
http://www.cs.odu.edu/z̃eil/cs451/Lectures/02reqts/specprepost/specprepost ht.html,
1999.

[TC04] Pedersen Torben and Jensen S. Christian. Multidimen-
sional Databases, 2004. http://www.cs.auc.dk/ tbp/Teaching/-
DAT5E01/mddatabasesPJ.pdf.

[Tro03] Trolltech. Qt, 2003. http://www.trolltech.com/.

[UI97] UNU-IIST. Formal Software Specification Using RAISE, 1997.
http://www.iist.unu.edu/home/Unuiist/newrh/II/2/1/1/page.html.

[Vad96] Engelson Vadim. An Approach to Automatic Construction of Graphical
User Interfaces for Applications in Scientific Computing. PhD thesis,
Department of Computing and Information Science - Linköoping Uni-
versity, 1996.

[vBMvR] Alan J.J. van Beek, Hans B.F. Mulder, and Victor E. van Rei-
jswoud. Rapid Application Development in Dynamic Organisa-
tions with Business Modelling - A Practitioners Point of View.
http://citeseer.nj.nec.com/361875.html.

[VBS01] Jean Vanderdonckt, Laurent Bouillon, and Nathalie Souchon. Flex-
ible Reverse Engineering of Web Pages with VAQUISTA. In
Working Conference on Reverse Engineering, pages 241–248, 2001.
http://citeseer.nj.nec.com/vanderdonckt01flexible.html.

[Vı́c96] Vega V. Vı́ctor. PAC - Presentation-Abstraction-Control, 1996.
http://www.cs.lth.se/Education/Courses/96.Dokt.Patterns/L6.1.PAC.ps.

[Vög03] Gabriel Vögler. UIML - User Interface Markup Language, 2003.

[Vic01] Eijkhout Victor. Tex by Topic, a Technician’s Reference, 2001.

[VS03] VBscript and Jscript Microsoft Windows Scripting. Windows Scripting,
2003. http://www.microsoft.com/scripting/.

[W3C96] W3C. Toward a Formalism for Communication on the Web, 1996.
http://www.w3c.org/Collaboration/Knowledge#feb94.

[W3C03] W3C. Hypertext Markup Language, 2003.
http://www.w3c.org/Markup/.



Appendix A

VDM-SL Notation

This appendix describes the main particularities of VDM-SL, namely data types and
their constructors and operators [And]. This synopsis behaves as a VDM-SL language
guide.

Type Definitions

An example of a simple data type definition is:

Amount = nat

This defines a data type with name “Amount” and states that the values which belong
to this type are natural numbers (nat is one of the basic types described below).

Invariants

In VDM-SL is possible to attach invariants to a type definition.

Type name == type expression
inv pattern == logical expression

The pattern can be a single identifier representing a typical element of the type or a
mk expression if the type is a record.

Basic data types and type constructors

Basic types:

243



APPENDIX A. VDM-SL NOTATION 244

Type Values
nat Natural numbers
nat1 Natural numbers excl. 0
int Integers
real Real numbers
bool Booleans
char Characters
token Tokens

Quote types are written as identifiers surrounded by angle brackets e.g. <Red>.

Type constructors:

Constructor Description
set of Finite sets
seq of Finite sequences

map to Finite mappings
| Type union

[ ] Optional type
:: notation Record types

Data type operators

Boolean type

Operator Name Type
not b Negation bool → bool

a and b Conjunction bool ∗ bool → bool

a or b Disjunction bool ∗ bool → bool

a ⇒ b Implication bool ∗ bool → bool

a ⇔ b Biimplication bool ∗ bool → bool

Numeric types

Operator Name Type
-x Unary minus real → real

abs x Absolute value real → real

x + y Sum real * real → real

x - y Difference real ∗ real → real

x * y Product real ∗ real → real

x / y Division real ∗ real → real

x**y Power real ∗ real → real

x < y Less than real ∗ real → real

x > y Greater than real ∗ real → real

x ≤ y Less or equal real ∗ real → real

x ≥ y Greater or equal real ∗ real → real



APPENDIX A. VDM-SL NOTATION 245

Character, Quote and Token types

Characters, quotes and token values can only be compared to each other by equality
and inequality.

Set types

Set enumeration {e1, e2, . . . , , en} constructs a set of the enumerated elements. The
empty set is represented as {}.

Set comprehension {e | bd1, bd2, . . . , bdm & P} constructs a set by evaluation the
expression e on all the bindings for which the predicate P evaluates to true. The
expression e uses the variables defined in the bindings.

Set range {e1, . . . , e2} where e1 and e2 are numeric expressions. Denotes the set of
integers from e1 to e2 inclusive.

Operator Name Type
e in set s1 Membership set of A→ bool

e not in set s1 Not membership set of A→ bool

s1 union s2 Union set of A ∗ set of A→ set of A

s1 inter s2 Intersection set of A ∗ set of A→ set of A

s1 \ s2 Difference set of A ∗ set of A→ set of A

s1 subset s2 Subset set of A ∗ set of A→ bool

card s1 Cardinality set of A→ nat

dunion ss Distributed union set of (set of A) → set of A

dinter ss Distributed intersection set of (set of A) → set of A

Sequence types

Sequence enumeration [e1, e2, ..., en ] constructs a sequence of the enumerated ele-
ments. The empty sequence is [].

Sequence comprehension : [e | id in set S & P ] constructs a sequence by evalu-
ating the expression e on all the bindings for which the predicate P evaluates to
true. The expression e will use the identifier id. S is a set of numbers and id will
be matched to the numbers in the normal order (the smallest number first).

Subsequence A subsequence of a sequence l is a sequence formed from consecutive
elements of l; from n1 up to and including n2. It has the form: l (nl , . . . ,n2)
where n1 and n2 are positive integer expressions (less than the length of l).



APPENDIX A. VDM-SL NOTATION 246

Operator Name Type
hd l Head seq of A→ A

tl l Tail seq of A→ seq of A

len l Length seq of A→ nat

elems l Elements seq of A→ set of A

inds l Indices seq of A→ seq of nat1
l1 ˆ l2 Concatenation seq of A ∗ seq of A→ seq of A

conc l1 Distributed concatenation seq of (seq of A) → seq of A

l(i) Sequence index seq of A ∗ nat1 → A

Mapping types

Mapping enumeration {a1 | - > b1, a2 | - > b2, . . . , an | - > bn} constructs
a mapping of the enumerated maplets. The empty mapping will be written as
{| - >}.

Mapping comprehension : Mapping comprehension: {ed | - > er | bd1, . . . , bdn &P}
constructs a mapping by evaluating the expressions ed and er on all the possible
bindings for which the predicate P evaluates to true. bd1, . . . , bdn are bindings
of free identifiers from the expressions ed and er to sets or types.

Operator Name Type
dom m Domain map A to B → set of A

rngm Range map A to B → set of B

m1 munion m2 Map union map A to B ∗map A to B → map A to B

ml ++ m2 Override map A to B ∗map A to B → map A to B

s <: m Domain restrict to set of A ∗map A to B → map A to B

s <-: m Domain restrict by set of A ∗map A to B → map A to B

m :> s Range restrict to set of B ∗map A to B → map A to B

m :-> s Range restrict by set of B ∗map A to B → map A to B

m(d) Mapping apply map A to B ∗A→ B

Record types

Record values are constructed using a record constructor written asmkRecId(rl , r2, . . . , rn)where
the different rs are arbitrary values and RecId is the name of the record type. Record
types are defined as:

Type :: component name: type
component name: type
...
component name: type

For example, for a type defined:

Date :: day : Day
month : Month
year : Year



APPENDIX A. VDM-SL NOTATION 247

The record constructor for Date is mk Date( , , ). The field selectors are .day ,
.month and .year

Union and Optional Types

Union types are written as:

MasterA = A | B | ...

An optional type is written as:

[T]

This denotes a union between the elements from the type T and the special value nil.

Expressions

A let expression has the form:

let p1 = e1,...,pn = en in e

where p1, . . . , pn are variables, e1, . . . , en are expressions and e is an expression
involving p1, . . . , pn .
An if expression has the form:

if e1 then e2 else e3

where e1 is a Boolean expression, while e2 and e3 are expressions of any type.

Quantified Expressions have the form:

Universal: forall bd1, bd2,...,bdn & e
Existential: exists bd1, bd2,...,bdn & e

where each bdi is a binding (i.e. either a set binding of the form pi in set s or a
type binding of the form pi: type), and e is a Boolean expression involving the bound
variables.

Function Definition

An explicit function definition has the form:

f: A * B * ... * Z -> R
f(a,b,...,z) == expr
pre preexpr(a,b,...,z)

An implicit function definition has the form:

f(a:A,b:B,...,z:Z) res:R
pre preexpr(a,b,...,z)
post postexpr(a,b,...,z,res)



Appendix B

W3C XML

W3C XML - Extended Markup Language

If we accept that java offers code portability, so XML offers data portability.

Extended Markup Language (XML) is a W3C Recommendation [Rec03c] which
deserves attention for almost every software programmer. The markup language most
people are familiar with today is, of course, HTML, that we use to create standard Web
pages. So the concept “markup” is not so recent. However, XML can be seen as the
new way to represent information in a text-based document.

XML is extensible (once everyone can create its own markup set of tags) and it is
a meta-language (language used to create other languages).

The large spread of XML in almost all areas of science (and not only in com-
puter science), demanded the creation of many and different technical documentation.
Almost everything about the essence of XML is already written.

In this work we are going to explore the main properties of XML, describing its
main supporting technologies. We will start by analyzing the sample XML BookStore
on Listing B.1.

Listing B.1: XML document

1 <?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF-8”?>

2 <?xml - s t y l e s h e e t h r e f =” book . x s l ” type =” t e x t / x s l ”/>
3 <! - - a xml s i m p l e example -->
4 <BookStore>

5 <Book i d =”Mc98”>
6 <T i t l e >My L i f e and Times </ T i t l e >

7 <Author>Pau l McCartney </ Author>
8 <Date >1998</Date>

9 <ISBN>1 -56592 -235 -2 </ISBN>

10 <P u b l i s h e r >McMil l in P u b l i s h i n g </ P u b l i s h e r >

11 </Book>
12 </ BookStore>

In this XML little example:

• line 1 represents the Prolog of any XML document. On it must be specified
XML version and character set to be used (UTF-8 is the default set);

248



APPENDIX B. W3C XML 249

• line 2 is a XML Processing Instruction (in this case referring a stylesheet);

• line 3 is a commentary (as in HTML, with <!–...–> syntax);

• line 4 has the first element (<BookStore>). Root element is its usual name.

• line 5 has a Book element, child of BookStore. It has also the attribute id with
“Mc98” value. Note that every XML element must be “closed”, i.e., there should
be an end element. Book end element is on line 11 (</Book>).

• line 6-line 10 have the Book child elements (<Title>, <Author>, <Date>,
<ISBN> and <Publisher>).

XML is not...

• Another programming language like C++, Java, etc. - XML is a meta-
language. Syntax/rules defined by XML can be used to create other markup
languages.

• The new support only for Internet or Web applications - XML is an impor-
tant choice to transfer data over Internet, however, it is being used for a much
wider variety of applications.

• Something to replace or in competition with HTML - When you first look at
XML, it might look very similar to HTML. Both are markup languages and have
hierarchical structures containing elements (start-tag and end-tag) and attributes.
However, XML is there to deal with data while HTML is about presentation.

• Some proprietary technology - As referred before, XML is extensible and it is
an open standard created by W3C [Con03b]. So everyone can support XML and
provide tools or technologies to work with it.

Unlike HTML

• XML is all about data; it does not provide any display/presentation details.

• XML does not have a fixed set of tags

• XML is case-sensitive

• XML has strict rules

– Each start tag should have an end tag

– Attribute values must be in single or double quotes

– Tags cannot overlap

– There is only one root element

– No element may have two attributes with the same name



APPENDIX B. W3C XML 250

Valid and well-formed XML documents

All valid documents are well-formed. The inverse is not true.

As it happens with other languages, there are syntax rules which determine the
correctness of XML. If these rules are respected, the document is well-formed. To be a
valid document, besides being well-formed it must be according to the rules specified
DTD - Document Type Definition [Rec98b] or XML Schema [Rec01c] documents.

Figure B.1 depicts the essential syntax rules for any XML well-formed document.

Figure B.1: Essential XML rules

A DTD has the responsibility of defining all possible element names (tag names),
their occurrence and sequence, their attributes and respective types in a XML docu-
ment. Unlike XML Schemas, a DTD does not offer semantic information.

Listing B.2 lists a possible DTD for our previous XML BookStore example.

Listing B.2: A sample DTD

1 <!ELEMENT BookStore ( Book)+>

2 <!ELEMENT Book ( T i t l e , Author , Date , ISBN , P u b l i s h e r )>
3 <!ELEMENT T i t l e (#PCDATA)>
4 <!ELEMENT Author (#PCDATA)>
5 <!ELEMENT Date (#PCDATA)>
6 <!ELEMENT ISBN (#PCDATA)>
7 <!ELEMENT P u b l i s h e r (#PCDATA)>

A XML Schema - often abbreviated by XSchema - provides a means to define the
logical structure, content and semantics of XML documents [Con03b, Rec01c]. Unlike
DTD, a XSchema does not offer grammatical information.

Listing B.3 shows a possible XSchema which validates our XML BookStore ex-
ample.

Listing B.3: A sample schema written in W3C XML Schema syntax

1 <?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF-8”?>

2 <xsd : schema xmlns : xsd =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema”
3 t a r g e t N a m e s p a c e =” h t t p : / / www. books . o rg ”
4 xmlns =” h t t p : / / www. books . o rg ”
5 e l e m e n t F o r m D e f a u l t =” q u a l i f i e d ”>
6 <xsd : e l e m e n t name=” BookStore”>
7 <xsd : complexType>

8 <xsd : sequence>

9 <xsd : e l e m e n t r e f =”Book” minOccurs =”1” maxOccurs =” unbounded ”/>
10 </ xsd : sequence>

11 </ xsd : complexType>



APPENDIX B. W3C XML 251

12 </ xsd : e lement>
13 <xsd : e l e m e n t name=”Book”>
14 <xsd : complexType>

15 <xsd : sequence>

16 <xsd : e l e m e n t r e f =” T i t l e ” minOccurs =”1” maxOccurs =”1”/>
17 <xsd : e l e m e n t r e f =” Author ” minOccurs =”1” maxOccurs =”1”/>
18 <xsd : e l e m e n t r e f =” Date ” minOccurs =”1” maxOccurs =”1”/>
19 <xsd : e l e m e n t r e f =”ISBN” minOccurs =”1” maxOccurs =”1”/>
20 <xsd : e l e m e n t r e f =” P u b l i s h e r ” minOccurs =”1” maxOccurs =”1”/>
21 </ xsd : sequence>

22 </ xsd : complexType>

23 </ xsd : e lement>
24 <xsd : e l e m e n t name=” T i t l e ” type =” xsd : s t r i n g ”/>
25 <xsd : e l e m e n t name=” Author ” type =” xsd : s t r i n g ”/>
26 <xsd : e l e m e n t name=” Date ” type =” xsd : d a t e ”/>
27 <xsd : e l e m e n t name=”ISBN” type =” xsd : s t r i n g ”/>
28 <xsd : e l e m e n t name=” P u b l i s h e r ” type =” xsd : s t r i n g ”/>
29 </ xsd : schema>

Deciding between DTD and XSchema depends on the problem type and dimen-
sion. If it is only necessary to ensure syntax, DTD should enough. Otherwise, if it is
necessary to ensure data types (digits, characters, etc.) and their occurrences, the op-
tion must be XSchema. The programmer knowledge and experience can also influence
the choice.

