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Abstract. The construction of repositories with curated information
about gene essentiality for organisms of interest in Biotechnology is a
very relevant task, mainly in the design of cell factories for the enhanced
production of added-value products. However, it requires retrieval and
extraction of relevant information from literature, leading to high costs
regarding manual curation. Text mining tools implementing methods
addressing tasks as information retrieval, named entity recognition and
event extraction have been developed to automate and reduce the time
required to obtain relevant information from literature in many biomed-
ical fields. However, current tools are not designed or optimized for the
purpose of identifying mentions to essential genes in scientific texts.

In this work, we propose a pipeline to automatically extract mentions
to genes and to classify them accordingly to their essentiality for a spe-
cific organism. This pipeline implements a machine learning approach
that is trained using a manually curated set of documents related with
gene essentiality in yeast. This corpus is provided as a resource for the
community, as a benchmark for the development of new methods. Our
pipeline was evaluated performing resampling and cross validation over
this curated dataset, presenting an accuracy of over 80%, and an f1-score
over 75%.

1 Introduction

In recent years, organisms modified genetically have been used as hosts in the
production of compounds of interest (e.g. biofuels or drugs) through Biotechnol-
ogy [1,2]. In many cases, these hosts are subjected to specific genetic modifica-
tions to design strains that are able to improve productivity or yield in these
bio-processes. The identification of essential genes for these microbial hosts is an
important task within this effort.

In this context, several repositories with manually curated information of
organism oriented gene essentiality (e.g. OGEE [3], SGD [4]) emerged to identify
which genes can be removed maintaining the modified organism viability, given
some experimental conditions (e.g. media). The construction of such repositories
requires a large amount of information that is spread in different sources, mainly
scientific literature [3,4]. The extraction of relevant information from literature
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about essential genes is a time consuming task, requiring a huge amount of
manual curation from researchers.

The Text Mining (TM) field has emerged from the efforts to automate and
reduce the required time to retrieve and extract relevant information from litera-
ture. This field combines computational approaches applied for several linguistic
challenges, as the identification of relevant documents for a specific theme, the
recognition of name entities with biological meaning from texts, or the extraction
of semantic information of these named entities or relationships/ events relating
them [5].

The identification of gene mentions in literature, with a correct association to
a specific organism, is a difficult task even when we have a selected set of relevant
documents. Named entity recognition (NER) is a TM field that has been used
for the identification of biological entities assigned to a class of interest (e.g.
proteins, compounds, genes or cell lines) [5–8].

Dictionaries and ontologies have been used as resources for NER, being
used as data structures supporting search and matching algorithms (e.g. binary
search algorithm), used to annotate free text with specific entries from biological
databases and other repositories [6]. This approach has some limitations, being
one of them the need to have complete databases for a specific biological context
that usually are not enough to match all possible entities (e.g. lack of all possible
gene synonyms on a gene dictionary).

NER approaches based on expression rules have been used to match named
entity variants, which are not present on dictionaries and ontologies [7]. However,
this requires the definition of complex rules created from name patterns for a
specific biological context.

Supervised Machine Learning (ML) models, such as Support Vector Machines
(SVMs) or Conditional Random Fields (CRFs) have been applied for NER with
fast and reliable results [8]. These methods work by training ML models from
a large set of data, typically manually curated, which may then be applied to
predict the classes of new examples. ML methods have also been used for many
other applications in TM.

In the case of NER for genes, we will opt here for the use of dictionaries,
since in this particular case they have shown good performance. Indeed, dictio-
naries for gene names and synonyms for well studied organisms, such as yeast or
humans, can achieve good performance in NER tasks. Also, applying a curated
dictionary with gene names for a determined organism improves the specificity
of the dictionary based NER systems.

When trying to assess gene essentiality from text, a first step of NER to
find gene mentions is needed. Then, a second level of information extraction is
required to identify if the identified genes are essential or not, given the semantics
of the sentence where the gene is mentioned. This will be handled as a problem of
Event extraction (EE), another major TM task, which tries to identify semantic
interactions between previously annotated entities [3,5,9].