What is so important about XML?

There is a lot to say about XML which justifies the large appeal of XML. Next para-
graphs describe the main XML properties which support this success [PSM+03]:

• Everything is text - All XML code is text which makes it highly portable. This
is the reason XML is being heavily used for cross-platform data integration.
If meaningful tag/attribute names are used to describe the data, the document
becomes self-describing.

• It is free and portable - Many developers have started using XML in their
application design/architecture because of the fact that XML is an open standard
with excellent tools and vendor support; no one is the proprietary of XML. So it
is free.

• Just for Content - XML appeared to describe or represent data (the content).
There are other different available technologies to transform it into different
presentation formats like html, pdf, etc. Next “Working with XML” topic will
explore more clearly this process.

• Easy to send - Being easily to transform any XML document into any other
format, it is easy to transfer information between different platforms.

• Easy to parse and process - Having a well defined structure and a textual prop-
erty, any XML can be easily parsed and processed (like searching). There are a
lot of parsers (in Java, C#, Perl, etc.) and other processing technologies avail-
able.



APPENDIX B. W3C XML 252

• Easy to edit - We do not need any special IDE to write or read XML. Because
it is text, just notepad would do it.

• Hierarchical Structure - XML documents are hierarchical in nature with one
top-level root element, and this way it is an excellent choice for modelling hier-
archical data in an easy-to-read way.

• Enables and supports other technologies - XML is one of the core building
blocks in the emerging Web services technology [Rec03d], for systems integra-
tion purpose. We can see also XML participating in multiple kinds of recent
applications release, like office, graphic and multimedia applications.

If network communications bandwidth is limited, deciding to transfer XML docu-
ments could not be the best option. A XML document has a lot of redundant informa-
tion which take a large amount of space. Considering this, binary code should be an
important option!

Working with XML

The XML working process is clear and easy to assimilate. The source data is de-
scribed in XML and then different technologies (several of them based also in XML)
transform it in different formats. There must be present reader, parser, and interpreter
applications. Figure B.2 depicts the main phases and associated technologies/tools on
these processes.

Figure B.2: XML working process

As we can see, XML working process is well structured and defined along three
main phases: edition, validation, transformation and presentation.

Nevertheless an important question must be analyzed. As we have seen before,
being extensible, XML allows everyone to define his own tags. Hence there is a large
probability to use the same tag names to define different things, or the programmer
himself when he repeats tag names when handling a large number of code lines, or
even between different programs. This is a situation of name conflicts.



APPENDIX B. W3C XML 253

For instance, <name>Luis Camoes</name> and <name>Os Lusiadas</name>
could be correct but could also represent different things. The former name could mean
a person name; the later name could mean a book name or even its title.

There are two ways to resolve name conflicts: using attributes (like scope rules)
and XML NameSpaces [Con00]. The former means the same we have said before:
the attribute name scope is simply the element that it describes, ie, two attributes in
the same element may not have the same name. The latter, Namespaces, represent the
vocabulary used on tags set. If we intent to avoid the conflict, instead of simply using
an element name like <name>, we use the following form: <prefix:name> The name
part of the prefix:name construct is called a local name. The combination of prefix
and name must be guaranteed to be unique. The used namespace is defined on XML
document header using the xmlns tag. In our XML example could be:

<BookStore xmlns:bo="http=//www.mybook.pt/xml/book">
<bo:Book>

<bo:Title>My Life and Times</bo:Title>
...

</bo:Book>
</BookStore>

Continuing to refer XML working process, we may say that, any text editor can be
used in what concerns to its edition. Despite this there are more efficient tools, such as
XML Spy1 or Butterfly XML2.

For validation and because of their complexity, DTD [Rec98b] or XSchema [Rec01c]
must be created from wizard tools. In this way, they will be automatically created from
XML source. Both previous noted applications are an example of these tools. Once
created, DTD or XSchema will ensure the XML consistent format.

Process, interpret, search, “navigate” or even present XML documents demands a
lot of specific technologies. We will present some of the most important:

• Document Object Model - DOM [Rec03b]: interface which describes methods
to access, manipulate and manage the XML document. Using DOM one can
build, navigate the structure, add, modify or delete elements and their content.

• Simple API for XML Parsing - SAX [ml98]: API to be implemented by event-
based XML parsers, ie, as the parser moves through the document, events are
reported via callbacks to an event handler.

• XML Pointer Language - XPointer [Rec02]: language to be used as the basis
for a fragment identifier for any URI reference that locates a resource.

• Extensible Stylesheet Language Family - XSL [Rec01a] : family of recom-
mendations for defining XML document transformation and presentation. De-
scribes formatting and flow semantics for paginated presentation that can be
expressed using an XML vocabulary of elements and attributes. Composed by
XSLT, XSL-FO and XPath.

1http://www.altova.com
2http://www.butterflyxml.org/



APPENDIX B. W3C XML 254

• XML Path Language - XPath [Rec99a]: language for addressing parts of an
XML document, designed to be used by both XSLT and XPointer.

• XSL Transformations - XSLT [Rec99b]: language for transforming XML doc-
uments into other XML documents.

• XML Formatting Objects - XSLFO [Rec01a]: XML vocabulary for specify-
ing formatting semantics (like PDF, for instance).

In the following pages we are going to explore, in further detail, XSLT, which is
one of the most important and used XML technology.

XSLT

XSL is both a transformation and a formatting language. The XSLT transformation
part lets you scan through a document structure and rearrange its content any way you
like. You can write out the content using a different set of XML tags, and generate text
as needed. For example, you can scan through a document to locate all headings and
then insert a generated table of contents at the beginning of the document, at the same
time writing out the content marked up as HTML. XSL is also a rich formatting lan-
guage, letting you apply typesetting controls to all components of your output. With a
good formatting backend, it is capable of producing high quality printed pages[NB02].

An XSL stylesheet is written using XML syntax, and is itself a well-formed XML
document. That makes the basic syntax familiar, and enables an XML processor to
check for basic syntax errors. The stylesheet instructions use special element names,
which typically begin with xsl: to distinguish them from any XML tags you want to
appear in the output. The XSL namespace is identified at the top of the stylesheet file.
As with other XML, any XSL elements that are not empty will require a closing tag.
And some XSL elements have specific attributes that control their behavior. It helps to
keep a good XSL reference book handy.

Here is an example of a simple XSL stylesheet applied to a simple XML file to
generate HTML output.

Listing B.4: Another XML example

1 <?xml v e r s i o n =”1.0”? >

2 <document>
3 < t i t l e >Using a mouse</ t i t l e >

4 <para>

5 I t ’ s ea sy t o use a mouse . J u s t r o l l i t a round and c l i c k t h e b u t t o n s .
6 </ pa ra>

7 </document>

Listing B.5: XSL example

1 <?xml v e r s i o n = ’ 1 . 0 ’?>
2 <x s l : s t y l e s h e e t
3 xmlns : x s l =” h t t p : / / www. w3 . org / 1 9 9 9 / XSL / Trans fo rm ” v e r s i o n = ’ 1 . 0 ’>
4 <x s l : o u t p u t method =” html ”/>

6 <x s l : t e m p l a t e match =” document”>
7 <HTML><HEAD><TITLE>

8 <x s l : va lue - of s e l e c t = ” . / t i t l e ”/>



APPENDIX B. W3C XML 255

9 </TITLE>

10 </HEAD>

11 <BODY>
12 <x s l : apply - t e m p l a t e s />
13 </BODY>
14 </HTML>
15 </ x s l : t e m p l a t e >

17 <x s l : t e m p l a t e match =” t i t l e ”>
18 <H1><x s l : apply - t e m p l a t e s /></H1>
19 </ x s l : t e m p l a t e >

21 <x s l : t e m p l a t e match =” p a r a”>
22 <P><x s l : apply - t e m p l a t e s /></P>
23 </ x s l : t e m p l a t e >

25 </ x s l : s t y l e s h e e t >

Listing B.6: HTML generated from XSL

1 <HTML>
2 <HEAD>

3 <TITLE>Using a mouse</TITLE>

4 </HEAD>

5 <BODY>
6 <H1>Using a mouse</H1>
7 <P>I t ’ s ea sy t o use a mouse . J u s t r o l l i t a round and c l i c k t h e b u t t o n s . < /P>
8 </BODY>
9 </HTML>

XML Applications

Below is referred a list about the main and more recent XML applications3.

• Data description - Perhaps the most common use of XML on transferring data
between systems, over the Internet.

• Application Integration (EAI, ISI, legacy applications, etc.)

• CMS/LMS - Content Management

• Messaging and remote processing (SOAP and Web Services)

• File format

• Miscellaneous:

– Configuration Files

– Code documentation

– RSS/RDF

– Graphics (SVG)

– Multimodal Applications (WML, VoiceML, etc.)

– XForms and other data collection methods.
3URL http://xml.coverpages.org/gen-apps.html describe many others XML Applications in cross-

domain and multi-disciplinary enterprises



APPENDIX B. W3C XML 256

Important XML links

• XML Portals

– http://xml.com/ - helps to learn how this new Internet technology can
solve real-world problems in information management and electronic com-
merce.

– http://xmlhack.com/ - a news site for XML developers

• XML Tutorials

– http://xslt.com/resources tutorials.htm - A very good listing of XML
and XSL(T) tutorials.

• XML Resource Listings

– http://www.xmlbooks.com/ - Charles F. Goldfarb’s “All the XML Books
in Print”

– http://www.dtd.com/ - Lists over 180 current XML-based language stan-
dards, pseudo-standards and developing standards in progress.

– http://www.xmlsoftware.com/ - XMLSOFTWARE: The XML Software
Site

– http://www.dpawson.co.uk/xsl/xslfaq.html - XSL Frequently Asked Ques-
tions (FAQ)

• XML Tools and Software

– http://4suite.org/ - Python

– http://www.altova.com/ - XML Spy - One of the best XML IDE

– http://www.butterflyxml.org/ Butterfly XML - One of the best Open source
XML IDE.

• XSLT

– http://www.w3c.org/Style/XSL/ - The world wide web consortium on
XSL.

– http://www.xslt.com/ - portal for things related xslt.

– http://xml.apache.org/ - Xalan, an open source, C++ and Java, implemen-
tation of xslt.



Appendix C

UIML DTD

Listing C.1: UIML DTD 3.0

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”ISO -8859 -1 ” ?>

<! - -
User I n t e r f a c e Markup Language ( UIML )
=====================================

Deve loped by :

Harmonia , I n c .

Usage :

<? xml v e r s i o n =” 1 . 0 ” ?>
<!DOCTYPE uiml PUBLIC ” - / / Harmonia / / DTD UIML 3 . 0 a D r a f t / / EN”
” h t t p : / / u iml . o rg / d t d s / UIML3 0a . d t d ”>
NOTE: T h i s URL has n o t y e t been a c t i v a t e d .

<uiml>
<head> . . . < / head>
<t e m p l a t e> . . . < / t e m p l a t e>
<p e e r s> . . . < / p e e r s>
< i n t e r f a c e> . . . < / i n t e r f a c e>

< / u iml>

D e s c r i p t i o n :

T h i s DTD c o r r e s p o n d s t o t h e UIML 3 . 0 a s p e c i f i c a t i o n .

Change H i s t o r y :

06 Feb 2002 - J Helms
- I n i t i a l D r a f t and added <r e p e a t> and < i t e r a t o r>

02 J u l y 2002 - K R o d r i g u e z
- C o r r e c t s y n t a x e r r o r s i n param , r e p e a t , and i t e r a t o r

- ->

<! - - ==================== C o n t e n t Models ======================= - ->

<! - -
’ uiml ’ i s t h e r o o t e l e m e n t o f a UIML document .

- ->

<!ELEMENT uiml ( head ? , ( t e m p l a t e | i n t e r f a c e | p e e r s )∗ ) >

257



APPENDIX C. UIML DTD 258

<! - -
The ’ head ’ e l e m e n t i s meant t o c o n t a i n me tada ta abou t t h e UIML
document . You can s p e c i f y me tada ta u s i n g t h e meta tag ,
t h i s i s s i m i l a r t o t h e head / meta f rom HTML.

- ->

<!ELEMENT head ( meta )∗>
<!ELEMENT meta EMPTY>

<! ATTLIST meta
name NMTOKEN #REQUIRED
c o n t e n t CDATA #REQUIRED>

<! - -
The ’ peers ’ e l e m e n t c o n t a i n s i n f o r m a t i o n t h a t d e f i n e s
how a UIML i n t e r f a c e component i s mapped t o t h e t a r g e t p l a t f o r m ’ s
r e n d e r i n g t e c h n o l o g y and t o t h e backend l o g i c .

- ->

<!ELEMENT p e e r s ( p r e s e n t a t i o n | l o g i c )∗>
<! ATTLIST p e e r s

i d NMTOKEN #IMPLIED
s o u r c e CDATA #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”>

<! - -
The ’ i n t e r f a c e ’ e l e m e n t d e s c r i b e s a u s e r i n t e r f a c e i n t e r m s o f
p r e s e n t a t i o n w i d g e t s , component s t r u c t u r e and b e h a v i o r s p e c i f i c a t i o n s .

- ->

<!ELEMENT i n t e r f a c e ( s t r u c t u r e | s t y l e | c o n t e n t | b e h a v i o r )∗>
<! ATTLIST i n t e r f a c e

i d NMTOKEN #IMPLIED
s o u r c e CDATA #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”>

<! - -
The ’ t e m p l a t e ’ e l e m e n t e n a b l e s r e u s e o f UIML e l e m e n t s .
When an e l e m e n t appears i n s i d e a t e m p l a t e e l e m e n t i t can
s o u r c e d by a n o t h e r e l e m e n t w i t h t h e same t a g .

- ->

<!ELEMENT t e m p l a t e ( b e h a v i o r | c o n s t a n t | c o n t e n t | d - c l a s s | d - component | i n t e r f a c e
| l o g i c | p a r t | p e e r s | p r e s e n t a t i o n | p r o p e r t y | r e s t r u c t u r e | r u l e
| s c r i p t | s t r u c t u r e | s t y l e )>

<! ATTLIST t e m p l a t e
i d NMTOKEN #IMPLIED>

<! - - Peer r e l a t e d e l e m e n t s - ->

<! - -
The ’ p r e s e n t a t i o n ’ e l e m e n t s p e c i f i e s t h e mapping be tween
a b s t r a c t i n t e r f a c e p a r t s and p l a t f o r m d e p e n d e n t w i d g e t s .