We will consider here that the presence of certain keywords, like “essen-
tial”, “nonessential” or “viability”, can be important to define the sentence’s
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semantics. We will call these keywords as triggers and identify those in sentences
also using NER, matching the tokens in the sentence with a set of pre-defined
keywords.

Pairing mentions to triggers and genes can give us information on the seman-
tics of the sentence regarding the gene’s essentiality. Here, for each pair, we will
provide a classification task seeking to decide if the pair is an essentiality event
or not. An event can be defined as a relation between a set of entities with bio-
logical interest. In our case, this relationship will be established between a gene
and a trigger, and will represent an event of gene essentiality.

As an example, in the sentence “Disruption of gene A compromises the viabil-
ity of organism D”, the entity “gene A” and the trigger “viability” are associated
as a pair, which is classified as an essentiality event “gene A - viability” due to
the meaning of the whole sentence (the verb “compromises” implies that the
“gene A” is essential for “organism D”).

Shallow parsing and dependency parsing methods have been applied to dif-
ferent EE tasks, identifying semantic patterns on sentences that denote the inter-
action of annotated entities in a sentence [10,11]. Those methods require a set
of rules, defined as grammars, that try to represent the structure of a sentence
computationally. Those grammars are difficult to obtain because they require
large amounts of written text for a specific theme, being normally trained and
curated from large text repositories as journal news.

Co-occurrence based methods are able to identify events from associations
of entities present in each sentence [12]. Those associations are then classified as
event or not regarding a arbitrary rule, a statistical or an ML model. Similarly to
ML models applied for NER, ML models applied for EE based on co-occurrences
require a large amount of documents manually annotated with events to allow
for ML model training.

Training ML models on an EE co-occurrence based system using literature
with curated gene essentiality evidences would enable the prediction of novel
gene essentiality evidences in unannotated literature. However, previously pro-
posed NER and EE systems lack specificity to extract genes with an essentiality
context, since they are designed to identify biological entities and events within a
more generic context. Also, there is a lack of adequate manually curated datasets
to enable training ML models for this task.

In this work, we aim to help researchers to identify essential gene evidences
from literature in an automated way, by proposing a gene essentiality extraction
method, which is implemented by a TM pipeline including NER and EE sub-
systems. Our method firstly identifies gene names for a specific organism and
triggers related to gene essentiality, and then provides ML-based models for the
classification of the essentiality gene context present in the sentences where gene-
trigger pairs are identified. We have also created a large manually curated corpus
for yeast genes essentiality with over 6000 sentences, which allows to train our
ML models and provide a benchmark for their validation, as well as a resource
for the research community.
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In this article, we provide a detailed description of the gene essentiality
extraction method proposed in this work. Afterwards, the system performance
is evaluated in terms of precision, recall and f1 score using our novel curated
dataset. Finally, we discuss the advantages and further improvements of the
proposed system.

2 Algorithms and Implementation

2.1 Proposed Algorithm

Our system contains two main steps to extract essential genes: (i) identification
of triggers and gene names with a dictionary-based NER approach, and (ii)
classification of essential genes with an EE based ML approach. Figure 1 shows
the overall pipeline with the two main steps of our system.

The NER for gene identification is performed using a dictionary-based app-
roach that requires a dictionary built with a set of gene names for a specific
organism (e.g. S. cerevisiae or E. coli). The system matches and annotates all
dictionary names against the free text using a binary search algorithm.

On the other hand, the triggers are recognized following a similar approach,
using a dictionary built from a curated set of names like “essentiality”, “essen-
tial”, “nonessential”, “non-essential”, “unessential gene” or other variation key-
words that define the essentiality context of gene names in the sentence.

In the second step of the pipeline, an EE sub-system is used to annotate
events between the previously identified genes and triggers. Those events are
classified as essential, not essential or not related taking into account the sen-
tence meaning. For EE, we use an algorithm designed for general-purpose tasks,
which takes pairs of annotated entities and classifies those accordingly to a set
of features.

The EE sub-system is separated in two main pipelines: training and predic-
tion. In both pipelines, there is a common step, the feature matrix generation
which requires the MALLET framework [13]. This step processes the corpus and
converts it into a matrix of features characterizing pairs of entities (which can
be labelled as possible events).