- ->

<!ELEMENT p r e s e n t a t i o n ( d - c l a s s ∗ )>
<! ATTLIST p r e s e n t a t i o n

i d NMTOKEN #IMPLIED
s o u r c e CDATA #IMPLIED
base CDATA #REQUIRED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”>

<! - -



APPENDIX C. UIML DTD 259

The ’ l o g i c ’ e l e m e n t s p e c i f i e s t h e c o n n e c t i o n be tween t h e i n t e r f a c e
and t h e backend a p p l i c a t i o n , i n c l u d i n g s u p p o r t f o r s c r i p t i n g .

- ->

<!ELEMENT l o g i c ( d - component ∗ )>
<! ATTLIST l o g i c

i d NMTOKEN #IMPLIED
s o u r c e CDATA #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”>

<! - -
The ’d - component ’ e l e m e n t maps t h e name used i n a <c a l l> e l e m e n t t o
a p p l i c a t i o n l o g i c e x t e r n a l t o t h e UIML document ( e . g . , a c l a s s i n an
o b j e c t o r i e n t e d language or a f u n c t i o n i n a s c r i p t i n g langauge ) .

- ->

<!ELEMENT d - component ( d - method )∗>
<! ATTLIST d - component

i d NMTOKEN #REQUIRED
s o u r c e CDATA #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”
maps - t o CDATA #IMPLIED
l o c a t i o n CDATA #IMPLIED>

<! - -
Maps c l a s s names t h a t can be used f o r p a r t s and e v e n t s , as
w e l l as p r o p e r t y and e v e n t da ta names , t o UI t o o l k i t .

- ->

<!ELEMENT d - c l a s s ( d - method∗ , d - p r o p e r t y ∗ , e v e n t ∗ , l i s t e n e r ∗ )>
<! ATTLIST d - c l a s s

i d NMTOKEN #REQUIRED
s o u r c e CDATA #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”
used - in - t a g ( e v e n t | l i s t e n e r | p a r t ) #REQUIRED
maps - type ( a t t r i b u t e | t a g | c l a s s ) #REQUIRED
maps - t o CDATA #REQUIRED>

<! - -
Maps a p r o p e r t y name t o methods i n UI t o o l k i t t h a t g e t and
s e t p r o p e r t y s va lue .

- ->

<!ELEMENT d - p r o p e r t y ( d - method∗ , d - param ∗ )>
<! ATTLIST d - p r o p e r t y

i d NMTOKEN #REQUIRED
maps - type ( a t t r i b u t e | getMethod | se tMethod | method | c o n s t r u c t o r ) #REQUIRED
maps - t o CDATA #REQUIRED
r e t u r n - type CDATA #IMPLIED>

<! - -
Maps a method t o a c a l l a b l e method or f u n c t i o n i n t h e API o f
t h e a p p l i c a t i o n l o g i c .

- ->

<!ELEMENT d - method ( d - param ∗ , s c r i p t ? )>
<! ATTLIST d - method

i d NMTOKEN #REQUIRED
s o u r c e CDATA #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”
maps - t o CDATA #REQUIRED
r e t u r n - type CDATA #IMPLIED>



APPENDIX C. UIML DTD 260

<! - -
D e f i n e s a s i n g l e f o r m a l parame te r t o a <d - method> .

- ->

<!ELEMENT d - param (#PCDATA)>
<! ATTLIST d - param

i d NMTOKEN #IMPLIED
type CDATA #IMPLIED>

<! - -
The ’ s c r i p t ’ e l e m e n t c o n t a i n s e x e c u t a b l e s c r i p t code . The type
s p e c i f i e s t h e s c r i p t i n g language ( s e e HTML4 . 0 ) .

- ->

<!ELEMENT s c r i p t (#PCDATA)>
<! ATTLIST s c r i p t

i d NMTOKEN #IMPLIED
type NMTOKEN #IMPLIED
s o u r c e CDATA #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”>

<! - - I n t e r f a c e r e l a t e d e l e m e n t s - ->

<! - -
The ’ s t r u c t u r e ’ e l e m e n t d e s c r i b e s t h e i n i t i a l o r g a n i z a t i o n o f t h e
p a r t s t h a t c o m p r i s e t h e u s e r i n t e r f a c e .

- ->

<!ELEMENT s t r u c t u r e ( p a r t ∗ )>
<! ATTLIST s t r u c t u r e

i d NMTOKEN #IMPLIED
s o u r c e CDATA #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”>

<! - -
S p e c i f i e s a s i n g l e a b s t r a c t p a r t o f t h e u s e r i n t e r f a c e .

- ->

<!ELEMENT p a r t ( s t y l e ? , c o n t e n t ? , b e h a v i o r ? , p a r t ∗ , r e p e a t ∗ )>
<! ATTLIST p a r t

i d NMTOKEN #IMPLIED
c l a s s NMTOKEN #IMPLIED
s o u r c e CDATA #IMPLIED
where ( f i r s t | l a s t | b e f o r e | a f t e r ) ” l a s t ”
where - p a r t NMTOKEN #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”>

<! - -
A ’ r e p e a t ’ e l e m e n t e n c a p s u l a t e s a sub - t r e e o f t h e o v e r a l l i n t e r f a c e
v i r t u a l t r e e t o be r e p e a t e d 0 or more t i m e s . Each r e p e a t MUST
have one ’ i t e r a t o r ’ c h i l d .

- ->

<!ELEMENT r e p e a t ( i t e r a t o r , p a r t ∗ )>

<! - -
An ’ i t e r a t o r ’ d e f i n e s how many t i m e s a sub - t r e e s h o u l d be r e p e a t e d
i n an i n t e r f a c e and s e r v e s as a i n d i c a t o r o f t h e c u r r e n t i t e r a t i o n .

- ->



APPENDIX C. UIML DTD 261

<!ELEMENT i t e r a t o r (#PCDATA | c o n s t a n t | p r o p e r t y | c a l l )∗>
<! ATTLIST i t e r a t o r

i d NMTOKEN #REQUIRED>

<! - -
A ’ s t y l e ’ e l e m e n t i s composed o f one or more ’ p r o p e r t y ’ e l e m e n t s ,
each o f which s p e c i f i e s how a p a r t i c u l a r a s p e c t o f an i n t e r f a c e
component ’ s p r e s e n t a t i o n i s t o be p r e s e n t e d .

- ->

<!ELEMENT s t y l e ( p r o p e r t y ∗ )>
<! ATTLIST s t y l e

i d NMTOKEN #IMPLIED
s o u r c e CDATA #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”>

<! - -
A ’ p r o p e r t y ’ e l e m e n t i s t y p i c a l l y used t o s e t a s p e c i f i e d
p r o p e r t y f o r some i n t e r f a c e component ( or a l t e r n a t i v e l y ,
a c l a s s o f i n t e r f a c e components ) , u s i n g t h e e l emen t ’ s
c h a r a c t e r da ta c o n t e n t as t h e va lue . I f t h e ’ o p e r a t i o n ’
a t t r i b u t e i s g i v e n as ” g e t ” , t h e e l e m e n t i s e q u i v a l e n t t o
a p r o p e r t y - g e t o p e r a t i o n , t h e va lue o f which may be ” r e t u r n e d ”
as t h e c o n t e n t f o r an e n c l o s i n g ’ p r o p e r t y ’ e l e m e n t .

- ->

<!ELEMENT p r o p e r t y (#PCDATA | c o n s t a n t | p r o p e r t y | r e f e r e n c e | c a l l | op | e v e n t | i t e r a t o r )∗>
<! ATTLIST p r o p e r t y

name NMTOKEN #IMPLIED
s o u r c e CDATA #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”
p a r t -name NMTOKEN #IMPLIED
p a r t - c l a s s NMTOKEN #IMPLIED
even t -name NMTOKEN #IMPLIED
even t - c l a s s NMTOKEN #IMPLIED
c a l l -name NMTOKEN #IMPLIED
c a l l - c l a s s NMTOKEN #IMPLIED>

<! - -
A ’ r e f e r e n c e ’ may be t h o u g h t o f as a p r o p e r t y - g e t o p e r a t i o n ,
where t h e ” p r o p e r t y ” t o be read i s a ’ c o n s t a n t ’ e l e m e n t d e f i n e d
i n t h e UIML document ’ s ’ c o n t e n t ’ s e c t i o n .

- ->

<!ELEMENT r e f e r e n c e EMPTY>

<! ATTLIST r e f e r e n c e
c o n s t a n t -name NMTOKEN #IMPLIED
u r l -name NMTOKEN #IMPLIED>

<! - -
The ’ c o n t e n t ’ e l e m e n t i s composed o f one or more ’ c o n s t a n t ’
e l e m e n t s , each o f which s p e c i f i e s some f i x e d va lue .

- ->

<!ELEMENT c o n t e n t ( c o n s t a n t ∗ )>
<! ATTLIST c o n t e n t

i d NMTOKEN #IMPLIED
s o u r c e CDATA #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”>



APPENDIX C. UIML DTD 262

<! - -
’ c o n s t a n t ’ e l e m e n t s may be h i e r a r c h i c a l l y s t r u c t u r e d .

- ->

<!ELEMENT c o n s t a n t ( c o n s t a n t ∗ )>
<! ATTLIST c o n s t a n t

i d NMTOKEN #IMPLIED
s o u r c e CDATA #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”
model CDATA #IMPLIED
va lue CDATA #IMPLIED>

<! - -
The ’ behav io r ’ e l e m e n t g i v e s one or more ” r u l e ” s t h a t
s p e c i f i e s what ’ ac t ion ’ i s t o be t a k e n whenever an a s s o c i a t e d
’ c o n d i t i o n ’ becomes TRUE .

- ->

<!ELEMENT b e h a v i o r ( r u l e ∗ )>
<! ATTLIST b e h a v i o r

i d NMTOKEN #IMPLIED
s o u r c e CDATA #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”>

<!ELEMENT r u l e ( c o n d i t i o n , a c t i o n ) ?>
<! ATTLIST r u l e

i d NMTOKEN #IMPLIED
s o u r c e CDATA #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e ) ” r e p l a c e ”
e x p o r t ( h i d d e n | o p t i o n a l | r e q u i r e d ) ” o p t i o n a l ”>

<! - -
At t h e moment , ” r u l e ” s may be a s s o c i a t e d w i t h two t y p e s o f
c o n d i t i o n s : ( 1 ) whenever some e x p r e s s i o n i s e q u a l t o some o t h e r
e x p r e s s i o n ; and ( 2 ) whenever some e v e n t i s t r i g g e r e d and c a u g h t .

- ->

<!ELEMENT c o n d i t i o n ( e q u a l | e v e n t | op )>

<!ELEMENT e q u a l ( even t , ( c o n s t a n t | p r o p e r t y | r e f e r e n c e | op ) )>

<!ELEMENT op ( c o n s t a n t | p r o p e r t y | r e f e r e n c e | c a l l | op | e v e n t )∗>
<! ATTLIST op

name CDATA #REQUIRED>

<!ELEMENT a c t i o n ( ( ( p r o p e r t y | c a l l | r e s t r u c t u r e )∗ , e v e n t ? ) | ( when - t r u e ? , when - f a l s e ? , by - d e f a u l t ? ) )>

<!ELEMENT when - t r u e ( ( p r o p e r t y | c a l l )∗ , r e s t r u c t u r e ? , op ? , e q u a l ? , e v e n t ? )>

<!ELEMENT when - f a l s e ( ( p r o p e r t y | c a l l )∗ , r e s t r u c t u r e ? , op ? , e q u a l ? , e v e n t ? )>

<!ELEMENT by - d e f a u l t ( ( p r o p e r t y | c a l l )∗ , r e s t r u c t u r e ? , op ? , e q u a l ? , e v e n t ? )>

<!ELEMENT r e s t r u c t u r e ( t e m p l a t e ) ?>
<! ATTLIST r e s t r u c t u r e

a t - p a r t NMTOKEN #IMPLIED
how ( un ion | c a s c a d e | r e p l a c e | d e l e t e ) ” r e p l a c e ”
where ( f i r s t | l a s t | b e f o r e | a f t e r ) ” l a s t ”
where - p a r t NMTOKEN #IMPLIED
s o u r c e CDATA #IMPLIED>

<!ELEMENT c a l l ( param ∗ )>
<! ATTLIST c a l l



APPENDIX C. UIML DTD 263

name NMTOKEN #IMPLIED
c l a s s NMTOKEN #IMPLIED>

<! - -
’ e v e n t ’ d e n o t e s one o f t h r e e t h i n g s :
( 1 ) When a c h i l d o f <c o n d i t i o n> or <op> , d e n o t e s t h a t when t h e named

e v e n t i s f i r e d , t h e c o n d i t i o n s h o u l d be e v a l u a t e d .
( 2 ) When a c h i l d o f <a c t i o n> , d e n o t e s t h a t t h e named e v e n t s h o u l d

be f i r e d .
( 3 ) I n s i d e <d - c l a s s> , d e n o t e s t h a t t h e named e v e n t can occur f o r

t h e p a r t c l a s s named by t h e <d - c l a s s> .
- ->

<!ELEMENT e v e n t EMPTY>

<! ATTLIST e v e n t
name NMTOKEN #IMPLIED
c l a s s NMTOKEN #IMPLIED
p a r t -name NMTOKEN #IMPLIED
p a r t - c l a s s NMTOKEN #IMPLIED>

<! - -
’ param ’ d e n o t e s a s i n g l e a c t u a l parame te r t o a c a l l - a b l e r o u t i n e .

- ->

<!ELEMENT param (#PCDATA | p r o p e r t y | r e f e r e n c e | c a l l | op | e v e n t | c o n s t a n t | i t e r a t o r )∗>
<! ATTLIST param

name NMTOKEN #IMPLIED>

<! - -
’ l i s t e n e r ’ d e n o t e s t h a t a name d e f i n e d w i t h d - c l a s s
used - in - t a g=” l i s t e n e r ” s h o u l d be a t t a c h e d as a l i s t e n e r t o t h e
d - c l a s s which c o n t a i n s t h i s < l i s t e n e r> e l e m e n t .