The set of features used in our method is provided and briefly described in
Table 1. These features can be divided, regarding the information extracted from
texts, into two main groups: sentence morphology and event morphology.

Sentence morphology features are extracted from the sentences’ structure,
including any information not directly related with the annotated pairs (e.g.
sentence length, verbs present in the sentence, etc). On the other hand, event
morphology features are related directly with the pair of entity annotations (e.g.
words of the possible event, positions of those words in the sentence, etc.).

Entity annotations present in each sentence are paired and treated as possi-
ble event instances. For example, consider the sentence “In contrast to gene A,
the gene B is essential for growth.” (Fig. 2), in which “gene A”, “gene B” and
“essential” are the annotated entities obtained from the NER module. These
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Fig. 1. Overall event extraction pipeline.

annotations are converted into three instances of the matrix considering all pos-
sible pairs: “gene A - gene B”, “gene A - essentiality” and “gene B - essentiality”
(as observed, the system considers “gene A - gene B” as equal to “gene B - gene
A”).

The EE pipeline contains a filtering approach to select which entity pairs will
be used to train ML models. The filtering approach selects which possible pairs
of entity classes are allowed in the model (e.g. only pairs that have a trigger and
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Table 1. Features used in event classification organized by groups

Feature group Feature name Feature description

Sentence
morphology

Count tokens
between

Counts the number of tokens between two
annotations on the event

Count tokens
outside

Counts the number of tokens outside two
annotations on the event

Event annotation
between commas

Tests if the annotation event is between
commas

Event annotation
between
parenthesis

Tests if the annotation event is between
parenthesis

Keyword between
event entities

Tests if “not”, “for”, “by”, “in” or “from”
keywords exist between event entity tokens

Lemmas between
event annotations

For each lemma, tests if it is present
between event token annotations

Lemmas after
keyword until
sentence end

For each lemma, tests if it is present in the
sentence from keywords “not”, “for”, “by”,
“in” or “from” until the end of the sentence.

Verb between
event entities

For each verb, tests if it exists between
event annotation tokens

Verb outside
event entities

For each verb, tests if it exists outside event
annotation tokens

Last verb before
event

For each verb, tests if it exists before event
annotation tokens

Event
morphology

Annotation
tokens

For each pair of token annotations, checks if
it is in the event

Positions in
sentence

For each pair of token annotations, gives the
(position/size tokens) in sentence

Contains token
annotations that
starts with
negative evidence

Tests if annotation starts with “non” or
“un” or “in”

Annotation
lemmas

For each pair of lemmas from token
annotations, tests if it is in the event

Annotation part
of speech

For each pair of part-of-speech from token
annotations, tests if it is in the event

Event part of
speech
representative

For each sequence of part-of-speech from all
annotations using dependency parsing label
nodes, tests if it is in the event

Event entity
annotation type

For each pair of possible entity types, tests
if it is in the event

Dependency tree
distance

Minimum distance in number of arcs to get
from one entity to other entity in the event



Automating the Extraction of Essential Genes from Literature 81

Fig. 2. Sentence example with annotated entities, filtering, feature generation and ML
training steps.

gene will be considered in this case). Using the example above, only “gene A -
essentiality” and “gene B - essentiality” are used for the next step.

For each pair selected from the filtering module, a set of features are generated
by all modules based on sentence morphology and syntax (Table 1). On the
training pipeline, the annotated events are used to label the matrix instances as
a binary classification problem:

– “B” for an entity pair that is an event, labelled with the target class of the
model;

– “O” for an entity pair that is not an event, or is an event with a type not
equal to the target class of the model.

Note that if there are three or more classes in the task, a model for each class
is defined. In our case, three models will be trained, for essential, non essential
and not related classes.
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On the prediction pipeline, each of the ML trained models are applied to a
sentence, labeling all pairs of annotations with “B” or “O”, as shown on Fig. 2.
Each prediction assigns a score to each possible outcome.

When there are three or more classes, the system allows the combination of
several trained ML models that are able to predict events with different classes
for the same pair. This leads to an overlap from predictions of two or more
models which is solved by selecting the event with the highest prediction score.

The ML algorithm in this work uses Support Vector Machines (SVM), as pro-
vided by the LibSVM software library [14]. Default LibSVM parameters are used
on training (C-SVC with linear kernel, cost equal to 1 and activated estimation
of probabilities).

Evaluation of EE ML trained models can be performed by two evaluation
methods: cross-validation or resampling. The evaluation system encompasses a
pipeline for dataset processing. The processing pipeline requires the MALLET
framework, that produces the event matrix described above, in which the cross-
validation or the resampling evaluations are applied to the event instances.

For cross-validation evaluations, the matrix is split into k folds (k is defined
by the user). Each fold is used to predict event annotations from ML model
trained on the remaing folds.

For resampling evaluations, the holdout procedure is applied on the matrix.
In each evaluation, a percentage of random instances from the matrix is used as
the test dataset. The remaining instances are used to train the ML model.

The event extraction system was integrated into the BioTML framework
[15] that is available in @Note2 [16], a general-purpose biomedical TM plat-
form http://anote-project.org/. This system is accessible through a Java appli-
cation programming interface (API) that is available at https://github.com/
biotextmining/machinelearning.

2.2 Manually Curated Corpus for Yeast

An essentiality corpus was created in this work containing 5240 documents
related with S. cerevisiae randomly selected from PubMed. The corpus was
annotated with a dictionary of genes created from the SGD database. Sentences
with at least one annotated gene and a trigger like “essentiality”, “essential”,
“nonessential”, “non-essential”, “unessential gene” or other gene essential varia-
tion keywords were extracted from those documents. Each sentence of the corpus
was manually annotated with one of three classes: “essential”, “not essential” or
“not related with essentiality” for each pair of gene-trigger annotations.

As a result, 6339 sentences with 6912 gene and trigger annotations were
obtained. Those annotations allowed to create 4412 pairs of trigger-gene anno-
tations, which were then classified and separated in 3 main groups (Table 2).

The corpus is also made available at https://github.com/biotextmining/
machinelearning with annotations in the BioNLP 2011 format (A1/A2 format),
allowing to fully reproduce the results of this paper, and to benchmark other
methods against the same data.

http://anote-project.org/
https://github.com/biotextmining/machinelearning
https://github.com/biotextmining/machinelearning
https://github.com/biotextmining/machinelearning
https://github.com/biotextmining/machinelearning
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Table 2. Number of event annotations present in the curated corpus

Event group Number of annotations

Essential gene 1424

Non essential gene 439

Not related essential gene 2549

3 Results

3.1 Event Extraction System Evaluation

The corpus presented in the previous section was used to validate our EE method.
We performed the two possible types of evaluation: cross-validation and resam-
pling.

For cross-validation, events from the whole set of documents were randomly
split into k folds. In the results presented in this paper, the value of k = 10
was used. The cases in each fold were predicted by an ML model trained using
the examples in the remaining folds. The predictions were compared against the
manually curated event classes using three metrics: precision, recall and f-score,
computed for each of the classes.

For resampling tests, 10 runs of holdout were executed. In each run, 2/3 of
the examples (events) in the corpus were randomly selected to train the ML
model. The remaining events (1/3) were predicted and compared against the
manually curated event classes using the metrics mentioned above. This process
was repeated 10 times.

The mean scores obtained from evaluations over the full corpus are described
in Tables 3 and 4, for the resampling and cross-validation validations. A confusion
matrix from one resampling evaluation run on the full corpus is presented in
Table 5.

Table 3. Event extraction resampling evaluation mean scores using the full corpus

Essential gene event group Recall Precision F1

Positive 56.9 ± 3.3% 68.9 ± 2.7% 62.3 ± 2.6%

Negative 36.5 ± 8.25% 61.2 ± 6.4% 45.5 ± 5.9%

Not related 84.2 ± 2.1% 72.2 ± 1.7% 77.8 ± 1.4%

As observed, the trained SVM models performed with similar results in both
evaluation methods. The values of f1-scores show better results in the classes
with more examples (not related and positive), but a low value on the class with
less examples (negative). This is probably due to the original unbalance of the
dataset.
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Table 4. Event extraction cross-validation evaluation mean scores using the full corpus