- ->

<!ELEMENT l i s t e n e r EMPTY>

<! ATTLIST l i s t e n e r
c l a s s NMTOKEN #IMPLIED
a t t a c h e r CDATA #IMPLIED>



Appendix D

UIML 3.0 Hierarchy elements

264



A
PPE

N
D

IX
D

.
U

IM
L

3.0
H

IE
R

A
R

C
H

Y
E

L
E

M
E

N
T

S
265

uiml


head


meta


peers
 template


presentation
 logic


d-class


d-property


d-param


d-component


d-method


script


interface


structure
 style
 content
 behavior


rule


action


call


constant


condition


event


property


reference


equal


part


event


iterator


op


repeat


listener


param


restructure
 when-false
 when-true
by-default


Figure D.1: UIML 3.0 Reference



Appendix E

Supporting Tools

E.1 Transcoding UIML 7→ VDM -SL - uiml2vdm stylesheet

Listing E.1: XML Stylesheet to generate VDM-SL from UIML
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”ISO -8859 -1 ” ?>

<! - -
by l u f e r
UIML 2 VDM ( UIML 2 . 0 )
05 -09 -2004: UIML3 . 0 s u p p o r t

- ->

<x s l : s t y l e s h e e t v e r s i o n =” 1 . 0 ” xmlns : x s l =” h t t p : / / www. w3 . org / 1 9 9 9 / XSL / Trans fo rm ”
xmlns : fo =” h t t p : / / www. w3 . org / 1 9 9 9 / XSL / Format ”
xmlns : x l i n k =” h t t p : / / www. w3 . org / 1 9 9 9 / x l i n k ”
xmlns : u iml =” h t t p : / / www. uiml . o rg / d t d s / UIML2 0a . d t d ”>
<x s l : o u t p u t method=” t e x t ” e n c o d i n g =”ISO -8859 -1 ” i n d e n t =” yes ” />

<x s l : t e m p l a t e match=” / ”>
<x s l : apply - t e m p l a t e s />

< / x s l : t e m p l a t e>

<! - - ==================== Uiml e l e m e n t ========================== - ->

<x s l : t e m p l a t e match=” uiml ”>VDM2UIML‘ u i m l 2 s t r ( mk UIMLSpec ‘ Uiml (
<x s l : i f t e s t =” c o u n t ( head )=0 ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( head ) &g t ; 0 ”><x s l : apply - t e m p l a t e s s e l e c t =” head ” /> ,
< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( i n t e r f a c e | p e e r s | t e m p l a t e ) = 0 ”> [ ] ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( i n t e r f a c e | p e e r s | t e m p l a t e ) &g t ; 0 ”>
[<x s l : f o r - each s e l e c t =” i n t e r f a c e | p e e r s | t e m p l a t e ”>

<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>]
< / x s l : i f> ) )

< / x s l : t e m p l a t e>

<! - - ===================== Head e l e m e n t ========================= - ->

<x s l : t e m p l a t e match=” head ” name=” head ”>
mk UIMLSpec ‘ Head ( [<x s l : f o r - each s e l e c t =” meta ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>
< / x s l : f o r - each> ] )

< / x s l : t e m p l a t e>

266



APPENDIX E. SUPPORTING TOOLS 267

<! - - ===================== Meta e l e m e n t ========================= - ->

<x s l : t e m p l a t e match=” meta ” name=” meta ”>
mk UIMLSpec ‘ Meta (<x s l : c a l l - t e m p l a t e name=”name ” /> ,
<x s l : i f t e s t =” @content ”>”<x s l : va lue - of s e l e c t =” @content ” />”< / x s l : i f>
<x s l : i f t e s t =” n o t ( @content ) ”>n i l< / x s l : i f>)
< / x s l : t e m p l a t e>

<! - - =================== I n t e r f a c e e l e m e n t ======================= - ->
<! - - I n t e r f a c e = ( S t r u c t u r e | S t y l e | C o n t e n t | B e h a v i o r )∗ + S o u r c e A t t r i b u t e s - ->

<x s l : t e m p l a t e match=” i n t e r f a c e ”>mk UIMLSpec ‘ I n t e r f a c e (
[<x s l : f o r - each s e l e c t =” ( s t r u c t u r e | s t y l e | c o n t e n t | b e h a v i o r ) ”>

<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” />)

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” i n t e r f a c e s ”>
<x s l : i f t e s t =” c o u n t ( i n t e r f a c e ) = 0 ”> [ ]< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( i n t e r f a c e ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =” i n t e r f a c e ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” n o t ( p o s i t i o n ( ) = l a s t ( ) ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
< / x s l : i f>

< / x s l : t e m p l a t e>

<! - - ===================== Templa te e l e m e n t ===================== - ->

<x s l : t e m p l a t e match=” t e m p l a t e ”>mk UIMLSpec ‘ Templa te (
<x s l : c a l l - t e m p l a t e name=” s o u r c e E l e m e n t s ” /> ,
<x s l : c a l l - t e m p l a t e name=” i d ” />)

< / x s l : t e m p l a t e>

<! - - =================== S t r u c t u r e e l e m e n t ========================= - ->
<! - - S t r u c t u r e = Par t ∗ + S o u r c e s A t t r i b u t e s - ->

<x s l : t e m p l a t e match=” s t r u c t u r e ”>
mk UIMLSpec ‘ S t r u c t u r e (<x s l : c a l l - t e m p l a t e name=” p a r t s ” /> ,

<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” />)
< / x s l : t e m p l a t e>

<! - - ====================== Par t e l e m e n t ============================ - ->
<! - - Par t = S t y l e | C o n t e n t | B e h a v i o r | Par t ∗ | Repea t∗ - ->

<x s l : t e m p l a t e match=” p a r t ” name=” p a r t ”>mk UIMLSpec ‘ P a r t (
<! - -<x s l : apply - t e m p l a t e s s e l e c t =” s t y l e | c o n t e n t | b e h a v i o r ” /> - ->
<x s l : i f t e s t =” s t y l e ”><x s l : apply - t e m p l a t e s s e l e c t =” s t y l e ” /> ,< / x s l : i f>
<x s l : i f t e s t =” n o t ( s t y l e ) ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” c o n t e n t ”>

<x s l : apply - t e m p l a t e s s e l e c t =” . ” /> ,< / x s l : i f>
<x s l : i f t e s t =” n o t ( c o n t e n t ) ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” b e h a v i o r ”>

<x s l : apply - t e m p l a t e s s e l e c t =” . ” /> ,< / x s l : i f>
<x s l : i f t e s t =” n o t ( b e h a v i o r ) ”>n i l ,< / x s l : i f>
<x s l : c a l l - t e m p l a t e name=” p a r t s ” /> ,
<x s l : c a l l - t e m p l a t e name=” r e p e a t s ” /> ,
<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” /> ,
<x s l : c a l l - t e m p l a t e name=” c l a s s a t t r ” /> ,
<x s l : c a l l - t e m p l a t e name=” w h e r e a t t r ” /> ,
<x s l : c a l l - t e m p l a t e name=” w h e r e p a r t a t t r ” />)

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” p a r t s ”>



APPENDIX E. SUPPORTING TOOLS 268

<x s l : i f t e s t =” c o u n t ( p a r t ) = 0 ”> [ ]< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( p a r t ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =” p a r t ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” n o t ( p o s i t i o n ( ) = l a s t ( ) ) ”> ,< / x s l : i f>

< / x s l : f o r - each>]
< / x s l : i f>

< / x s l : t e m p l a t e>

<! - - ===================== Repea t e l e m e n t ======================= - ->
<! - - Repea t : : I t e r a t o r ∗ Par t∗ - ->

<x s l : t e m p l a t e match=” r e p e a t ” name=” r e p e a t ”>mk UIMLSpec ‘ Repea t (
<x s l : apply - t e m p l a t e s s e l e c t =” i t e r a t o r ” /> ,
<x s l : c a l l - t e m p l a t e name=” p a r t s ” />)

< / x s l : t e m p l a t e>
<x s l : t e m p l a t e name=” r e p e a t s ”>

<x s l : i f t e s t =” c o u n t ( r e p e a t ) = 0 ”> [ ]< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( r e p e a t ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =” r e p e a t ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” n o t ( p o s i t i o n ( ) = l a s t ( ) ) ”> ,< / x s l : i f>

< / x s l : f o r - each>]
< / x s l : i f>

< / x s l : t e m p l a t e>

<! - - ====================== S t y l e e l e m e n t ========================= - ->

<x s l : t e m p l a t e match=” s t y l e ” name=” s t y l e ”>mk UIMLSpec ‘ S t y l e (
<x s l : c a l l - t e m p l a t e name=” p r o p e r t i e s ” /> ,
<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” />)

< / x s l : t e m p l a t e>

<! - - ======================= C o n t e n t e l e m e n t ======================= - ->

<x s l : t e m p l a t e name=” c o n t e n t ” match=” c o n t e n t ”>mk UIMLSpec ‘ C o n t e n t (
<x s l : c a l l - t e m p l a t e name=” c o n s t a n t s ” /> ,
<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” />)

< / x s l : t e m p l a t e>

<! - - ======================= B e h a v i o r e l e m e n t ====================== - ->

<x s l : t e m p l a t e name=” b e h a v i o r ” match=” b e h a v i o r ”>mk UIMLSpec ‘ B e h a v i o r (
<x s l : c a l l - t e m p l a t e name=” r u l e s ” /> ,
<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” />)

< / x s l : t e m p l a t e>

<! - - ====================== P r o p e r t y e l e m e n t ======================= - ->

<x s l : t e m p l a t e match=” p r o p e r t y ” name=” p r o p e r t y ”>
<x s l : value - of s e l e c t =”$CRTAB” />mk UIMLSpec ‘ P r o p e r t y (
<x s l : i f t e s t =” c o u n t ( t e x t ( ) | c o n s t a n t | p r o p e r t y | r e f e r e n c e |

c a l l | op | e v e n t | i t e r a t o r ) = 0 ”> [ ] ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( t e x t ( ) | c o n s t a n t | p r o p e r t y | r e f e r e n c e |

c a l l | op | e v e n t | i t e r a t o r ) &g t ; 0 ”>
[<x s l : f o r - each s e l e c t =” ( t e x t ( ) | c o n s t a n t | p r o p e r t y |

r e f e r e n c e | c a l l | op | e v e n t | i t e r a t o r ) ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />

<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>
< / x s l : f o r - each>] ,

< / x s l : i f>
<x s l : c a l l - t e m p l a t e name=”name ” /> ,
<x s l : c a l l - t e m p l a t e name=” s o u r c e ” /> ,
<x s l : c a l l - t e m p l a t e name=”how” /> ,
<x s l : c a l l - t e m p l a t e name=” e x p o r t ” /> ,
<x s l : c a l l - t e m p l a t e name=” p a r t n a m e ” /> ,



APPENDIX E. SUPPORTING TOOLS 269

<x s l : c a l l - t e m p l a t e name=” p a r t c l a s s ” /> ,
<x s l : c a l l - t e m p l a t e name=” even t name ” /> ,
<x s l : c a l l - t e m p l a t e name=” e v e n t c l a s s ” />)

< / x s l : t e m p l a t e>
<x s l : t e m p l a t e name=” p r o p e r t i e s ”>

<x s l : i f t e s t =” c o u n t ( p r o p e r t y ) = 0 ”> [ ]< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( p r o p e r t y ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =” p r o p e r t y ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>]
< / x s l : i f>

< / x s l : t e m p l a t e>

<! - - =================== C o n s t a n t e l e m e n t ====================== - ->

<x s l : t e m p l a t e name=” c o n s t a n t ” match=” c o n s t a n t ”>mk UIMLSpec ‘ C o n s t a n t (
<x s l : c a l l - t e m p l a t e name=” c o n s t a n t s ” /> ,
<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” /> ,
<x s l : c a l l - t e m p l a t e name=” model ” /> ,
<x s l : c a l l - t e m p l a t e name=” v a l u e ” />)

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” c o n s t a n t s ”>
<x s l : i f t e s t =” c o u n t ( c o n s t a n t ) = 0 ”> [ ]< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( c o n s t a n t ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =” c o n s t a n t ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>]
< / x s l : i f>

< / x s l : t e m p l a t e>

<! - - ================= R e f e r e n c e e l e m e n t ===================== - ->

<x s l : t e m p l a t e name=” r e f e r e n c e ” match=” r e f e r e n c e ”>
mk UIMLSpec ‘ R e f e r e n c e (
”<x s l : va lue - of s e l e c t =” @constant - name ”/>” ,
”<x s l : va lue - of s e l e c t =” @url - name ”/>” )

< / x s l : t e m p l a t e>

<! - - ==================== Logic e l e m e n t ======================= - ->

<x s l : t e m p l a t e name=” l o g i c ” match=” l o g i c ”>mk UIMLSpec ‘ Logic (
<x s l : i f t e s t =” c o u n t ( d - component ) = 0 ”> [ ] ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( d - component ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =”d - component ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
< / x s l : i f>
<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” />)

< / x s l : t e m p l a t e>

<! - - ================ P r e s e n t a t i o n e l e m e n t ==================== - ->

<x s l : t e m p l a t e name=” p r e s e n t a t i o n ” match=” p r e s e n t a t i o n ”>
mk UIMLSpec ‘ P r e s e n t a t i o n (
<x s l : i f t e s t =” c o u n t ( d - c l a s s ) = 0 ”> [ ] ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( d - c l a s s ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =”d - c l a s s ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
< / x s l : i f>
<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” /> ,



APPENDIX E. SUPPORTING TOOLS 270

<x s l : c a l l - t e m p l a t e name=” base ” /> )
< / x s l : t e m p l a t e>

<! - - ================== Rule e l e m e n t =========================== - ->

<x s l : t e m p l a t e name=” r u l e ” match=” r u l e ”>mk UIMLSpec ‘ Rule (
<x s l : i f t e s t =” c o n d i t i o n ”>

<x s l : apply - t e m p l a t e s s e l e c t =” c o n d i t i o n ” /> ,
< / x s l : i f>

<x s l : i f t e s t =” n o t ( c o n d i t i o n ) ”>n i l , < / x s l : i f>
<x s l : i f t e s t =” a c t i o n ”>

<x s l : apply - t e m p l a t e s s e l e c t =” a c t i o n ” /> ,
< / x s l : i f>

<x s l : i f t e s t =” n o t ( a c t i o n ) ”>n i l , < / x s l : i f>
<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” />)

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” r u l e s ”>
<x s l : i f t e s t =” c o u n t ( r u l e ) = 0 ”>n i l< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( r u l e ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =” r u l e ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>]
< / x s l : i f>

< / x s l : t e m p l a t e>

<! - - ================== C o n d i t i o n e l e m e n t ======================== - ->

<x s l : t e m p l a t e name=” c o n d i t i o n ” match=” c o n d i t i o n ”>mk UIMLSpec ‘ C o n d i t i o n (
<x s l : apply - t e m p l a t e s s e l e c t =” e q u a l | e v e n t | op ” />)

< / x s l : t e m p l a t e>

<! - - ==================== Action e l e m e n t ========================= - ->

<x s l : t e m p l a t e name=” a c t i o n ” match=” a c t i o n ”>
<x s l : choose>

<x s l : when t e s t =” c o u n t ( p r o p e r t y | c a l l | r e s t r u c t u r e | e v e n t ) &g t ; 0 ”>
mk UIMLSpec ‘ Act ionType1 ( [<x s l : f o r - each s e l e c t =” ( p r o p e r t y |

c a l l | r e s t r u c t u r e ) ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
<x s l : i f t e s t =” c o u n t ( e v e n t ) &g t ; 0 ”>

<x s l : apply - t e m p l a t e s s e l e c t =” . ” />)
< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( e v e n t ) = 0 ”>n i l< / x s l : i f>)

< / x s l : when>
< / x s l : choose>
<x s l : choose>

<x s l : when t e s t =” c o u n t ( when - t r u e | when - f a l s e | by - d e f a u l t ) &g t ; 0 ”>
mk UIMLSpec ‘ Act ionType2 (<x s l : f o r - each s e l e c t =”when - t r u e |

when - f a l s e | by - d e f a u l t ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>)
< / x s l : when>

< / x s l : choose>
< / x s l : t e m p l a t e>

<! - - ==================== Equal e l e m e n t ======================= - ->

<x s l : t e m p l a t e name=” e q u a l ” match=” e q u a l ”>mk UIMLSpec ‘ Equal (
<x s l : apply - t e m p l a t e s s e l e c t =” e v e n t ” /> ,
<x s l : apply - t e m p l a t e s s e l e c t =” c o n s t a n t | p r o p e r t y | r e f e r e n c e | op ” />)

< / x s l : t e m p l a t e>



APPENDIX E. SUPPORTING TOOLS 271

<! - - ===================== C a l l e l e m e n t ======================= - ->

<x s l : t e m p l a t e name=” c a l l ” match=” c a l l ”>mk UIMLSpec ‘ C a l l (
<x s l : c a l l - t e m p l a t e name=” params ” /> ,

<x s l : c a l l - t e m p l a t e name=”name ” />)
< / x s l : t e m p l a t e>

<! - - ===================== Even t e l e m e n t ======================= - ->

<x s l : t e m p l a t e name=” e v e n t ” match=” e v e n t ”>mk UIMLSpec ‘ Event (
<x s l : choose>

<x s l : when t e s t =”@name”>”<x s l : va lue - of s e l e c t =”@name”/>” ,< / x s l : when>
<x s l : o t h e r w i s e>” ” ,< / x s l : o t h e r w i s e>

< / x s l : choose>
<x s l : choose>

<x s l : when t e s t =” @part - name ”>”<x s l : va lue - of s e l e c t =” @part - name ”/>” ,
< / x s l : when>

<x s l : o t h e r w i s e>” ” ,< / x s l : o t h e r w i s e>
< / x s l : choose>
<x s l : choose>

<x s l : when t e s t =” @part - c l a s s ”>”<x s l : va lue - of s e l e c t =” @part - c l a s s ”/>” ,
< / x s l : when>

<x s l : o t h e r w i s e>” ” ,< / x s l : o t h e r w i s e>
< / x s l : choose>
<x s l : choose>

<x s l : when t e s t =” @class ”>”<x s l : va lue - of s e l e c t =” @class ”/>”< / x s l : when>
<x s l : o t h e r w i s e>” ”< / x s l : o t h e r w i s e>

< / x s l : choose>)
< / x s l : t e m p l a t e>

<! - - ===================== Param e l e m e n t ====================== - ->

<x s l : t e m p l a t e name=” param ” match=” param ”>mk UIMLSpec ‘ Param (
<x s l : i f t e s t =” c o u n t ( t e x t ( ) | p r o p e r t y | r e f e r e n c e | c a l l |

op | e v e n t | c o n s t a n t | i t e r a t o r ) = 0 ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( t e x t ( ) | p r o p e r t y | r e f e r e n c e | c a l l |

op | e v e n t | c o n s t a n t | i t e r a t o r ) &g t ; 0 ”>
<x s l : f o r - each s e l e c t =” t e x t ( ) | p r o p e r t y | r e f e r e n c e | c a l l |
op | e v e n t | c o n s t a n t | i t e r a t o r ”>

<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
< / x s l : f o r - each> ,

< / x s l : i f>
<x s l : c a l l - t e m p l a t e name=” name ” />)

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” params ”>
<x s l : i f t e s t =” c o u n t ( param ) = 0 ”> [ ]< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( param ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =” param ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>]
< / x s l : i f>

< / x s l : t e m p l a t e>

<! - - ================== Peer e l e m e n t ======================== - ->

<x s l : t e m p l a t e name=” p e e r s ” match=” p e e r s ”>mk UIMLSpec ‘ P e e r s (
<x s l : i f t e s t =” c o u n t ( p r e s e n t a t i o n | l o g i c ) = 0 ”> [ ] ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( p r e s e n t a t i o n | l o g i c ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =” p r e s e n t a t i o n | l o g i c ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
< / x s l : i f>



APPENDIX E. SUPPORTING TOOLS 272

<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” />)
< / x s l : t e m p l a t e>

<! - - =================== Op e l e m e n t ========================== - ->

<x s l : t e m p l a t e name=” op ” match=” op ”>mk UIMLSpec ‘ Op (
<x s l : i f t e s t =” c o u n t ( c o n s t a n t | p r o p e r t y | r e f e r e n c e | c a l l |

op | e v e n t )=0 ”> [ ] ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( c o n s t a n t | p r o p e r t y | r e f e r e n c e | c a l l |

op | e v e n t ) &g t ; 0 ”>
[<x s l : f o r - each s e l e c t =” c o n s t a n t | p r o p e r t y | r e f e r e n c e | c a l l |

op | e v e n t ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
< / x s l : i f>
<x s l : c a l l - t e m p l a t e name=” name ” />)

< / x s l : t e m p l a t e>

<! - - ================= R e s t r u c t u r e e l e m e n t ===================== - ->

<x s l : t e m p l a t e name=” r e s t r u c t u r e ” match=” r e s t r u c t u r e ”>mk UIMLSpec ‘ R e s t r u c t u r e (
<x s l : i f t e s t =” t e m p l a t e ”>

<x s l : apply - t e m p l a t e s s e l e c t =” t e m p l a t e ” /> ,< / x s l : i f>
<x s l : i f t e s t =” n o t ( t e m p l a t e ) ”>n i l ,< / x s l : i f>
<x s l : c a l l - t e m p l a t e name=” a t - p a r t ” /> ,
<x s l : c a l l - t e m p l a t e name=”how” /> ,
<x s l : c a l l - t e m p l a t e name=” w h e r e a t t r ” /> ,
<x s l : c a l l - t e m p l a t e name=” w h e r e p a r t a t t r ” /> ,
<x s l : c a l l - t e m p l a t e name=” s o u r c e ” />)

< / x s l : t e m p l a t e>

<! - - =================== I t e r a t o r e l e m e n t ======================= - ->

<x s l : t e m p l a t e name=” i t e r a t o r ” match=” i t e r a t o r ”>mk UIMLSpec ‘ I t e r a t o r (
<x s l : apply - t e m p l a t e s s e l e c t =” ( t e x t ( ) | c o n s t a n t | p r o p e r t y |
c a l l ) ” /> ,<x s l : c a l l - t e m p l a t e name=” i d ” />)

< / x s l : t e m p l a t e>

<! - - ================= when - t r u e e l e m e n t ======================== - ->

<x s l : t e m p l a t e name=”when - t r u e ” match=”when - t r u e ”>mk UIMLSpec ‘ When t rue (
<x s l : i f t e s t =” c o u n t ( p r o p e r t y | c a l l ) =0”> [ ] ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( p r o p e r t y | c a l l ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =” p r o p e r t y | c a l l ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
< / x s l : i f>
<x s l : i f t e s t =” r e s t r u c t u r e ”>

<x s l : apply - t e m p l a t e s s e l e c t =” r e s t r u c t u r e ” /> ,< / x s l : i f>
<x s l : i f t e s t =” n o t ( r e s t r u c t u r e ) ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” op ”>

<x s l : apply - t e m p l a t e s s e l e c t =” op ” /> ,< / x s l : i f>
<x s l : i f t e s t =” n o t ( op ) ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” e q u a l ”>

<x s l : apply - t e m p l a t e s s e l e c t =” e q u a l ” /> ,< / x s l : i f>
<x s l : i f t e s t =” n o t ( e q u a l ) ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” e v e n t ”>

<x s l : apply - t e m p l a t e s s e l e c t =” e v e n t ” />
< / x s l : i f>
<x s l : i f t e s t =” n o t ( e v e n t ) ”>n i l< / x s l : i f>)

< / x s l : t e m p l a t e>

<! - - ================== when - f a l s e e l e m e n t ====================== - ->



APPENDIX E. SUPPORTING TOOLS 273

<x s l : t e m p l a t e name=”when - f a l s e ” match=”when - f a l s e ”>mk UIMLSpec ‘ When fa l s e (
<x s l : i f t e s t =” c o u n t ( p r o p e r t y | c a l l ) =0”> [ ] ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( p r o p e r t y | c a l l ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =” p r o p e r t y | c a l l ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
< / x s l : i f>
<x s l : i f t e s t =” r e s t r u c t u r e ”>

<x s l : apply - t e m p l a t e s s e l e c t =” r e s t r u c t u r e ” /> ,< / x s l : i f>
<x s l : i f t e s t =” n o t ( r e s t r u c t u r e ) ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” op ”>

<x s l : apply - t e m p l a t e s s e l e c t =” op ” /> ,< / x s l : i f>
<x s l : i f t e s t =” n o t ( op ) ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” e q u a l ”>

<x s l : apply - t e m p l a t e s s e l e c t =” e q u a l ” /> ,< / x s l : i f>
<x s l : i f t e s t =” n o t ( e q u a l ) ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” e v e n t ”>

<x s l : apply - t e m p l a t e s s e l e c t =” e v e n t ” />
< / x s l : i f>
<x s l : i f t e s t =” n o t ( e v e n t ) ”>n i l< / x s l : i f>)

< / x s l : t e m p l a t e>

<! - - ================== by - d e f a u l t e l e m e n t ========================= - ->

<x s l : t e m p l a t e name=” by - d e f a u l t ” match=” by - d e f a u l t ”>mk UIMLSpec ‘ B y d e f a u l t (
<x s l : i f t e s t =” c o u n t ( p r o p e r t y | c a l l ) =0”> [ ] ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( p r o p e r t y | c a l l ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =” p r o p e r t y | c a l l ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
< / x s l : i f>
<x s l : i f t e s t =” r e s t r u c t u r e ”>

<x s l : apply - t e m p l a t e s s e l e c t =” r e s t r u c t u r e ” /> ,< / x s l : i f>
<x s l : i f t e s t =” n o t ( r e s t r u c t u r e ) ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” op ”>

<x s l : apply - t e m p l a t e s s e l e c t =” op ” /> ,< / x s l : i f>
<x s l : i f t e s t =” n o t ( op ) ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” e q u a l ”>

<x s l : apply - t e m p l a t e s s e l e c t =” e q u a l ” /> ,< / x s l : i f>
<x s l : i f t e s t =” n o t ( e q u a l ) ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” e v e n t ”>

<x s l : apply - t e m p l a t e s s e l e c t =” e v e n t ” />
< / x s l : i f>
<x s l : i f t e s t =” n o t ( e v e n t ) ”>n i l< / x s l : i f>)

< / x s l : t e m p l a t e>

<! - - ================= d - component e l e m e n t ======================= - ->

<x s l : t e m p l a t e name=”d - component ” match=”d - component ”>mk UIMLSpec ‘ D component (
<x s l : i f t e s t =” c o u n t ( d - method ) = 0 ”> [ ] ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( d - method ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =”d - method ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
< / x s l : i f>
<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” /> ,
<x s l : c a l l - t e m p l a t e name=” maps - t o ” /> ,
<x s l : c a l l - t e m p l a t e name=” l o c a t i o n ” />)

< / x s l : t e m p l a t e>

<! - - ==================== d - c l a s s e l e m e n t ======================= - ->

<x s l : t e m p l a t e name=”d - c l a s s ” match=”d - c l a s s ”>mk UIMLSpec ‘ D c l a s s (



APPENDIX E. SUPPORTING TOOLS 274

<x s l : i f t e s t =” c o u n t ( d - method ) = 0 ”> [ ] ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( d - method ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =”d - method ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( d - p r o p e r t y ) = 0 ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( d - p r o p e r t y ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =”d - p r o p e r t y ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( e v e n t ) = 0 ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( e v e n t ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =” e v e n t ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( l i s t e n e r ) = 0 ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( l i s t e n e r ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =” l i s t e n e r ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
< / x s l : i f>
<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” /> ,
<x s l : c a l l - t e m p l a t e name=” maps - t o ” /> ,
<x s l : c a l l - t e m p l a t e name=” maps - t y p e ” /> ,
<x s l : c a l l - t e m p l a t e name=” used - in - t a g ” />)

< / x s l : t e m p l a t e>

<! - - =================== d - p r o p e r t y e l e m e n t ===================== - ->

<x s l : t e m p l a t e name=”d - p r o p e r t y ” match=”d - p r o p e r t y ”>mk UIMLSpec ‘ D p r o p e r t y (
<x s l : i f t e s t =” c o u n t ( d - method ) = 0 ”> [ ] ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( d - method ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =”d - method ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( d - param ) = 0 ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( d - param ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =”d - param ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,
< / x s l : i f>
<x s l : c a l l - t e m p l a t e name=” i d ” /> ,
<x s l : c a l l - t e m p l a t e name=” maps - t y p e ” /> ,
<x s l : c a l l - t e m p l a t e name=” maps - t o ” /> ,
<x s l : c a l l - t e m p l a t e name=” r e t u r n - t y p e ” />)

< / x s l : t e m p l a t e>

<! - - ================== d - method e l e m e n t ======================== - ->

<x s l : t e m p l a t e name=”d - method ” match=”d - method ”>mk UIMLSpec ‘ D method (
<x s l : i f t e s t =” c o u n t ( d - param ) = 0 ”> [ ] ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( d - param ) &g t ; 0 ”>

[<x s l : f o r - each s e l e c t =”d - param ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>] ,



APPENDIX E. SUPPORTING TOOLS 275

< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( s r i p t ) = 0 ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” c o u n t ( s c r i p t ) &g t ; 0 ”>

<x s l : apply - t e m p l a t e s s e l e c t =” s c r i p t ” /> ,
< / x s l : i f>
<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” /> ,
<x s l : c a l l - t e m p l a t e name=” maps - t o ” /> ,
<x s l : c a l l - t e m p l a t e name=” r e t u r n - t y p e ” />)

< / x s l : t e m p l a t e>

<! - - ==================== d - param e l e m e n t ========================= - ->

<x s l : t e m p l a t e name=”d - param ” match=”d - param ”>mk UIMLSpec ‘ D param (
<x s l : apply - t e m p l a t e s s e l e c t =” t e x t ( ) ” /> ,
<x s l : c a l l - t e m p l a t e name=” i d ” /> ,
<x s l : c a l l - t e m p l a t e name=” t y p e ” />)

< / x s l : t e m p l a t e>

<! - - ==================== S o u r c e E l e m e n t s =========================== - ->

<x s l : t e m p l a t e name=” s o u r c e E l e m e n t s ”>
<x s l : i f t e s t =” b e h a v i o r | d - c l a s s | d - component | c o n s t a n t | c o n t e n t |

i n t e r f a c e | l o g i c | p a r t | p e e r s | p r e s e n t a t i o n | p r o p e r t y | r e s t r u c t u r e |
r u l e | s c r i p t | s t r u c t u r e | s t y l e ”>
<x s l : apply - t e m p l a t e s s e l e c t =” c h i l d : : ∗ ” />< / x s l : i f>

<x s l : i f t e s t =” n o t ( b e h a v i o r | d - c l a s s | d - component | c o n s t a n t | c o n t e n t |
i n t e r f a c e | l o g i c | p a r t | p e e r s | p r e s e n t a t i o n | p r o p e r t y | r e s t r u c t u r e |
r u l e | s c r i p t | s t r u c t u r e | s t y l e ) ”>n i l< / x s l : i f>