Essential gene event group Recall Precision F1

Positive 57.7 ± 3.5% 68.8 ± 7.3% 62.6 ± 7.50%

Negative 40.7 ± 7.7% 61.3 ± 18.2% 48.7 ± 11.4%

Not related 83.8 ± 3.5% 72.9 ± 4.4% 78.0 ± 3.2%

Table 5. Confusion matrix of one run of resampling of full corpus

Predicted event instances
by group event class

Not Related
Essentiality

Negative
Essentiality

Positive
Essentiality

C
or
re
ct

ev
en

t
in
st
an

ce
s

by
gr
ou

p
of

ev
en

t
cl
as
s

Not Related
Essentiality

728 27 100

Negative
Essentiality

68 59 18

Positive
Essentiality

203 4 255

Model
Accuracy 71.2%

Overall, these models achieved 71% of accuraccy, confirming these suspitions.
ML algorithms are highly influenced by the dataset in which they are trained.
The results shown that the SVM model was able to predict with high recall and
precision on events not related with essentially, because those instances were
more frequent than the other two types of events. The ML model predicted
negative events with low recall, because the number of examples present in the
training corpus was low.

To try to test the results in a balanced dataset, we merged the classes of
non-related and negative events. Also, we removed part of the examples in the
non related class. As a result, a filtered dataset was created, with 1596 sentences,
3941 entities, 1424 positive events and 1468 not-related/ negative events.

The mean scores obtained in evaluations performed on the filtered corpus are
described in Tables 6 and 7. A confusion matrix from one resampling evaluation
run on the filtered corpus is described on Table 8.

Table 6. Event extraction resampling evaluation mean scores using the filtered corpus

Essential gene event group Recall Precision F1

Positive 84.8 ± 4.3% 76.7 ± 3.7% 71.7 ± 2.3%

Not related 68.3 ± 4.2% 77.1 ± 6.1% 71.7 ± 4.5%
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Table 7. Event extraction cross-validation evaluation mean scores using the filtered
corpus

Essential gene event group Recall Precision F1

Positive 82.4 ± 14.5% 76.8 ± 6.9% 79.5 ± 7.9%

Not related 68.0 ± 14, 2% 76.3 ± 10.3% 71.6 ± 8.7%

Table 8. Confusion matrix of a run of resampling of the filtered corpus

Predicted event instances
by group event class

Not Related
Essentiality

Positive
Essentiality

C
or
re
ct

ev
en

t
in
st
an

ce
s

by
gr
ou

p
of

ev
en

t
cl
as
s

Not Related
Essentiality

265 95

Positive
Essentiality

71 406

Model
Accuracy 80.2%

Results show that the corpus balancing resulted in a improvement of overall
prediction scores of the ML models, since the algorithm and the parameters used
were the same of the previous evaluations.

Positive essentiality events achieved better recall and precision results. This
means that our models can, with a high confidence, find sentences that mention
essential genes, with precision, recall and accuracy all with values around 80%.
This means that ML models can be used to greatly reduce manual curation
efforts for this task.

On the other hand, the negative events are harder to discover and to dis-
tinguish from non related events. The ability to discover negative events, i.e.
sentences were genes are considered non essential, needs trained models with a
larger number of examples.

4 Conclusions and Further Work

In this work, we developed an event extraction method, and its implementation
in a computational pipeline, that is designed to identify gene annotations and
classify them in terms of essentiality for a specific organism. This system is
made available in the BioTML plugin, part of @Note2 text mining framework.
A manually curated corpus with gene essentiality data was created and made
available in this work, allowing to benchmark our method, but also to validate
methods proposed by the research community.

The results show that the ML algorithm is highly dependent of the train-
ing dataset, because training a ML model with an unbalanced dataset lead to
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relatively poor prediction results, mainly in the negative class (events mention-
ing non essential genes). Balancing the dataset, and considering two classes, an
ML model is able to predict with 80% of accuracy and with more than 75% of
precision and recall for the positive events.

Deep learning algorithms applied for text mining approaches are emerging
with better results than conventional supervised machine learning methods. Fur-
ther event extraction system improvements could be lead by implementation of
deep learning algorithms like long short-term memory networks to automate the
feature selection or to identify sentence patterns specific for essential gene iden-
tification. Still, the scenario of data scarcity for this task makes this approach
more difficult.
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