< / x s l : t e m p l a t e>

<! - - =================== S o u r c e A t t r i b u t e s ========================== - ->
<! - - S o u r c e s A t t r i b u t e s = i d + s r c + how + e x p o r t

i d=S t r i n g
s r c=S t r i n g
how=Append | Cascade | Rep lace
e x p o r t= Hidden | O p t i o n a l | R e q u i r e d

- ->
<x s l : t e m p l a t e name=” s o u r c e A t t r i b u t e s ”>

<x s l : c a l l - t e m p l a t e name=” i d ” /> ,<x s l : c a l l - t e m p l a t e name=” s o u r c e ” /> ,
<x s l : c a l l - t e m p l a t e name=”how” /> ,<x s l : c a l l - t e m p l a t e name=” e x p o r t ” />

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” s o u r c e ”>
<x s l : i f t e s t =” @source ”>”<x s l : va lue - of s e l e c t =” @source ”/>”< / x s l : i f>
<x s l : i f t e s t =” n o t ( @source ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=”how”>
<x s l : i f t e s t =”@how”>& l t ;<x s l : value - of s e l e c t =”@how” />&g t ;< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” e x p o r t ”>
<x s l : i f t e s t =” @export ”>& l t ;<x s l : value - of s e l e c t =” @export ” />&g t ;
< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” i d ” match=” i d ”>
<x s l : i f t e s t =”@id”>mk UIMLSpec ‘ ID ( ”<x s l : va lue - of s e l e c t =”@id”/>” )
< / x s l : i f>
<x s l : i f t e s t =” n o t ( @id ) ”>n i l< / x s l : i f>

< / x s l : t e m p l a t e>

<! - - ==================== Other A t t r i b u t e s ========================== - ->

<x s l : t e m p l a t e name=” c l a s s a t t r ”>
<x s l : i f t e s t =” @class ”>”<x s l : va lue - of s e l e c t =” @class ”/>”



APPENDIX E. SUPPORTING TOOLS 276

< / x s l : i f>
<x s l : i f t e s t =” n o t ( @class ) ”>” ” l< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” c l a s s ”>
<x s l : i f t e s t =” @class ”>”<x s l : va lue - of s e l e c t =” @class ”/>”
< / x s l : i f>
<x s l : i f t e s t =” n o t ( @class ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” name ”>
<x s l : i f t e s t =”@name”>”<x s l : va lue - of s e l e c t =”@name”/>”
< / x s l : i f>
<x s l : i f t e s t =” n o t (@name) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” w h e r e a t t r ”>
<x s l : i f t e s t =”@where”>& l t ;<x s l : value - of s e l e c t =”@where” />&g t ;
< / x s l : i f>
<x s l : i f t e s t =” n o t ( @where ) ”>& l t ; l a s t&g t ;< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” w h e r e p a r t a t t r ”>
<x s l : i f t e s t =” @where par t ”>”<x s l : va lue - of s e l e c t =” @where par t ” />”
< / x s l : i f>
<x s l : i f t e s t =” n o t ( @where par t ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” p a r t n a m e ”>
<x s l : i f t e s t =” @part - name ”>”<x s l : va lue - of s e l e c t =” @part - name ”/>”
< / x s l : i f>
<x s l : i f t e s t =” n o t ( @part - name ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” p a r t c l a s s ”>
<x s l : i f t e s t =” @part - c l a s s ”>”<x s l : va lue - of s e l e c t =” @part - c l a s s ”/>”
< / x s l : i f>
<x s l : i f t e s t =” n o t ( @part - c l a s s ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” even t name ”>
<x s l : i f t e s t =” @event - name ”>”<x s l : va lue - of s e l e c t =” @event - name ”/>”
< / x s l : i f>
<x s l : i f t e s t =” n o t ( @event - name ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” e v e n t c l a s s ”>
<x s l : i f t e s t =” @event - c l a s s ”>”<x s l : va lue - of s e l e c t =” @event - c l a s s ”/>”
< / x s l : i f>
<x s l : i f t e s t =” n o t ( @event - c l a s s ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” model ”>
<x s l : i f t e s t =”@model”>”<x s l : va lue - of s e l e c t =”@model”/>”
< / x s l : i f>
<x s l : i f t e s t =” n o t ( @model ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” v a l u e ”>
<x s l : i f t e s t =” @value ”>”<x s l : va lue - of s e l e c t =” @value ”/>”< / x s l : i f>
<x s l : i f t e s t =” n o t ( @value ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” c o n s t a n t n a m e ”>
<x s l : i f t e s t =” @constant - name ”>”<x s l : va lue - of s e l e c t =” @constant - name ”/>”
< / x s l : i f>



APPENDIX E. SUPPORTING TOOLS 277

<x s l : i f t e s t =” n o t ( @constant - name ) ”>” ”< / x s l : i f>
< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” u r l n a m e ”>
<x s l : i f t e s t =” @url - name ”>”<x s l : va lue - of s e l e c t =” @url - name ”/>”
< / x s l : i f>
<x s l : i f t e s t =” n o t ( @url - name ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” a t - p a r t ”>
<x s l : i f t e s t =”@at - p a r t ”>”<x s l : va lue - of s e l e c t =”@at - p a r t ” />”
< / x s l : i f>
<x s l : i f t e s t =” n o t ( @at - p a r t ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” base ”>
”<x s l : va lue - of s e l e c t =” @base ”/>”

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” t y p e ”>
<x s l : i f t e s t =” @type ”>”<x s l : va lue - of s e l e c t =” @type ”/>”< / x s l : i f>
<x s l : i f t e s t =” n o t ( @type ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” maps - t o ”>
<x s l : i f t e s t =”@maps - t o ”>”<x s l : va lue - of s e l e c t =”@maps - t o ”/>”< / x s l : i f>
<x s l : i f t e s t =” n o t ( @maps - t o ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” r e t u r n - t y p e ”>
<x s l : i f t e s t =” @return - t y p e ”>”<x s l : va lue - of s e l e c t =” @return - t y p e ”/>”
< / x s l : i f>
<x s l : i f t e s t =” n o t ( @return - t y p e ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” used - in - t a g ”>
<x s l : i f t e s t =”@used - in - t a g ”>& l t ;<x s l : value - of s e l e c t =”@used - in - t a g ” />
&g t ;< / x s l : i f>
<x s l : i f t e s t =” n o t ( @used - in - t a g ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” maps - t y p e ”>
<x s l : i f t e s t =”@maps - t y p e ”>& l t ;<x s l : value - of s e l e c t =”@maps - t y p e ” />&
g t ;< / x s l : i f>
<x s l : i f t e s t =” n o t ( @maps - t y p e ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” l o c a t i o n ”>
<x s l : i f t e s t =” @ l o c a t i o n ”>”<x s l : va lue - of s e l e c t =” @ l o c a t i o n ”/>”
< / x s l : i f>
<x s l : i f t e s t =” n o t ( @ l o c a t i o n ) ”>” ”< / x s l : i f>

< / x s l : t e m p l a t e>

<! - - =================== Method e l e m e n t ======================== - ->

<x s l : t e m p l a t e name=” method ” match=” method ”>mk UIMLSpec ‘ Method (
[<x s l : c a l l - t e m p l a t e name=” params ” />] ,

<x s l : i f t e s t =” r e t u r n s ”>
<x s l : apply - t e m p l a t e s s e l e c t =” r e t u r n s ” /> ,< / x s l : i f>

<x s l : i f t e s t =” n o t ( r e t u r n s ) ”>n i l ,< / x s l : i f>
<x s l : i f t e s t =” s c r i p t ”>

<x s l : apply - t e m p l a t e s s e l e c t =” s c r i p t ” /> ,< / x s l : i f>
<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” /> ,

<x s l : i f t e s t =”@maps - t o ”>”<x s l : va lue - of s e l e c t =”@maps - t o ”/>” ,
< / x s l : i f>

<x s l : i f t e s t =” @type =( i n p u t | o u t p u t | i n o u t | none ) ”>



APPENDIX E. SUPPORTING TOOLS 278

mk UIMLSpec ‘ TypeOpt ion ( ”<x s l : va lue - of s e l e c t =” @type ”/>” )
< / x s l : i f>

<x s l : i f t e s t =” n o t ( @type =( i n p u t | o u t p u t | i n o u t | none ) ) ”>
mk UIMLSpec ‘ TypeOpt ion ( ” i n o u t ” )< / x s l : i f>)

< / x s l : t e m p l a t e>
<x s l : t e m p l a t e name=” methods ”>

<x s l : f o r - each s e l e c t =” method ”>
<x s l : apply - t e m p l a t e s s e l e c t =” . ” />
<x s l : i f t e s t =” p o s i t i o n ( ) ! = l a s t ( ) ”> ,< / x s l : i f>

< / x s l : f o r - each>
< / x s l : t e m p l a t e>

<! - - ================== R e t u r n s e l e m e n t ===================== - ->

<x s l : t e m p l a t e name=” r e t u r n s ” match=” r e t u r n s ”>mk UIMLSpec ‘ R e t u r n s (
<x s l : i f t e s t =”@name”>”<x s l : va lue - of s e l e c t =”@name”/>”< / x s l : i f>
<x s l : i f t e s t =” n o t (@name) ”>n i l< / x s l : i f>)

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e name=” s c r i p t ” match=” s c r i p t ”>mk UIMLSpec ‘ S c r i p t (
<x s l : i f t e s t =” s t r i n g - l e n g t h ( ) &g t ; 0 ”>”<x s l : va lue - of
s e l e c t =” n o r m a l i z e - s p a c e ( . ) ” />” ,

< / x s l : i f>
<x s l : c a l l - t e m p l a t e name=” s o u r c e A t t r i b u t e s ” /> ,
<x s l : c a l l - t e m p l a t e name=” t y p e ” />)

< / x s l : t e m p l a t e>

<x s l : t e m p l a t e match=” t e x t ( ) ”>
<x s l : i f t e s t =” s t r i n g - l e n g t h ( ) &g t ; 0 ”>

”<x s l : va lue - of s e l e c t =” n o r m a l i z e - s p a c e ( . ) ” />”
< / x s l : i f>

< / x s l : t e m p l a t e>

<! - - ==================== V a r i a b l e s ======================= - ->

<x s l : v a r i a b l e name=”CR” s e l e c t =” ’&#13; ’ ” />
<x s l : v a r i a b l e name=”CRTAB” s e l e c t =” ’&#13;&#9; ’ ” />
<x s l : v a r i a b l e name=”TAB” s e l e c t =” ’&#13;&#9; ’ ” />

< / x s l : s t y l e s h e e t>



APPENDIX E. SUPPORTING TOOLS 279

E.2 Verifier VDM 7→ UIML - vdm2uiml

This Appendix presents an excerpt of vdm2uiml VDM-SL module, responsible for the
second phase of our architecture. It allows the generation of UIML from the VDM-SL
specification. The complete source code is available on [Luı́04].

module VDM 2UIML

imports

from IO all ,

from UIMLSpec all

exports all

definitions

E.2.1 Auxiliar Data Types

FileName = UIMLSpec‘String ;
PropertyTypes = UIMLSpec‘String | UIMLSpec‘Constant |

UIMLSpec‘Property | UIMLSpec‘Reference | UIMLSpec‘Call |
UIMLSpec‘Iterator ;

ConstantType = UIMLSpec‘String | UIMLSpec‘Constant ;
ActionType = UIMLSpec‘Property | UIMLSpec‘Call |

UIMLSpec‘Restructure

values
PI :UIMLSpec‘String = " <?xmlversion = ’1.0’encoding =

’ISO-8859-1’? > ";
end -doc :UIMLSpec‘String = " < /uiml > ";
end -doc-html :UIMLSpec‘String = " < peers >< presentationhow =

’replace’source = ’HTML3.2H armonia1.0.uiml#vocab’base =
’HTML3.2H armonia1.0’/ > \n < /peers >< /uiml > "

E.2.1.1 Function uiml2str

Specification:

uiml2str :UIMLSpec‘Uiml → UIMLSpec‘String
uiml2str (ui) 4

PI y

" < uiml > " y

head2str (ui .head) y

members2str (ui .members) y

end -doc-html ;



APPENDIX E. SUPPORTING TOOLS 280

Description:

Converts a UIML element into String.

Calls:

head2str ,members2str

E.2.1.2 Function interf 2str

Specification:

interf 2str : [UIMLSpec‘Interface]→ UIMLSpec‘String
interf 2str (i) 4

if i = nil
then ""
else " < interface" y id2str (i .id) y

source2str (i .source) y

how2str (i .how) y

export2str (i .export) y

" > "y

inteles2str (i .intele) y

" < /interface > ";

Description:

Converts a Interface element into String.

Calls:

Standard VDM-SL only

E.2.1.3 Function member2str

Specification:



APPENDIX E. SUPPORTING TOOLS 281

member2str : [UIMLSpec‘Member ]→ UIMLSpec‘String
member2str (m) 4

if m = nil
then ""
else cases m :

mk-UIMLSpec‘Peers (-, -, -, -, -) → peer2str (m),
mk-UIMLSpec‘Interface (-, -, -, -, -)→ interf 2str (m),
mk-UIMLSpec‘Template (-, -) → templ2str (m),
others → ""

end;

Description:

Converts a Member type into String.

Calls:

peer2str ,interf 2str ,templ2str

E.2.1.4 Function members2str

Specification:

members2str : [UIMLSpec‘Member ∗]→ UIMLSpec‘String
members2str (s) 4

if s = []
then ""
else let x = hd (s) in

member2str (x ) y members2str (tl (s));

Description:

Converts a Member type sequence into String.

Calls:

member2str

E.2.1.5 Function inteles2str

Specification:



APPENDIX E. SUPPORTING TOOLS 282

inteles2str :UIMLSpec‘InterfaceElements∗ → UIMLSpec‘String
inteles2str (s) 4

if s = []
then ""
else let x = hd (s) in

cases x :
mk-UIMLSpec‘Structure (-, -, -, -, -)→ stru2str (x ) y

inteles2str (tl (s)),
mk-UIMLSpec‘Style (-, -, -, -, -)→ style2str (x ) y

inteles2str (tl (s)),
mk-UIMLSpec‘Content (-, -, -, -, -)→ content2str (x ) y

inteles2str (tl (s)),
mk-UIMLSpec‘Behavior (-, -, -, -, -)→ behav2str (x ) y

inteles2str (tl (s))
end;

Description:

Converts an InterfaceElements set into String.

Calls:

stru2str ,style2str ,content2str ,behav2str

E.2.1.6 Function stru2str

Specification:

stru2str :UIMLSpec‘Structure → UIMLSpec‘String
stru2str (s) 4

" < structure" y id2str (s.id) y source2str (s.source) y

how2str (s.how) y export2str (s.export) y " > "y

parts2str (s.parts) y

" < /structure > ";

Description:

Converts a Structure element into String.

Calls:

srcatt2str ,parts2str



APPENDIX E. SUPPORTING TOOLS 283

E.2.1.7 Function parts2str

Specification:

parts2str :UIMLSpec‘Part∗ → UIMLSpec‘String
parts2str (s) 4

if s = []
then ""
else let x = hd (s) in

part2str (x ) y parts2str (tl (s));

Description:

Converts a Part sequence into String.

Calls:

part2str

E.2.1.8 Function part2str

Specification:

part2str : [UIMLSpec‘Part ]→ UIMLSpec‘String
part2str (p) 4

if p = nil
then ""
else " < part" y id2str (p.id) y

source2str (p.source) y

how2str (p.how) y

export2str (p.export) y

class2str (p.class) y

where2str (p.where) y

wherepart2str (p.where-part) y

" > "y

style2str (p.style) y

content2str (p.content) y

behav2str (p.behavior) y

parts2str (p.parts) y

repeats2str (p.repeats) y

" < /part > ";

Description:

Converts a Part element into String.



APPENDIX E. SUPPORTING TOOLS 284

Calls:

srcatt2str ,classs2str ,style2str ,content2str ,behav2str ,parts2str

E.2.1.9 Function toFileHTML

Specification:

toFileHTML :UIMLSpec‘Uiml ×UIMLSpec‘String → B

toFileHTML (ui , f ) 4

IO ‘fecho (f ,PI , START) ∧
IO ‘fecho (f ," <!DOCTYPEuimlPUBLIC ’-//UIT//DTDUIML" y

"2.0Draft//EN ’\n",
APPEND) ∧

IO ‘fecho (f ,"’UIML20g .dtd ’ > \n", APPEND) ∧
IO ‘fecho (f ," < uiml > ", APPEND) ∧
IO ‘fecho (f , head2str (ui .head), APPEND) ∧
IO ‘fecho (f ,members2str (ui .members), APPEND) ∧
IO ‘fecho (f , end -doc-html , APPEND);

Description:

Output to HTML file an uiml element.

Calls:

head2str ,members2str

end VDM2UIML



Appendix F

Prototype

The following Figures depict some of the OLAP implemented features. The prototype
was developed using a CGI mechanism, with PHP technology and Java Applets. The
whole source code is on the technical report [Luı́04].

Figure F.1: VDM/UIML integration test case

285



APPENDIX F. PROTOTYPE 286

Figure F.2: VDM/UIML integration test case - OLAP

Figure F.3: Prototype: Rotation operation

Figure F.4: Prototype: Consolidation operation



APPENDIX F. PROTOTYPE 287

Figure F.5: Prototype: Hiding column operation



Appendix G

UIML Code examples

G.1 Stack UIML Code

Listing G.1 shows the UIML code to specify our Stack case study.

Listing G.1: Complete UIML Stack user interface specification

1 <? xml v e r s i o n =” 1 . 0 ” ?>
2 <!DOCTYPE uiml PUBLIC ” - / / Harmonia / / DTD UIML 2 . 0
3 D r a f t / / EN” ”UIML2 0g . d t d ”>

5 <uiml>

7 <! - -
8 T e s t o f S tack ’ s on a J L i s t :
9 T h i s u im l s h o u l d be c a l l e d from S t a c k . java ,

10 n o t s t a r t e d on i t s own .
11 - ->

13 <head>
14 <meta name=” l u f e r ” c o n t e n t =”UIML Simple S t a c k ” />
15 <meta name=” Date ” c o n t e n t =” Ju ly , 2003 ” />
16 <meta name=” D e s c r i p t i o n ” c o n t e n t = ” Th i s i s an example
17 of how t o use t h e UIML t o s p e c i f y r e a l p rob lems . ” />
18 < / head>

20 < i n t e r f a c e>

22 <s t r u c t u r e>

23 <p a r t i d =” Top ” c l a s s =” JFrame ”>
24 <s t y l e>
25 <p r o p e r t y name=” l a y o u t h g a p ”>10< / p r o p e r t y>

26 <p r o p e r t y name=” l a y o u t v g a p ”>25< / p r o p e r t y>

27 < / s t y l e>
28 <p a r t i d =” Labe l ” c l a s s =” J L a b e l ” />
29 <p a r t i d =” S c r o l l P a n e ” c l a s s =” J S c r o l l P a n e ”>
30 <p a r t i d =” L i s t ” c l a s s =” J L i s t ” />
31 < / p a r t>
32 <p a r t i d =” B u t t o n P a n e l ” c l a s s =” J P a n e l ”>
33 <p a r t i d =” AddButton ” c l a s s =” J B u t t o n ” />
34 <p a r t i d =” RemoveButton ” c l a s s =” J B u t t o n ” />
35 <p a r t i d =” TopBut ton ” c l a s s =” J B u t t o n ” />
36 <p a r t i d =” C l e a r ” c l a s s =” J B u t t o n ” />
37 < / p a r t>
38 < / p a r t>
39 < / s t r u c t u r e>

288



APPENDIX G. UIML CODE EXAMPLES 289

41 <s t y l e>
42 <p r o p e r t y p a r t -name=” Top” name=” s i z e ”>
43 380 ,230
44 < / p r o p e r t y>

45 <p r o p e r t y p a r t -name=” Top” name=” l o c a t i o n ”>
46 100 ,100
47 < / p r o p e r t y>

48 <p r o p e r t y p a r t -name=” Top” name=” l a y o u t ”>
49 j a v a x . swing . BoxLayoutY
50 < / p r o p e r t y>

51 <p r o p e r t y p a r t -name=” Top” name=” t i t l e ”>
52 S t a c k m a n i p u l a t i o n
53 < / p r o p e r t y>

56 <p r o p e r t y p a r t -name=” B u t t o n P a n e l ” name=” l a y o u t ”>
57 j a v a x . swing . BoxLayoutX
58 < / p r o p e r t y>

59 <p r o p e r t y p a r t -name=” B u t t o n P a n e l ” name=” a l ignmentX ”>
60 LEFT ALIGNMENT
61 < / p r o p e r t y>

63 <p r o p e r t y p a r t -name=” AddButton ” name=” t e x t ”>
64 Push
65 < / p r o p e r t y>

66 <p r o p e r t y p a r t -name=” RemoveButton ” name=” t e x t ”>
67 Pop
68 < / p r o p e r t y>

69 <p r o p e r t y p a r t -name=” TopBut ton ” name=” t e x t ”>
70 Top
71 < / p r o p e r t y>

72 <p r o p e r t y p a r t -name=” C l e a r ” name=” t e x t ”>
73 C l e a r
74 < / p r o p e r t y>

76 <p r o p e r t y p a r t -name=” Labe l ” name=” t e x t ”>
77 Values i n S t a c k
78 < / p r o p e r t y>

81 <p r o p e r t y p a r t -name=” S c r o l l P a n e ” name=” a l ignmentX ”>
82 LEFT ALIGNMENT
83 < / p r o p e r t y>

85 <p r o p e r t y p a r t -name=” L i s t ” name=” s e l e c t i o n M o d e ”>
86 SINGLE SELECTION
87 < / p r o p e r t y>

88 <p r o p e r t y p a r t -name=” L i s t ” name=” c o n t e n t ”>
89 <c o n s t a n t model=” l i s t ”>
90 <c o n s t a n t i d =” 1 ” va lue =” 1 ” />
91 <c o n s t a n t i d =” 2 ” va lue =” 2 ” />
92 <c o n s t a n t i d =” 3 ” va lue =” 3 ” />
93 <c o n s t a n t i d =” 4 ” va lue =” 4 ” />
94 < / c o n s t a n t>
95 < / p r o p e r t y>

97 < / s t y l e>

99 <b e h a v i o r>

101 <r u l e>
102 <c o n d i t i o n>

103 <e v e n t p a r t -name=” AddButton ” c l a s s =” a c t i o n P e r f o r m e d ” />
104 < / c o n d i t i o n>

105 <a c t i o n>

106 <c a l l name=” s t a c k . addElement ” />



APPENDIX G. UIML CODE EXAMPLES 290

107 < / a c t i o n>

108 < / r u l e>

110 <r u l e>
111 <c o n d i t i o n>

112 <e v e n t p a r t -name=” TopBut ton ” c l a s s =” a c t i o n P e r f o r m e d ” />
113 < / c o n d i t i o n>

114 <a c t i o n>

115 <c a l l name=” s t a c k . Top” />
116 < / a c t i o n>

117 < / r u l e>

119 <r u l e>
120 <c o n d i t i o n>

121 <e v e n t p a r t -name=” C l e a r ” c l a s s =” a c t i o n P e r f o r m e d ” />
122 < / c o n d i t i o n>

123 <a c t i o n>

124 <c a l l name=” s t a c k . C l e a r ” />
125 < / a c t i o n>

126 < / r u l e>

129 <r u l e>
130 <c o n d i t i o n>

131 <e v e n t p a r t -name=” RemoveButton ” c l a s s =” a c t i o n P e r f o r m e d ” />
132 < / c o n d i t i o n>

133 <a c t i o n>

134 <c a l l name=” s t a c k . removeElement ” />
135 < / a c t i o n>

136 < / r u l e>

138 <r u l e>
139 <c o n d i t i o n>

140 <e v e n t p a r t -name=” L i s t ” c l a s s =” i n t e r v a l A d d e d ” />
141 < / c o n d i t i o n>

142 <a c t i o n>

143 <p r o p e r t y p a r t -name=” Labe l ” name=” t e x t ”>
144 An e l e m e n t was Pushed .
145 < / p r o p e r t y>

146 < / a c t i o n>

147 < / r u l e>

149 <r u l e>
150 <c o n d i t i o n>

151 <e v e n t p a r t -name=” L i s t ” c l a s s =” i n t e r v a l R e m o v e d ” />
152 < / c o n d i t i o n>

153 <a c t i o n>

154 <p r o p e r t y p a r t -name=” Labe l ” name=” t e x t ”>
155 An e l e m e n t was Poped .
156 < / p r o p e r t y>

157 < / a c t i o n>

158 < / r u l e>

160 <r u l e>
161 <c o n d i t i o n>

162 <e v e n t p a r t -name=” L i s t ” c l a s s =” c o n t e n t s C h a n g e d ” />
163 < / c o n d i t i o n>

164 <a c t i o n>

165 <p r o p e r t y p a r t -name=” Labe l ” name=” t e x t ”>
166 C o n t e n t s changed .
167 < / p r o p e r t y>

168 < / a c t i o n>

169 < / r u l e>

171 < / b e h a v i o r>



APPENDIX G. UIML CODE EXAMPLES 291

173 < / i n t e r f a c e>

175 <p e e r s>
176 < l o g i c>
177 <d - component i d =” s t a c k ” maps - t o =” s t a c k ”>
178 <d - method i d =” removeElement ”
179 maps - t o =” removeTopElement ” />
180 <d - method i d =” addElement ” maps - t o =” Push ” />
181 <d - method i d =” Top” maps - t o =” Top” />
182 <d - method i d =” C l e a r ” maps - t o =” C l e a r ” />
183 < / d - component>
184 < / l o g i c>

186 <p r e s e n t a t i o n base=” J a v a 1 . 3 Harmonia 1 . 0 ” />
187 < / p e e r s>

189 < / u iml>

G.2 Table UIML Code

Listing G.2: UIML “template” for table definition

1 <? xml v e r s i o n =” 1 . 0 ” ?>
2 <!DOCTYPE uiml PUBLIC ” - / / UIT / / DTD UIML 2 . 0 D r a f t / / EN”
3 ”UIML2 0g . d t d ”>
4 <uiml>
5 < i n t e r f a c e i d =” HTMLTableTest ”>
6 <s t r u c t u r e>

7 <p a r t i d =” t o p ” c l a s s =” Html ”>
8 <p a r t i d =” body ” c l a s s =”Body”>
9 <p a r t i d =” t a b l e ” c l a s s =” Tab le ”>

10 <s t y l e>
11 <p r o p e r t y name=” background - c o l o r ”>y e l l o w< / p r o p e r t y>

12 <p r o p e r t y name=” a l i g n ”>CENTER< / p r o p e r t y>

13 < / s t y l e>
14 <p a r t i d =” t r 1 ” c l a s s =” Tr ”>
15 <p a r t c l a s s =”Th”>
16 <s t y l e>
17 <p r o p e r t y name=” c o n t e n t ”>ENGLISH< / p r o p e r t y>

18 < / s t y l e>
19 < / p a r t>
20 <p a r t c l a s s =”Th”>
21 <s t y l e>
22 <p r o p e r t y name=” c o n t e n t ”>SPANISH< / p r o p e r t y>

23 < / s t y l e>
24 < / p a r t>
25 <p a r t c l a s s =”Th”>
26 <s t y l e>
27 <p r o p e r t y name=” c o n t e n t ”>GERMAN< / p r o p e r t y>

28 < / s t y l e>
29 < / p a r t>
30 < / p a r t>
31 <p a r t i d =” t r 2 ” c l a s s =” Tr ”>
32 <p a r t c l a s s =”Td”>
33 <s t y l e>
34 <p r o p e r t y name=” c o n t e n t ”>one< / p r o p e r t y>

35 < / s t y l e>
36 < / p a r t>
37 <p a r t c l a s s =”Td”>
38 <s t y l e>
39 <p r o p e r t y name=” c o n t e n t ”>uno< / p r o p e r t y>

40 < / s t y l e>
41 < / p a r t>



APPENDIX G. UIML CODE EXAMPLES 292

42 <p a r t c l a s s =”Td”>
43 <s t y l e>
44 <p r o p e r t y name=” c o n t e n t ”>e i n s< / p r o p e r t y>

45 < / s t y l e>
46 < / p a r t>
47 < / p a r t>
48 <p a r t i d =” t r 3 ” c l a s s =” Tr ”>
49 <p a r t c l a s s =”Td”>
50 <s t y l e>
51 <p r o p e r t y name=” c o n t e n t ”>two< / p r o p e r t y>

52 < / s t y l e>
53 < / p a r t>
54 <p a r t c l a s s =”Td”>
55 <s t y l e>
56 <p r o p e r t y name=” c o n t e n t ”>dos< / p r o p e r t y>

57 < / s t y l e>
58 < / p a r t>
59 <p a r t c l a s s =”Td”>
60 <s t y l e>
61 <p r o p e r t y name=” c o n t e n t ”>zwei< / p r o p e r t y>

62 < / s t y l e>
63 < / p a r t>
64 < / p a r t>
65 <p a r t i d =” t r 4 ” c l a s s =” Tr ”>
66 <p a r t c l a s s =”Td”>
67 <s t y l e>
68 <p r o p e r t y name=” c o n t e n t ”> t h r e e< / p r o p e r t y>

69 < / s t y l e>
70 < / p a r t>
71 <p a r t c l a s s =”Td”>
72 <s t y l e>
73 <p r o p e r t y name=” c o n t e n t ”> t r e s< / p r o p e r t y>

74 < / s t y l e>
75 < / p a r t>
76 <p a r t c l a s s =”Td”>
77 <s t y l e>
78 <p r o p e r t y name=” c o n t e n t ”>d r e i< / p r o p e r t y>

79 < / s t y l e>
80 < / p a r t>
81 < / p a r t>
82 <p a r t i d =” c a p t i o n ” c l a s s =” C a p t i o n ”>
83 <s t y l e>
84 <p r o p e r t y name=” a l i g n ”>BOTTOM< / p r o p e r t y>

85 <p r o p e r t y name=” c o n t e n t ”>A Tab le o f Numbers .< / p r o p e r t y>

86 < / s t y l e>
87 < / p a r t>
88 < / p a r t>
89 < / p a r t>
90 < / p a r t>
91 < / s t r u c t u r e>

92 < / i n t e r f a c e>

93 <p e e r s>
94 <p r e s e n t a t i o n how=” r e p l a c e ” s o u r c e =”HTML 3 . 2 Harmonia 1 . 0 . u iml # vocab ”
95 base=”HTML 3 . 2 Harmonia 1 . 0 ” />
96 < / p e e r s>
97 < / u iml>



Appendix H

Stack VDM -SL Specification

This excerpt comes from [Oli02] and, as the author of the paper said, represents a
purely functional specification of a Stack.

Data types

Stack = A∗;
A = token

Functions

H.0.0.10 Function push

Specification:

push :A× Stack → Stack

push (a, s) 4

[a] y s;

Description:

Add a new element to the Stack

Calls:

Standard VDM-SL only

H.0.0.11 Function pop

Specification:

293



APPENDIX H. STACK VDM -SL SPECIFICATION 294

pop : Stack → Stack

pop (s) 4

tl s
pre ¬ empty (s)

;

Description:

Remove the Top element of the Stack

Calls:

empty

H.0.0.12 Function top

Specification:

top : Stack → A

top (s) 4

hd s
pre ¬ empty (s)

;

Description:

Get the first element of the Stack

Calls:

empty

H.0.0.13 Function empty

Specification:

empty : Stack → B

empty (s) 4

s = [];

Description:

Test if the Stack is empty



APPENDIX H. STACK VDM -SL SPECIFICATION 295

Calls:

Standard VDM-SL only



Function/Method Cross-Reference
Index

IO ‘fecho < fWrite , 200
TC2P < TR2P , 202
TC2P , 202
TR2P < TU 2U , 201
TR2P , 202
TS2P < TC2P , 202
TS2P < TR2P , 202
TS2P < TU 2U , 201
TS2P , 201
TU 2U , 201
actionIDs , 127
addCol , 167
addCols , 166
addColsRows < addCols , 167
addColsRows , 168
addMunion < behaviorIDs , 126
addMunion < constantsIDs , 126
addMunion < contentIDs , 125
addMunion < dclassIDs , 122
addMunion < dcomponentIDs , 121
addMunion < dmethodIDs , 123
addMunion < dparamsIDs , 123
addMunion < dpropertiesIDs , 124
addMunion < interfaceIDs , 137
addMunion < iteratorIDs , 131
addMunion < opIDs , 133
addMunion < paramIDs , 132
addMunion < partIDs , 125
addMunion < peersIDs , 119
addMunion < preslogIDs , 120
addMunion < propertytypesIDs , 131
addMunion < rulesIDs , 127
addMunion < scriptIDs , 140
addMunion < structureIDs , 140
addMunion < styleIDs , 141
addMunion , 147

addRow , 163
allIDs < uniqueIDs , 118
allIDs , 119
applyMon < mda , 175
applyMon , 189
averag , 174
avg < averag , 174
avg , 186
behav2str < inteles2str , 281
behav2str < part2str , 283
behaviorIDs < interfaceIDs , 137
behaviorIDs < partIDs , 125
behaviorIDs < templateIDs , 139
behaviorIDs < uniqueIDs , 118
behaviorIDs , 126
bydefaultIDs < actionIDs , 128
bydefaultIDs , 135
children , 181
childrenOf , 182
classs2str < part2str , 283
colValues < collect , 177
colValues , 164
collect < mda , 175
collect , 176
conditionIDs < rulesIDs , 127
conditionIDs , 127
consolidate , 184
constantsIDs < constantsIDs , 126
constantsIDs < contentIDs , 125
constantsIDs < cprIDs , 129
constantsIDs < iteratorIDs , 131
constantsIDs < opIDs , 133
constantsIDs < paramIDs , 132
constantsIDs < propertytypesIDs , 131
constantsIDs < templateIDs , 139
constantsIDs < uniqueIDs , 118

296



FUNCTION/METHOD CROSS-REFERENCE INDEX 297

constantsIDs , 126
content2str < inteles2str , 281
content2str < part2str , 283
contentIDs < interfaceIDs , 137
contentIDs < partIDs , 125
contentIDs < templateIDs , 139
contentIDs < uniqueIDs , 118
contentIDs , 125
cprIDs < equalIDs , 128
cprIDs , 128
dclassIDs < dclassesIDs , 121
dclassIDs < templateIDs , 139
dclassIDs , 121
dclassesIDs < preslogIDs , 120
dclassesIDs , 121
dcomponentIDs < dcomponentsIDs ,

120
dcomponentIDs < templateIDs , 139
dcomponentIDs , 121
dcomponentsIDs < preslogIDs , 120
dcomponentsIDs , 120
delRow , 162
dmethodIDs < dmethodsIDs , 122
dmethodIDs , 122
dmethodsIDs < dclassIDs , 122
dmethodsIDs < dcomponentIDs , 121
dmethodsIDs < dpropertiesIDs , 124
dmethodsIDs , 122
dparamsIDs < dmethodIDs , 123
dparamsIDs < dpropertiesIDs , 124
dparamsIDs , 123
dpropertiesIDs < dclassIDs , 122
dpropertiesIDs , 123
drillColsHier , 183
drillDown , 183
empty < pop, 293
empty < top, 293
empty , 293
equalIDs < bydefaultIDs , 135
equalIDs < conditionIDs , 127
equalIDs < uniqueIDs , 118
equalIDs < whenfalseIDs , 135
equalIDs < whentrueIDs , 134
equalIDs , 128
fWrite , 200
family , 182
ff 2set < collect , 177

ff 2set , 190
getCell < project , 165
getCell , 172
getCellValue , 171
getCols < mda , 175
getCols , 170
getColsIds < averag , 174
getColsIds , 170
getOne < collect , 177
getOne , 190
getRows < mda , 175
getRows < project , 165
getRows , 164
head2str < toFileHTML, 283
head2str < uiml2str , 279
hideCol , 168
hideRow , 161
inteles2str , 280
interf 2str < member2str , 280
interf 2str , 279
interfaceIDs < allIDs , 119
interfaceIDs < interfacesIDs , 136
interfaceIDs < templateIDs , 139
interfaceIDs < uniqueIDs , 118
interfaceIDs , 136
interfacePN < interfacesPN , 142
interfacePN , 142
interfacesIDs < validProperties , 141
interfacesIDs , 136
interfacesPN < validProperties , 141
interfacesPN , 141
iteratorIDs < opIDs , 133
iteratorIDs < paramIDs , 132
iteratorIDs < propertytypesIDs , 131
iteratorIDs < uniqueIDs , 118
iteratorIDs , 131
iteratorPN < paramPN , 145
iteratorPN , 146
length , 147
map2map < project , 165
map2map, 193
map2set , 193
markRow < hideRow , 161
markRow , 188
max , 186
mda , 175
mda2html , 191



FUNCTION/METHOD CROSS-REFERENCE INDEX 298

mda2rows , 191
mda2table <, 192
mda2table , 191
member2str < members2str , 280
member2str , 279
members2str < toFileHTML, 283
members2str < uiml2str , 279
members2str , 280
min , 187
mkTable , 159
opIDs < bydefaultIDs , 135
opIDs < conditionIDs , 127
opIDs < uniqueIDs , 118
opIDs < whenfalseIDs , 135
opIDs < whentrueIDs , 134
opIDs , 132
outHtml <, 192
outHtml , 195
outHtmlValue , 196
outUiml , 196, 206
outUimlJ , 198
paramIDs < paramsIDs , 132
paramIDs , 132
paramPN < paramsPN , 145
paramPN , 145
paramsIDs < iteratorIDs , 131
paramsIDs < opIDs , 133
paramsIDs < paramIDs , 132
paramsIDs < pcIDs , 134
paramsIDs < pcrsIDs , 129
paramsIDs < propertytypesIDs , 131
paramsIDs , 131
paramsPN < iteratorPN , 146
paramsPN < paramPN , 145
paramsPN < propertytypesPN , 144
paramsPN , 145
parent , 181
part2str < parts2str , 282
part2str , 282
partIDs < partsIDs , 125
partIDs < usedintagIDs , 124
partIDs , 125
parts2str < part2str , 283
parts2str < stru2str , 281
parts2str , 282
partsIDs < partIDs , 125
partsIDs < structureIDs , 140

partsIDs < templateIDs , 139
partsIDs < uniqueIDs , 118
partsIDs , 124
partsPN < interfacePN , 142
partsPN , 143
pcIDs < bydefaultIDs , 135
pcIDs < whenfalseIDs , 135
pcIDs < whentrueIDs , 134
pcIDs , 134
pcrsIDs < actionIDs , 128
pcrsIDs , 129
peer2str < member2str , 280
peersIDs < allIDs , 119
peersIDs < templateIDs , 139
peersIDs < uniqueIDs , 118
peersIDs , 119
pop, 292
preslogIDs < peersIDs , 119
preslogIDs < templateIDs , 139
preslogIDs < uniqueIDs , 118
preslogIDs , 120
project , 165
propertiesIDs < cprIDs , 129
propertiesIDs < iteratorIDs , 131
propertiesIDs < opIDs , 133
propertiesIDs < paramIDs , 132
propertiesIDs < pcIDs , 134
propertiesIDs < pcrsIDs , 129
propertiesIDs < propertytypesIDs , 131
propertiesIDs < styleIDs , 141
propertiesIDs < templateIDs , 139
propertiesIDs < uniqueIDs , 118
propertiesIDs , 130
propertiesPN < stylePN , 143
propertiesPN , 144
propertytypeIDs < propertiesIDs , 130
propertytypesIDs , 130
propertytypesPN < iteratorPN , 146
propertytypesPN < paramPN , 145
propertytypesPN < propertiesPN , 144
propertytypesPN , 144
push , 292
restructureIDs < bydefaultIDs , 135
restructureIDs < templateIDs , 139
restructureIDs < uniqueIDs , 118
restructureIDs < whenfalseIDs , 135
restructureIDs < whentrueIDs , 134



FUNCTION/METHOD CROSS-REFERENCE INDEX 299

restructureIDs , 135
rollColsHier , 179
rollUp, 178
rotate , 173
rowValues , 163
rowcolValues , 166
rows , 160
rulesIDs < behaviorIDs , 126
rulesIDs < templateIDs , 139
rulesIDs < uniqueIDs , 119
rulesIDs , 126
scriptIDs < templateIDs , 139
scriptIDs , 140
set2seq , 194
setApply < applyMon , 190
setApply < consolidate , 184
setApply , 192
setApplyElems < summarize , 185
setApplyElems , 192
setCell , 170
showCol , 169
showRows , 161
split < allIDs , 119
split < validProperties , 141
split , 146
srcatt2str < part2str , 283
srcatt2str < stru2str , 281
stru2str < inteles2str , 281
stru2str , 281
structureIDs < interfaceIDs , 137
structureIDs < templateIDs , 139
structureIDs , 140
style2str < inteles2str , 281
style2str < part2str , 283
styleIDs < interfaceIDs , 137
styleIDs < templateIDs , 139
styleIDs < uniqueIDs , 118
styleIDs , 140
stylePN < interfacePN , 142
stylePN < partsPN , 143
stylePN , 143
sum , 186
summarize , 184
t2troll , 189
templ2str < member2str , 280
templateIDs < restructureIDs , 136
templateIDs < templatesIDs , 138

templateIDs , 138
templatesIDs < allIDs , 119
templatesIDs < pcrsIDs , 129
templatesIDs < uniqueIDs , 119
templatesIDs , 137
toFileHTML, 283
toInter < TU 2U , 201
toInter , 204
toPart < TC2P , 202
toPart < TR2P , 202
toPart < TU 2U , 201
toPart , 204
toPro < TU 2U , 201
toPro, 203
toStr , 187
toStru < TU 2U , 201
toStru , 203
toSty < TC2P , 202
toSty < TR2P , 202
toSty , 203
top, 293
uiml2str , 278
uniqueIDs , 117
unmarkRows(page189) < showRows ,

161
unmarkRows , 188
usedintagIDs , 124
validProperties , 141
visibleRows < rows , 160
visibleRows , 194
whenfalseIDs < actionIDs , 128
whenfalseIDs , 134
whentrueIDs < actionIDs , 128
whentrueIDs , 133



Glossary

Notation Description

AIO Abstract Interaction Object 27
API Application Program Interface 7
AST Abstract Syntax Tree 201
AUIML Abstract User Interface Markup Language 66

B2B Business to Business 2

CBD Component Based Software Development 42
CGI Common Gateway Interface 38
CIO Concrete Interaction Object 27
CMS Content Management Systems 37
CSS Cascading Style Sheet 14

DFD Data Flow Diagrams 34
DIWG W3C Device Independence Working Group 68
DMI Direct Manipulation Interfaces 33
DOM Document Object Model 56, 253
DSL Domain Specific Language 10
DTD Document Type Definition 250

EAI Enterprise Application Integration 2, 33

FME Formal Methods Europe 25

GPL General-Purpose Language 10
GUI Graphical User Interface 6

HCI Human-Computer Interaction 2

IAI Inter-Enterprise Application Integration 33
IDSS Intelligent Decision Support System 17
IO Interaction Objects 44
IT Information Technology 41

JFC Java Foundation Classes 37

300



Notation Description

MB-UIDE Model-based User Interface Development Environ-
ments

34

MDOLAP Multidimensional OLAP 50
MFC Microsoft Foundation Classes 37
MIM Meta-Interface Model 20
MSC Message Sequence Charts 43
MVC Model View Controller 17

NFR Non Functional Requirements 23

OASIS Organization for the Advancement of Structured In-
formation Systems

53, 65

OLAP Online Analytical Processing 44
OMG Object Management Group 34

PAC Presentation Abstraction Control 17

RDBMS Relational Database Management Systems 1
RDF Resouces Description Framework 58
ROLAP Relacional OLAP 50

SAX Simple API for XML Parsing 253
SDL System Description Languages 42
STD State Transaction Diagrams 34

UI User Interface 32
UIML User Interface Markup Language 60
UML Unified Modelling Language 34
UMLi Unified Modelling Language for Interactive Appli-

cations
34

VCL Visual Component Library 2
VDM The Vienna Development Method 8
VDM-SL VDM Specification Language 10, 29
VoiceXml Voice Extensible Markup Language 38

W3C World Wide Web Consortium 53

XIML eXtensible Interface Markup Language 54
XML eXtended Markup Language 248
XML eXtensible Markup Language 38
XPath XML Path Language 254
XSL Extensible Stylesheet Language Family 253
XSLFO XML Formatting Objects 254



Notation Description

XSLT XSL Transformations 254
XUL XML-based User Interface Language 56


